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SUMMARY

The relationships at the root of the animal tree have
proven difficult to resolve, with the current debate
focusing on whether sponges (phylum Porifera) or
comb jellies (phylum Ctenophora) are the sister
group of all other animals [1–5]. The choice of evolu-
tionary models seems to be at the core of the prob-
lem because Porifera tends to emerge as the sister
group of all other animals (‘‘Porifera-sister’’) when
site-specific amino acid differences are modeled
(e.g., [6, 7]), whereas Ctenophora emerges as the sis-
ter group of all other animals (‘‘Ctenophora-sister’’)
when they are ignored (e.g., [8–11]). We show that
two key phylogenomic datasets that previously sup-
ported Ctenophora-sister [10, 12] display strong het-
erogeneity in amino acid composition across sites
and taxa and that no routinely used evolutionary
model can adequately describe both forms of het-
erogeneity. We show that data-recoding methods
[13–15] reduce compositional heterogeneity in these
datasets and that models accommodating site-spe-
cific amino acid preferences can better describe
the recoded datasets. Increased model adequacy is
associated with significant topological changes
in support of Porifera-sister. Because adequate
modeling of the evolutionary process that generated
the data is fundamental to recovering an accurate
phylogeny [16–20], our results strongly support
sponges as the sister group of all other animals and
provide further evidence that Ctenophora-sister rep-
resents a tree reconstruction artifact.
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RESULTS AND DISCUSSION

Data Recoding Reduces Compositional Heterogeneity,
and Models That Accommodate Site-Specific
Compositional Heterogeneity Most Adequately
Describe Recoded Datasets
An adequate modeling of the evolutionary process that gener-

ated the data is fundamental to the recovery of accurate phylog-

enies [16–20]. We used posterior predictive analyses (PPAs) [17]

to perform model adequacy tests on two key datasets used in

arguments to support Ctenophora as the sister group of all other

animals (Ctenophora-sister). These are dataset D20 from Whe-

lan et al. [10], hereafter ‘‘WhelanD20,’’ and the dataset of Chang

et al. [12], hereafter ‘‘Chang’’ (see STAR Methods). We per-

formed multiple PPA tests and used Z scores to measure the

deviation of the test statistics from the null expectation. We

showed that for both datasets, models that have previously

been used to study the animal phylogeny fell short, to various de-

grees, of adequately describing among-site amino acid prefer-

ences (i.e., site-specific replacement-pattern heterogeneity)

and among-lineage compositional heterogeneity. These models

are WAG+G [21], LG+G [22], GTR+G [23], dataset-specific Par-

titionFinder-defined models [24] (hereafter PF-schemes), and

CAT-GTR+G [25] (see STAR Methods for a detailed comparison

of these models).

To test whether available models could adequately describe

among-site amino acid preferences, we used three alternative

statistics. The first is site-specific amino acid diversity (hereafter

PPA-DIV) [26]. PPA-DIV is a well-established test (e.g., [27])

measuring whether models can adequately estimate a simple

but fundamental property of amino acid alignments, the mean

number of distinct amino acids observed at each site (STAR

Methods for details and [26] for theoretical justifications). To

further check our results, we developed two new tests. The first
e Authors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).

mailto:woerheide@lmu.de
mailto:davide.pisani@bristol.ac.uk
https://doi.org/10.1016/j.cub.2017.11.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2017.11.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Table 1. Comparing Model Adequacy

Posterior Predictive Test

Recoding Model

Site-Specific

Amino Acid

Preferences

(PPA-DIV)

Across-Taxa

Compositional

Heterogeneity

(PPA-MAX)

Dataset: WhelanD20-Opistho

none WAG 127.35 79.99

none LG 116.17 78.09

none GTR 92.62 68.99

none PF-scheme 104.71 44.75

none CAT-GTR 6.21 34.78

Dayhoff-6 GTR 59.01 33.21

Dayhoff-6 CAT-GTR �0.94 25.48

S&R-6 GTR 60.52 31.10

S&R-6 CAT-GTR �1.09 7.09

KGB-6 GTR 56.82 33.13

KGB-6 CAT-GTR �0.24 13.54

Dataset: Chang

none WAG 175.61 24.18

none LG 161.28 19.00

none GTR 126.33 18.84

none PF-scheme 163.06 14.99

none CAT-GTR 6.17 12.15

Dayhoff-6 GTR 78.06 26.99

Dayhoff-6 CAT-GTR �1.71 3.64

S&R-6 GTR 87.37 28.48

S&R-6 CAT-GTR �1.54 3.12

KGB-6 GTR 70.91 8.68

KGB-6 CAT-GTR �0.71 1.21

Comparing the adequacy of WAG+G, LG+G, GTR+G, the optimal

PF-scheme, and CAT-GTR+G when modeling site-specific and lineage-

specific compositional heterogeneity for WhelanD20-Opistho (70 taxa,

including all the original outgroups, and 46,542 amino acid positions)

and Chang (77 taxa and 51,940 amino acid positions). This table presents

Z values for PPA-DIV and PPA-MAX tests demonstrating how well each

model describes site-specific and lineage-specific amino acid prefer-

ences, respectively (seeSTARMethodsandmain text for details). Alterna-

tive statistics (PPA-MEAN, PPA-CONV, and PPA-VAR, detailed in STAR

Methods), are reported in Table S1. For each PPA test in Table 1, the

observed (empirical) heterogeneity, the posterior predictivemean hetero-

geneity, and the SD around themean are reported in Table S2. Dayhoff-6,

S&R-6, and KGB-6 recodings cannot be implemented with 20-states

empirical aminoacid substitutionmatrices like LG,WAG, and thematrices

used in PF-schemes (see STAR Methods). Therefore, the effect of data

recoding has been tested only for GTR+G and CAT-GTR+G. Positive

Z scores for PPA-DIV indicate that average amino acid diversity is under-

estimated, whereas negative Z scores indicate that it is overestimated.

See Figures S1–S4 for the trees inferred for each dataset under each

considered model. See Table S3 for the definition of the PF-schemes.
(hereafter PPA-CONV) measures whether models can approxi-

mate the site-specific propensity to undergo convergent evolu-

tion toward the same amino acid in distantly related taxa. The

second (hereafter PPA-VAR) measures the variance in empirical

amino acid frequencies across sites (STAR Methods for details).

A comparison of the spread of the Z scores obtained, across all
models and from all of our PPAs (Tables 1 and S1), indicates that

PPA-DIV is more discriminatory: it has a broader distribution of Z

scores across models. Nevertheless, for both datasets, absolute

Z scores larger than 5 (i.e., jZj > 5) were obtained for all three

PPAs (Tables 1 and S1). Absolute Z scores of this magnitude

indicate a strong rejection of the null hypothesis that the model

adequately describes the data (see STARMethods for guidelines

on interpreting jZj scores), showing that all models fell short of

adequately describing site-specific amino acid preferences.

However, PPAs also agreed that models varied greatly in their

ability to describe replacement-pattern heterogeneity and indi-

cated that CAT-GTR+G, the model of [6], describes site-specific

amino acid preferences much better than any other model. This

result was not unexpected [26] given that CAT-GTR+G was the

only considered model that can explicitly accommodate this

form of heterogeneity (see STAR Methods).

The relative ranking of the remaining models changed de-

pending on the statistic implemented in the PPA tests (Tables 1

and S1). However, for both datasets, PPA-DIV [26] identifies

GTR+G (the model of [8]) as a distant second best (Table 1),

followed by either the PF-scheme [10] or LG+G [11] and

WAG+G [9]. PPAs indicate that PF-schemes (strongly advocated

by [10, 28, 29]) do not model site-specific amino acid prefer-

ences much better than LG+G, with CAT-GTR+G invariably

describing the data better.

None of the consideredmodels explicitly accounts for lineage-

specific compositional heterogeneity (see STAR Methods). We

therefore used two more, well-established [30], PPA tests to

evaluate whether the inability of modeling this form of heteroge-

neity could have affected previous studies that attempted to

resolve relationships at the root of the animal tree (see STAR

Methods for details). The first test (PPA-MAX) evaluates whether

alternative models can estimate the maximal compositional

heterogeneity observed across the taxa. The second (PPA-

MEAN) evaluates whether models can estimate the observed,

lineage-specific mean squared heterogeneity. With both tests,

CAT-GTR+G obtained the lowest Z scores, and PF-schemes

emerged as the second best modeling strategy (Tables 1

and S1). However, all models, including CAT-GTR+G, were

strongly rejected—with the smallest absolute Z score (jZj =

12.15) obtained from the CAT-GTR+G analysis of Chang. This

result was expected, given that the considered models do not

account for compositional variation across lineages.

We then investigated whether the use of data-recoding ap-

proaches (e.g., [7, 13–15, 31–36]) could help reducing the

compositional heterogeneity of WhelanD20 and Chang. We

tested three different data transformation strategies: the well-

known Dayhoff-6 [37] recoding (e.g., [7, 13–15, 31–36]), and

the more recently developed recoding strategies of Susko and

Roger [14] (hereafter S&R-6) and Kosiol et al. [15] (hereafter

KGB-6). All considered data transformation strategies recode

amino acids with similar physicochemical properties into one

of six categories [7, 33] (see STAR Methods and Table 2 for de-

tails about the definition of the amino acid classes of each recod-

ing strategy). All recoded datasets obtained lower Z scores than

the original amino acid datasets for both PPA-MAX and PPA-

MEAN (Tables 1 and S1), indicating that recoding is effective at

reducing lineage-specific compositional heterogeneity. In the

case of site-specific heterogeneity, Z scores lower than those
Current Biology 27, 3864–3870, December 18, 2017 3865



Table 2. Data-Recoding Strategies Implemented in This Study

Recoding Strategy Binning Scheme

Dayhoff-6 (AGPST) (DENQ) (HKR) (MIVL) (WFY) (C)

S&R-6 (APST) (DENG) (QKR) (MIVL) (WC) (FYH)

KGB-6 (AGPS) (DENQHKRT) (MIL) (W) (FY) (CV)

Amino acid binning schemes used in Dayhoff-6, S&R-6, and KGB-6

analyses. These binning schemes were originally presented in Figure 84

of [37] (Dayhoff-6), Figure 1 (left panel) of [14] (S&R-6), and Figure 6A of

[15] (KGB-6). The rationale used to define these recoding strategies is re-

ported in STAR Methods. There are some commonalities between the

three binning schemes, reflecting shared biochemical properties of the

amino acids in each bin.
obtained for the amino acid datasets are invariably observed

only for GTR+G (Table 1 and S1). Under CAT-GTR+G, only

PPA-DIV invariably recovered reduced Z scores from the re-

coded datasets (Table 1), with Z scores from PPA-CONV and

PPA-VAR being similar in analyses performed with and without

recoding (Table S1). When considered together, these results

indicate that only the combined use of data recoding and CAT-

GTR+G minimizes inadequacy in the modeling of compositional

heterogeneity across both sites and lineages.

Improved Modeling of Heterogeneity Supports Porifera-
Sister
We investigated how the results of our phylogenetic analyses

change as different evolutionary models were used to analyze

either the original amino acid data or the recoded data. Phylog-

enies obtained under LG+G and WAG+G, as well as trees

derived using GTR+G with and without Dayhoff-6, S&R-6, and

KGB-6 recoding, supported Ctenophora-sister (posterior proba-

bilities [PPs]z 1; Table 3 and Figures S1–S4). Similarly, phylog-

enies inferred from Chang using PF-scheme and CAT-GTR+G

(see STAR Methods) supported Ctenophora-sister with 100%

bootstrap support and PP z 1, respectively (see Table 3 and

Figures S4D and S4E). Differently, CAT-GTR+G analyses of

WhelanD20 recovered either Ctenophora-sister or Porifera-sis-

ter (Porifera as the sister group of all other animals) depending

on the outgroups used. WhelanD20-Opistho, the dataset

including all original outgroups from [10] (STAR Methods;

Table 3; Figure S1D), supported Ctenophora-sister (PP z 1). In

contrast, WhelanD20-Holo, the dataset from which fungal out-

groups were excluded, and WhelanD20-Choano, the dataset

from which all outgroups but the Choanoflagellata were

excluded, supported Porifera-sister (PP = 0.68 and PP = 0.77,

respectively; Table 3; Figures S2B and S3B).

Support for Ctenophora-sister was severely reduced in CAT-

GTR+G analyses of both recoded datasets, with support for Por-

ifera-sister being higher than that for Ctenophora-sister (Table 3;

Figures 1 and S1–S4). This was particularly evident for the Dayh-

off-6 and S&R-6 recoded versions of both datasets. For KGB-6,

the PP for Porifera-sister was 0.78 for Chang and 0.68 for

WhelanD20-Holo. The KGB-6 recoded versions of WhelanD20-

Opistho and WhelanD20-Choano failed to resolve the relation-

ships at the root of the animal tree. However, Ctenophora-sister

received the least support also with these datasets (Table 3; Fig-

ures S1J and S3H). Our results show that support for Cteno-

phora-sister decreases, while at the same time support for
3866 Current Biology 27, 3864–3870, December 18, 2017
Porifera-sister increases, when heterogeneity in the data is

better accounted for.

Weighing the Evidence
The recent discussion on the relationships at the root of the

animal tree has focused on two alternative scenarios. These

are the Porifera-sister hypothesis, which proposes that sponges

(phylumPorifera) are the sister group of all other animals, and the

Ctenophora-sister hypothesis, which suggests that comb jellies

(phylum Ctenophora) are sister to all other animals [1–5].

Discriminating between these hypotheses is key to understand-

ing early animal evolution, including the origin of fundamental

innovations like the nervous system, muscles, and a through-

gut [40]. However, phylogenomic analyses have supported

both Porifera-sister [6, 7, 39, 41–44] and Ctenophora-sister

[8–12, 35, 45, 46], with some studies (like [47]) presenting both

trees. A key aspect of the debate is that support for both hypoth-

eses is generally recovered from the same dataset when

different substitution models and/or taxon- and gene-sampling

strategies are used (contrast [6, 10] and [42, 45], and see

[7, 43, 47]). Porifera-sister generally [6], but not invariably

[12, 38], emerges when site-specific differences in amino acid

composition are modeled and distant outgroups (e.g., Fungi)

are not included in the analyses. Ctenophora-sister invariably

emerges when site-specific amino acid differences are not

modeled [10] or when site-specific amino acid differences are

modeled but distant outgroups are used to root the tree [6].

These results indicate that phylogenomic datasets convey signal

for both hypotheses and that discriminating between Porifera-

andCtenophora-sister requires distinguishing between phyloge-

netic signal and noise causing systematic errors [43].

To minimize systematic error, it is important to use the evolu-

tionary model that best fits the data [18, 48–50]. Many tools exist

to select the best-fit model [24, 51–54], but model fit is a relative

concept: given a set of models, a best-fitting one can always be

identified. Yet, if the best-fitting model does not describe the

evolutionary process that generated the data adequately, there

can still be a high probability of recovering a tree with relation-

ships representing systematic error [16–20]. Model adequacy

can be tested using posterior predictive tests [17]. Across-site

replacement-pattern heterogeneity [26] and compositional het-

erogeneity across taxa [13, 55] can both have amisleading effect

on phylogenetic reconstruction. Whelan et al. [10] attempted to

minimize the negative effect of compositional heterogeneity by

excluding compositionally heterogeneous proteins when gener-

ating WhelanD20. However, our PPAs indicate that WhelanD20

is still too heterogeneous to allow their preferred modeling strat-

egy (a PF-scheme) to adequately describe the data (Tables 1

and S1). More broadly, our results demonstrate that PF-

schemes (strongly advocated for by [10, 28, 29, 38]) are much

worse than CAT-GTR+G and are not always better than unparti-

tioned modeling strategies at capturing the heterogeneity of the

considered datasets (Tables 1 and S1). There are two, not mutu-

ally exclusive, explanations for these observations. The first is

that PF-schemes cannot capture within-gene replacement-

pattern heterogeneity [56]. The second is that protein-specific

amino acid replacement patterns across WhelanD20 and

Chang could not be captured by the empirical substitution

matrices considered in the PartitionFinder analyses of [10]



Table 3. Support for Porifera-Sister and Ctenophora-Sister from theWhelanD20-Opistho, WhelanD20-Holo, WhelanD20-Choano, and

Chang Datasets

Recoding Hypothesis

Dataset

WhelanD20-Opistho WhelanD20-Holo WhelanD20-Choano Chang

Model: GTR+G

None Porifera-sister z0 z0 z0 z0

None Ctenophora-sister z1 z1 z1 z1

Dayhoff-6 Porifera-sister z0 z0 z0 z0

Dayhoff-6 Ctenophora-sister z1 z1 z1 z1

S&R-6 Porifera-sister z0 z0 z0 z0

S&R-6 Ctenophora-sister z1 z1 z1 z1

KGB-6 Porifera-sister z0 z0 z0 z0

KGB-6 Ctenophora-sister z1 z1 z1 z1

Model: CAT-GTR+G

None Porifera-sister z0 0.68 0.77 z0

None Ctenophora-sister z1 0.31 0.2 z1

Dayhoff-6 Porifera-sister 0.89 0.99 0.95 0.74

Dayhoff-6 Ctenophora-sister 0.09 z0 0.01 0.25

S&R-6 Porifera-sister 0.98 0.99 0.94 0.62

S&R-6 Ctenophora-sister z0 z0 0.02 0.22

KGB-6 Porifera-sister 0.42 0.68 0.37 0.78

KGB-6 Ctenophora-sister 0.17 0.05 0.29 0.22

Support values are PPs. All analyses but the CAT-GTR+G analysis of the amino acid version of Chang converged well, and all convergence statistics

are detailed in the captions of Figures S1–S4. Support values for Porifera-sister and Ctenophora-sister do not always add up to 1 because alternative

topologies, e.g., monophyletic Porifera+Ctenophora sister to the remaining animals, are sometime recovered.
(see STAR Methods for a list). Indeed, the results of our

PartitionFinder analyses (Table S3) show that the optimal PF-

schemes identified LG as the amino acid replacement matrix

fitting �98% of the sites in both datasets best. That is, using

PF-schemes to analyze these datasets is not very different

from using a single LG matrix. Furthermore, our results demon-

strate that, to further improve the adequacy with which compo-

sitional heterogeneity is described, CAT-GTR+G analyses of

recoded datasets are most effective.

Our results show a correlation between overall model inade-

quacy, as measured by our PPA tests, and phylogenetic out-

comes. WAG+G, LG+G, GTR+G (with or without recoding),

and PF-schemes describe the data worse than CAT-GTR+G

and invariably found support for Ctenophora-sister. Cteno-

phora-sister sometimes emerges in CAT-GTR+G analyses of

amino acid datasets, too. However, support for this topology

under CAT-GTR+G is more prominent when distant outgroups,

which represent a natural source of long branches [43], are

included in the analyses. Branch length is the product of time

and substitution rate, and even slowly evolving outgroups can

be long branched if they diverged much earlier than the ingroup,

potentially exacerbating long-branch attraction artifacts [18, 57].

Our PPA tests indicate that although CAT-GTR+G describes

Chang and WhelanD20 better than other models, overall model

adequacy can still be improved using data recoding, and Pori-

fera-sister was favored under all recoding strategies.

The relationships at the root of the animal tree dependonmodel

adequacy, with Ctenophora-sister emerging more prominently

when the data are modeled less adequately and Porifera-sister

being better supported when the data are more adequately
modeled (Figure 1). As phylogenetic methods are less likely to

recover artifactual topologies when the models of evolution

moreadequatelydescribe thedata [16–20],weconclude thatPor-

ifera-sister better represents the phylogenetic signal in the data.

Shen et al. [11] investigated the distribution of phylogenetic

signal in a dataset from Whelan et al. [10] and concluded that

the signal for Porifera-sister is limited to a few ‘‘outlier genes.’’

However, their results were obtained contrasting the likelihood

of Porifera- and Ctenophora-sister under LG+G, a model that

poorly describes the datasets of [10]. Indeed, CAT-GTR+G ana-

lyses (with and without Dayhoff-6 recoding) of a dataset of [10]

from which [11] removed ‘‘outlier genes’’ still finds support for

Porifera-sister (PP = 0.98 and PP = 0.99, respectively; Figures

S3I and S3J). This result rejects the conclusions of [11] that signal

for Porifera-sister is limited to ‘‘outlier genes’’ and indicates that

their approach is model dependent: arguments about model

adequacy should be considered when implementing it.

Data recoding reduced the impact of heterogeneity on our

phylogenetic analyses (see also [7]), and this lent support to

Porifera-sister. Notably, this result emerged independently of

the outgroups included. Recently, Whelan et al. [38] expanded

ctenophoran taxon sampling and found support for Cteno-

phora-sister using CAT-GTR+G and close outgroups. Based

on our conclusions about the relationship between model

adequacy and alternative hypotheses of animal relationships,

we expected that the dataset of [38] should support Porifera-

sister once recoded. Indeed, a CAT-GTR+G analysis of the

Dayhoff-6 recoded version of this dataset reached excellent

convergence and found strong support for Porifera-sister

(PP = 1; Figure S3K), indicating that the analyses of Whelan
Current Biology 27, 3864–3870, December 18, 2017 3867



A

B

Figure 1. CAT-GTR+G Trees from Dayhoff-6 Recoded Datasets

WhelanD20-Opistho (A) and Chang (B). Numbers at nodes are Bayesian

posterior probabilities (PPs). Solid circles indicate nodes with PPz 1. Support

for the node identifying Porifera-sister is provided for each of the three

recoding strategies that we tested. Top: Dayhoff-6. Middle: S&R-6. Bottom:

KGB-6. See Figures S1 and S4 for relationships within the clades. The results

in Figure 1 were further corroborated by the analyses of datasets from

[11, 38] (Figures S3I, S3J, and S3K). Animal silhouettes are from http://www.

phylopic.org, except for the figure of the calcarean sponge, which is from

[39]. See the supplemental figures for convergence statistics.
et al. [38], are affected by the same problems that we highlighted

in the case of the amino acid datasets of WhelanD20 and Chang.

Ultimately, however, analyses should be conducted under

models explicitly accounting for heterogeneity across both sites

and lineages (STAR Methods). Such models have been pro-

posed [30] but are still computationally too demanding to be

applied to phylogenomic datasets. Simion et al. [7] also showed

that the exclusion of sites for which site-specific replacement

patterns change over time (heteropecillous sites [58]) uncovers

support for Coelenterata (i.e., Ctenophora sister to Cnidaria)

[39, 41]. This result suggests that future investigations of early

animal relationships should also account for the potentially

misleading effect of heteropecilly.
3868 Current Biology 27, 3864–3870, December 18, 2017
Phylogenetic analyses of early animal relationships using

models that do not describe site-specific amino acid differences

(WAG+G, LG+G, GTR+G, and optimal PF-schemes) invariably

support Ctenophora-sister, whereas analyses using models

that can accommodate such preferences (e.g., CAT-GTR+G)

predominantely favor Porifera-sister. This model-dependent

outcome has been interpreted as reflecting a fundamental lack

of robustness [59], and it has been suggested that the relation-

ships at the root of the animal tree might be impossible to recon-

struct based on current amino acid datasets [2, 4]. However,

sensitivity to the model (and to other analytical factors) does

not imply an impossibility to decide which solution is most

likely to be correct. Not all models are equal, and there are

objective methods to assess which models have a higher fit

(model comparison) or most adequately describe important

features of the data (posterior predictive analyses). Far from

being random, the varied outcomes of phylogenetic analyses

of animal relationships show a clear pattern, with Ctenophora-

sister being systematically associatedwith the use of inadequate

models and/or taxon-sampling schemes that are most likely

to exacerbate systematic errors. In addition, Porifera-sister

has been corroborated by analyses of presence/absence of

orthologous genes [6], whereas Ctenophora-sister is currently

uncorroborated by independent evidence. We conclude that

Ctenophora-sister is a tree reconstruction artifact, whereas a

placement of the sponges as the sister group of all other animals

most likely reflects genuine phylogenetic signal.
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METHOD DETAILS

Dataset selection
We considered two phylogenomic datasets that strongly bear on our understanding of relationships at the root of the animal tree. The

first is the dataset of [12] – hereafter referred to as Chang, which scores 77 taxa and 51,940 amino acid positions. The second is a

dataset from [10] that had not been reassessed in [6]. The dataset we selected from [10] was dataset D20, their least compositionally

heterogeneous dataset, which apparently explicitly excludes proteins of significant compositional heterogeneity (see [10]). This data-

set scores 70 taxa and 42,542 amino acid positions. Following [6], dataset D20 (hereafter WhelanD20) was subjected to analyses that

used different subsets of outgroups. We name ‘‘WhelanD20-Opistho’’ the version of WhelanD20 that includes all the original out-

groups (Fungi, Choanoflagellata and several other holozoans); ‘‘WhelanD20-Holo’’ the dataset that excludes fungal outgroups;

and ‘‘WhelanD20-Choano’’ the dataset that excludes all the outgroups but Choanoflagellata.

PartitionFinder analyses
PartitionFinder version 1.1.1 Mac and PartitionFinder version 2.0.0 [24] were used following the protocol of [10] to select, for

WhelanD20-Opistho and Chang, the optimal sets of partitions and their associated sets of best-fitting, universal, predefined general

time reversible matrices. It is important to note that we followed the protocol of [10] in order to be able to precisely test whether

PF-schemes previously used to investigate early animal relationships can adequately describe the considered datasets.

Following [10], not all models that have been developed for amino acid datasets, and that could be considered by PartitionFinder

(e.g., LG4X [60]), are included in the set of compared models. The complete list of models considered in the protocol of [10] only

includes: LG, WAG, mtREV, Dayhoff, DCMut, JTT, VT, Blosum62, CpREV, RtREV, MtMam, MtArt, HIVb, HIVw (see PartitionFinder

manual and references therein for details about these models). The selected sets of partitions and their associated sets of models

will be referred to as ‘‘PF-schemes.’’

Testing model adequacy
Posterior Predictive Analyses were performed on WhelanD20-Opistho and Chang to test whether WAG+G, LG+G, GTR+G, the

optimal PF-schemes, or CAT-GTR+G can adequately describe site-specific amino acid preferences and lineage-specific composi-

tional heterogeneity for these datasets. These models were selected because they had previously been used in key studies of early

animal evolution that reached contradictory conclusions. For example, GTR+G was used by [8], WAG+G was used by [9], PF-

schemes were used by [10], CAT-GTR+G was used by [6] and LG+G was used by [11]. Other important studies [7, 12] used

CAT+G, which has not been considered here, as CAT-GTR+G is used as a representative of the CAT-based models more broadly

(see below: ‘‘A discussion of alternative evolutionary models’’ for a comparison of these models).

Posterior Predictive Analyses (PPA) of site-specific amino acid diversity test how well site-specific amino acid preferences are ac-

counted for by a model. We used three alternative tests statistics: (1) the mean number of distinct amino acids observed at each site
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(PPA-DIV [26]). (2) An empirical measure of the site-specific probability of convergent evolution toward the same amino-acid in

distantly related taxa (PPA-CONV). This is obtained as follows: for each site, the empirical frequencies of the 20 amino-acids are

calculated and the probability of randomly drawing twice the same amino-acid is estimated. This quantity is then averaged across

all sites. (3) The variance across sites of the empirical frequency of each amino-acid, averaged over all amino-acids (PPA-VAR).

PPA for compositional heterogeneity test howwell lineage-specific compositional preferences are accounted for by themodel. We

used as a primary measure maximal heterogeneity across taxa (PPA-MAX [30]). We also investigated whether using mean squared

heterogeneity across taxa (PPA-MEAN [30]) could have led to different conclusions. Both PPA-MAX and PPA-MEAN use the devi-

ation between specific taxa and the dataset average, measured as the sum over the 20 amino-acids of the absolute differences be-

tween the taxon-specific and global empirical frequencies. The maximal heterogeneity across taxa is the maximum deviation over all

taxa, while the mean squared heterogeneity across taxa is the sum of the squared deviations (calculated across all the taxa in the

dataset). All PPA analyses used a minimum of 100 replicates. All PPA performed under WAG+G, LG+G, GTR+G and CAT-GTR+G

used the latest release of PhylobayesMPI [61], which includes PPA-CONV and PPA-VAR (see below for software access). To perform

PPA analyses under the optimal PF-schemes we developed a new version of Phylobayes MPI (see below for software access). For

the PF analyses, amino acid frequencies and the Gamma distribution used to model across-site rate-heterogeneity were indepen-

dently inferred from the data for each partition.

Results of PPA analyses were quantified using Z-scores. When computing Z-scores it is assumed that the null distribution is

approximately normal, with the Z-score being analogous to a standard normal quantile. Results of PPA can also be quantified using

a P value, which is the fraction of simulated replicates with a test statistic less than the observed statistic. Because P values are

computed from a discrete set of simulated replicates, they may not be distinguishable from 0 or 1 when a model is strongly rejected

(i.e., when there are too few samples to accurately estimate a very small tail probability). Accordingly, Z-scores have the advantage of

providing a much greater comparative resolution when a model is strongly rejected, with a very large Z-score (in absolute value) indi-

cating strongmodel mis-specification. As a general rule, to compare Z-scores and P values, one-tailed tests based on results of PPA

where jZj> 5 would obtain a Pz1e-5, indicating a strong rejection of the null hypothesis that the model can adequately describe the

data. On the other hand, one-tailed tests based on results where jZj< 2 would obtain a P that would not be rejected at the standard

0.05 level. All the output files from our PPA analyses are available (see below for data access).

Data recoding
Amino acid recoding has long been considered as a powerful strategy to reduce compositional heterogeneity and saturation in the

data [7, 13–15, 31–36] (see also below: A discussion of alternative evolutionary models). Amino acid recoding strategies identify sets

of amino acids where there is a high probability of changewithin each set and a small probability of change between the sets [15]. The

best known recoding strategy is Dayhoff-6, which was originally presented in Figure 84 of [37]. Dayhoff recoding partitions amino

acids in six classes or bins (Table 2), based on the log odds matrix of probabilities of pairs of amino acids appearing together in a

PAM 250 matrix (see [14, 37] for details). Alternative recoding strategies have been devised, which use different criteria to bin amino

acids into classes [14, 15]. To test whether our results were specific to the application of Dayhoff-6 recoding, we used two other

amino acid transformation strategies. These are the JTT-based [62] 6-state recoding strategy of Susko and Roger [14] (hereafter

S&R-6) and the PAM 120 / PAM 250-based, 6-state recoding strategy of Kosiol et al. [15] (hereafter KGB-6). The bins defined by

S&R-6 and KGB-6 are reported in Table 2. The bins in S&R-6 are defined based on the JTT rate matrix. In S&R-6 the bins are defined

tomaximize the ratio of the expected number of substitutions within bins to the expected number under the Jukes-Cantor model [14].

The scheme of Kosiol et al. [15] is based on the concept of conductance: the expected number of changes between amino acids

within two sets when a Markov process is close to equilibrium (see [15] for details). Both WhelanD20 and Chang were recoded using

each of the three considered strategies.

Phylogenetic analyses
Phylogenetic analyses of Chang and WhelanD20-Opistho were performed under WAG+G, LG+G, GTR+G (with and without

Dayhoff-6, S&R6 and KGB-6 recoding), and CAT-GTR+G (with and without Dayhoff-6, S&R6 and KGB-6 recoding). GTR+G and

CAT-GTR+G analyses were also performed (with and without Dayhoff-6, S&R6 and KGB-6 recoding) for WhelanD20-Holo and

WhelanD20-Choano. Note that 6-state recoded datasets cannot be analyzed using WAG+G, LG+G or a PF-scheme as they require

a 6-state GTRmatrix, while WAG, LG and the other universal, predefined, matrices used by PartitionFinder are 20-state matrices. All

LG+G, WAG+G, GTR+G and CAT-GTR+G analyses were performed using Phylobayes MPI v1.7a [61]. For each analysis two chains

were run and convergence was assessed using the bpcomp and tracecomp tools in PhyloBayes. The number of samples to be dis-

carded as burnin was independently assessed for each analysis by visually checking traces of likelihood and parameter values.

Chang was analyzed under its optimal PF-scheme using RAxML version 8.2.9 [63], with support estimated using the rapid bootstrap

option (100 replicates). WhelanD20 was not analyzed under its optimal PF-scheme because [10] already showed that this dataset

supports Ctenophora-sister when the PF-scheme is used. Results of all our analyses including trace files and output of all the tests

performed to investigate convergence are available (see below for data access).

Testing the distribution of the signal in favor of Porifera-sister
While the debate on the relationships at the root of the metazoan tree has been dominated by arguments about model choice

[6, 28, 29, 56], a recent study [11] argued that signal for Porifera-sister is limited to a few outlier genes. The study of Shen et al.
e2 Current Biology 27, 3864–3870.e1–e4, December 18, 2017



[11] used datasets from various studies, including dataset D16 from [10], which is very similar to WhelanD20, as the latter was ob-

tained in [10] by removing genes of significant compositional heterogeneity from D16. To test their results, Shen et al. [11] generated

datasets that excluded the few genes that they identified as ‘‘outliers,’’ analyzed these datasets under LG+G, and found support for

Ctenophora-sister. As datasets without ‘‘outlier genes’’ should not include signal in favor of Porifera-sister, we tested their hypothesis

by analyzing one of their purportedly outlier-free, and hence Porifera-sister signal-free, datasets under CAT-GTR+G (with andwithout

Dayhoff recoding). To run this test we selectedWhelanD16-OutlierExcluded-Choano – i.e., WhelanD16 with only Choanoflagellata as

outgroups and excluding all outlier genes identified by [11]. If support for Porifera-sister emerges from the analysis of this dataset

(which should be free of any signal supporting this topology), Shen et al.’s [11] hypothesis would be rejected, and the emergence

of Ctenophora-sister in their analyses a consequence of the use of the inadequate (see Table 1 and S1) LG+G model. For each

analysis, two chains were run in PhylobayesMPI version 1.7a [61] and convergence was assessed using the bpcomp and tracecomp

tools in PhyloBayes. The number of samples to be discarded as burnin was independently assessed for each analysis by visually

checking traces of likelihood and parameter values. Results of all our analyses including tracefiles are available (see below for

data access).

Testing the effect of incrementing the number of ctenophoran lineages on the phylogenetic stability of recoded
datasets
Whelan et al. [38] have increased the number of ctenophoran species compared to those they used in [10]. Ctenophores are all long

branched (see Figure 2 in [38]), and adding more long branched taxa to a dataset decreases the ability of all available models to

adequately describe the data (see Results andDiscussion for details). Given our key finding, that relationships at the root of the animal

tree depend on the relative adequacy with which alternative modeling strategies describe the data, it is not unsurprising that [38]

recovered Ctenophora-sister using CAT-GTR+G and closely related outgroups; similarly to the case of [12]. The dataset of [38] pro-

vided us with a case to further test the conclusions of our study: that support for alternative hypotheses of animal relationships de-

pends on the ability of themodel used in the analyses to describe the data. If our conclusions hold andCtenophora-sister is an artifact

emerging when the data are inadequately modeled, the analysis of a recoded version of the dataset of [38] should support Porifera-

sister. We tested this hypothesis performing an analysis of a Dayhoff-6 recoded version of the dataset used by Whelan et al. [38] to

recover their Figure 2 (i.e., their Whelan2017_Metazoa_Choano_RCFV_strict dataset). For this analysis, two chains were run in Phy-

lobayesMPI version 1.7a [61] and convergence was assessed using the bpcomp and tracecomp tools in PhyloBayes. The number of

samples to be discarded as burnin was assessed by visually checking traces of likelihood and parameter values. Results of all our

analyses including tracefiles are available (see below for data access).

A discussion of alternative evolutionary models
The simplest substitution models are site- and lineage-homogeneous, representing the amino acid replacement process using the

samemodel across sites and lineages [23, 64]. Examples of homogeneous amino acidmodels include those using empirical matrices

that have been derived from large collections of protein families like the JTT [62],WAG [21] and LG [60] matrices, and dataset-specific

GTR (General Time Reversible) matrices that are directly inferred from the alignment under study. Empirical matrices are expected to

fit most alignments relatively well. However, a dataset-specific GTR matrix is expected to fit the alignment from which it has been

inferred best (and better than empirical matrices) [65, 66]. A GTR matrix, if used in isolation, can only describe a site-, lineage-,

rate-, composition-, and replacement-homogeneous process. However, protein evolution is not homogeneous. Different sites

and lineages accumulate substitutions at different rates (e.g., [67–69]), and different amino acids are preferentially found at different

sites or in different lineages (e.g., [26, 55]). Finally, different proteins can have their own protein-specific replacement rates (e.g., [24]).

Variation in substitution rates among sites is typically accounted for by assuming that site-specific substitution rates vary accord-

ing to aGammadistribution [67, 69], and thewell-knownGTR+GandWAG+Gmodels are heterogeneouswith respect to site-specific

substitution rates, as they relax the site-specific rate homogeneity assumption. Similarly, models have been introduced to account

for variation in equilibrium amino acid frequencies among sites, including those based on the CATmixture, which describes site-spe-

cific amino acid profiles using a Dirichlet process [25]. These models were introduced to account for the observation that different

amino acid sites in one or many proteins may have comparable amino acid profiles due to biochemical functional constraints

[25]. The combined application of a GTR matrix and the CAT mixture (as in the CAT-WAG or CAT-GTR model) thus relaxes the

assumption that the same replacement process applies to all sites of the alignment (i.e., that all sites are equally likely to accept

all amino acids). Models that use both site-specific substitution rates and site-specific amino acid profiles (e.g., CAT-WAG+G or

CAT-GTR+G, respectively) account for both site-specific rates and amino acid preferences. Finally, multiple GTR matrices can be

used to model gene-level replacement-process heterogeneity. PartitionFinder [24] is the most commonly used automated approach

to partitioning a superalignment and assigning to each of its partitions the best-fitting in a predefined set of empirical matrices, which

currently does not include CAT-based models.

In addition to site-specific amino-acid preferences, lineage-specific compositional heterogeneity has been shown to constitute

another important confounding factor in phylogenetics (e.g., [7, 13–15, 31–36, 55]). Yet, none of the above discussed models are

designed to account for this type of evolutionary heterogeneity. Models that can explicitly take into consideration across-taxon

compositional heterogeneity, such as the Breakpoint model [70], the Node Discrete Compositional Heterogeneity (NDCH) model

[55] and the Correspondence and Likelihood Analysis (COaLA) model [71] have been developed. However, current implementations

of these models are computationally too demanding to allow their application to large phylogenomic datasets. As an alternative to
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using amodel that captures lineage-specific heterogeneity, one can transform the dataset so that it displays less heterogeneity, lead-

ing toweaker violations of the assumptions of lineage-homogeneousmodels. Dayhoff-6 and other recoding strategies [14, 15, 37] are

well-known procedures that can be used to reduce the compositional heterogeneity of an amino acid alignment (e.g., [7, 13, 31–36]).

Using this approach, amino acids with similar physicochemical properties are recoded into one of six categories, reducing lineage-

and site-specific amino acid preferences [33]. The amino acids within each category are known to interchange more frequently with

each other than they do with amino acids from other categories because of their similar properties, which allows maintaining protein

function and structure. Because Dayhoff recoding clusters amino acids with comparable properties within the same category, it re-

duces heterogeneity across both sites and lineages, potentially reducing the impact of systematic errors on phylogenetic estimation

under currently available models. Because amino acids are grouped into classes recoding strategies can in some cases cause signal

erosion. This however can be monitored because it will result in collapsed nodes that do not provide support for any topology, rather

than a change in the topology supported by the data.

DATA AND SOFTWARE AVAILABILITY

Results of all our analyses including tracefiles are available at https://bitbucket.org/bzxdp/feuda_et_al_2017.

Phylobayes MPI which includes PPA-CONV and PPA-VAR is available at https://github.com/bayesiancook/pbmpi.

Partitioned Phylobayes MPI, to perform PPA analyses under the optimal PF-schemes is available at https://github.com/

bayesiancook/pbmpi/tree/partition.
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