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ABSTRACT Implications and improvements of edge brightening effects led by Q factor minimization
restricted to keep the same level of directivity for high efficiency continuous circular aperture distributions
are here reported. In this manner, an optimization strategy for a minimum Q value –keeping the same level
of efficiency and restricting the maximum sidelobe level (SLL)– is envisaged. As application of the method,
a design procedure devoted to reduce the Q factor of the antenna aperture distributions while keeping a high
level of efficiency is outlined. Then, these optimal Taylor distributions are used as initial point to develop
an optimization strategy. This procedure is devoted to search Taylor-like distributions which offer a good
compromise between lowQ factor and high efficiency values with potentials for the antenna design scenario,
based on a decrease in edge brightening effects led by the minimization of the aforementioned Q ratio.

INDEX TERMS Circular Taylor distributions, edge brightening, optimization techniques, Q factor, super
gain ratio.

I. INTRODUCTION
The presence of edge brightening effects in continuous
aperture distributions introduces problems in terms of
practical realization of different array patterns [1].

Additionally, parameters as directivity must be taken
into account into a synthesis procedure for improving the
performance of these design techniques.

Alternatively, the so-called Q factor represents a crucial
parameter in the antenna design arena. More concretely, in
[2], Chu established the basis of the theoretical description
of the Q factor concept for an omni-directional antenna.
It was defined as the ratio between the stored energy and the
radiated energy and exploiting in the analysis of the physical
limitations of the antenna in terms of bandwidth versus gain.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanhui Liu .

From this milestone, the small antennas framework started to
attract the attention of the researchers and authors as Rhodes
faced this topic trying to adapt these new possibilities to
different scenarios. More concretely, he focused on planar
antennas [3] and also he analyzed the stored energy term of
planar apertures [4]. Another foundational work that deserves
attention is the one developed by Hansen in 1981 [5], where
the Q factor concept has been discussed to review the lim-
itations of different types of antennas. In line with these
seminal developments of Rhodes and Hansen, Thiele et al.
[6] devised an alternative formal approach for predicting the
realizable radiation Q of an electrically small antenna. Also,
another example can be found in the work of Jonsson et al.
[7], where the Q factor bounds for super-directive antennas
have been analyzed by using an example with electrical size
ka = 0.51 (where k is the wavenumber and a the radius of the
minimum sphere that contains the antenna –also known as the
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Chu radius [2]–). Then, recent examples as the interesting
reviewmade by Schab et al. [8] have been devoted to compare
the impact and the determination of this parameter within the
radiation properties of the antenna systems. Another inter-
esting and recent approach was discussed by Gustafsson and
Capek [9] and it represents a deep and careful study about a
trade-off between gain and Q factor for antenna systems.

Other studies regarding infinite planar phased arrays have
been conducted. For instance, Kwon and Pozar [10] reported
antenna configurations involving arrays of dipoles with
lengths from 0.15λ to 0.45λ. In the same line, but gener-
alizing the study to a wider range of dipole lengths and
overcoming the limit ka = 1, more recent approaches can be
found in the works of Ludvig-Osipov and Jonsson [11], [12].
Here, they calculated the Q factor and compared their results
with MoM simulations in the framework of two-dimensional
periodic arrays for both scenarios with and without ground
plane.

Considering these descriptions, but focusing on the stan-
dard array pattern synthesis scenario and more concretely
on its application to cases where superdirectivity effects are
moderately low, we can translate the Q factor of the distri-
bution as the ratio between the expression of the radiated far
field and the expression of the field within the antenna [13].
Then, the understanding of theQ factor by means of the super
gain ratio relation [14], [15] suggests that this parameter can
give us an idea about the level of inefficiency of the finite ana-
lytical aperture distribution to reproduce the infinite pattern
distribution. In addition and diversely to the cases referred
in the standard literature of small antennas (i.e., with ka<1),
improvements on different radiation characteristics are here
reported by reducing the levels of Q. Consequently, due to
the range of application that we are proposing, the values here
analyzed will be less than the unit. Thus, in this framework,
by following the definition of this parameter, an improvement
in terms of edge brightening effects led by a decrease in this
Q factor is here reported, which is highly interesting in terms
of practical realization of the distribution.

However if, on the one hand it is important to reduce the
effect as the edge brightening, on the other hand it is also
fundamental not to provoke critical reductions of the antenna
directivity. Due to this reason, a search devoted to reach a
compromise between directivity and Q factor is mandatory.
Examples of this edge brightening alleviation without

exploiting the Q factor concept are reported in [16] and [17].
In [16], the problem of minimizing edge brightening effects
was faced by filling nulls into the array pattern generated
by the distribution. As a drawback, although a multiplicity
of solutions has been reached, the generation of a complex
aperture distribution and a loss in directivity –due to the null
filling– can be highlighted. Alternatively, a direct minimiza-
tion of the edge brightening phenomenon has been performed
in [17]. In this case, although a best level of this parameter
could be reached, the Q factor strategy will assure a mono-
tonic behavior of the aperture that also can be highlighted
as interesting thinking about practical realization. Until now,

no relation between Q factor and this performance in the
border of the aperture has been analyzed.

So, the idea here proposed of a reduction in the Q factor
of the continuous aperture distribution –by keeping the same
efficiency/directivity level– is linked to an energy decreasing
into the invisible region. This fact uniquely can be understood
as a reduction of the distribution peaks at the edge of the
aperture (i.e. the edge brightening effect [18]) in comparison
with the reference case, as well as a smoother transition
of the excitation at the end of its tail. Thus, the extreme
variability of this continuous aperture will be minimized as
a result and a smoother transition (mainly near the edge)
has to be expected. In this manner, a more stable aperture
regarding errors or bandwidth will be produced. So, based on
the energy considerations and restrictions abovementioned,
the minimization of these parameters of the aperture would
make the antenna (without any kind of bound to a concrete
size requirement) a more efficient radiation system [19].

Therefore, by focusing on this idea, a procedure keeping
the optimal directivities of circular Taylor distributions [20]
and improving the Q factor for generating pencil, also called
sum, beams is here depicted. Circular Taylor distributions
will play a main role in this work, because they represent a
direct approach to obtain a pattern of maximum efficiency for
a fixed sidelobe level (SLL) requirement. As it is well-known,
these analytical distributions can be synthesized to obtain
array excitations for reproducing similar patterns from an
antenna array [21].

In this work, analytical Taylor distributions are defined by
means of suitable optimization strategies in order to minimize
the antenna Q factor by also guaranteeing a high efficiency
and desired SLL values. The main novelties of this contribu-
tion are as follows: 1) a closed-form equation by means of
a well-defined finite integral of the Q factor parameter for
circular aperture distributions so as to yield a less complex
evaluation (with high potentials, if we mainly think about
introducing this property in optimization procedures); 2) the
definition of a robust optimization method for obtaining
high efficient distributions which also present improved edge
brightening effects.

Towards this end, the paper is organized as follows.
In section II, the theoretical bases of the method are stated.
Then, a description of the optimization procedures for Q
factor values of the distribution by guaranteeing a specified
SLL and a certain directivity is included and discussed in
section III. Section IV is devoted to show the results of the
optimization methodology here devised by means of circular
Taylor patterns and by outlining the advantages in terms of
dynamic range ratio (|Imax/Imin|) and edge brightening (EB)
of the distributions. Finally, some conclusions and remarks
are drawn in section V.

II. THEORETICAL BASIS
A. Q FACTOR AND DIRECTIVITY
Let us consider a general circular aperture distribution with a
radius a (Fig. 1) which generates a radiation pattern F(θ, φ).
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FIGURE 1. Circular aperture K (ρ, β) for generating a radiation far field
pattern.

On this basis, circular symmetry is assumed and the far field
pattern generated by the continuous aperture distribution is
rotationally symmetric. In this case, the Q factor can be
defined –in a parallelism with the linear case [14], [15]– as
the ratio between the reactive power (which is related with
the integral of the pattern function in the invisible region)
and the radiated power of the antenna (related with this same
integral but in the visible region). Therefore, generalizing the
analytical expression of the Q factor, for this special case in
2 dimensions, is as follows:

Q =

2π∫
0

∞∫
2a/λ
|F(u, φ)|2ududφ

2π∫
0

2a/λ∫
0
|F(u, φ)|2ududφ

, (1)

where u = (2a/λ) sin(θ ).
For simplicity, and also to facilitate the management of this

quantity in the optimization process, an alternate closed-form
of the expression turns to be convenient. This can be done by
introducing in the formalism the concept of superdirectivity
(traditionally understood as supergain) and reported in the
literature by means of the Super Gain Ratio (SGR) [6], [14],
[15]. This SGR is related to the Q factor for simple sources
[5] as

Q = SGR− 1, (2)

where the SGR is defined as the ratio between the specific
directivity and the effective directivity of a given aperture
distribution.

In turn, the specific directivity ([14], [15]) –which also
can be identified as normalized peak directivity (p. 261, [12])
or simply the aperture illumination efficiency [22] – can be
defined as the ratio of the directivity of the aperture and the
directivity of a uniformly illuminated aperture. More specif-
ically, the directivity of a circular distribution can be defined
as the ratio of the power density in the direction of interest
to the average power radiated. So, by assuming isotropic

elements and considering that the expression of the directivity
of a circular aperture of radius a uniformly illuminated is
D0 = 4π2a2/λ2 (p. 261, [21]), the specific directivity can
be defined as

G = Di/D0 =
λ2 |F(θm, φm)|2

πa2
2π∫
0

π/2∫
0
|F(θ, φ)|2 sin θdθdφ

(3)

where F(θm, φm) is the value of the pattern function in its
maximum point.

According to [23], for aperture sizes with a ≥ 5λ, it could
be accurately approximated (a detailed discussion can be also
found in the appendix of the present paper) by:

G =
λ2 |F (θm, φm)|2

πa2
2π∫
0

2a/λ∫
0
|F(sin θ, φ)|2 sin θd (sin θ) dφ

. (4)

Otherwise, the effective directivity is the specific
directivity when the aperture size tends to infinity ([14], [15]).
So, let us define as

G∞ =
λ2 |F (θm, φm)|2

πa2
2π∫
0

∞∫
0
|F(sin θ, φ)|2 sin θd (sin θ) dφ

. (5)

Then, by exploiting the properties of the Fourier
transformation procedure which leads the relationship
between the radiation pattern and the aperture distribution,
we can express the infinite integral of the pattern function by
means of the finite integral of its circular aperture distribution.
This expression is the so-called Parseval’s formula [15]
2π∫
0

∞∫
0

|F (sin θ, φ)|2 sin θd (sin θ) dφ

=

(
2a
λ

)2 2π∫
0

π∫
0

|g(p)|2 pdpdφ. (6)

where g(p) is the antenna aperture distribution which gener-
ates the far field radiation power pattern F(θ, ϕ), and p =
πρ/a (and ρ ∈ [0, a]). This expression of the aperture is
related with the circular aperture shown in Fig. 1 by the
formula (p. 214, [21])

g(p) =
2a2

π
K (ap/π, β) (7)

where K (ap/π, β) = K (ap/π ) due to the symmetry of the
problem.

Therefore, a compact expression of the SGR –as it was
aforementioned, defined as the ratio between the specific
directivity and the effective directivity of a given aperture
distribution ([14], [15])– is as follows:

SGR = G/G∞ =

(
2a
λ

)2 2π∫
0

π∫
0
|g (p)|2 p dpdφ

2π∫
0

2a/λ∫
0
|F(u)|2 u du dφ

(8)
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FIGURE 2. Graphical description of the determination of the parameter
devoted to evaluate the effect of edge brightening (EB) in the continuous
aperture distribution g(πρ/a). Case in example: relative aperture of a
circular Taylor distribution with n̄ = 5, SLLd = −25dB.

and, accordingly, the Q factor is determined through Eq. (1)
by means of a formulation based on finite integrals

Q =

(
2a
λ

)2 2π∫
0

π∫
0
|g (p)|2 p dpdφ

2π∫
0

2a/λ∫
0
|F(u)|2 u du dφ

− 1 (9)

B. EDGE BRIGHTENING
The edge brightening [1], [16], [17] can be defined as a
pronounced rise in amplitude at the boundary of the aperture
distribution. So, in order to evaluate the impact of the edge
brightening effect, let us mathematically define a quality
parameter EB. To determine this quality parameter, the dif-
ference between the level of amplitude in the border of the
aperture distribution and the local minimum previous to this
value (in this same amplitude curve) can be proposed (Fig. 2).

Therefore, the proposed definition is
EB = g(π )− g(pmin), (10)

where pmin is the local minimum previous to the edge of the
continuous aperture distribution (p = π )

C. CIRCULAR TAYLOR DISTRIBUTION
As it was above mentioned, the present work is focused
on the use of circular Taylor distributions due to their high
efficiency.

The basis of this approach is the modification of the
roots of the uniform distribution, it is, when the aperture
is uniformly excited. This represents the most directive dis-
tribution for a given radius a of a circular antenna. The
expression of the radiation far field pattern in the uniform case
becomes [21]:

F(u) =
J1(πu)
πu

(11)

where u = (2a/λ) sin θ and J1(πu) is the Bessel function of
first order.

More concretely, the method devised by Taylor for con-
tinuous circular aperture distributions is based on altering a
number of n̄− 1 roots of the pattern and controlling the level

of the innermost n̄ − 1 ring side lobes [20]. Thus, the sum
pattern produced by the circular Taylor distribution would be
given by [20], [21]:

F(u) =
J1(πu)
πu

·

n̄−1∏
n=1

(
1− u2

u2n

)
n̄−1∏
n=1

(
1− u2

γ 21,n

) , (12)

where γ1,n is the n-th root of the Bessel function of first order[
J1
(
γ1,nπ

)
= 0

]
and un, n = 1,. . . ,N the manipulated roots

of the pattern by means of this methodology are

u2n = γ
2
1,n

A2 +
(
n− 1

2

)2
A2 +

(
n̄− 1

2

)2 , (13)

where A is related with the desired sidelobe level (SLLd ),
through the expression SLLd = −20 log10(coshπA).

Finally, the expression of the continuous aperture which
generates the pattern is [20], [21]

g(p) =
2
π2

n̄−1∑
m=0

F(γ1,m)

J20 (γ1,mπ )
J0(γ1,mp) (14)

where p = πρ/a, ρ is the radial coordinate of the aperture,
so it is in the range ρ ∈ [0, a] and J0

(
γ1,mπ

)
is the Bessel

function of the first kind and order zero, evaluated in the roots
of the Bessel function of the first order.

III. OPTIMIZATION METHOD
In this section, the formulation highlighted in the previous
section is exploited within an optimization strategy devoted
to afford lowQ factor levels by guaranteeing high efficiencies
for a desired SLL. The proposed optimization process can be
understood as a single objective problem (SOP) [24] and it
can be summarized as follows:
1. As starting point, a circular Taylor pattern is established

by selecting the n̄ value which brings the maximum
efficiency for a certain SLL. u0n denotes the roots of this
pattern.

2. Small perturbations δEu to these initial roots are intro-
duced. The main objective of these perturbations is to
synthesize a pattern in which the efficiency is maximum,
the Q factor is low and the SLL is controlled.

First of all, it can be concluded that there are three
objectives to be considered in the design concerning the
efficiency, Q factor, and SLL. Moreover, the optimization
variables are continuous and real.

In this process, the following scalar cost function is
minimized:

C(δEu) = c1 · fSLL + c2 ·
∣∣ηTaylor − η∣∣+ c3 · Q (15)

where η denotes the aperture illumination efficiency (3),
ηTaylor is the aperture illumination efficiency of the reference
aperture: the initial Taylor aperture distribution, Q is the
quality factor (expressed in natural units), whereas ci are
the weights to control the importance given to each term
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FIGURE 3. Circular Taylor pattern with n̄ = 5, SLLd = −25dB and
optimized pattern by considering a loss in efficiency of 0% with respect
to this circular Taylor pattern.

of (15). The function fSLL , which penalizes the increasing in
the sidelobe level, is defined by

fSLL =

{
(SLL0 − SLLd )2 , if SLL0 ≥ SLLd
0, otherwise

(16)

where SLL0 and SLLd are, respectively, the obtained and
the desired sidelobe level of the pattern. The squared differ-
ence is here adopted for amplifying the error of this term.
In such a way, the biggest error gets amplified more and, in
consequence, it will obtain more priority for improvement.
Moreover, δEu = [δu1, δu2, . . . , δun̄−1]T is the vector of
perturbations applied to the roots of the initial circular Taylor
pattern.

To develop this procedure, a hybrid approach described on
section 3 of [25], which is based on the procedure developed
in [26] and involves the Simulated Annealing (SA) algorithm
[27] with a modification based on the Downhill Simplex (DS)
method [28] has been implemented. More concretely, as it is
referred in [25], the procedure devoted to found the minimum
is equal to the one developed by DS with the following main
difference: A T parameter analogous to the temperature for
the SA algorithm [27] is introduced. In such a way, a prob-
abilistic component (modeled exactly in the same manner as
in the SA) is added in the DS strategy for comparing with the
other values of the cost function represented in the Simplex
[28]. The aforementioned T is set in order to explore a wider
space of solutions. In this manner, the algorithm improves
the searching and prevents to always fall in the same local
minimum. In our case, we set T as 100.

IV. RESULTS
Let us first consider the case of a circular Taylor-like pattern
with a SLLd of –25dB. So, in order to proceed with the
optimization of theQ factor and improve the solution in terms
of edge brightening for distributions with a high efficiency,
a circular Taylor pattern distribution with n̄ = 5 has been
chosen (see Figs. 3 and 4). The initial roots, as well as the
directivity, the SLL, the Q factor, the dynamic range ratio
(|Imax/Imin|) and the edge brightening quality value (EB) of
this pattern are shown in Table 1.

FIGURE 4. Relative amplitudes which generate the regular Taylor case
with n̄ = 5, SLLd = −25dB and the optimized one of the Fig. 3.

TABLE 1. Roots, SLL, Directivity, Q Factor, Dynamic Range Ratio and Edge
Brightening of Taylor Pattern with n̄ = 5 and SLLd = −25dB and the
pattern with optimized Q value.

The optimization process was initialized by considering
these roots as starting solution. Several cases have been run
in which the weight of the efficiency term –c2 coefficient
in (15)– has been varied in order to find a good compro-
mise between high efficiency and low Q factor values. These
coefficients have been set in all the examples here analyzed
as c1 = 1200, c2 = 1500, y c3 = 1000. Results keeping
the same level of efficiency (i.e., having an efficiency loss
of 1η = ηTaylor − η = 0%) and consequently the direc-
tivity of the circular Taylor pattern distribution are shown in
Table 1. It can be observed that, by keeping the same effi-
ciency, this method led a decrease of the Q factor of 1.91 dB
(a 35.61% in natural units) and both the dynamic range
ratio and the edge brightening were reduced a 4.44% and a
18.68%, respectively. The relative amplitude of both aper-
tures (the initial and the optimized) are shown (Fig. 4) as
well as a comparison between the generated radiation far field
pattern and the regular Taylor case (Fig. 3). Finally, in order
to complete the discussion, the roots which generate each one
of the patterns can be found in Table 1 with a report of the
resulting quality parameters.

For illustrating the behavior of the method and to under-
stand how it works in case of different side lobe topography,
SLLd of –30dB and –35dB are also analyzed.

184008 VOLUME 8, 2020
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FIGURE 5. Circular Taylor pattern with n̄ = 8, SLLd = −30dB and
optimized pattern by considering a loss in efficiency of 0% with respect
to this circular Taylor pattern.

FIGURE 6. Relative amplitudes which generate the regular Taylor case
with n̄ = 8, SLLd = −30dB and the optimized one of the Fig. 5.

In the case of a SLLd of –30dB, the most efficient choice
is the circular Taylor pattern distribution with n̄ = 8
(see Figs. 5 and 6). In the same manner that in the previous
case, the initial roots, as well as the SLL, the directivity, theQ
factor, the dynamic range ratio (|Imax/Imin|) and the edge
brightening quality value (EB) are shown in Table 2.

To outline the performance of the method in terms of
aperture distribution, the relative amplitude of both cases
(the initial and the optimized continuous aperture distribu-
tions) are shown in Fig. 6. A comparison between the two
radiation far-field patterns is also shown in Fig. 5, as well as
the roots of each one of them (see Table 2 ).

Additionally, for the case of a circular Taylor pattern
distribution of SLLd = −35dB, a n̄ = 13 has been chosen
(see Figs. 7 and 8) for guaranteeing a high efficiency.

The initial roots, the actual SLL as well as the directivity,
the Q factor, the dynamic range ratio (|Imax/Imin|) and the
edge brightening quality value (EB) of the compared patterns
are shown in Table 3.

In the same spirit of the previous analysis, the performance
of the method is illustrated in Figs. 7 and 8, where both
apertures (the initial and the optimized ones) as well as the
radiation far field patterns are shown. The roots related with
the generated patterns in this case are reported with the results
in Table 3.

TABLE 2. Roots, SLL, Directivity, Q Factor, Dynamic Range Ratio and Edge
Brightening of Taylor Pattern with n̄ = 8 and SLLd = −30dB and the
pattern with optimized Q value.

FIGURE 7. Circular Taylor pattern with n̄ = 13, SLLd = −35dB and
optimized pattern by considering a loss in efficiency of 0% with respect
to this circular Taylor pattern.

FIGURE 8. Relative amplitudes which generate the regular Taylor case
with n̄ = 13, SLLd = −35dB and the optimized one of the Fig. 7.

Results constrained to an efficiency loss with respect to
the circular Taylor pattern of 1η = ηTaylor − η = 0%
for each SLL (–30dB and –35dB) are respectively shown
in Tables II and III. It can be observed that, by keeping
the same level of efficiency, this method led a decrease of
the Q factor of 2.52 dB (a 44.01% in natural units) and
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TABLE 3. Roots, SLL, Directivity, Q Factor, Dynamic Range Ratio and Edge
Brightening of Taylor Pattern with n̄ = 13 and SLLd = −35dB and the
pattern with optimized Q value.

of 3.47 dB (a 55.02% in natural units). In case of dynamic
range ratio, the optimized solutions have reached a reduction
of a 14.55% and a 15.81% (a 1.26% and 11.37% less than
in the –25dB case, respectively). Regarding edge brightening
effects, they have been reduced a 23.17% and a 29.10% on
each case. They represent improvements of a 4.49% and a
10.42% respectively. So, we confirm how the method tends
to alleviate the tendency of the aperture of impinging a much
higher level of excitation on its edges than in the medium part
of its tail. These results only can be understood due to the
fact that a lower Q is related to a decreasing in the level of
far field power radiation pattern present in the visible region
limit. Therefore, from the inspection of Figs. 4, 6 and 8 it can
be stated that generally improvements in terms of Q imply
a smooth transition on the tail of the aperture distribution in
comparison with the initial case.

V. CONCLUSION
In this paper, several numerical optimizations were per-
formed and results of improving the Q factor by preventing
efficiency losses have been shown. A relation with the edge
brightening (and also the dynamic range ratio) of the distri-
bution has been established and, in this manner, the practical
applicability of this process is devised. The minimization of
the Q ratio –by keeping the same directivity level– within
the far field power generated by an aperture distribution is
translated in a aperture distribution with less edge bright-
ening and –generally– on a less dynamic range ratio of
the aperture. More concretely, for a SLLd = −25dB, an
improvement of a 35.61% of Q factor leads improvements in
terms of dynamic range ratio (4.44%) and edge brightening
(18.68%). At the same time, for a SLLd = −30dB, through

an improvement of a 44.01% of Q factor, the improvement
in terms of dynamic range ratio and edge brightening were
14.55% and 23.17%, respectively. Finally, for a level of
SLLd = −35dB, an improvement of Q about 55.02% leads
improvements of 15.81% and 29.10% in terms of edge bright-
ening of the continuous aperture distribution. Based on these
results, a method to design good distributions devoted to
afford high efficiency and improving the aperture variability
(by reducing the Q factor for a required directivity) was
developed. This technique shows interesting potentials for
the antenna design discipline. At the same time, this strategy
overcomes the results of standard techniques –based on a
direct optimization of the edge brightening parameter– by
alleviating the tendency of the aperture of impinging a much
higher level of excitation on its edges than in the medium part
of its tail. This statement can be understood from the fact
that –diversely from [17], where a Q factor of –18.64dB as
well as a flat ending of the aperture (fig. 4 in [17]) can be
obtained from the direct optimization of the edge brightening
of the aperture distribution analyzed– the result here pre-
sented for the same SLL (–25dB) reports a Q of –21.18dB
and a tail of the aperture which is descending up to its
edge.

Although, this proposed technique could be extended to
other distributions, the spirit of the present work is based
on the idea of using circular Taylor distributions because of
they are optimal in terms of efficiency for a desired SLL.
Additionally, it can be also highly remarkable that an analo-
gous procedure could be easily implemented for linear Taylor
distributions.

APPENDIX
Accuracy of the approximation: Regarding the precision of
the Q ratio expressions based on aperture integrals by means
the Parseval identity it is necessary to outline the performance
of this approximated expression and its level of accuracy
versus the formal infinity integral of the far field pattern.

This can be done by simply comparing two different
performances: the calculation of the method by integrating
the exact expressions of the far field pattern generated by
the aperture –on the denominator of (3)– and the method
here developed and based on the use of the integral of the
aperture –on the denominator of (4). The results regarding
this comparison in the worst scenario (SLLd = −25dB) are
shown in Fig. 9.A.

As an example and due to the fact that it represents the
worst scenario in terms of agreement between the results of
both methods, the performance of the case for a SLLd =
−25dB has been taken into account. By means of the far field
integral in the invisible region, the differences between the
computation times of both strategies are reported in Fig. 9.B.
It can be appreciated how, as it could be expected, the greater
the n̄ parameter is, the more computation time will need.
The codes to calculate the integrals have been developed
in MATLAB [29], more concretely, they have been run in
MatlabR2016b. All the computation times are referred to a
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FIGURE 9. Comparison between the exact method for Q calculations and
the aperture-based approximation for different radii of the aperture
which generates a circular Taylor pattern with a nominal SLL of -25dB:
(A) performance, (B) difference between computation times of the codes.

machine with a processor Intel i7-2600 CPU@3.40GHz and
a RAM memory of 8GB.

Regarding the level of accuracy we can confirm that the
maximum level of misalignment between the 2 methods
(the exact and the approximated) for the cases studied in Sect.
IV is of 0.002 in natural units (more concretely in the case of
SLLd = −25dB, n̄ = 5). In this concrete case it represents
an 11.50% of the nominal value in natural units. For cases of
SLLd = −30dB, n̄ = 8 and SLLd = −35dB, n̄ = 13 are
7.78% and 3.67% respectively.
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