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Abstract

In this thesis, we focus on Answer Sentence Selection (A2S) that is the core task of retrieval based
question answering. A2S consists of selecting the sentences that answer user queries from a
collection of documents retrieved by a search engine. Over more than two decades, several so-
lutions based on machine learning have been proposed to solve this task, starting from simple
approaches based on manual feature engineering to more complex Structural Tree Kernels mod-
els, and recently Neural Network architectures. In particular, the latter requires little human
e�ort as they can automatically extract relevant features from plain text. The development of
neural architectures brought improvements in many areas of A2S, reaching unprecedented re-
sults. They substantially increase accuracy on almost all benchmark datasets for A2S. However,
this has come with the cost of a huge increase in the number of parameters and computational
costs of the models. A large number of parameters has led to two drawbacks. The model requires
a massive amount of data to train e�ectively, and huge computational power to maintain an ac-
ceptable transaction per second in a production environment. Current state-of-the-art techniques
for A2S use huge Transformer architectures, having up to 340 million parameters, pre-trained on
a massive amount of data, e.g., BERT. The latter and related models in the same family, such as
RoBERTa, are general architectures, i.e., they can be applied to many tasks of NLP without any
architectural change.

In contrast to the trend above, we focus on specialized architectures for A2S that can e�ectively
encode the local structure of the question and answer candidate and global information, i.e., the
structure of the task and the context in which the answer candidate appears.

In particular, we propose solutions to e�ectively encode both the local and the global structure of
A2S in e�cient neural network models. (i) We encode syntactic information in a fast CNN archi-
tecture exploiting the capabilities of Structural Tree Kernel to encode the syntactic structure. (ii)
We propose an e�cient model that can use semantic relational information between question and
answer candidates by pretraining word representations on a relational knowledge base. (iii) This
e�cient approach is further extended to encode each answer candidate’s contextual information,
encoding all answer candidates in the original context. Lastly, (iv) we propose a solution to en-
code task-speci�c structure that is available, for example, available on the community Question
Answering task.

The �nalmodel, which encodes di�erent aspects of the task, achieves state-of-the-art performance
on A2S compared with other e�cient architectures. The proposed model is more e�cient than
attention based architectures and outperforms BERT by two orders of magnitude in terms of
transaction per second during training and testing, i.e., it processes 700 questions per second
compared to 6 questions per second for BERT when training on a single GPU.
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Chapter 1

Introduction

Ever since the advent of the Internet, �nding ways to store and access information has always
been a problem. In the last two decades, search engines, like Google, Bing, or Yahoo, played a
crucial role in helping people seek information among the considerable number of documents
on the Internet. A search engine accepts a query, i.e., a set of keywords, and returns as output
a list of related documents. Although search engines are the de facto standard for accessing
the information on the web, users still need to put much e�ort to digest such information.
Firstly, users need to adapt their style of asking questions from long descriptive questions
(easy to understand for other people) to short keyword-based questions. The second source
of e�ort for the users comes from the fact that search engines output a list of documents as
a result, and therefore users still need to search through these documents for the required
information. Search engines improved in understanding questions; hence, allowing users to
search for information using natural language rather than keyword-based queries. Although
this development eased the user experience for querying the search engine, the second issue
remains open. It is more critical now than ever, as there has been a shift in how people
search for information. With the advent of smartphones and personal assistants like Siri,
Google Assistant, or Alexa, users need short, direct, and precise answers to their questions
without processing documents themselves.

The task of automatically providing answers to questions is known as automatic Question
Answering (QA). QA is a broad and multi-faced problem, as both questions and answers
may be complex to understand, even for humans. For example, composite questions such as
"Where was the president of the United States born?" require answering two di�erent questions
"Who is the president of the United States?" and "Where was X born?". Additionally, another
type of complexity in questions may come from the fact that the answer requires express-
ing opinions or performing di�erent levels of (causal) inference, e.g., "What is the cause of
global warming?". This complexity created, over the years, several di�erent solutions for the
task of Question Answering. Nested factual questions are better answered by a system that
stores knowledge in structured databases such as tables or relational knowledge bases. A
retrieval-based approach on unstructured text is more suited for complex non-factual ques-
tions. In retrieval approaches, a search engine retrieves a document containing information
about global warming. A second component selects and then extracts the relevant snippet
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of text that answers the question. Even though QA on structured knowledge is more precise
and controllable than the one on unstructured text, it is expensive to maintain as relational
knowledge bases are manually maintained. QA on structured knowledge-bases can answer a
limited number of question types, i.e., questions asking facts (factual questions). In contrast,
retrieval-based question answering systems answer a broader set of questions such as causal
questions (why/how) or descriptive questions such as What is the DNA?. For these reasons,
in this thesis, we focus on the information retrieval-based Question Answering.

The standard approach to question answering uses a Search Engine (SE) to retrieve relevant
documents and an Answer Sentence Selector (A2S) to select the sentence that answers the
question. This simple pipeline can be enriched with an optional component that extracts,
generates, or reformulates the �nal answer. This last component is optional and application-
speci�c since the answer can be presented to the user in di�erent forms depending on the ap-
plication. For example, a virtual assistant wants a short and conversational answer. However,
on a smartphone, we may want to highlight the answer sentence in the source document’s
original context.

A2S is the task of selecting the sentence or a small passage that contains the answer to the
question from a list of candidate sentences. This list of sentences can come from di�erent
sources, depending on the implementation of the pipeline. For example, it can be the list of
sentences, i.e., the answer candidates, in the �rst document of the search engine [149, 64],
a list of passages (if the search engine retrieves sub-parts of the documents) [144] or the
document summaries [5]. A2S uses advanced machine learning models to assign a score to
each answer candidate according to their relevance to the question [107, 109, 145, 36]. These
models are supervised and learn from training examples, i.e., they are complex mathemati-
cal functions whose parameters adjusted to approximate a given question answering dataset.
Most models of A2S take the question and a single answer candidate as input and produce a
score that represents the relevance of the answer candidate to the question. An A2S compo-
nent sorts (re-ranks) the original list of answer candidates according to the machine learning
models’ score. Over the years, several machine learning approaches have been proposed
for the task. Among others, notable examples are: Severyn and Moschitti 2013 [107] that
proposed to use SVM with Tree Kernels over syntactic structures achieving unprecedented
results on the task without much need to exploit task-speci�c features of the datasets; Yu
et al. [161] and Severyn and Moschitti 2015 [109] was the �rst technique that successfully ap-
plied deep learning to A2S. From there, Deep Learning is the de facto standard for the task. It
received further developments, particularly with the inclusion of attention mechanisms [145]
to better capture the semantic relatedness between the words in the question and the answer.
Additionally, recent approaches for training neural language models, e.g., ELMo [94], GPT
[97], BERT [29], RoBERTa [74], XLNet [151], have led to major improvements in several NLP
areas. These methods create a sentence representation that captures the relations between
words and their compounds by pre-training big neural networks model on huge datasets.
Interestingly, these pre-trained models can be easily applied to di�erent tasks by �ne-tuning
them on the target training data.

All the models above (especially the transformer-based architectures) require many layers
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and a considerable number of parameters (up to 340 million for BERT Large) to capture all
the nuances of language needed to solve di�erent tasks. This generality is achieved by sacri-
�cing e�ciency, thus posing critical challenges for having such models in production: models
have to be scaled horizontally on multiple GPUs to obtain acceptable latencies, even at test
time, increasing the operational cost in real-world scenarios. This also has a huge environ-
mental issue, as pointed out by Strubell, Ganesh, and McCallum [120], and they require many
resources for pre-training, e.g., both data and compute power (TPUs). These resources may
not be available for low resource languages or domain-speci�c applications.

In this thesis, we investigate and propose solutions to design accurate A2S models, still pre-
serving high e�ciency.

1.1 Question Answering

A Question Answering system is a computer system capable of answering user questions us-
ing natural language. Question Answering is a challenging research problem since it requires
a deep understanding of the human language to understand the user question and produce
a meaningful answer. The way information is stored additional challenges to the task. For
example, information can be stored in a structured way, using knowledge bases, or in unstruc-
tured textual documents. Structured Knowledge bases are precise sources of information, and
they are an e�ective way to store domain-speci�c knowledge, such as the organizational chart
of a company. However, they are expensive and hard to maintain in open-domain scenarios
when users can ask questions about any topic. Inside a knowledge-base, all human knowl-
edge needs to be mapped in a logical form. Unstructured textual documents, on the other end,
are ubiquitous. Question Answering systems capable of �nding and extracting information
from open texts require little maintenance and can be applied across domains.

1.1.1 Structured data

In structured databases, information consists of data-points and their relations. One of the
oldest and most common types of data structures used to store and access information is tabu-
lar. For example, a simple database for a bank may contain a table of the clients, another table
for the accounts, and a third table that contains the transactions among di�erent accounts. In
this setting, when users search for information, the user queries the database using an ad-hoc
language, e.g., SQL, and retrieves a new tabular representation of the searched data. Tabular
databases are the building block of many information systems. However, they are not suited
for storing the world’s general knowledge for building an open domain question answering
system.

Another standard method to store knowledge is using relational knowledge graphs. Knowl-
edge graphs represent data, e.g., facts, as entities together with their relations. For example,
it is possible to represent the fact that "Metallica" played the "Black Album" in the form of
a triplet <metallica, played, black_album>. In the same way, <black_album, contains, en-
ter_sandman> represents the fact that the "Black Album" contains the song "Enter Sandman."
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Metallica band

Black Album Enter Sandman

song album
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is_a

is_a is_a

Figure 1.1: Example of a Knowledge base

The collection of all facts contained in a knowledge base forms a graph with entities as nodes
and relations as edges, as depicted in Figure 1.1. Similarly to tabular databases, it is possible
to retrieve information from the knowledge graph by querying it. For example, it is possi-
ble to retrieve the information of who played "Enter Sandman" with the query <?, played,
enter_sandman>. In this example, the engine queries the knowledge base, performs the re-
quired inference steps, and retrieves the entity "Metallica."

Over the years, di�erent initiatives attempted to store general information of the world in
knowledge bases. Notable examples are:

• YAGO [121] and DBpedia [3] are open-source knowledge graphs automatically ex-
tracted from Wikipedia.

• Conceptnet [72] that is a project that aims at encoding common knowledge as a graph.
For example, it is common human knowledge that a rock that is thrown eventually
falls.

• Freebase [12] was a collaborative community e�ort to create and maintain a general
Knowledge Graph about the world.

Moreover, private companies, such as Google, have their knowledge graphs to perform Ques-
tion Answering and enrich their users’ search experience. Knowledge graphs are powerful
but are typically manually built and maintained.

1.1.1.1 Knowledge Base Question Answering

Question answering on Knowledge bases (KBQA) is a challenging problem since it requires
to perfectly understand the user question and convert it to a query for the knowledge base.
For simple cases, this is achieved using template-based matching [134]. Most of the ques-
tions have a standard form that can be easy to detect, e.g., " Who played Enter Sandman? "
can use the template " Who played X? " to map the question to the query "<?, played, X>".
The same template is valid for the question " Who played Yellow Submarine? ". Template-
matching is e�ective for simple questions; however, it is not scalable for harder questions
such as composite questions, e.g., "Where was the president of the United States born?". Com-
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plex questions require automatic machine learning approaches such as semantic parsing [9].
A semantic parser learns from example to map questions to their Abstract Meaning Repre-
sentation (AMR), i.e., a structured representation of the sentence’s meaning. The AMR for
the question can be used to query the database. When queried, the knowledge base returns
a fact answering the question, i.e., usually a triplet from the graph. Despite KBQA can pre-
cisely answer questions, there are many sources of error in the process, e.g., the parser fails
to map the question to the KB-query or the fact answering the question is not present in the
database. From that, KBQA may fail to achieve high recall, thus failing to identify a correct
answer to the user question. KBQA requires an additional component to convert facts from
the structured form, i.e., a triplet, to a natural language answer. This task is known as Natural
Language Generation (NLG) and is crucial for any KBQA system [18].

Moreover, KBQA can answer only a limited amount of user questions, i.e., factual questions.
Factual questions are the type of questions that asks about world facts and do not include
opinions, explanations, or questions asking about procedures, e.g., "How can I apply for a
Visa?".

1.1.2 Unstructured data

Most of the knowledge on the Internet is stored as textual documents for humans to read.
Documents on the Internet contain di�erent categories of information. For example, ency-
clopedia articles, such as Wikipedia documents, contain factual information about the world.
Online forums can contain opinions about various topics and procedural information, such
as the procedure to apply for a visa. This information is not structured; hence it is di�cult for
a machine to understand and process. Nevertheless, question answering systems capable of
leveraging this information can answer a broader set of questions than the KB counterparts,
potentially achieving higher recall in a production setting.

1.1.2.1 Information Retrieval

Question Answering on textual documents is an Information Retrieval (IR) task. An informa-
tion retrieval system is a computer system capable of identifying and retrieving information
from various sources. IR systems can operate on di�erent types of information, such as text,
audio, images, or maps. However, searches are typically based on textual documents, such
as web pages or books. The most iconic example of information retrieval systems is search
engines. A search engine accepts user queries and retrieves related documents in the form
of rank, i.e., a ranked list of documents. The list of documents from a search is ranked ac-
cording to each document’s relevance to the query. Search engines can perform searches on
a di�erent scale, e.g., a library may have a search engine to identify books, in contrast to the
Web search engines that operate on a web-scale, i.e., index and perform searches on the entire
Internet.

Search engines are an invaluable asset for accessing human knowledge. Therefore, they are
a crucial component for open-domain question answering systems.
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Figure 1.2: General QA architecture

1.1.3 General Architecture for QA

The core components of an information-retrieval based question answering system are the
search engine, the answer sentence selector, and the answer generator. This pipeline is de-
picted in Figure 1.2.0.1. The Search Engine takes the user question as input and retrieves
the ranked list of related documents. The Answer Sentence Selector (A2S) selects from the
documents the sentence or sentences answering the user question. The �nal component, the
answer generation module, take the answer sentences in output from the A2S and generate
a coherent answer for the user.

1.1.3.1 Search Engine

Search Engine (SE) is a general term in the community of Information Retrieval (IR). A SE
is typically a computer system that enables search and retrieval of documents, typically at
web-scale [104]. A basic SE index a collection of documents, e.g., the entire web, in an index.
Typically, the SE preprocesses the documents to extract relevant features from each document
for fast retrieval. When the user searches on the collection, the SE computes lexical and
semantic similarity features between the user query and each document in the index and
returns the most similar documents related to the user query. Search engines that operate at
the web-scale include additional features, such as Page Rank [68] or user preference features,
such as the history of the user searches. Depending on the application, SE systems for QA do
not always operate at web-scale, but they typically index encyclopedias, such as Wikipedia,
or online forums.

For the remainder of this work, we refer to SE as a black-box capable of retrieving a ranked
list of documents relevant to the user query.

1.1.3.2 A2S: Answer Sentence Selection

The central task of an IR based QA system is the Answer Sentence Selection (A2S). The task
consists in identifying the sentence answering the user question inside an ordered list of
answer candidates. The model takes in input the sentences, or small passages, extracted from
the document(s) retrieved by the SE, and it assigns a score to each sentence according to their
relevance to the question [149]. Alternatively, in a pure retrieval setting, the search engine
retrieves directly the sentences (or small paragraphs) that may contain the answer. A2S in
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this setting aims at re-ranking the passages retrieved by the search engine in such a way that
the resulting list has answers ranked higher in the list of candidates [144].

1.1.3.3 Answer Generation

The Answer Generation (AG) component is crucial for an end to end Question Answering
system. AG typically takes in input the answer candidate from the A2S (typically the �rst
sentence in the A2S rank) and returns the answer to the user question. AG is application-
speci�c as it depends on the way the answer is presented to the user. For example, when
the question answering system is integrated into a search engine’s web page, the answer
may be presented in context by presenting an excerpt from the original document. In virtual
assistants, the answer has to be conversational and coherent with the user question.

Given the variety of applications, AG’s task is solved using di�erent techniques, answer ex-
traction for factoid question answering [107], or summarization for more complex applica-
tions or sequence generation [92].

1.1.4 Applications

Question Answering (QA) systems greatly improve the capabilities of users to access knowl-
edge. For this reason, the task has a variety of applications. For example, it can improve
the experience of using Search Engines by providing a concise and on-point answer to user
questions. Additionally, it is a key component of Dialogue Systems as a big part of human-
human conversation consists of questions and answers. Question Answering is successfully
applied in restricted domains such as the medical domain to help caregivers provide diagno-
sis and medications to their patients. In these domains, Retrieval Based QA systems are often
combined with high precision domain-speci�c ontologies [44].

The applications of QA are not only industrial, but the task has direct research implications.
Given the complexity of the task, it is often used as a proxy task to test machines’ capabilities
to understand written text, i.e., Machine Reading Comprehension.

Another application of the Question Answering pipeline is for the task of Community Ques-
tion Answering (cQA). cQA websites are online forums, such as Quora, Yahoo Answers, or
Stack Exchange, where users can ask questions to the other members of the website and
answer questions of other users. In this setting, a retrieval-based QA pipeline can retrieve
already answered questions from the website and their answers.

1.1.4.1 Machine Reading Comprehension

Machine Reading Comprehension (MRC) is a broad and multi-faced problem that aims at study-
ing the capabilities of machines to read and understand written text. In a similar way in which
children are tested for reading comprehension, QA can be used as a mean to test the capabili-
ties of machines to understand written text. Practically the task involves extracting the exact
text span answering the question from a document, where the document is usually provided
with the target question. Although MRC could be theoretically solved using a combination
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of an A2S and an Answer Extraction component, in recent years, the task has been addressed
by an independent research area aiming to determine the capabilities of end-to-end deep
learning methods of identifying the correct answer directly from documents. Additionally,
vertical research on MRC aims at building models capable of answering complex questions,
e.g., questions that require reasoning across di�erent documents, i.e., Multi-Hop Question
Answering [150]

Even though MRC techniques are gaining more and more popularity thanks to the availabil-
ity of speci�c datasets, A2S is more suited as a general solution for open-domain QA in a
production scenario since a combination of a retrieval engine together with a sentence se-
lector model often constitutes an industrial QA system. Several models have been proposed
to adapt MRC to an end-to-end retrieval setting, e.g., see Chen et al. [19] and Kratzwald and
Feuerriegel [62], the deployment of MRC systems in production is challenged by two key
factors: the lack of datasets for training MRC with realistic retrieval data, and the large vol-
ume of relevant contents needed to be processed, i.e., MRC cannot e�ciently process a large
amount of retrieved data. In contrast, A2S research originated from the TREC competitions
[144]; thus, it has targeted large databases of unstructured text from the beginning of its
development.

1.1.4.2 QA in Dialogue Systems

According to Stolcke et al. [119], almost 10% of human-human conversations on the Switch-
board corpora are in the form of questions and answers. From this, it is clear how QA plays
a crucial role in Dialogue systems aiming to have a seamless conversation between humans
and machines.

Current Question answering systems assume �xed interactions between the user and the ma-
chines, i.e., the user asks a question, and the system replies with a concise answer. However,
in a dialogue system, �uid interaction between the user and the system is expected. The
systems ask for clari�cation, and the user asks follow-up questions to search for information.

The task of building a QA system for dialogue is known as interactive Question Answering
(iQA), and it is an open research problem. Quarteroni and Manandhar [96] formalized the
task and proposed a possible pipeline. The pipeline makes use of a retrieval based QA sys-
tem, an Answer Extraction/Generation component, and a Dialogue Manager managing the
interactions between the user and the machine.

1.1.4.3 Community Question Answering

In recent years, community Question Answering (cQA) websites have gained popularity. In
these websites, users can ask a question to other community members hoping for a satis-
factory answer as a response. However, the answers from the users on the forum are not
always optimal, and therefore this can impact the user’s experience looking for information.
For these reasons, in cQA, an Answer Sentence Selector (A2S) component can be used to
select the relevant answer to the user question (Task A). Another problem of cQA websites
is related to the number of duplicate questions present on these websites. This problem is
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Figure 1.3: The community Question Answering task structure

a consequence of the fact that websites often provide a sub-optimal way to search for an-
swers to a related question on the website. If users cannot easily �nd the answer to their new
question, they will post the new question on the website, creating duplication. A variation of
the retrieval-based pipeline can be used to access previously answer questions to ease these
problems.

When a user submits a new question (Qnew), a Search Engine retrieves related questions
(Qrel), and a Question Selector, which is a similar architecture to the A2S, selects theQrel on
the website that is a paraphrase of Qnew (Task B). An A2S component is then used to select
the relevant user comment (Crel) for Qnew among the answers to Qrel (Task C) [89].

The �nal system for Task C is e�ectively a retrieval based Question Answering system. The
user can ask a question to the system, and the system answers with a user comment to a
related question. The advantage of a community Question Answering system is that it can
retrieve answers to opinion questions, how-to questions, or more complex questions that
users cannot be typically answered by querying a Search Engine.

1.2 A2S: Answer Sentence Selection

In Section 1.1.4, we explain why the task of Answer Sentence Selection (A2S) is a core com-
ponent of many Question Answering applications. Not only A2S is the core component of
the general pipeline for Open-Domain Question Answering, but it is a building block of other
QA applications such as iQA and cQA pipelines.

The task of Answer Sentence Selection (A2S) can be formalized as follows: given a question q
and a set of answer sentence candidatesC = {c1, c2, ..., cn} the task is to assign a score si for
each candidate ci such that the sentence receiving the highest score is the one that contains
the answer. An excerpt from an A2S dataset is presented in Table 1.1; in this example, the
sentence that more likely answers the question “How long was I Love Lucy on the air ?” is the
second. In this scenario, the model needs to assign a score to each sentence so that the second
sentence is ranked above the others. The task of A2S can be, in fact, e�ectively modeled as a
re-ranking task.

Although re-ranking is a structured output problem, most state-of-the-art approaches treat
the task of A2S as point-wise classi�cation, i.e., classifying sentences that contain the answer
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How long was I Love Lucy on the air ?

I Love Lucy is an American television sitcom starring Lucille Ball,
Desi Arnaz, Vivian Vance, and William Frawley .

The black-and-white series originally ran from October 15, 1951, to
May 6, 1957, on the Columbia Broadcasting System (CBS).
After the series ended in 1957, however, a modi�ed version
continued for three more seasons with 13 one-hour specials,

running from 1957 to 1960, known �rst as The Lucille Ball-Desi
Arnaz Show and later in reruns as The Lucy-Desi Comedy Hour.

I Love Lucy was the most watched show in the United States in four
of its six seasons, and was the �rst to end its run at the top of the
Nielsen ratings (an accomplishment later matched by The Andy

Gri�th Show and Seinfeld ).
I Love Lucy is still syndicated in dozens of languages across the

world

Table 1.1: An example of question/answer-candidate from WikiQA. In green the answer to
the question.

WikiQA SQuAD NQ-LA
# questions (Q) 633 11873 6230
# sentences (C) 6165 63959 193k
% Q answered 38.39 49.92 55.47
avg. # passages 9.74 5.38 30.95
avg. Q lenght 7.28 10.02 9.38
avg. C lenght 25.36 23.75 98.76
P@1 (random) 14.43 18.34 3.24
MAP (random) 25.15 43.81 12.33
P@1 (RR) 46.09 30.54 46.06
MAP (RR) 64.21 53.53 57.30
P@1 (WO) 32.51 65.48 23.06
MAP (WO) 51.02 77.90 38.08
P@1 (WO+RR) 56.38 73.12 41.01
MAP (WO+RR) 68.25 83.60 53.98

Table 1.2: Statistics of the di�erent datasets (the test-sets are taken into account).

as positive and all the others as negative. This design bias prevents A2S models from cap-
turing the underlying structure of the original rank. However, in this thesis, we argue that
building systems capable of capturing such information is crucial for improving the perfor-
mances of e�cient A2S models.

1.2.0.1 A2S Datasets

A2S datasets can be divided into two categories: retrieval based and document-based. The
di�erence between the two categories resides in the source of the answer candidates. In
the former, answer candidates are retrieved from a search engine, i.e., TrecQA [144] and,
more recently, MSMarco [5]. For the latter, a search engine is often used to retrieve the
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Figure 1.4: The community Question Answering task structure

relevant document, but the task is to select the relevant answer candidate from the document
itself. Notable examples of document-based A2S are the WikiQA dataset [149] and the "long-
answer" version of Natural Question [64].

Despite the heterogeneous nature of the datasets, both types present strong features for de-
tecting relevant answers in the candidate set: local features of the Question and candidate
pairs, with a substantial lexical overlap between the question and the answer candidate and
a global structure, e.g., the original order of the sentences in the rank.

In this thesis, we study ways to exploit di�erent structural information types, both local and
global, to build accurate neural network-based models that retain high e�ciency.

• Local Structure: The local structure of question-answers pairs includes not only the
syntactic structure of the two sentences but the relational information between the
words in the question and the answer.

– Syntactic Structure: Before neural networks, state-of-the-art approaches to the
A2S task use the question’s syntactic structure and the answer. This thesis wants
to study ways to include this type of information into neural network-based ap-
proaches.

– Relational Structure: Relational information among the words in the question and
the answer candidates are crucial for the task of question answering. One of the
strongest features in A2S is the lexical overlap, i.e., whether words appear in both
questions and answer candidates. The importance of this feature is highlighted
in Table 7.1. We used the number of unique words in both the question and the
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candidates as a single feature to rank question-answer pairs. From the table, it
is clear that this feature alone signi�cantly outperforms the random baseline in
most datasets. For Squad-sent, which is an adaptation of the SQuAD v. 2.0 dataset
where the task is to identify the sentence containing the answer, in particular,
this feature alone identi�es the sentence containing the answer 65.48% of the
times. All of the recent models in the literature have tried to model such features.
For example, Severyn and Moschitti [111] uses the relational feature that marks
words appearing in both the question and the answer, and many state-of-the-art
approaches have primarily used the attention mechanism [145, 10, 114].

• Global Structure: State-of-the-art approaches to A2S focus on local structure, i.e., the
type of information that can be extracted from individual questions and answer can-
didate pairs. The pairs are decontextualized from their original document or forum
thread, thus losing much useful information. In the case of community question an-
swering, we have seen that three di�erent tasks need to be solved to identify an answer
to a new question (see Section 1.1.4.3). The three tasks are related structurally; hence
a model for the task has to access this structural information.

– Task Structure: In community Question Answering, the task of retrieving an an-
swer to a new question involves solving two related tasks. A2S techniques can be
applied to solve all three tasks of cQA: (A) Selecting a relevant answer among the
answers posted on a website for a given question, (B) selecting a question relevant
to a new question from the one that already received an answer (C) Selecting an
answer from the answers to related questions that answer a new, unanswered,
question.

There is an intrinsic relation between the three tasks: intuitively, (C) is a combi-
nation of the tasks (B) and (A). This strict relation among tasks is a unique and
powerful feature of the Community Question Answering, and it should be en-
coded into Question Answering models for cQA.

– Document Structure: Another relevant feature for A2S datasets is the global struc-
ture present in the original rank. The structure of the document in a document-
based dataset provides a critical signal needed for answer sentence selection. Ta-
ble 1.2 shows that in the case of WikiQA, SQuAD, and Natural Questions, there
is a high chance that the answer is contained in the �rst sentence/paragraph.
This is particularly true for WikiQA and Natural Questions. In these datasets,
the P@1 when using the reciprocal rank of the original sequence positions as a
signal for ranking is ∼ 46, i.e., the reciprocal of the original rank 1/rank. There
may be several reasons for this distribution. For example, we believe that there
is an intrinsic correlation between the real world distribution of questions and
the Wikipedia document structure. We believe that encyclopedic knowledge is
usually organized in a way that more general information about a topic is sum-
marized and organized at the beginning of the document.

In contrast, by construction, the signal is less present in datasets such as SQuAD,
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where annotators are asked to write questions after reading the whole paragraph.
Thus the answer distribution is less skewed. However, for the same reason, it is
essential to note that annotators tend to introduce more lexical overlap bias when
writing questions after reading the source of the answers.

Additionally, Table 1.2 shows that the combination of the two features, word-
overlap, and reciprocal rank, gives a strong baseline for all the datasets in consid-
eration. This simple rule-based model ranks candidates according to the lexical
overlap between question and candidates, and, in the case when two sentences
have the same amount of overlapping words, it uses the reciprocal rank as a dis-
criminator.

In this thesis, we claim that, in order to build e�cient and accurate models for the task of
Question Answering, models should be able to encode all di�erent structural aspects of the
task. To this end, we propose �ve di�erent solutions that encode di�erent aspects of the task.

1.3 Structure of the thesis

The �rst two chapters of the thesis (Chapter 2 and Chapter 3) provide a detailed overview
of current machine learning approaches for the task of A2S. In particular, chapter 2 provides
basic concepts of machine learning methods that are used throughout this thesis. In Chap-
ter 3, we analyze the literature of A2S providing describing the building blocks of standard
A2S models. Additionally, we describe two relevant architectures from the literature, the
Relational CNN, and the Compare-Aggregate architecture. Section 3.5 highlights the major
limiting factors of current A2S architectures to achieve high e�ciency.

1.3.1 Contributions

This thesis’s main contributions are grouped into two parts, depending on the type of struc-
tural information we address, i.e., Local Structure and Global Structure.

1.3.1.1 Local Structure

Chapters 4, 5, and 6 focus on Local Structure. In particular Chapter 4 and 5 focuses on
techniques to combine and inject the syntactic structure in Neural architectures for A2S.
Chapter 6 proposes an e�cient solution to automatically encode the relational structure in
NNs architectures.
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Combining Convolutional Neural Networks and Convolution Kernels (Chapter 4)

This chapter analyzes two di�erent machine learning methods for the task of A2S: Convo-
lutional Neural Networks (CNNs) and Convolution Tree Kernels (CTKs). The two methods
learn two di�erent types of local information between sentences, Semantic and Syntactic sim-
ilarities. Additionally, we propose a strategy for combining the two approaches into a unique
model capable of achieving competitive results on benchmark datasets for A2S, WikiQA, and
TrecQA. Finally, we show how the proposed solution can be applied to community Ques-
tion Answering (cQA). The proposed approach ranked second at the Community Question
Answering competition at Semeval 2016 [89].

Injecting Syntactic and Relational Structure in Neural Networks (Chapter 5)

In this chapter, we build on the solution proposed in the previous chapter. We propose a
solution that uses a teacher-student approach to inject the Syntactic information from CTKs
into the CNNs network. Although two di�erent models are used at training time, the �nal
model is a simple, e�cient Relational CNNs. The resulting model outperforms the two single
models trained independently on the �nal task. We tested this approach on two Community
Question Answering datasets, Semeval 2016 [89] and the Quora Question-Question similarity
dataset.

Cosinenet: Semantic Relation Learning (Chapter 6)

In this chapter, we propose a novel neural architecture for A2S: The Cosinenet. The model is
simple and e�cient (comparable to the RelCNN of Severyn and Moschitti [111]). The RelCNN
architecture uses a simple Lexical Matching feature to encode the relation between the words
in the question and the answer. Our approach uses a fast and e�cient technique to detect
this feature (the cosine similarity between the words in the two sentences). Additionally, we
show that this model obtains comparable results in contrast with attention-based approaches
when using retro�tted embeddings [117] while maintaining e�ciency.

1.3.1.2 Global Structure

Chapters 7 and 8 provide a set of techniques that are used for encoding global structures.
Chapter 7 extends our work in Chapter 6, building a Global architecture for the task of A2S
that exploits the original context of the answer candidate (the document) while retaining
high e�ciency. Additionally, Chapter 8 proposes a technique to jointly model all the three
sub-tasks of community Question Answering using a unique architecture.

Encoding the Document Structure for e�cient A2S (Chapter 7)
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The last contribution of this thesis is a model capable of encoding the document structure or
the original rank structure for A2S. This architecture can augment di�erent models for A2S
(we tested on the CosineNet and the Compare-Aggregate) with a listwise training approach
that captures the original ordering of sentences. The improved Cosinenet Model that encodes
the global rank obtains results on the various ranking datasets that were never obtained by
any e�cient models. The resulting model achieves an average MAP of 75.62 ± 0.8 on the
WikiQA dataset by training the entire model in 8.9 seconds on GPU.

Encoding the task structure of community Question Answering (Chapter 8)

In this chapter, we propose a model for cQA that exploits the structure of the various sub-
tasks. To do that, we perform multi-task learning, which consists of solving multiple tasks
simultaneously. The resulting model achieves competitive results on Task C (the harder of
the three) by solving it directly and not relying on the complete pipeline.

1.3.1.3 List of Publications

This thesis is partially the result of the following peer-reviewed publications (in chronological
order):

[130] “Convolutional neural networks vs. convolution kernels: Feature engineering for
answer sentence reranking”. Kateryna Tymoshenko, Daniele Bonadiman, and
Alessandro Moschitti. Proceedings of the 2016 conference of the North American
chapter of the association for computational linguistics: human language technolo-
gies. 2016.

[7] "Convkn at semeval-2016 task 3: Answer and question selection for question an-
swering on Arabic and English fora." Alberto Barrón-Cedeno, Daniele Bonadi-

man, et al. Proceedings of the 10th International Workshop on Semantic Evaluation
(SemEval-2016). 2016.

[131] "Learning to rank non-factoid answers: Comment selection in web forums.". Kateryna
Tymoshenko, Daniele Bonadiman, and Alessandro Moschitti. Proceedings of the
25th ACM International on Conference on Information and Knowledge Management.
ACM, 2016. 2016.

[13] "E�ective shared representations with multi-task learning for community ques-
tion answering." Daniele Bonadiman, Antonio Uva, and Alessandro Moschitti.
Proceedings of the 15th Conference of the European Chapter of the Association for
Computational Linguistics: Volume 2, Short Papers. 2017.

[132] "Ranking kernels for structures and embeddings: A hybrid preference and clas-
si�cation model." Kateryna Tymoshenko, Daniele Bonadiman, and Alessandro
Moschitti. Proceedings of the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing. 2017.
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[135] "Injecting Relational Structural Representation in Neural Networks for Question
Similarity." Antonio Uva, Daniele Bonadiman, and Alessandro Moschitti. Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers). 2017.



Part I

Background





Chapter 2

Machine Learning Methods

Machine Learning is the computer science area that studies algorithms and statistical methods
capable of learning from data rather than relying on a set of explicit instructions. Nowadays,
machine learning methods are widespread in many computer science areas and arti�cial in-
telligence. They are used to solve many computer vision problems where machines have to
understand an image or video’s content. Moreover, they �nd application in many Natural
Language Processing tasks.

Machine Learning methods can be classi�ed in di�erent categories depending on the type of
data they use and the task they solve:

• In Supervised Learning, the dataset contains the input and the desired output. The
main methodologies in this category are classi�cation and regression. In this setting,
the machine learning algorithm extracts regularities, patterns in the input data to solve
the �nal task.

• In Unsupervised Learning, the data is provided without the desired output. Therefore
the model extracts general patterns in the input data without knowledge on the desired
output. A popular approach in this category is unsupervised clustering, i.e., the task of
aggregating input examples according to their similarities.

• In Reinforcement Learning, the models learn by interacting in an environment. For
example, an agent can learn to navigate a room using a trial and error approach, hence
receiving feedback from its actions, e.g., positive feedback for reaching a goal or neg-
ative when hitting a wall.

In this chapter, we describe some of the essential concepts and machine learning techniques
that are used in this thesis. In particular, we brie�y describe the problem of supervised learn-
ing. We provide an introduction to Neural Network methods that is the core methodology
used in this dissertation. Lastly, we brie�y describe Support Vector Machines and Kernel
methods, which is the technique that we use to leverage syntactic information in Chapter 4
and Chapter 5.
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2.1 Supervised Learning

In supervised learning, given a labeled training set D = {(xi, yi)}ni=1 the task is to identify
a parametrized decision function hw ∈ H from the hypothesis space H, that from an input
x ∈ X assign an output ŷ ∈ Y with w as parameters, i.e., hw : X → Y .

The supervised learning process is typically divided into two steps: training and inference.

Training. The training process consists of identifying the set of parametersw for the decision
function hw that better approximate the training dataset D. This consists of identifying the
decision function that minimizes the average error in the training set.

Inference. During inference the model uses the best set of parameters identi�ed with the
training process, and predicts the output ŷ for a given input example x, ŷ = hw(x).

2.2 Basics on Neural Networks

Neural Networks (NNs) are a kind of supervised learning algorithm. NNs are de�ned as a
set of parametrized non-linear transformations that connects the input to the output. The
simplest type of Neural Network architecture is the feed-forward network, also known as
Multilayer Perceptron (MLP).

2.2.1 Feed forward Network

An MLP is composed of a set of basic mathematical units organized in layers: an input layer,
a hidden layer, and the output layer. Starting from the input layer, the output of each layer is
the input of the following layer. The output layer represents the �nal output of the network.

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.1: An example of Feed Forward Network

A MLP is a mathematical function f : Rdin → Rdout , where din is the size of the input and
dout is the size of the output. The hidden and output layer values are obtained by a linear
transformation of the values from the previous followed by a non linearity. For example,
the �rst hidden layer is computed by multiplying the input vector with a weight matrix, and
adding a bias vector to the result. In our case, the full network is speci�ed by the following
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Logistic (or sigmoid) f(x) = 1
1+ε−x

Hyperbolic Tangent (tanh) f(x) = 2
1+ε−2x − 1

Recti�ed Linear Unit (ReLU) f(x) = max(0, x)

Softmax f(x)i = exi∑K
k=1 e

xk
for i = 1, ...,K

Table 2.1: Common activation functions.

equations:

ŷ = f(x) = o(h(x))

h(x) = σ(Whx + bh)

o(x) = Wox + bo

where x ∈ Rdin is the input vector and ŷ ∈ Rdout is the predicted output vector. din and
dout represent the input. The hidden layer it is a linear transformation of the input vector
x with Wh ∈ Rdh×din being the weight matrix and bh ∈ Rdh the bias vector. Similarly,
Wo ∈ Rdout×dh andbo ∈ Rdout are the weight matrix and the bias vector for the output layer.
σ is a non-linear activation function. The non-linearity is fundamental building fundamental
for building deep neural networks. A combination of multiple linear functions otherwise
results in a linear function itself. The output vector ŷ contains the network’s predictions, i.e.,
the logits. The task that is solved de�nes which activation function and loss function to use.

2.2.1.1 Activation Functions

An activation function is a non-linear function that enables the network to learn complex,
non-linear functions. Any non-linear function should be di�erentiable for allowing the net-
work to train the network using stochastic gradient descent.

Table 2.1 contains some examples of activation functions. The sigmoid function can be used
to squash values between 0 and 1 and model the probability of a single outcome in a network
with one output unit. In contrast, the tanh function outputs values between -1 and 1. Another
standard activation function is the ReLU function [88] keeps the positive part of the argument,
and it is a common choice for hidden layer activation functions [39]. ReLU is piecewise linear,
i.e., a combination of two linear functions; however, it acts as a non-linear activation function,
and it provides competitive results in most application, despite having a is a non-di�erentiable
point in 0.

Additionally, The softmax function is commonly applied to the �nal output of a neural net-
work to obtain a probability distribution out of a vector of logits.

2.2.2 Training the Network

The output of a neural network like the MLP in Figure 2.1 is a combination of the input and the
network parameters, i.e., the bias vector and the weight matrices. Although the parameters
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are �xed during inference, they need to be adapted and modi�ed to �nd a con�guration that
minimizes the error, i.e., the loss on the training examples.

At the beginning of the training process, the parameters of the network are initialized at
random. During training, the network performs a forward pass on a given instance with the
current parameters setup. The resulting logits are compared with the desired output, i.e., the
training instance’s gold labels, to determine the error of the model for the given example.
The comparison is performed with an error function called loss function. This error is then
propagated through the network to adjust its parameters and minimize the expected loss.

2.2.3 Loss Functions

During training, the network compares the output with the ground truth using a loss function.
The choice of the loss function is fundamental to obtain the desired results. This choice
is de�ned by the task and by the desired output, e.g., continuous for regression tasks or
categorical for classi�cation. Among others, for regression, a typical loss function is the
Mean Squared Error (MSE):

MSE =

∑n
i=1(ŷi − yi)2

n
, (2.1)

where ŷ is the output of the network and y is the gold label. For classi�cation, that is the
most used for NLP problems and in this thesis, an appropriate loss is the categorical cross-
entropy. This loss is used when we want to classify an input instance into one of possible
classes. The cross-entropy measures the divergence between two probability distributions:
the probability distribution produced by the network, and the ground truth probability dis-
tribution, which is typical endoded using a one-hot representation, i.e. all values set to zero
but the one corresponding to the gold label. Therefore we have:

CrossEnt = − 1

n

n∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] = − 1

n

n∑

i=1

m∑

j=1

yij log(ŷij), (2.2)

where y is the one-hot encoded label vector, and ŷ contains the result of the network. ŷ

is typically transformed into a valid probability distribution using the softmax activation
function.

2.2.4 Backpropagation

Once the network and the loss function are de�ned, the model parameters are updated to re-
duce the loss function. The backward propagation or backpropagation [100] is an algorithm
that iteratively adjusts the network’s parameters while reducing the loss. Such an algorithm
computes the derivative of the loss function with respect to each network parameter, using
derivatives’ chain rule. Optimization algorithms based on gradient descent can use the gra-
dient of the loss to update the network parameters. Stochastic Gradient Descent (SGD) is a
popular algorithm that draws a batch of examples from the training set, computes the loss
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of the model each example in the batch, computes the gradients of the loss, and accordingly
updates the parameters [15] by a small step, which is de�ned by the learning rate hyper-
parameter, in the opposite direction of the error. Adaptive optimization methods, such as
Adam [61], are also popular since they provide a faster convergence rate by adapting their
internal hyper-parameters during training.

2.3 Neural Networks for NLP

Neural Networks are used in many areas of Natural Language Processing as they do not
require manual feature engineering, they can leverage the capabilities of GPUs to perform
fast linear algebra operations, and they can achieve results that are unmatched by other ap-
proaches in particular when trained on a massive amount of data.

A basic network for NLP is composed of two core modules: (i) A word representations module,
and (ii) A sentence representation module. In this section, we present the main building
blocks of Neural Network for NLP as well as recent advancement on how to build state-of-
the-art models for language.

2.3.1 Word Representations

Before training a neural model for NLP, we need to induce a vocabulary V from the textual
data processed by the network. Each word in the vocabulary is mapped to a d-dimensional
vector w ∈ Rd. The numerical vectors are typically stored in a matrix of vectors, i.e., em-
bedding matrix W ∈ Rd×|V |. This matrix is used to lookup for the vector corresponding to
each word in the text instance. Words that are not in this vocabulary are typically mapped
to a special token UNK for unknown words, and therefore to a random vector. Alternatively,
they can be mapped to di�erent random vectors allocated explicitly for each word.

In most NLP tasks, the input to our neural network is a sentence s, i.e., a sequence of words
(wi, .., w|s|) drawn from the vocabulary V . Each word in the sequence is looked up in the
word embedding matrix W, and mapped to its distributional vector w. Therefore, each input
sentence s is transformed in an embedding matrix S ∈ Rd×|s|, where each column i contains
the embedding wi associated with the i-th word in the sentence:

S =



| | |

w1 . . . w|s|
| | |




After this, the neural network can apply di�erent types of sentence representation to encode
the interactions between the various elements of the input sentence.

2.3.1.1 Pre-trained Embeddings

The embedding matrix W can be initialized with random values and trained with back-
propagation on the �nal task. However, the embedding matrix is sparse, and it can be di�cult
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to obtain good word representations. This behavior is noticeable in particular if the dataset
for the target task is small.

Therefore it is common to pre-train the word embedding on a big dataset — a proxy task
to exploit big datasets without needing gold labels. Conventional approaches to pre-train
embedding vectors are the Skip-Gram model included in the word2vec toolkit [81] and Glove
[93]. The skip-gram model operates on massive datasets, such as Wikipedia, and for each
word, it predicts the words in its surrounding context, updating the word embedding of the
target word accordingly. In contrast, the Glove creates dense representations of words by
starting from the word’s co-occurrence matrix in a huge dataset.

When used to initialize the embedding matrix W , the approaches above typically provide
improvements, in contrast with random initialization, on the �nal network’s downstream
task.

2.3.2 Sentence representation

In many NLP tasks, neural network models create a �xed-size representation of the whole
sentence. A simple approach for such a mapping is to aggregate word embedding vectors
across dimensions. Kalchbrenner, Grefenstette, and Blunsom [55] uses the sum of the word
embeddings as the aggregation operation. However, more recently, empirical results show
the superiority of the averaging operation (see Deep Averaging Networks [49]):

z =
1

|s|

|s|∑

i=0

wi, (2.3)

A deep feed-forward network takes the vector z to perform classi�cation. Despite the ef-
fectiveness of these simple sentence representations, these approaches do not preserve the
word’s natural order in the sentence.

For solving speci�c problems, it may be essential to encode the words in the original order
they appear in the sentence. Standard neural network techniques to encode such information
are Convolutional Neural Networks (CNNs) and Recurrent Neural Network (RNNs).

2.3.3 Convolutional Neural Networks

By design, Convolutional Neural Networks (CNNs) [70] capture the local spatial relations of
an input. Due to their e�ciency they are very popular in computer vision [63, 69, 56]. At
the same time, they have also been proven e�ective in modeling sentences [60, 55], in several
NLP tasks.

In computer vision, CNN applies the same transformation over small image patches obtained
by sliding over the image. While images are two dimensional, the text has only one temporal
dimension, as it is a sequence of words. For textual inputs, the convolution operation is
an a�ne transformation applied to a �xed size window, for all the words in a sequence.
Similarly to feed-forward networks, such linear transformation can include a bias term and
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non-linearities. Typically, out-of-sequence tokens in the window are mapped to zero vectors.
This operation is known as padding and results in having an output sequence of the same
length of the input sequence. Without passing, the resolution will depend on the window
size and sequence length.

A single convolution operation over a �xed size window is known as convolution �lter or
kernel. Let wi ∈ Rd be the d-dimensional word vector corresponding to the i-th word in S.
The sentence, which contains n words, is represented as a concatenation of vectors:

w1:n = [w1,w2, . . . ,wn]. (2.4)

A windows of n words around the word i is de�ned as wi−n
2 :i+n

2
and it is the concatenation

of the vectors wi − n
2 , . . . ,wi, . . . ,wi+n

2
. Then, a convolution operation is the result of

the dot product between a �lter W ∈ Rdw×dh , where dw consists in the size of the word
embedding d times the length of the window and dh is the size of the output vector c ∈ Rdh.
The convolution operation is represented as:

c = σ(U ·wi−n
2 :i+n

2
+ b). (2.5)

b ∈ Rdh is a bias vector and σ is a non-linear activation function. The �lter is applied to all the
word windows from the sentencew1:n and the result is the following sentence representation:

C =



| | |
c1 . . . cn
| | |




with C ∈ Rn×dh . This matrix is typically encoded in a single vector using a max-pooling
operation [26]. Alternatively, the network can use Average pooling (see Equation 2.3) to map
the sentence matrix to a �xed size vector. This vector constitutes the �xed size sentence
representation, which can be further transformed, or used for classi�cation.

2.3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [31] are one of the main approaches for modeling se-
quences, and they have been widely adopted for NLP tasks. Vanilla RNNs consume a se-
quence of vectors one step at the time and update their internal state ht as a function of the
new input xt and their previous internal state ht−1.

ht = σ(Wxt + V ht−1 + b) (2.6)

This recursive structure is theoretically capable of encoding the entire history of previous
states in the vector ht. However, these networks may su�er from the vanishing gradient
problem [8]. This problem is typically mitigated using popular RNN variants, such as the
Long Short Term Memory (LSTM) network [45] or Gated Recurrent Unit (GRU) [23].
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2.3.4.1 Long Short-Term Memory

An LSTM uses a gating mechanism to control the amount of information from the input that
a�ects its internal state, the amount of unnecessary information in the internal state, and
how the internal state a�ects the output of the network.

For each time step t the cell state ct and ht ∈ Rd1 are computed for each element of the
sequence by iteratively applying the following equations, where h0 = c0 = 0:

ot = σ(Woxt + Voht−1 + bo)

ft = σ(Wfxt + Vfht−1 + bf )

it = σ(Wixt + Viht−1 + bi)

gt = tanh(Wgxt + Vght−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

The W,V matrices, and the b vectors are parameters of the model. � denotes element-wise
(Hadamard) multiplication. σ is the sigmoid function, and tanh is the hyperbolic tangent
function. ot, ft, and it are the output, forget and input gates respectively, since their values
are bounded between 0 and 1, and control the rescaling of vectors.

2.3.4.2 The Gated Recurrent Unit

The Gated Recurrent Unit (GRU) [23] is similar to LSTM, it retains the same performance
but has less parameters, thus faster to train. In the following equations, st de�nes the state
at time-step t. Given a sequence of input vectors, the GRU computes a sequence of states
(s1, ..., sT ) according to:

z = σ(xtU
z + st−1W

z)

r = σ(xtU
r + st−1W

r)

h = tanh(xtU
h + (st−1 � r)Wh)

st = (1− z)� h+ z � st−1

This recurrent unit has an update, z, and reset gate, r, and does not have an internal memory
beside the internal state. The U and W matrices are parameters of the model.

2.3.4.3 Bi-Directional RNNs

LSTMs and GRUs iterate over the input in one direction. Therefore earlier hidden states of
the network do not have access to future steps. Bidirectional RNNs [103] solve this issue by
iterating over the sequence in both directions, i.e., forward and backward. At any given step,
the state will be the concatenation of the state for each direction at that step and will contain
useful information from both the left and right context of a word.
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2.3.5 Attention Mechanism

Another essential component of modern NLP Neural Networks models is the attention mech-
anism. This method was �rst applied for machine translation [4] to automatically align the
words of the source sentence and the words in the target sequence.

Given a query vector q ∈ Rd a keys matrix K ∈ Rd×N and a value matrix V ∈ Rd×N

the attention mechanism computes the similarity between q and each vector in the matrix
ki ∈ K , using an alignment function a : Rd × Rd → R such as the dot product of the two
vectors, and normalizing the resulting value using a softmax function:

ai =
ea(q,ki)

∑K
j=1 e

a(q,kj)
(2.7)

ai, in this case, represents a probability distribution, i.e., the relevance of the key ki with re-
spect to the query q. The probability distribution vector a = {a1, . . . , an} is used to perform
a weighted sum of all the value vectors, i.e. aV .

In the context of Machine Translation (MT), we can use the vector representing the words to
be predicted as a query q and the words in the source sequence as both keysK and values V .

2.3.6 Transformers

Nowadays, many di�erent models for NLP use the attention mechanism. In particular, the
Transformer architecture in Vaswani et al. [136] uses an attention mechanism, i.e., self-
attention, to generate a sentence representation.

In self-attention the query q is a vector from the sentence S, and performs attention on the
sentence itself, therefore S = Q = K = V . This operation is performed multiple times
with di�erent linear transformation of the embedding space – the matrix S is multiplied by a
learnable weight matrix – and the output of the multiple attention is concatenated. This op-
eration is called multi-head self-attention and captures multiple input sentences’ alignments,
capturing various nuances of the input example.

The transformer is a multi-layer network. It performs a self-attention step at each layer,
followed by a time-distributed feed-forward layer, which means that the same multi-layer
perceptron process each word in the sequence. Self-attention and the time-distributed feed-
forward layer do not encode temporal information. To encode such information the, trans-
former concatenates to each embedding in the sentence a temporal embedding representing
the position of the word in the original sequence.

Transformers have been proved successful in many areas of NLP. The main reasons are that
they can be easily parallelizable on GPU, and therefore it is possible to stack many layers of
transformer and train on massive datasets without losing huge performance drawbacks.
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2.3.7 Deep Contextualized Language Models

Typically, sentence encoders are randomly initialized and trained to solve a downstream task
on the �nal task’s training set. Similarly, to what is done for embeddings (see Section 2.3.1.1,
it is possible to pre-train sentence encoders using a proxy task on massive datasets. For
example, in ELMo [94], a deep biRNN is trained as a language modeling task, i.e., predicting a
word in a sequence given the context on the left and the right. This model is then used in place
of the pretrained embeddings in the network for the downstream task. This model has many
advantages in contrast with standard embeddings. Among others, (i) at inference time can
create a word representation of the word in its context, (ii) it uses character representation
of words. Therefore, it can generalize on unseen words without the need of a dedicated
uninformative UNK token.

Despite its e�ectiveness, ELMo su�ers from performance issues as it operates at a character
level and uses a stack of BiLSTM that are not parallelizable to encode the sentence repre-
sentation. Therefore, recent approaches uses a transformer-based sentence encoder for pre-
training, e.g, GPT [97], BERT [29], RoBERTa [74], XLNet [151].

Among others, the most common approach to pre-train sentence representation is BERT
architecture. BERT uses a stack of 12 or 24 layers of transformers to solve a masked language
model task and a next sentence prediction task. In masked language models, one or more
words in the input sentence are replaced with a special [MASK] token, and the task is to
predict the original words in those positions. The sentence prediction task further enriches
the capabilities of the model. In this setting, the sentence encoders take in input two sentences
(divided by a special [SEP] token), and the task is to predict if the second sentence was the
sentence after the �rst in the original document.

In contrast to ELMo, this model does not use character embeddings but sub-word embeddings
to reduce the vocabulary size and deal with unknown words. Like RoBERTa or XLNet, other
architectures extended the same framework with small changes in the training process and
the architecture to achieve better results. However, the base idea and the framework remain
unchanged.

Once pre-trained on large corpora (Wikipedia or Commoncrawl), these models can be used
for �netuning on a downstream task by replacing the last layer of the network and updating
the network parameters using SGD a very low learning rate. As of today, this is the de facto
state-of-the-art for Natural Language Processing as these architecture are capable of achiev-
ing very high results on downstream tasks that are unmatched by other architectures that
used standard pretrained word embeddings [29, 74].

Despite their success, these models have many parameters (up to 340 million for BERT Large).
Therefore they require much time and powerful GPUs for both pre-training and �netun-
ing. Therefore, these models have a substantial environmental footprint, as pointed out by
Strubell, Ganesh, and McCallum [120].
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2.4 Support Vector Machines and Kernel Methods

Another Machine Learning method used in this thesis is Binary Support Vector Machines
(SVM). An SVM is de�ned as follow:

f(x) = sign(wTx) (2.8)

where x ∈ Rd is the input vector and w ∈ Rd the weights of the model. The above formula
de�nes a linear decision hyperplane that separates the examples in the input space. However,
in most real-world problems, the input space is not linearly separable. To classify examples
in a complex input space X , we need to be mapped in an hyperspace φ(x) ∈ Rd where the
examples are linearly separable, using a feature map function φ : X → Rd. This operation
is doable for many simple problems. However, in complex problems, the function φ may be
unknown or intractable. The kernel trick was introduced for this reason.

Kernels methods are a set of functions that operates in complex input spaces. A kernel func-
tionK : X×X → R maps two input examples to a single score. This function represents the
dot product between the feature map φ : X → Rd of two input examples in complex input
space X , i.e., φ(x)Tφ(x′). The kernel function K(x, x′) = φ(x)Tφ(x′) allows computing
this dot product without knowing the explicit form of φ.

This function is not directly usable in SVM as de�ned in Equation 2.8. SVM in its dual form
however has a dot product operation in the input space. The dual formulation of SVM w is
de�ned as a linear combination of a subset of the training instances, i.e., the support vectors:

w =
∑

i

αiyixi (2.9)

therefore we substitute w in Equation 2.8 to obtain the dual form of SVM inference function:

f(x) = sign(
∑

i

αiyixi
Tx) (2.10)

It is important to notice that this formulation of the SVM function includes a dot product
operation in the input space. From that this dot product can be replaced with the kernel
function K(xi,xj),

f(x) = sign(
∑

i

αiyiK(xi,x)), (2.11)

and, therefore, implicitly performing the dot product in a new feature space de�ned by φ.
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2.4.1 Kernel Functions

The choice of Kernel function to use depends on the task and the type of input data. Some
examples of commonly used kernel functions are:

• Linear : K(xi,x) = xi
Tx

• Polynomial: K(xi,x) = (1 + xi
Tx)d

• Gaussian/RBF : K(xi,x) = exp(−||xi − x||/2σ)

All the kernels above consider x as numerical vectors of �xed size. However, given that the
kernel function only requires to provide a dot product between objects in the implicit input
space, it can be applied to other types of input objects, e.g., lists, trees, or graphs. In the next
section, we describe a type of kernel widely used in natural language processing applications,
i.e., the tree kernel.

2.4.2 Tree Kernels

The Tree Kernels are a set of functions that can detect the similarity between two trees by
counting the number of common sub-parts.

Convolution Tree Kernels (TKs) are a type of Tree Kernels that compute the number of sub-
structures between two trees T1 and T2 without explicitly enumerating all the possible tree
fragments, which would be a costly operation.

Let T = {t1, ..., t|T |} be the set of all possible trees in the space of structures, and χi(n) an
indicator function, which is equal to 1 if the target ti is rooted ad a node n, and equal to 0
otherwise. We can de�ne a tree kernel over T1 and T2 as:

KTK(T1, T2) =
∑

n1∈NT1

∑

n2∈NT2

∆(n1, n2) (2.12)

where NT1 and NT2 are the sets of nodes of the T1 and T2 trees, and

∆(n1, n2) =

|T |∑

i=1

χi(n1)χi(n2) (2.13)

computes the number of common tree fragments rooted at the n1 and n2 nodes. In general,
the speci�cation of eq. 2.13 determines the TK expressivity. The Tree Kernel function KTK

function can be implemented e�ciently in the SVM framework. This technique allows train-
ing and performing inference over Tree structures, therefore encoding sentences’ syntactic
structure in machine learning algorithms.



Chapter 3

Answer Sentence Selection

The task of Answer Sentence Selection (A2S) consists in assigning a score si to each answer
candidate ci in a collection of sentencesC = {c1, c2, . . . , cn} such that the sentence receiving
the higher score is the sentence that most likely answers the question q. In this framework,
A2S is a short-text ranking problem.

In Section 3.1 we brie�y introduce A2S as a task of Short Text Reranking. Section 3.2 and
Section 3.3 presents the most relevant machine learning frameworks to create models for A2S.
Section 3.4 presents the three most representative networks for A2S. Finally, In Section 3.5,
we present an analysis regarding the e�ciency of various models for A2S.

3.1 Short Text Reranking

As previously introduced, Short-Text Reranking is a task that consists in assigning a score si
to each candidate ci in a collection of sentences C = {c1, c2, . . . , cn} such that the sentence
receiving the higher score is the sentence the most relevant candidate for the query q.

This task is typically performed by building a machine learning model f(·) that, during infer-
ence: (i) takes as input the query q and the list of candidateC , i.e., f(q, C), (ii) returns a score
si for each candidates s1, . . . , sn = f(q, C)., and (iii) sorts the candidates C according to the
relevance to the score si. The resulting list of candidates will have the candidate receiving
the highest score in the rank’s top position.

3.1.1 Evaluation

The performance of the decision function f(·) can be tested using standard retrieval metrics
on a labeled test set, i.e., Precision at 1 (P@1), Mean Reciprocal Rank (MRR), and Mean Aver-
age Precision (MAP). The test set T is set of triplet <qj , Cj , Yj> ∈ T , where qj is the query,
Cj is a list of candidates, and Yj is a list of gold labels that indicates whether each candidate
cj ∈ Cj is a good match for the query qj , i.e., a list of binary values 1 or 0. For each triplet,
the machine learning model produces a list of scores Sj = f(qj , Cj) and sorts both Cj and
Yj according to the scores Sj . The sorted list Y ′j is the input of the evaluation functions.
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Precision at 1 (P@1): estimates the percentage of queries that have a "positive" candidate
ranked at the �rst position of the rank.

P@1 =
1

|T |

|T |∑

j=1

y′j,1, (3.1)

, where y′j,1 is the label of the candidates, ranked �rst.

Mean Reciprocal Rank (MRR): P@1 only takes into consideration the �rst candidates in
the �nal rank. In contrast, MRR assigns a small weight, i.e., the reciprocal of the rank 1/r, to
the elements that received a lower rank in the sequence. For example, if the good candidate
for the query qj is ranked second, the metric assigns 1/2 as a value for that query.

MRR =
1

|T |

|T |∑

j=1

y′j,i
i
, (3.2)

where i is the position of the �rst positive candidate in the rank.

Mean Average Precision (MAP): Similarly to MRR, the MAP takes in consideration the
entire rank in computing the score. In the case that there are multiple positive candidates
for a query qj , MAP assigns an higher score to a model capable of ranking all the positives
before the negatives, i.e.,:

MAP =
1

|T |

|T |∑

j=1

∑|Y ′j |
i=1 y

′
j,i

∑i
t=1

y′j,t
t

∑|Y ′j |
i=1 y

′
j,i

(3.3)

3.1.2 Training

There are three di�erent ways to train machine learning models for re-ranking:

Pointwise Ranking is the simplest way to approach a ranking problem [109, 124]. It is,
in fact, a binary classi�cation problem where each example in the training set is a triple
〈q, ci, yi〉, where q is the question, ci is an answer candidate, and yi is the label indicating
whether ci is an answer of q. During inference the �nal rank is de�ned by score assigned by
the classi�er to each 〈q, ci〉 pair si = f(q, ci).

Pairwise Ranking is a more advanced approach to the ranking problem [99, 47]. The pair-
wise ranking consists in training a model that scores positive input pairs 〈q, c+〉 higher than
negative pairs 〈q, c−〉, with a certain margin, ε:

f(q, c+) ≥ f(q, c−) + ε (3.4)

This approach better models the task of ranking by comparing positive and negative pairs.
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However, it requires more training data to train since at least a positive and a negative exam-
ple is required for each question q.

Listwise Ranking uses the whole list of candidates for each question q [10]. This strategy
provides a better approximation of the ranking task, exploiting all the possible comparisons
between the candidates.

The di�erence between the approaches above is how the model processes the training in-
stances, which is used to compute the error. This choice can have an impact on the training
process and on how the dataset is built. The pointwise approach requires a dataset of posi-
tive and negative pairs of questions. The pairwise approach requires that for each question, a
positive and a negative pair is present. The listwise approach is the more demanding in terms
of annotation, i.e., the annotator needs to annotate an entire rank of candidates for each input
question.

3.1.3 Machine Learning Methods for A2S

Although di�erent machine learning models use di�erent training strategies, nature, and
structure, the model f(·) remains largely unchanged among di�erent approaches.

Early approaches on short-text re-ranking use feature-based linear classi�ers with features
vectors as input [123, 122]. Surdeanu, Ciaramita, and Zaragoza [123] in particular uses a
large amount of (i) similarity features (mainly lexical and syntactic similarity features), (ii)
translation features (such as the probability that q is a translation of ai), (iii) density and
frequency features (that counts the amount of overlapping words and text spans between
the two sentences) (iv) and web correlation features (that counts the amount occurrences of
a given answer in the web). Although these feature-based approaches have been proved
competitive at question answering, they require a huge e�ort to de�ne and select the end
task features. Despite using fast linear classi�ers, some of the features are computationally
expensive to compute, particularly web correlation features that require interaction with the
web, and therefore not being suitable in a production environment where high throughput is
often required.

In recent years, most short-text re-ranking approaches use techniques capable of automat-
ically extracting features from the input sentences. The main approaches following this
paradigm are tree kernel-based models and neural networks.

3.2 Tree Kernel Based approaches

In Section 2.4, we described how Kernel Methods are used to perform classi�cation or infer-
ence in complex input spaces. In particular, Kernels allows training on input organized in
structure rather than feature vectors.

The syntactic structure of sentences – which is how words are organized to convey the in-
tended meaning – plays a crucial role in many Natural Language Processing tasks [85, 107].
The Syntactic Structure of sentences can be represented using trees (see. Figure 3.2).
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Figure 3.1: Example of constituency tree

Figure 3.2: Example of dependency tree of a Question and Answer candidate

For A2S, tree kernel exploits the syntactic structures of the question and the answer candidate.

3.2.1 Relational Structural Representation for QA

In the literature there are three syntactic structures that are used for A2S: Constituency Tree,
Dependency Tree, and Shallow tree [86, 106].

Constituency trees and the Dependency tree both represent the syntactic structure of sen-
tences. The main di�erence between the two approaches is that the �rst models the implicit
phrase structure of sentences, whereas the seconds look at the dependencies between the
words in the sequence. An example of a constituency tree is represented in Figure 3.1 and an
example of a Dependency Tree is represented in Figure 3.2. Despite constituency trees and
dependencies tree are the most expressive types of syntactic structure Severyn and Moschitti
[107] shows that a simple (shallow) syntactic representation of the sentence minimizes the
noise introduced in the training process and provides the best results for A2S. The shallow
representation uses part-of-speech information and the chunk information, which is the �rst
representation from the constituency tree. The shallow tree is represented in Figure 3.3.

Syntactic trees encode the sentence structure, but they do not encode relational information
between the constituents of the question and the answers, i.e., if a word or a chunk appears
in both sentences. This feature is relevant, as previously pointed out in [107]. Severyn and
Moschitti [107] proposes to encode this relational information by concatenating to the label
of the shared node in the tree a special token [REL]. Tymoshenko and Moschitti [133] further
extended this approach by marking related words in the tree that not only have a direct lexical
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Figure 3.3: Shallow chunk-based tree for the Q/AP pair in the running example.

overlap, but they are related in a Knowledge Graph.

These structures represent the question and answer candidates and can be used as input of
standard Tree Kernel functions for classi�cation.

3.2.2 Ranking with Kernels

Kernel Methods for QA are typically trained using a pairwise ranking approach [87, 107, 133].
Given two pairs o1 =< qi, ci > and o2 =< qj , cj >, and a pair of support vectors o′1 and o′2.
The preference kernel [116] is de�ned as follows:

PK(〈o1, o2〉, 〈o′1, o′2〉) = K(o1, o
′
1) +K(o2, o

′
2)−K(o1, o

′
2)−K(o2, o

′
1) (3.5)

where K(oi, oj) = TK(qi, qj) + TK(ci, c
′
j) and TK is a tree kernel function.

3.3 Deep Learning Models

In recent years, neural architectures have been successfully applied to the task of short-text
re-ranking, becoming the new de facto state-of-the-art [75, 47, 109, 124]. Despite some dif-
ferences between approaches, they share the same underlying structure (Figure ??). Given a
question and a candidate answer, the model (i) Encodes the words in the question and answer-
candidate into word embeddings sentence matrices (ii) it captures inter-sentence relational
information using relational or lexical features; (iii) it intra-sentence relations using some
class of sentence encoder (CNN or RNN), (iv) it applies pooling on the resulting question and
answer sentences, and (v) �nally, a sentence matcher maps the sentence representations to a
score representing the relatedness of the answer to the question.

Steps (i), (ii), and (v) are present in every network for short-text ranking. Depending on the
architecture, steps (ii) and (iii) are optional [47], they can be repeated multiple times [157,
36], and they can have a di�erent order, i.e., the word matching step is performed after the
sentence encoding [101].

3.3.1 Sentence Encoders

A Sentence Encoder is the Answer Sentence Selector module that learns and encodes infra-
sentence relations between words of each sentence. In section 2.3.2, we presented di�erent
types of sentence encoders, for example, Convolutional Neural Network (CNN) encoder that
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Figure 3.4: The high-level structure of Deep Learning architectures for A2S

captures local ordering information of the word in the sentence, and Recurrent Neural Net-
work encoders that can model the global ordering of words in the sequence.

Hu et al. [47], Yu et al. [160] and Severyn and Moschitti [109] were the �rst to use CNN
encoders encode the question and answer pairs to obtain results comparable to the previ-
ous, feature-based, state-of-the-art. Other more recent approaches [145, 10], used a set of
CNNs encoder with di�erent window sizes to capture the local ordering of words at di�erent
resolutions, i.e., window sizes of 1, 2, 3, 4, 5.

In contrast with the CNN approaches, several other models [139, 24, 128, 115, 101] uses LSTM-
based or BiLSTM-based encoders. Additionally, Tan et al. [124] combines a BiLSTM encoder
followed by a CNN. Despite there is not clear winner between CNN encoders and BiLSTM
encoders at Short Text Reranking, [101] shows that basic CNN encoders typically result in
better performance on the A2S datasets WikiQA and TrecQA.
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Typically, Sentence Encoders process the question and the answer candidate independently,
using two di�erent sentence encoders. However, Wang and Nyberg [139] and Cohen and
Croft [24] concatenates the question and candidate word embeddings in a unique embedding
matrix and separates the two sentences with a separation token (i.e., <s>). Novel meth-
ods have adopted this approach, e.g., [36], that use a pretrained Transformer sentence en-
coder, such as BERT [29] or RoBERTa [74]. Pretrained Transformer based approaches tend
to achieve overall better results than previous approaches on benchmark datasets, e.g., Wik-
iQA. However, they have many more parameters, so they are much slower than CNN based
approaches.

3.3.2 Encoding Word Relations

Sentence encoders capture inter-sentence information. However, the latent information cap-
tured by the encoders in the question and candidate representations does not su�ce at captur-
ing infra-sentence relations between words. For example, simple CNN baselines that do not
use infra-sentence word-level features fail at achieving competitive performances on bench-
mark datasets. This problem was empirically shown by Yu et al. [160] and Severyn and Mos-
chitti [109] and further con�rmed in Chen et al. [21], where the authors explored the impact of
standard lexical matching features. In contrast with feature-based approaches, lexical infra-
sentence information can be automatically inferred with an attention mechanism [157, 101,
145]. Additionally, Chen et al. [21] shows that lexical matching features and attention do
not provide the same information since, when combined, the two techniques provide overall
better results on standard benchmarks than the individual techniques.

3.3.2.1 Lexical Matching Features

Yu et al. [160] is the �rst model combining CNN encoders with lexical matching and sim-
ilarity features. The authors train a logistic regression that combines the score of a neural
network model with a simple feature that counts the number of co-occurring words in the
question and the answer candidate, and a third feature that uses the IDF-weighted counts
of co-occurring words. Severyn and Moschitti [109] adopts a similar approach, the count
of overlapping words is concatenated with the question and candidate representations to be
passed to the �nal scoring layer (after the pooling layer). Di�erently from Yu et al. [160],
Severyn and Moschitti [109] includes the feature in the model without requiring a two-step
training process,i.e., training the neural network and using its score as a feature in logistic
regression. Chen et al. [21] concatenates 21 lexical matching, semantic matching, and read-
ability features to the question and answer representation. The inclusion of such features
provides a consistent performance improvement over the baseline models.

Severyn and Moschitti [110] uses a word-level binary feature that indicates whether a word
in the question appears in the answer and vice versa. The feature is concatenated to the word
embedding of each word (see. Section 3.4.1 for more details), before the Sentence Encoder.
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3.3.2.2 Attention

The adoption of attention mechanisms was recently proposed for the task of question an-
swering [157, 124]. The attention mechanism is a technique proposed and popularized in
Bahdanau, Cho, and Bengio [4] for the task of machine translation. This technique is used to
automatically infer an alignment between the source text and the target language text. Un-
fortunately, we do not have any strict alignment between question and answer candidate in
short text re-ranking. For example, a sentence that is not an answer to the question could not
have any alignment. Despite this fact, attention has been proven an e�ective way to extract
word matching features, e.g., see [157, 145].

Yin et al. [157] and Wang and Jiang [145] align all the words in the question with all the
words in the answers. They use each word in the question as a query vector q for individually
attending over the answer words, thus inferring a probability distribution. The probability
distribution is used to create a vector that is the weighted average of the candidate’s word
vectors. The same process is done between answer and question.

3.3.3 Pooling

The sentence representation in output of the sentence encoder is a new sentence matrix that
encodes at each position a contextualized representation of the word. Most neural network
based approaches uses standard pooling technique to reduce the sentence matrix to a �xed
size vector, typically Average Pooling [47, 160, 139, 24] or Max Pooling [145, 10, 110, 109].

An advanced pooling strategy technique was proposed to exploit the intra-sentence interac-
tions between the question and the candidate words. A sentence-level approach with atten-
tion has been proposed by Tan et al. [124]. The encoder of the question ( an LSTM based
encoder with average pooling) generates a unique vector for the question used as a query for
the attention mechanism over the answer candidate. This attention mechanism generates a
probability distribution representing the importance of each word in the candidate answer
with respect to the entire question. This distribution is then used to perform a weighted av-
erage of the words in the candidate. The same can be done between the candidate and the
question, thus generating a sentence representation conditioned on the representation of the
other sentence, e.g., an answer candidate representation conditioned on the question.

A di�erent pooling strategy making use of attention, has been proposed by Santos et al.
[101]. A dot product operation between all the words in the question, and the answer is
applied to generate a matrix representing the relational information between the question
and the answer, similarly to the word-level attention model. The model performs a max-
pooling operation over the attention matrix’s two dimensions before applying the softmax
operation, resulting in distribution over the question and candidate word representations.
Intuitively, the model learns to assign a high probability to words with the highest similarity
score with another word in the related sentence.
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3.3.4 Sentence Matching and Scoring

The pooling operation typically provides an n-dimensional vector representation for both the
question and the candidate. The sentence matching component takes these two representa-
tions and combines them for scoring. A simple way to score the question and the candidate
is to map the representation in the same vector space. This scoring is achievable by using the
same sentence encoder for both the sentences, i.e., both the question and the candidate en-
coder uses the same parameters. This technique is known as the Siamese network, [22]. Once
mapped to the same vector space, the question and answers relatedness can be measured with
standard similarity functions, e.g., cosine similarity:

sq,a = cos(qqq,aaa) (3.6)

or negative distances, e.g., the negative Euclidean distance:

s(q, a) = −‖qqq − aaa‖2. (3.7)

A simple extension to the use of similarity functions is to use a bilinear layer as proposed by
[160]. A bilinear layer is a similarity function that can be trained, enabling the learning of
more complex relations in the vector space. Hence, the scoring function of Yu et al. [160] is
formalized as:

s(q, a) = σ(qqqTMaaa+ b) (3.8)

where q ∈ Rdim and a ∈ Rdim are the question and answer representation, M ∈ Rdim×dim

is the weight matrix and b ∈ R is the bias. σ : R→ [0, 1] is the sigmoid function.

Another simple but e�ective approach is proposed by Hu et al. [47]. The model simply con-
catenates the question and the answer representation and use a Multi-Layer Perceptron (MLP)
to score the combined vector:

s(q, a) = MLP ([qqq;aaa]). (3.9)

Severyn and Moschitti [109] combines the two approaches by using an MLP with the con-
catenation of question, answer, and a bilinear layer score:

s(q, a) = MLP ([qqq;qqqTMaaa;aaa]). (3.10)

This approach di�ers from the aforementioned Siamese approaches as the sentence encoders
are independent and do not share the weights. Hence, the sentence representations are in
two di�erent vector spaces. Intuitively, using two di�erent encoders can help since the ques-
tion answering task is not symmetrical ad the syntactic structure of question and answer is
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inherently di�erent.

3.3.5 Training

The most straightforward approach for training a network for Answer Sentence Selection is
using the pointwise approach. In the pointwise approach, the model takes as input a question-
candidate pair and learns to classify it as positive of the candidate answer the question or as
negative otherwise.

Hu et al. [47] uses a ranking-based loss as objective function, i.e. a pairwise approach:

loss(q, a+, a−) = max(0,M + s(q, a−)− s(q.a+)) (3.11)

where M is a constant margin (M = 1 in [47]) a− is a not valid answer for the question q
whereas a+ is an answer for q.

Although the former has been widely used in several models, there is no apparent di�erence
in performance between the two losses. An advantage of the triplet loss is that it automat-
ically balances the dataset; for each positive example, a negative is used. However, the loss
does not re�ect the actual distribution of data since, depending on the negative examples that
are chosen for comparison, the results can vary. [99] shows that depending on the dataset
using randomly sampled negatives, hard negatives (a− that is close to q in the vector space)
or a combination of both can lead to di�erent results. An advantage of using the classi�cation
loss of [109] is that it is not necessary to sample negatives for the training.

Another kind of loss that have been used by Wang and Jiang [145] and later by Bian et al.
[10] is the listwise approach. The listwise approach scores all the candidate answers a1, .., an
for the same q questions s1, .., sn applies a softmax on top of the scores mapping them to
probabilities and uses the KL-divergence loss to assign a high probability (therefore score)
to the answers for the question. Additionally, Wang and Jiang [145] generated the scores
s1, .., sn by concatenating the representations for the answer candidates a1, .., an for all the
candidates into a unique vector to be passed to a multi-layer perceptron, i.e.:

[s1, .., sn] = S = MLP ([a1, .., an]) (3.12)

Although the model should be able to capture the global ranking structure, this technique
su�ers from two drawbacks: it requires the number of candidate answer to be �xed since
it does not share weights, and it can not be used for datasets that have an arti�cial ranking
(for examples in TrecQA the dataset always provide the answer at the top positions of the
ranking).

3.3.5.1 Transformers

Recent approaches to A2S uses a Transformer based encoder [36]. This encoder uses a stack of
several layers of self-attention and a time-distributed layer, up to 24, when using pre-trained
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BERT. In the Transformer architecture question and candidate, answers are concatenated
and separated by a unique <sep> token. The self-attention layer is word-level attention
that creates an alignment between every word in the sentence and all the other words in the
same sequence. Since the question and the answer candidate are concatenated, this attention
mechanism capture infra-sentence and intra-sentence word relations. The feed-forward layer
is a Convolutional Neural Network with a window size of 1. By performing this operation
several times, the models can capture higher-level relations between the words in the question
and answer. The ordering of words in the sequence is captured by explicitly encoding the
temporal information using temporal embeddings concatenated with the input sequence.

The pooling layer for the Transformer model could use Average Pooling or more complex
pooling strategies [66]. However, the common strategy is to include a unique token <cls>
in the input sequence and use the vector in the �nal layer that corresponds to the <cls>
token as a representation of the question-candidate pair.

3.3.5.2 Transfer Learning and Task Adaptation

Transformer architectures typically have several layers, and therefore a high number of pa-
rameters to be trained. Standard approaches with Transformer typically use pre-training on
massive datasets, at the web-scale, as a strategy to initialize pre-initialize the weight of the
model for the �nal task, e.g., BERT [29], RoBERTa [74]. This training strategy is typically
done using language modeling as a proxy task.

The resulting model is then �ne-tuned for A2S on the target dataset, e.g., WikiQA. This tech-
nique is known as transfer learning, i.e., transferring the knowledge acquired on a dataset
to the target dataset. However, Garg, Vu, and Moschitti [36] showed that using the general
pretrained weight of BERT of RoBERTa for training on the small datasets for A2S can re-
sult in model instability, i.e., small modi�cation on the training strategy or the learning rate
can produce very di�erent results on the target dataset. The paper suggests to adapt the
pre-trained transformer weight using a big dataset for Machine Reading comprehension, i.e.,
Natural Questions, adapted to the task of A2S, before �ne-tuning on the small real-world
datasets for A2S. The model trained in this way achieved the current state of the art results
on standard A2S datasets, i.e., WikiQA and TrecQA.

Min, Seo, and Hajishirzi [83] presents a related technique, where a model initially trained for
the task of Machine Reading Comprehension (SQuAD) is adapted to the task of A2S, obtaining
consistent improvements.

3.4 State of the art

This section describes the details of two neural network approaches that are heavily used in
this thesis, i.e., the RelCNN [111] and the Compare-Aggregate architecture [145].
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Figure 2: Our deep learning architecture for reranking question-answer pairs. The relational information in a pair is modelled by

augmenting word embeddings with additional dimensions to encode overlapping words, e.g., we feed the network with additional

word overlap indicator features whose values equal to 1 correspond to words that overlap in a pair, e.g., a non-stop word cat.

convolutional layer followed by a non-linearity and
simple max pooling. In the following we give a brief
explanation of its main components: sentence ma-
trix, activations, convolutional and pooling layers.

2.1.1 Sentence matrix
The input to the network are raw words that need

to be translated into real-valued feature vectors to be
processed by subsequent layers of the network.

The input is a sentence s treated as a sequence
of words: [w1, . . . , w|s|], where each word is drawn
from a finite-sized vocabulary V . The architecture
of neural networks is not well suited for dealing
with discrete words, hence, they are represented by
low-dimensional, real-valued, dense vectors w 2
Rdw looked up in a matrix W 2 Rdw⇥|V | (whose
columns correspond to words in V ). The mapping
from words to their word embeddings is performed
by a lookup table operation LTW(wi) = wi. Hence,
for each input sentence s we build a sentence matrix
S where each i-th column corresponds to a word em-
bedding wi.

To learn to capture and compose features of in-
dividual words in a given sentence from low-level
word embeddings into higher level semantic con-
cepts, the neural network applies a series of transfor-
mations to the input sentence matrix S using convo-
lution, non-linearity and pooling operations, which

we describe next.

2.1.2 Convolutional feature maps
The aim of the convolutional layer is to extract

patterns, i.e., discriminative word sequences that are
common throughout the training instances.

More formally, the convolution operation ⇤ be-
tween an input matrix S 2 Rd⇥|s| and a filter (or
a convolution kernel) F 2 Rd⇥m of width m results
in a vector c 2 R|s|+m�1 where each component is
computed as follows:

ci = (S ⇤ F)i =
X

k,j

(S[:,i�m+1:i] ⌦ F)kj (1)

where ⌦ is the element-wise multiplication and
S[:,i�m+1:i] is a matrix slice of size m along the
columns. Note that the convolution filter is of the
same dimensionality d as the input sentence matrix.
As shown in Fig. 1, it slides along the column di-
mension of S producing a vector c 2 R|s|�m+1 in
output. Each component ci is the result of comput-
ing an element-wise product between a column slice
of S and a filter matrix F, which is then summed to
a single value.

So far we have described a way to compute a con-
volution between the input sentence matrix and a
single filter. To form a richer representation of the
data, deep learning models apply a set of filters that
work in parallel generating multiple feature maps

Figure 3.5: The RelCNN architecture. Image from Severyn and Moschitti [111].

3.4.1 Relational CNN

The RelCNN architecture in Severyn and Moschitti [111] is one of the �rst models for A2S that
achieved performance comparable to previous feature-based and kernel-based approaches.
The model is based on the CNN architecture for sentence encoding, a max-pooling opera-
tion to encode the sentence representations into �xed-sized vectors, and an MLP for binary
classi�cation.

The model is depicted in Figure 3.5, from left to right the model:

• encodes the words of the question and the answer (the candidate) in word embeddings
producing a sentence matrix S ∈ Rl×dw .

• The sentence matrix is augmented with word-overlap embeddings; if a word is present
in both the question and the answer candidate, the word-embedding for this word is
augmented with a "positive" word-overlap embedding (of size dwo = 5), if the word
does not overlap it is augmented with a "negative" word-overlap embedding. The
weights of these two vectors are updated during training. The concatenation of the
word embedding matrix and the word-overlap embedding matrix results in the sen-
tence matrix S′ ∈ Rl×dw+dwo . This new sentence matrix encodes infra-sentence word
relations.

• A convolution operation with window size equals to 5 is applied on the sentence matrix
to encode local word-order information of the sequence. The matrix C as the output of
the convolution operation C = Conv(S′) is a matrix representation of the sentence.

• A max-pooling operation is applied on the matrix representation C ∈ Rl×dh to reduce
the sentence representation to a �xed size vector c ∈ Rdh of size dh.
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• The vector cq of the question q and the vector ca for the answer candidate a are com-
pared using a bilinear similarity matrix M ∈ Rdh×dh to be trained, i.e, xsim = cqMca.

• the join layer concatenates the question representation cq the answer candidate ques-
tion representation ca the similarity score xsim and the feature vector xfeat, that can
encode external word-overlap count features.

• The join layer is passed to an MLP for scoring and classi�cation. The MLP has a hidden
layer of size equal to the size of the join layer.

The network uses word embeddings of size dw = 50 pre-trained using the skip-gram model
of the word2vec library on a big dataset, i.e., English Wikipedia and AQUAINT corpora. And
a convolutional hidden size dh = 100. Therefore the sentence embeddings cq and ca are 100-
dimensional vectors. The model is trained for a maximum of 25 iterations (epochs) on the
training set using Stochastic Gradient Descent (SGD) with the Adadelta update rule [162]. The
model is trained with early stopping, stopping training when the development set’s model
performance does not improve for 5 epochs.

The model is tested on the two popular datasets for A2S, WikiQA, and TrecQA, achieving
competitive results, i.e., 69.51 MAP on WikiQA and 76.54 MAP on TrecQA1.

Additionally, the paper highlights the importance of adding the word overlap features added
to the word embeddings, in contrast to the base CNN that do not use lexical matching (rela-
tional) information :

Model MAP MRR

CNN 66.61 68.51
RelCNN 69.51 71.07

Table 3.1: Comparison on WikiQA between the base CNN model and the model described
in this section (RelCNN)

Although the model does not achieve a state of the art results on the benchmark datasets
(the model was �rst published in 2016), it remains competitive as it has a very low number
of parameters to be trained.

3.4.2 Compare-Aggregate

The Compare-Aggregate architecture was �rst presented in Wang and Jiang [145]. This ar-
chitecture’s key innovation is the use of word-level attention to automatically infer relations
between the words in the question and the answer.

The encoders of the model are depicted in Figure 3.6. The architecture is structured as follows:

• The model encodes the words of the question and the candidate in word embeddings,
producing a sentence matrix S ∈ Rl×dw .

1These results are reported in the TrecQA (CLEAN) setting https://aclweb.org/aclwiki/
Question_Answering_(State_of_the_art)

https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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Figure 1: The left hand side is an overview of the model. The right hand side shows the details about
the different comparison functions. The rectangles in dark represent parameters to be learned. ⇥
represents matrix multiplication.

distance. As we will show in the experiment section, these comparison functions based on element-
wise operations can indeed perform very well on a number of sequence matching problems.

2.1 PROBLEM DEFINITION AND MODEL OVERVIEW

The general setup of the sequence matching problem we consider is the following. We assume there
are two sequences to be matched. We use two matrices Q 2 Rd⇥Q and A 2 Rd⇥A to represent
the word embeddings of the two sequences, where Q and A are the lengths of the two sequences,
respectively, and d is the dimensionality of the word embeddings. In other words, each column
vector of Q or A is an embedding vector representing a single word. Given a pair of Q and A, the
goal is to predict a label y. For example, in textual entailment, Q may represent a premise and A a
hypothesis, and y indicates whether Q entails A or contradicts A. In question answering, Q may
be a question and A a candidate answer, and y indicates whether A is the correct answer to Q.

We treat the problem as a supervised learning task. We assume that a set of training examples in the
form of (Q,A, y) is given and we aim to learn a model that maps any pair of (Q,A) to a y.

An overview of our model is shown in Figure 1. The model can be divided into the following four
layers:

1. Preprocessing: We use a preprocessing layer (not shown in the figure) to process Q and
A to obtain two new matrices Q 2 Rl⇥Q and A 2 Rl⇥A. The purpose is to obtain
a new embedding vector for each word in each sequence that captures some contextual
information in addition to the word itself. For example, qi 2 Rl, which is the ith column
vector of Q, encodes the ith word in Q together with its context in Q.

2. Attention: We apply a standard attention mechanism on Q and A to obtain attention
weights over the column vectors in Q for each column vector in A. With these attention
weights, for each column vector aj in A, we obtain a corresponding vector hj , which is an
attention-weighted sum of the column vectors of Q.

3. Comparison: We use a comparison function f to combine each pair of aj and hj into a
vector tj .

3

Figure 3.6: The Relational Compare Aggregate architecture. Image from Wang and Jiang
[145].

• Each word embedding in the sentences si ∈ S is transformed using a gated non-linear
layer, i.e., a non-linear layer with tanh activation is multiplied with the output of a
non-linear layer with sigmoid activation.

s̄i = σ(W1si + b1)� tanh(W2si + b2) (3.13)

where W1,W2,b1,b2 are the weights to be trained, � is the element-wise multipli-
cation, and s̄i is the transformed word embedding.

• With q̄i ∈ Q̄ and āj ∈ Ā being transformed words embeddings of the question and
the answer candidate respectfully, the model performs an attention between each word
in the answer and all the words in the question, i.e.,

hi = Softmax(āiQ̄)Q̄ (3.14)

In the original formulation [145] the vector āi is further transformed using a linear
layer before using it for attention. However, this layer have been removed in further
implementations [10].

• The resulting vector hi is a �xed size representation of the answer conditioned on the
word embedding of the answer candidate āi.

• The vectors of the question āi and the vector hi are combined as in Figure 3.6. The
paper empirically demonstrated that for the task of A2S the simple Hadamard product
produces the best results .
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• The resulting Sentence matrix is given in input to �ve independent CNN layers with
di�erent window sizes, i.e., 1, 2, 3, 4, 5, and ReLU activation function.

• A max-pooling operation maps the vector in the output of each convolution to a �xed-
size representation. The �ve resulting vectors are concatenated for classi�cation.

• [145] concatenates these vectors for each answer candidates and uses a multi-layer per-
ception to evaluate and score the answer candidates for the same question altogether.
However, in later implementations, it has been shown that this layer introduces noise
in the training process, and it has been removed.

• The scores for each answer candidates are concatenated, normalized with a softmax
activation, and trained with the KL-divergence loss function on the �nal task, i.e., a
listwise training approach.

Bian et al. [10] extended and modi�ed the approach above, performing the operations as
mentioned earlier for the question and the answer independently. Additionally, the authors
proposed a more complex attention strategy that used a two-step training process and re-
moved the feed-forward layer on top of the scoring function.

Model MAP MRR

Wang and Jiang [145] 74.33 75.45
Bian et al. [10] 75.40 76.40

Table 3.2: Comparison on WikiQA between the two major implementations of the Compare
Aggregate architecture

Table 3.2 shows the results obtained by the two major implementations of the Compare-
Aggregate framework on the WikiQA dataset.

3.5 E�ciency

In this section, we present an analysis of the e�ciency of the major building blocks of the
model described above.

The computational complexity of the Convolution operation for the question depends on the
following factors: the window size W , the size of the vector as a result of the convolution H ,
the size of the input in the convolution operation, and the length of the input sequence, i.e.,
Nq for the questionO(W×H×E×Nq). P = W×H×E is the number of parameters of the
convolution. The computational complexity of the operation is, therefore, O(P ×Nq) Given
the fact that the sequence length is much lower than the number of parameters P >> Nq
we can say that the computational complexity of the convolution operation greatly depends
on the number of parameters of the model P , O(P ). Given that the number of parameters
is �xed and decided a priory, a simple CNN performs inference in constant time O(1) and is
not impacted by the sequence length.
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The attention operation on the other end compares each word in the question Nq with all
the words in the answer candidate Na; the attention operation is, therefore, O(Nq × Na)

– It is important to notice that this complexity is the same for the word overlap features in
Severyn and Moschitti [111]. Therefore, the length of the input sequences greatly impacts
the overall performance of the model. This behavior impacts both the Compare Aggregate
architecture and, in particular, the Transformer. The Transformer architecture performs self-
attention on the concatenated sequence of the question and the answer candidateN = Nq +

Na. This means that a layer of the Transformer performs four times more operations than
the Compare-Aggregate architecture. In the BERT architecture, the attention operation is
performed multiple times at each layer (Multi-Head Self-Attention) and for several layers (up
to 24), thus greatly impacting the model’s performance.

In summary, we have seen that the complexity of a model depends on two factors: the way
the alignments between the question and the answer candidates are computed, i.e., the atten-
tion or the word-overlap features the number of parameters of the model. Therefore we can
approximate the complexity of state-of-the-art models for A2S as O(P ×N2).

The models described above are very di�erent in both aspects. The RelCNN network has the
least parameters P ∼ 50k, without counting the word-embedding matrix, and the fastest
alignment function (the word overlap embeddings). The training process of the RelCNN
model on the WikiQA datasets takes ∼ 3 seconds on a powerful GPU (Nvidia 1080 Ti) and
can train on CPU in 30 seconds. The Compare-Aggregate architecture has two orders of
magnitude more parameters P ∼ 1M and a slower alignment mechanism, thus taking ∼ 20

seconds to train (on GPU).

Although BERT achieves the best performance on the task, it uses P ∼ 340M parameters
and multiple alignments on the concatenation of question and answer, this results in training
times in the order of ∼ 20 minutes on the small WikiQA dataset, without counting the time
needed for pre-training. Although those numbers are reasonable on small datasets, on bigger
datasets, training times become prohibitive, i.e., on the bigger datasets of Natural Questions:
RelCNN∼ 30 minutes, Compare-Aggregate∼ 5 hours, and BERT∼ 7 days. These limitations
are evident even at test time; thus, having big models with many parameters translated in
increased cost for both training and maintaining the model in a production environment.

In this thesis, we focus on building e�cient models for A2S capable of achieving competi-
tive performance compared with the state-of-the-art. To achieve this goal, we focus on the
following design assumption for our network:

• We want to limit as much as possible the number of parameters of the architecture.

• We want a fast way to capture the alignments between the input examples.

To achieve our goal, we build networks speci�c to the task, in contrast to the more general
BERT architecture. This is achieved by enabling models to capture various features of the
A2S, such as the document structure, the syntactic structure of the sentence, or advanced
relational information.
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Encoding Local Structure





Chapter 4

Convolutional Neural Networks vs

Convolution Kernels

This chapter analyzes the di�erences between two machine learning methods for A2S: Con-
volutional Neural Networks (CNNs) and Convolution Tree Kernels (CTKs). These two meth-
ods enable automatic feature engineering for syntactic and semantic tasks. Manual feature
engineering typically requires a considerable e�ort to encode rules based on syntactic and
semantic features manually. In this perspective, automatizing feature engineering methods
are remarkably essential to enable fast prototyping of commercial applications. To the best
of our knowledge, two of the most e�ective methods for engineering features are (i) kernel
methods, which naturally map feature vectors or directly objects in richer feature spaces, and
more recently (ii) approaches based on deep learning, which is very e�ective.

Regarding the former, Severyn and Moschitti [107] used CTKs in Support Vector Machines
(SVMs) to generate features from a question (q) and their candidate answer candidates (ci).
CTKs enable SVMs to learn in the space of convolutional subtrees of syntactic trees used
for representing q and ci. This, de facto, automatically engineers syntactic features for a
complex task. One of their approach’s main characteristics was the use of relational links
between q and ci, which merged the two syntactic trees in a relational graph (containing
relational features).

Although based on di�erent principles, also CNNs can generate powerful features, e.g., see
[54, 58]. CNNs can e�ectively capture the compositional process of mapping individual
words’ meanings in a sentence to a continuous representation of the sentence. This way,
CNNs can e�ciently learn to embed input sentences into a vector space, preserving impor-
tant syntactic and semantic aspects of the input sentence.

In this chapter, we aim to compare CTKs and CNNs’ ability to extract the local structure of
the question and answer candidate pairs. We �rst explore CTKs applied to linguistic struc-

tures – syntactic structures – for automatically learning classi�cation and ranking functions
with SVMs. Simultaneously, we experiment with the e�cient RelCNN architecture for e�ec-
tively modeling q and ci pairs generating relational features. The main building blocks of this
approach are two sentence models based on CNNs. These work in parallel, mapping questions
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Figure 4.1: Shallow chunk-based tree for the q/ci pair in the running example.

and answer sentences to �xed-size vectors, which are then used to learn the semantic simi-
larity. The RelCNN architecture captures relational information by injecting overlapping
words directly into the word embeddings as additional dimensions. The augmented word
representation is then passed through the convolutional feature extractors’ layers, which en-
code the relatedness between q and ci pairs in a more structured manner. Moreover, the
embedding dimensions encoding overlapping words are parameters of the network and are
tuned during training.

We experiment with two di�erent Open-Domain QA benchmarks for sentence reranking
TrecQA [144] and WikiQA [149]. We compare CTKs and CNNs, and then we also combine
them. Our CTK-based models achieve competitive results on TrecQA, obtaining an MRR of
85.53 and a MAP of 75.18. On WikiQA, our CNNs performs almost on par with tree kernels,
i.e., an MRR of 71.07 vs. 72.51 of CTK. The combination between CTK and CNNs produces a
further boost, achieving an MRR of 75.52 and a MAP of 73.99, con�rming that the research
line of combining these two interesting machine learning methods is very promising.

Additionally, we tested the di�erent approaches to the task of community Question Answer-
ing (cQA). More speci�cally, we participated in the Semeval 2016 Task 3: Community Ques-
tion Answering competition [89]. The approach was tested on the Subtask A that consists
of a question q and a set of comments ci that are extracted from a forum thread. To this
end, we proposed a modi�ed Syntactic Structure for CTK combined with the RelCNN vector
representation. The resulting system ConvTK, ranked second at the competition.

4.1 Encoding Local Structure with CTKs

In this work, our approach to learning relations between two texts is to �rst convert them
into a richer structural representation based on their syntactic and semantic structures and
then to apply CTKs. To make our approach more e�ective, we further enriched structures
with relational semantics by linking the related constituents with lexical and other semantic
links.

4.1.1 Shallow Representations of A2S

In our study, we employ a modi�ed version of the shallow structural representation of ques-
tion and answer pairs, CH, described in [113, 129]. We represent a pair of short texts as two
trees with lemmas at the leaf level and their part-of-speech (POS) tags at the preterminal level.
Preterminal POS-tags are grouped into chunk nodes, and the chunks are further grouped into
sentences. Figure 4.1 provides an example of this structure.
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We enrich the above representation with the information about question class and question
focus. Questions are classi�ed in terms of their expected answer type. [113] employed coarse-
grained classes from [71], namely HUM (person), ENTY (an entity), DESC (description), LOC
(location), NUM (number). In this work, we split the NUM class into three sub-categories,
DATE, QUANTITY, CURRENCY and train question classi�ers as described in [113]. Di�er-
ently from their work, we add the question class node as the rightmost child of the root node
to the question and the answer structures.

We detect question focus using a focus classi�er, FCLASS, trained as in [113]. When pre-
dicting, they iterate over chunks in the question and pick the one with the highest FCLASS
prediction score as a focus even if it is negative. In our work, if FCLASS assigns negative
scores to all the question chunks, we consider the �rst question chunk, which is typically a
question word, to be a focus. We mark the focus chunk by prepending the REL-FOCUS tag
to its label.

Previous work has shown the importance of encoding information about relatedness between
q and ci into their structural representations. In our work, we employ lexical and question
class match.

Lexical match. Lemmas that occur both in q and ci are marked by prepending the REL tag
to the labels of the corresponding preterminal nodes and their parents.

Question class match. We detect named entities (NEs) in ci and mark the NEs of type com-
patible1 with the question class by prepending the REL-FOCUS-QC label to the corresponding
pre-preterminal in the trees. The QC su�x in the labels is replaced by the question class in
the given pair.

For example, in Figure 4.1, the Dumbledore lemma occurs in both q and ci, therefore the
respective POS and chunk nodes are marked with REL. The named entities, Harris, Michael
Gambon and Dumbledore have the type Person compatible with the question class HUM, thus
their respective chunk nodes are marked as REL-FOCUS-HUM (overriding the previously
inserted REL tag for the Dumbledore chunk).

4.1.2 Syntactic Relational Representations for cQA

In our experiments for community Question Answering (cQA), we adjust the structural repre-
sentation to better model the cQA task, i.e., we enrich the structures with additional relational
information and cQA-speci�c thread knowledge. Additionally, we found that using a con-
stituency structure CONST is more e�ective than the shallow representation SH. Moreover,
di�erently from Severyn, Nicosia, and Moschitti [113], we do not remove the punctuation
marks from the trees, as, for example, the comments that ask additional questions and thus
contain a question mark are unlikely to answer the original question. Another signi�cant

1Compatibility is checked using a prede�ned table, namely Person, Organization→HUM, ENTY; Misc→ENTY;
Location→LOC; Date, Time, Number→DATE; Money, Number→CURRENCY; Percentage, Number→QUANTITY
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Figure 4.2: SH tree for the Q/Comment pair.

Figure 4.3: CONST tree enriched with question author information

di�erence between the representations for open-domain QA and cQA is that the latter do not
bene�t from Question type and Question focus information.

In contrast with Open-Domain QA, we encode the following cQA-related information: (i)
the question subject is a separate sub-tree under the SUBJECT-S root in the question tree;
(ii) following the intuition that the question author unlikely will correctly answer his/her
question, we add the SAMEAUTH label to the sentence nodes in the comment tree. Addi-
tionally, when constructing the CONST representation of the question tree, we do not use
the question body, i.e., a longer description of the question, but only its subject2. Figure 4.1
provides an example of the REL- encoding in the SH tree with lemma psychiatrist marked
with REL- in both trees and question subject separated from its body. Fig. 4.3 illustrates a
CONST representation of the author’s comment on her question.

4.2 Encoding Semantic Representations with CNNs

The architecture of the RelCNN architecture for matching q and ci pairs is presented in Fig. 4.4
and detailed in Section 3.4.1. Its main components are: (i) sentence matrices sci ∈ Rd×|ci|

obtained by the concatenation of the word vectors wj ∈ Rd (with d being the size of the
embeddings) of the corresponding words wj from the input sentences (Q and ci) ci; (ii) a
convolutional sentence encoder f : Rd×|ci| → Rm that maps the sentence matrix of an
input sentence si to a �xed-size vector representations xsi of size m; (iii) a layer for com-
puting the similarity between the obtained intermediate vector representations of the input
sentences, using a similarity matrix M ∈ Rm×m – an intermediate vector representation xs1
of a sentence s1 is projected to a x̃s1 = xs1M, which is then matched with xs2 [14], i.e., by
computing a dot-product x̃s1xs2 , thus resulting in a single similarity score xsim; (iv) a set of

2Our preliminary experiments showed that adding the question body to the CONST representation does not
a�ect the performance.
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Figure 4.4: CNN for computing the similarity between question and answer.

fully-connected hidden layers that model the similarity between sentences using their vector
representations produced by the sentence model (also integrating the single similarity score
from the previous layer); and (v) a sigmoid layer that outputs probability scores re�ecting
how well the q/ci pair match with each other.

To capture relational information, we follow the approach of Severyn and Moschitti [111], in
the input sentence, we associate an additional word overlap indicator feature o ∈ {0, 1} with
each word w, where 1 corresponds to words that overlap in a given pair and 0 otherwise. To
decide if the words overlap, we perform string matching. This small feature vector plays the
role of the REL tag added to the CTK structures.

For the task of community Question Answering, additional features are encoded in the joint
representation layer. In particular, we encode the SAMEAUTH feature that indicates
whether the author of the comment ci is the same as the author of the question q and
SAMEAUTH+ indicates whether the comment ci is followed by a comment ci+1 from
the same author of the question.

4.2.1 Representation Layers

It should be noted that NNs non-linearly transforms the input at each layer. For instance,
the output of the convolutional and pooling operation f(si) is a �xed-size representation
of the input sentence si. In the remainder of the chapter, we will refer to these vector rep-
resentations for the question and the answer passage as the question embedding (QE) and
the answer embedding (AE), respectively. Similarly, the output of the network’s penulti-
mate layer (the hidden layer whose output is fed to the �nal classi�cation layer) is a compact
representation of the input Question and Answer pair, which we call Joint Embedding (JE).

It should be noted that the vectors QE, AE, and JE contain relevant information for classi-
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�cation. Therefore, they embed the q/ci pair into �xed-size representations.

4.3 Experiments on Open Domain QA

In these experiments, we compare the accuracy impact of two main methods for automatic
feature engineering, i.e., CTKs and CNNs, for relational learning, using two di�erent answer
sentence selection datasets, WikiQA and TrecQA. We propose several strategies to combine
CNNs with CTKs, and we show that the two approaches are complementary as their joint
use signi�cantly boost both models.

4.3.1 Experimental Setup

We utilized two datasets for testing our models:

TrecQA.This is the factoid open-domain TrecQA corpus prepared by [144]. The training data
was assembled from the 1,229 TREC8-12 questions. The training questions’ answers were
automatically marked in sentences by applying regular expressions; therefore, the dataset
can be noisy.

The test data contains 68 questions, whose answers were manually annotated. We used ten
answer passages for each question for training our classi�ers and all the answer passages
available for each question for testing.

WikiQA. TrecQA is a small dataset with an even smaller test set, making the system eval-
uation rather unstable, i.e., a small di�erence in parameters and models can produce very
di�erent results. Moreover, as pointed by [155], it has a signi�cant lexical overlap between
questions and answers candidates. Therefore simple lexical match models may likely outper-
form more elaborate methods if trained and tested on it. WikiQA dataset [149] is a larger
dataset, created for open-domain QA, which overcomes these problems. Its questions were
sampled from the Bing query logs, and candidate answers were extracted from the associated
Wikipedia pages’ summary paragraphs. The train, test, and development set contain 2,118,
633, and 296 questions, respectively. There is no correct answer sentence for 1,245 training,
170 development, and 390 test questions. Consistently with [157], we remove the questions
without answers for our evaluations.

Preprocessing. We used the Illinois chunker [95], question class, and focus classi�ers trained
as in [108] and the Stanford CoreNLP [77] toolkit for the needed preprocessing.

CTKs. We used SVM-light-TK3 to train our models. The toolkit enables the use of structural
kernels [84] in SVM-light [53]. We applied (i) the partial tree kernel (PTK) with its default
parameters to all our structures and (ii) the polynomial kernel of degree 3 on all feature
vectors we generate.

Metaclassi�er. We used the scikit4 logistic regression classi�er implementation to train the
meta-classi�er on the outputs of CTKs and CNNs.

3http://disi.unitn.it/moschitti/Tree-Kernel.htm
4http://scikit-learn.org/stable/index.html

http://disi.unitn.it/moschitti/Tree-Kernel.htm
http://scikit-learn.org/stable/index.html
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MRR MAP P@1
State of the art

CNNc [149] 66.52 65.20 n/a
ABCNN [157] 71.27 69.14 n/a
LSTMa,c [78] 70.41 68.55 n/a
NASMc [78] 70.69 68.86 n/a

Our Individual Models

RelCNN 71.07 69.51 57.20
CHcoarse 71.63 70.45 56.79
CH 72.30 71.25 58.44
VAE+QE 68.29 67.24 55.56
VJE 67.07 65.76 52.26

Our Model Combinations

CH+VAE+QE 72.51 71.29 59.26
CH+VJE 73.18 71.56 60.49
CH’+V ′AE+QE 75.88 74.17 64.61
CH’+V ′JE 75.52 73.99 63.79
Meta: CH, VJE , RelCNN 75.28 73.69 62.96
Meta: CH, VJE 75.08 73.64 62.55
Meta: CH+VJE , RelCNN 73.94 72.25 61.73

Table 4.1: Performance on the WikiQA dataset

CNNs. We pre-initialize the word embeddings by running the word2vec tool [82] on the
English Wikipedia dump and the ACQUAINT corpus as in [109]. We opt for a skip-gram
model with window size �ve and �ltering words with a frequency of less than 5. The di-
mensionality of the embeddings is set to 50. The input sentences are mapped to using a
convolution with a hidden size of 100 and a window size of 5 and a max-pooling operation.
We use a single non-linear hidden layer (with hyperbolic tangent activation, Tanh), whose
size is equal to the previous layer’s size. The network is trained using SGD with shu�ed
mini-batches using the Adam update rule [61]. The batch size is set to 100 examples. The
network is trained for a �xed number of epochs (i.e., 3) for all the experiments. We decided
to avoid using early stopping not to over�t the development set and have a fair comparison
with the CTKs models.

QA metrics. We used standard QA metrics: Precision at rank 1 (P@1), i.e., the percentage
of questions with a correct answer ranked in the �rst position, the Mean Reciprocal Rank
(MRR) and the Mean Average Precision (MAP).

4.3.2 Experiments on WikiQA

Previous work Table 4.1 reports the results obtained on the WikiQA test set by state-of-
the-art systems (lines 1-4) and our models when removing the questions with no correct
answers (this to be aligned with previous work). More in detail:
CNNc is the Convolutional Neural Network with word count,
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TRAIN50 DEV

MRR MAP P@1 MRR MAP P@1
CH 69.97 68.77 55.14 67.23 65.93 51.44
VAE+QE 68.7 67.18 54.32 68.14 66.46 54.73
VJE 70.43 68.67 57.61 68.90 67.14 55.56

Model Combinations

CH+VAE+QE 74.4 72.63 62.55 70.01 68.60 57.61
CH+VJE 73.53 71.69 60.49 70.10 68.55 58.44
Metaclassi�ers:
CH, VJE , RelCNN 74.01 72.31 62.14 n/a n/a n/a
CH, VJE 73.95 72.15 62.14 n/a n/a n/a
CH+VJE , RelCNN 73.43 71.58 60.49 n/a n/a n/a

Table 4.2: Performance on the WikiQA using the development set or half of the training set
for training

TRAIN TRAIN50

MRR MAP P@1 MRR MAP P@1
CH 74.87 74.17 63.49 71.31 70.45 57.94
VAE+QE 70.32 69.75 56.35 71.06 70.33 57.14
VJE 69.86 69.24 55.56 71.11 70.43 57.14
CH+VAE+QE 71.29 70.79 57.94 72.62 72.18 59.52
CH+VJE 71.36 70.81 57.94 71.96 71.55 59.52
CH’+V ′AE+QE 76.66 75.50 66.67 75.23 74.54 64.29

Table 4.3: Performance on the WikiQA on the development set

ABCNN is the Attention-Based CNN,
LSTMa,c is the long short-term memory network with attention and word count, and
NASMc is the neural answer selection model with word count.
RelCNN is the relational CNN described in Section 4.2.
CH is a tree kernel-based SVM reranker trained on the shallow pos-chunk tree representa-
tions of question and answer sentences (Sec. 4.1.1), where the subscript coarse refers to the
model with the coarse-grained question classes as in [129].
V is a polynomial SVM reranker, where the subscripts AE, QE, JE indicate the use of the
answer, question, or joint embeddings (see Sec. 4.2.1) as the feature vector of SVM and +
means that two embeddings were concatenated into a single vector.

The results show that our RelCNN model performs comparably to ABCNN [157], which is
the most recent and accurate NN model and to CHcoarse. The performance drops when the
embeddingsAE,QE, and JE are used in a polynomial SVM reranker. In contrast, CH (using
our tree structure enriched with �ne-grained categories) outperforms all the models, showing
the importance of syntactic relational information for the answer sentence selection task.
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4.3.2.1 Combining CNN with CTK on WikiQA

We experiment with two ways of combining CTK with RelCNN: (i) at the kernel level, i.e.,
summing tree kernels with the polynomial kernel over di�erent embeddings, i.e., CH+V, and
(ii) using the predictions of SVM and RelCNN models (computed on the development set)
as features to train logistic regression meta-classi�ers (again only on the development set).
These are reported in the last three lines of the table, where the name of the classi�ers par-
ticipating with their outputs is illustrated as a comma-separated list. The results are very
interesting as all kinds of combinations largely outperform the state of the art, e.g., by around
3 points in terms of MRR, 2 points in terms of MAP, and 5 points in terms of P@1 in contrast
with the strongest standalone system, CH. Directly using the predictions of the RelCNN as
features in the meta-classi�er does not impact the overall performance. It should be noted
that the meta-classi�er could only be trained on the development data to avoid predictions
biased by the training data.

4.3.2.2 Using less training data

Since we train the weights of RelCNN on the training set of WikiQA, to obtain the embeddings
minimizing the loss function, we risk to have over�tted, i.e., “biased”, JE, AE, and QE
on the questions and answers of the training set. Therefore, we conducted another set of
experiments to study this case. We randomly split the training set into two equal subsets.
On one of them, we train the RelCNN model, whereas, in the other subset (referred to as
TRAIN50), we produce the embeddings of questions and answers.

Table 4.2 reports the results on the WikiQA test set, which we obtained when training SVM
on TRAIN50 and the development set, DEV. We trained the meta-classi�er on the predictions
of the standalone models on DEV. Consistently with the previous results, we obtain the best
performance combining the RelCNN embeddings with CTK. Even when we train on the 50%
of the training data only, we still outperform state of the art, and our best model CH+VJE
performs only around 2 points lower in terms of MRR, MAP, and P@1 than when training
on the full training set.

Finally, Table 4.3 reports the performance of our models when tested on the development
set and demonstrates that the improvement obtained when combining CTK and RelCNN
embeddings also hold on it. Note that we did not use the development set for any parameter
tuning, and we train all the models with the default parameters.

4.3.3 Experiments on TrecQA dataset

TrecQA corpus has been used for evaluation in several works starting from 2007. Table 4.4
reports our as well as some state-of-the-art system results on TrecQA. It should be noted that
to be consistent with the previous work; we evaluated our models in the same setting as [144,
156], i.e., we (i) remove the questions having only correct or only incorrect answer sentence
candidates and (ii) used the same evaluation script and the gold judgment �le as they used.
As pointed out by Footnote 7 in [154], the evaluation script always considers four questions
to be answered incorrectly, thus penalizing the overall system score.
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Models MRR MAP

State of the art

Wang, Smith, and Mitamura [144] 68.52 60.29
Heilman and Smith [43] 69.17 60.91
Wang and Manning [142] 69.51 59.51
Yao et al. [152] 74.77 63.07
Severyn and Moschitti [108] 73.58 67.81
Yih et al. [156] 77.00 70.92
Yu et al. [160] 78.64 71.13
Wang and Ittycheriah [147] 77.40 70.63
Tymoshenko and Moschitti [129] 82.29 73.34
Yin et al. [157] 76.33 69.51
Miao, Yu, and Blunsom [78] 81.17 73.39

Individual Models

RelCNN 77.93 71.09
VAE+QE 79.32 73.37
VJE 77.24 71.34
CH 85.53 75.18

Model Combinations

CH+VJE 79.75 74.29
CH+VAE+QE 79.74 75.06
Meta: CH, VAE+QE , RelCNN 81.67 75.77

Model Combinations using simpler CH

CHsmpl 78.66 71.18
CHsmpl+VAE+QE 80.19 75.01
CHsmpl+VJE 80.42 74.16

Table 4.4: Results on the TrecQA, answer selection task.

We note that our models, i.e., RelCNN, VJE , VAE+QE , again align with state of the art. In
contrast, our CTK using CH largely outperforms all previous work, e.g., 7.6 points more
than RelCNN in terms of MRR. Considering that CH’s evaluation with a script that does not
penalize systems would show real MRR and MAP of 90.56 and 80.08, respectively, there is
little room for improvement with combinations. Indeed, the table shows no improvement in
model combinations over CH.

Therefore, we trained a simpli�ed version of CH CHsmpl, which employs shallow chunk-
based representations without the question focus or question class information, i.e., only us-
ing the necessary relational information represented by the lexical match REL tags. CHsmpl

performs comparably to RelCNN, and the combination with embeddings produced by Rel-
CNN, i.e., CHsmpl+VAE+QE , outperforms both CHsmpl and RelCNN.
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4.4 Experiments on Community Question Answering

In these experiments, we compare CTKs and CNNs, also combining them with traditional
feature vector representations on the Semeval 2016 cQA dataset[89].

4.4.1 Experimental setup

Experimental dataset. We use the Subtask A Question-Comment Similarity subset of the
Semeval-2016 Task 3 English cQA dataset5. This enables a direct comparison with results of
the challenge. The dataset of questions and comments was extracted from the Qatar Living
forum6. For each question, the �rst ten comments were collected and manually annotated as
good, i.e., answering the question, and potentially useful or bad. The Potentially useful class
was relabeled as bad during the challenge evaluation.

The train, development, and test sets contain 1790, 244, and 327 questions.

QA metrics. We report our results in terms of Mean Average Precision (MAP)7 and Mean
Reciprocal Rank (MRR).

CTKs. We trained our models with SVM-light-TK8. It enables the use of CTKs [84] in SVM-
light [53]. We used the partial and the subset tree kernels (PTK and STK) with their default
parameters and the polynomial kernel (P) of degree 3 on all feature vectors.

Preprocessing We truncate all the comments to 2000 symbols and all the sentences to 70
words. When generating the structural representations described in Section 4.1, we used the
�rst three sentences of a question or a comment. We used the Illinois chunker [95] and the
Stanford CoreNLP [77] toolkit for the needed preprocessing.

Signatures. If a speci�c user always signs their posts with the same phrase, e.g., “The tough
gets going..”, we consider this phrase irrelevant and remove it. More speci�cally, we delete
all the strings with a length exceeding 20 characters that occur at the end of more than one
comment by the same user.

cQA-relevant features vectors (QF). We used the thread-level features by one of the top-
performing SemEval-2015 systems [91]. Among others, they include the features encoding
whether the comment (c) is authored by the question (q) author, whether c contains a ques-
tion, an acknowledgment word or a URL, and other intuitions.

4.4.2 Neural Network experiments

We pre-initialize the word embeddings with the skip-gram embedding of dimensionality 50
trained on the English Wikipedia dump [82]. The input sentences are encoded with �xed-
sized vectors using a convolutional operation of size �ve and a k-max pooling operation with
k = 1. We use a single non-linear hidden layer (with hyperbolic tangent activation, Tanh),

5http://alt.qcri.org/semeval2016/task3/index.php?id=description-of-tasks
6http://www.qatarliving.com/forum
7the o�cial Subtask A metric
8http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Encoders MAP MRR Features MAP MRR

W2V 0.6284 68.53 CNN 0.6496 71.26
LSTM 0.6477 71.78 +overlap 0.6648 73.46
CNN 0.6496 71.26 +SAMEAUTH 0.6684 72.56

+SAMEAUTH+
0.6741 73.64

Table 4.5: NNs results on the development dataset

whose size is equal to the sentence embeddings’ size, i.e., 200. The network is trained using
SGD with shu�ed mini-batches using the Rmsprop update rule. The model is trained until
the validation loss stops improving.

For computational reasons, we decided to limit the size of the input sentences to 100 words.
This did not degrade the observed performance. To improve learning generalization and avoid
co-adaptation of features (which negatively impact the sentence embeddings), we opted for
adding dropout [118] between the layers of the network. Table 8.2 reports the results of
our NNs on the development set. The �rst sentence model is a word embedding averaging
model (W2V), where the sentence embeddings are calculated by averaging the word vec-
tors. Then, two strong baseline sentence models are presented, a Long-Short Term Memory
(LSTM) sentence model [45] and our vanilla CNN, presented in Section 4.2. Our CNN, with-
out any additional features, outperforms W2V, obtaining similar accuracy than LSTM. Thus,
we decided to use the convolutional sentence model mainly for computational reasons. The
second part of the table shows CNN incrementally enhanced by the overlap, SAMEAUTH,
and SAMEAUTH+ features (see Sec. ??), further improving its performance.

4.4.3 Results

Table 4.6 reports the performance of our systems and compares it to the top systems in the
Semeval-2016 Subtask A competition9. The participants were allowed to submit one primary
and two contrastive runs. The teams were ranked according to the MAP score obtained by
their primary system (the o�cial rank is reported in parentheses). The remainder of the table
describes our systems’ performance on the development (DEV) and the test (TEST) sets. We
did not use DEV to tune any parameters.

The Kernel column reports the name of the kernel used in SVMs.

VQF is an SVM using a polynomial kernel over the QF feature vector. CNN is the convolution
neural network described in Sec. 4.2. CTKSH and CTKC are the CTK-based SVMs trained on
the SH and CONST representations described in Sec. 4.1, respectively. CTK+V denotes the
composite kernel that is a sum of two kernels.

Notably, both CTK models that encode only one cQA task-speci�c intuition (i.e., whether the
question and the comment have the same author) are only slightly outperformed by CNNs
and achieve a MAP only one point lower than ConvKN-primary, the second best-ranking

9http://alt.qcri.org/semeval2016/task3/data/uploads/semeval2016_task3_
submissions_and_scores.zip

http://alt.qcri.org/semeval2016/task3/data/uploads/semeval2016_task3_submissions_and_scores.zip
http://alt.qcri.org/semeval2016/task3/data/uploads/semeval2016_task3_submissions_and_scores.zip
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Models Kernel

DEV TEST
MAP MRR MAP MRR

1. Baseline models

Kelp-primary [34] (#1) n/a n/a n/a 79.19 86.42
ConvKN-contrastive1 [6] n/a n/a n/a 78.71 86.15
SUper team-contrastive1 [79] n/a n/a n/a 77.68 84.76
ConvKN-primary [6] (#2) n/a n/a n/a 77.66 84.93

2. CNN and CTK models

VQF P 63.45 70.51 73.50 82.98
RelCNN n/a 67.41 73.64 77.13 83.85
CTKSH PTK 64.10 71.97 76.67 83.53
CTKC STK 65.30 73.24 75.42 82.35
CTKC PTK 63.82 70.53 76.39 82.94
CTKSH+VQF PTK, P 68.45 74.49 78.80 86.16
CTKC+VQF STK, P 67.26 74.07 78.78 86.26

3. Combining CTK and CNN models

VQE|CE P 65.63 72.69 75.15 82.37
VQE|CE|QF P 68.17 75.32 77.22 83.98
CTKC+VQE|CE STK,P 66.71 75.18 76.25 83.33
CTKC+VQE|CE|QF STK,P 68.92 76.61 77.25 84.16

Table 4.6: Performance of CTK, CNN and QF models on the development (DEV) and test
(TEST)

system in o�cial ranking of the competition.

Additionally, we observe that CTKSH with the PTK and CTKC with STK obtain almost the
same performance. This is important, as PTK generates a richer feature space, but STK has
a lower computational complexity. Training an SVM with PTK and STK on CTKC took
4213.93 and 1006.58 cpu-seconds. Next, the CTK and V combinations, CTKC+VQF (STK)
and CTKSH+ VQF (PTK), obtained the MAPs of 78.78 and 78.80 on TEST, respectively. They
would have ranked second in the competition.

Finally, since both CNNs and CTKs achieve the competitive performances on cQA, we com-
bined the two approaches using the question, comment, and joint embeddings learned by
CNNs as feature vectors in V and combined them with QF and CTKC . We have experimented
with all possible combinations: Sec. 3 of Table 4.6 lists the best ones. The subscripts QE and
CE indicate the use of the question and comment embeddings (Sec. 4.2) as the feature vector,
whereas | denotes that the respective vectors were concatenated into a single vector.

None of the combinations improved over the CTKs models with QF features; however, an
interesting �nding is that, in general, V systems, which use only embeddings as features,
outperform VQF . Concatenating the QE, CE, and QF into a single feature vector results in
further improvement, e.g., VQE|CE|QF achieves a MAP of 77.22 on the TEST, which is only
0.44 points lower than the MAP of the #2 ranked system. CTKC+VQE|CE , a combination of
QE and CE with CTKC (without QF ) slightly improves over CTKC (using STK) on both
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DEV and TEST sets. However, the CTKC+VAE|CE|QF , a combination of CTKs, CNN, and
QF, scores lower than CTKC + VQF , thus additional investigation is needed to understand
how to combine CTK and CNN successfully.

4.5 Summary

In this chapter, we compare two machine learning methods, namely CTKs and CNNs, for
A2S. The two approaches are capable of automatically extract local features from question-
answer pairs. In particular, CTKs take as input syntactic structures for both the question and
an answer candidate and extract relevant features to solve the task. Conversely, CNNs are a
set of e�cient architectures that compositionally maps the semantic of individual words in a
sentence to a �xed size continuous representation.

In order to have a meaningful comparison with previous work, we have set the best con�gu-
ration for CTK by de�ning and implementing innovative linguistic structures enriched with
semantic information from statistical classi�ers (i.e., question and focus classi�ers). At the
same time, we have developed a fast and accurate CNN architecture that can embed relational
information in their representations. The proposed model is inspired by the work of Severyn
and Moschitti [111], which was the best available neural architecture when we performed
this empirical study.

We tested our models for A2S on two benchmarks, WikiQA and TrecQA. Thus, they are
directly comparable with many systems from previous work. The results show that CTKs
outperform our CNNs but uses more structural information, e.g., on TrecQA, CTKs obtain an
MRR, and MAP of 85.53 and 75.18 vs. 77.93 and 71.09 of the RelCNN. On WikiQA, CNNs
combined with tree kernels achieve an MRR of 75.88 and a MAP of 74.17; this result is still
unmatched by any model that does not make use of attention mechanism or large pretrained
transformer architectures.

To further validate the proposed approach, we participated in the Semeval 2016 community
Question Answering competition. To this end, we propose a novel linguistic structure speci�c
to the cQA task. The combination of the RelCNN architecture, together with CTK, outper-
formed most of the proposed models to achieve second place at the competition, with a MAP
of 77.66.

The competitive results obtained in both tasks by the combined model suggest that CTK and
CNNs exploit di�erent types of local structures. This indicates that CTKs require the latent
semantic information of the word embeddings, and most importantly, for the focus of this
thesis, CNNs bene�ts from the syntactic structure.



Chapter 5

Injecting Syntactic Information in

Neural Networks

In the previous chapter, we explored combining Tree Kernels (CTKs) based approaches with
Convolutional Neural Networks (CNNs). The results suggest that the two approaches learn
very di�erent representations and that combining the two approaches leads to an increase in
the overall performance. However, the proposed approach can be problematic in a production
environment as it relies on two di�erent classi�ers, i.e., the CNN produces the representations
that the CTK uses for classi�cation. This is a shame as NNs are very �exible in general and
enable an easy system deployment in real applications, while TK models require syntactic
parsing and longer testing time.

This chapter proposes an approach that aims to inject syntactic information in NNs, still
keeping them simple. It consists of the following steps: train a TK-based model on a few
thousands of training examples; apply such classi�er to a much broader set of unlabeled
training examples to generate automatic annotation; pre-train NNs on the automatic data;
and �ne-tune NNs on the smaller GS data.

We test this novel technique’s capabilities on the Question Question similarity (Task B) task
of community Question Answering (cQA). The task consists of selecting the most similar
questions from a cQA website regarding a new question. The task was largely explored in
the Semeval 2016 competition [89] and on the Quora dataset1. An interesting outcome of the
SemEval challenge was that syntactic information is essential to achieve high accuracy in
question reranking tasks. Indeed, the top-systems were built using Support Vector Machines
(SVMs) trained with Tree Kernels (TKs), which were applied to a syntactic representation of
question text [6, 34, 89].

Our experiments on two di�erent datasets, i.e., Quora and Qatar Living (QL) from SemEval,
show that when NNs are pre-trained on the predicted data, they achieve accuracy higher than
the one of TK models, and NNs can be further boosted by �ne-tuning them on the available GS
data. This suggests that the TK properties are captured by NNs, which can exploit syntactic
information even more e�ectively, thanks to their well-known generalization ability.

1https://www.kaggle.com/c/quora-question-pairs

https://www.kaggle.com/c/quora-question-pairs
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In contrast to other semi-supervised approaches, e.g., self-training, we show that our ap-
proach’s improvement is obtained only when a very di�erent classi�er, i.e., TK-based, is used
to label a large portion of the data. Indeed, using the same NNs in a self-training fashion (or
another NN in a co-training approach) to label the semi-supervised data does not provide any
improvement. Similarly, when SVMs using standard similarity lexical features are applied to
label data, no improvement is observed in NNs.

One evident consideration is the fact that TKs-based models mainly exploit syntactic infor-
mation to classify data. Although assessing that NNs speci�cally learn such syntax should
require further investigation, our results show that only the transfer from TKs produces im-
provement: this is signi�cant evidence that makes it worth to investigate the central claim
of this chapter further. In any case, our approach increases the accuracy of NNs, when small
datasets are available to learn high-level semantic task such as question similarity. It consists
of using more massive syntactic/semantic models, e.g., based on TKs, to produce training
data; and exploit the latter to learn a neural model, which can then be �ne-tuned on the small
available GS data.

5.0.1 Question Matching as Short Text Ranking

Question similarity in forums can be set in di�erent ways, e.g., detecting if two questions are
semantically similar or ranking a set of retrieved questions regarding their similarity with
the original question. We describe the two methods below:

The Quora task regards detecting if two questions are duplicate or not, or, in other words,
if they have the same intent. The associated dataset [146] contains over 404, 348 pairs of
questions, posted by users on the Quora website, labeled as the same pair. For example, How
do you start a bakery? and How can one start a bakery business? are duplicated while What
are natural numbers? and What is a least natural number? are not. The ground-truth labels
contain some amount of noise.

In the QL task at SemEval-2016 [89] users were provided with a new (original) question qo
and a set of related questions (q1, q2, ...qn) from the QL forum2 retrieved by a search engine,
i.e., Google. The goal is to rank question candidates, qi, by their similarity with respect to qo.
qi were manually annotated as PerfectMatch, Relevant or Irrelevant, depending on their simi-
larity with qo. PerfectMatch and Relevant are considered as relevant. A question is composed
of a subject, a body and a unique identi�er.

5.0.2 Support Vector machines for cQA

A top-performing model in the SemEval challenge is built with SVMs, which learn a classi-
�cation function, f : Q × Q → {0, 1}, on the relevant vs. irrelevant questions belonging
to the question set, Q. The classi�er score is used to rerank a set of candidate questions qi
provided in the dataset with respect to an original question qo. Three main representations

2http://www.qatarliving.com/forum
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were proposed: vectors of similarity feature derived between two questions; a TK function
applied to the syntactic structure of question pairs; or , a combination of both.

Feature Vectors (FV) are built for question pairs, (q1, q2), using a set of text similarity fea-
tures that capture the relations between two questions. More speci�cally, we compute 20
similarities sim(q1, q2) using word n-grams (n = [1, . . . , 4]), after stopword removal, greedy
string tiling [148], longest common subsequences [2], Jaccard coe�cient [50], word contain-
ment [76], and cosine similarity.

Tree Kernels (TKs) measure the similarity between the syntactic structures of two ques-
tions. Following Barrón-Cedeño et al. [6], we build two macro-trees, one for each question
in the pair, containing the syntactic trees of the sentences composing a question. In addition,
we link two macro-trees by connecting the phrases, e.g., NP, VP, PP, etc., when there is a lex-
ical match between the phrases of two questions. We apply the following kernel to two pairs
of question trees: K(〈q1, q2〉, 〈q′1, q′2〉) = TK(t(q1, q2), t(q′1, q

′
2))+TK(t(q2, q1), t(q′2, q

′
1)),

where t(x, y) extracts the syntactic tree from the text x, enriching it with relational tags
(REL) derived by matching the lexical between x and y.

5.1 Injecting Structures in NNs

We inject TK knowledge in two well-known and state-of-the-art networks for question sim-
ilarity, enriching them with relational information.

5.1.1 NNs for question similarity

We implemented the RelCNN model proposed by Severyn and Moschitti [111]. This learns
f , using two separate sentence encoders fq1 : Q→ Rn and fq2 : Q→ Rn, which map each
question into a �xed size dense vector of dimension n. The resulting vectors are concatenated
and passed to a Multi-Layer Perceptron that performs the �nal classi�cation. Each question
is encoded into a �xed-size vector using an embedding layer, a convolution operation, and
a global max pooling function. The embedding layer transforms the input question, i.e., a
sequence of token, Xq = [xq1 , ..., xqi , ..., xqn ], into a sentence matrix, Sq ∈ Rm×n, by con-
catenating the word embeddings wi corresponding to the tokens xqi in the input sentence.

[111] showed that relational information encoded in terms of overlapping words between
two pairs of text could positively improve accuracy. Thus, we mark each word with a binary
feature for both networks above, indicating if a word from a question appears in the other
pair question. This feature is encoded with a �xed size vector (in the same way it is done for
words).

Additionally, we implemented a Bidirectional (BiLSTM) variant, using the standard LSTM
by Hochreiter and Schmidhuber [45]. An LSTM iterates over the sentence one word at the
time by creating a new word representation hi by composing the representation of the pre-
views word and the current word vector hi = LSTM(wi, hi−1). A BiLSTM iterate over
the sentence in both directions, and the �nal representation is a concatenation of the hidden
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representations, hN , obtained after processing the whole sentence. We apply two-sentence
models (with di�erent weights), one for each question, then we concatenate the two �xed-size
representations and feed them to a Multi-Layer Perceptron.

5.1.2 Learning NNs with structure

To inject structured information in the network, we use a weak supervision technique: an
SVM with TK is trained on the GS data; this model classi�es an additional unlabelled dataset,
creating automatically; and a neural network is trained on the latter data.

The pre-trained network can be �ne-tuned on the GS data, using a lower learning rate of γ.
This prevents catastrophic forgetting [38], which may occur with a larger learning rate.

5.2 Experiments

We experiment with two datasets comparing models trained on gold and automatic data and
their combination, before and after �ne-tuning.

5.2.1 Data

Quora dataset contains 384, 358 pairs in the training set and 10, 000 pairs both in the dev.
and test sets. The latter two contain the same number of positive and negative examples.

QL dataset contains 3, 869 question pairs divided in 2, 669, 500 and 700 pairs in the train-
ing, dev. and test sets. We created 93k3 unlabelled pairs from the QL dump, retrieving ten
candidates with Lucene for 9, 300 query questions.

5.2.2 NN setup

We pre-initialize our word embeddings with skip-gram embeddings of dimensionality 50
jointly trained on the English Wikipedia dump [82], and the AQCUAINT corpus4. The in-
put sentences are encoded with �xed-sized vectors using a CNN with the following parame-
ters: a window of size 5, an output of 100 dimensions, followed by a global max pooling. We
use a single non-linear hidden layer, whose size is equal to the sentence embeddings’ size,
i.e., 100. The word overlap embeddings are set to 5 dimensions. The activation function for
both convolution and hidden layers is ReLU. During training, the model optimizes the binary
cross-entropy loss. We used SGD with Adam update rule, setting the learning rate to γ to
10−4 and 10−5 for the pre-training and �ne-tuning phases.

5.2.3 Results on Quora

Table 5.1 reports our di�erent models, FV, TK, CNN, and LSTM described in the previous
section, where the su�x, -10k or -5k, indicates the amount of GS data used to train them,

3Note that we will release the 400k automatically labeled pairs from Quora as well as the new 93k pairs of QL
along with their automatic labels for research purposes.

4Embeddings are available in the repository: https://github.com/aseveryn/deep-qa

https://github.com/aseveryn/deep-qa
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Model Automatic data GS data DEV TEST
FV-10k – 10k 0.7046 0.7023
TK-10k – 10k 0.7405 0.7337
CNN-10k – 10k 0.7646 0.7569
LSTM-10k – 10k 0.7521 0.7450
CNN(CNN-10k) 50k – 0.7666 0.7619
CNN(CNN-10k)* 50k 10k 0.7601 0.7598
CNN(FV-10k) 50k – 0.6960 0.6931
CNN(FV-10k)* 50k 10k 0.7681 0.7565
CNN(TK-10k) 50k – 0.7446 0.7370
CNN(TK-10k)* 50k 10k 0.7748 0.7652
LSTM(TK-10k) 50k – 0.7478 0.7371
LSTM(TK-10k)* 50k 10k 0.7706 0.7505
TK-5k – 5k 0.6859 0.6774
CNN-5k – 5k 0.7532 0.7450
CNN(TK-5k) 50k – 0.7239 0.7208
CNN(TK-5k)* 50k 5k 0.7574 0.7493
CNN(TK-10k) 375k – 0.7524 0.7471
CNN(TK-10k)* 375k 10k 0.7796 0.7728

Voting(TK+CNN) – 10k 0.7838 0.7792

Table 5.1: Accuracy on the Quora dataset.

and the name in parenthesis indicates the model used for generating automatic data, e.g.,
CNN(TK-10k) means that a CNN has been pre-trained with the data labeled by a TK model
trained on 10k GS data. The amount of automatic data for pre-training is in the second col-
umn, while the amount of GS data for training or �ne-tuning (indicated by ∗) is in the third
column. Finally, the results on the dev. and test sets are in the fourth and �fth columns.

We note that: �rst, NNs trained on 10k of GS data obtain higher accuracy than FV and TK on
both dev. and test sets (see the �rst four lines);

Second, CNNs pre-trained with the data generated by FV or in a self-training setting, i.e.,
CNN(CNN-10k), and also �ne-tuned do not improve5 on the baseline model, i.e., CNN-10K,
(see the second part of the table).

Third, when CNNs and LSTMs are trained on the data labeled by the TK model, match the
TK model accuracy (the third part of the table). Most importantly, when they are �ne-tuned
on GS data, they obtain better results than the original models trained on the same amount
of data, e.g., 1% accuracy over CNN-10k.

Next, the fourth part of the table shows that the improvement given by our method is still
present when training TK (and �ne-tuning the NNs) on less GS data, i.e., only 5k.

5The improvement of 0.5 is not statistically signi�cant.
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Figure 5.1: Impact of the pre-training data.

Additionally, the �fth section of the table shows signi�cant improvement by training NNs on
all available Quora data annotated by TK-10k (trained on just 10k). This suggests that NNs
require more data to learn complex relational syntactic patterns expressed by TKs. However,
the plot in Figure 5.1 shows that the improvement reaches a plateau around 100k examples.

Finally, in the last row of the table, we report the result of a voting approach using a combi-
nation of the normalized scores of TK-10k and CNN-10k. The accuracy is almost the same as
CNN(TK-10k)*. This shows that NNs learn entirely combining a TK model, mainly exploiting
syntax, and a CNN, only using lexical information. Note that the voting model is heavy to
deploy as it uses syntactic parsing and the kernel algorithm, which has a time complexity
quadratic in the number of support vectors.

5.2.4 Results on Qatar Living

Table 5.2 reports the results when applying our technique to a smaller and di�erent dataset
such as QL.

Here, CNNs have lower performance than TK models as 2,669 pairs are not enough to train
their parameters, and the text is also noisy, i.e., there are many spelling errors. Despite this
problem, the results show that CNNs can approximate the TK models well using a broad set
of automatic data. For example, the CNN trained on 93k automatically annotated examples
and then �ne-tuned exhibits 0.4% accuracy improvement on the dev. set and almost 3% on
the test set over TK models.

On the other hand, using too much automatically labeled data may hurt the test set’s perfor-
mance. This may be because the quality of information contained in the gold-labeled data
deteriorates. In other words, using the right amount of weekly-supervision is an important
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Model Automatic Data Dev Dev (MAP) Test Test (MAP)
CNN 0.7000 0.6598 0.7514 0.7208
TK 0.7340 0.6988 0.7686 0.7424
CNN(TK) 50k 0.5580 0.6578 0.5428 0.7370
CNN(TK)* 50k 0.7160 0.6794 0.7814 0.7312
CNN(TK) 93k 0.7000 0.6782 0.6957 0.7430

CNN(TK)* 93k 0.7380 0.6782 0.7614 0.7320

Table 5.2: Accuracy on QL using all available GS data.

hyper-parameter that needs to be carefully chosen.

5.3 Related Work

Determining question similarity is one of the main challenges in building systems that answer
real user questions [1] in community QA. Thus di�erent approaches have been proposed.
[51] used a language model based on the word translation table to compute the probability
of generating a query question, given a target/related question.

[164] showed the e�ectiveness of phrase-based translation models on Yahoo! Answers.

[16, 30] proposed a similarity between two questions based on a language model that exploits
the category structure of Yahoo! Answers.

[141] proposed a model to �nd semantically related questions by computing similarity be-
tween syntactic trees representing questions.

[52] and [163] used latent semantic topics that generate question/answer pairs.

Regarding the use of automatically labeled data, [11] applied semi-supervised approaches,
such as self-training and co-training, to non-neural models. The main point of the chapter is
using standard weakly-supervised methods to inject syntactic information in NNs.

[48] tried to combine symbolic representations with NNs by transferring structured informa-
tion of logic rules into the weights of NNs. Our work is rather di�erent as we inject syntactic,
and not logic, information in NNs.

The work most similar to ours is the one by [27], who use Nystrom methods to compact the
TK representation in embedding vectors and use the latter to train a feed-forward NNs. In
contrast, we present a simpler approach, where NNs learn syntactic properties directly from
data.

To our knowledge, ours is the �rst work trying to use NNs to learn structural information
from data labeled by TK-based models. Finally, no systems of the SemEval challenges used
NNs trained on syntactic information.
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5.4 Summary

We have trained TK-based models in this work, which use structural information on rela-
tively small data and apply them to new data to produce a much larger, automatically labeled
dataset. Our experiments show that CNNs trained on automatic data improve their accuracy.
We may speculate that CNNs learn syntactic structural information as TK models mainly
use syntactic structures to label data, and other advanced models based on similarity feature
vectors do not produce any improvement. Indeed, the latter only exploit lexical similarity
measures, which are typically also generated by NNs. However, even if our conjecture were
wrong, the bottom line would be that thanks to our approach, we can have e�cient RelCNN
models comparable to TK-based approaches without requiring a large amount of training
data avoiding to use syntactic parsing and expensive TK processing at deployment time.



Chapter 6

Cosinenet: Semantic Relation

Learning

In the previous chapters, we have seen how the relational structure plays a crucial role in
Answer Sentence Selection. The relational structure of question-answer candidate pairs is a
type of local structure that consists of the set of relations between the words of the question
and the words of the answer. The most straightforward relational information is the lexical
overlap that indicates whether a word in the question appears in the answer and vice versa.
Despite explicitly encoding this single feature that can improve A2S models [111, 161], these
features explore the surface form of words and do not consider their semantics. Attention-
based architecture has been recently proposed to overcome this challenge. For example, Wang
and Jiang [145] exploits attention to perform semantic matching between the words in the
question and the answer candidate – We have seen that the attention mechanism consists of a
trainable similarity function between word vectors. A drawback of the attention mechanism
is that the similarity function may be slow to compute since it is not only O(N2) in the
number of words in the input text, but it typically requires additional parameters for training,
increasing both the training time and the amount of data needed to obtain a stable model.

On the other end, Severyn and Moschitti [111] encode such lexical matching in the sentence
encoders of both question and passage, obtaining a considerable improvement over the sim-
ple word overlap count models. However, word matching based on word surface form only
captures a small part of all possible semantic or syntactic relations between words. Thus,
we believe that enriching sentence models with partial matching, i.e., quanti�ed by word
similarity, could further improve the previous relational model based on word matching.

More speci�cally, in this chapter, we propose to model relations between words using their
similarity in the embedding [81, 93] space. In particular, we exploit word embeddings’ prop-
erty to implicitly map similar words that are close to each other in the embedding space. For
example, if the question contains the word frog while the passage contains toad, the model by
Severyn and Moschitti [111] would not �nd any match and thus will not add any relational
information to the sentence models. In contrast, in the embedding space generated by Glove
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[93] on the CommonCrawl corpus1, such words are the closest. Thus, if we consider embed-
ding similarity, we can add many more important semantic relations between words to the
sentence model. For this purpose, we match words in the deep neural network by Severyn
and Moschitti [109] as follows: (i) we apply a cosine similarity score calculated between all
the word embeddings of the question and answer passage (i.e., CosineNet); and (ii) we decide
that two words match applying a max-pooling operation, i.e., selecting the word having the
largest cosine with the target word.

Our model tested on the two benchmark datasets TrecQA [143] and WikiQA [149] produces
a limited improvement of the base network. Such limited improvement may be caused by
the fact that the information in word embeddings is noisy and not originally specialized for
capturing the relatedness between two words [57, 32].

Recent work [57] proves that specializing word embeddings with the retro�tting approach
improves the vectors’ performance on a word similarity task. Retro�tting is a technique
used to �ne-tune pretrained embeddings to �t Knowledge Graphs. The process is done by
minimizing the distance between a word and all its neighbors in the graph. Retro�tting’s
e�ectiveness has been further con�rmed by its use in the best model of the Semeval 2017
Multilingual Word Similarity task [117]. The system provided multilingual word embeddings
trained by retro�tting on a manually curated knowledgebase of common knowledge, i.e.,
Concepnet 5.5 [117].

Thus, we compare the impact of di�erent publicly available word embeddings on APR using
relational sentence models described above. Interestingly, when we use retro�tted embed-
dings in our cosine similarity based network, we obtain improvement of 6.5% and 2.7% on
WikiQA and TrecQA, respectively, over the standard network, i.e., using standard Skip Gram
or Glove embeddings. Furthermore, our model outperforms other e�cient systems on the
TrecQA dataset, targeted by many di�erent neural network models.

6.1 Encoding Relational Information

6.1.1 Word Overlaps

Word overlaps are simple yet e�ective features for textual relatedness tasks. Those features
count the number of overlapping words between the question and the answer passages in
their simpler form. These simple features can achieve impressive results, which are superior
or comparable to most systems published before 2013 on the benchmark datasets, particularly
when the lexical overlaps are weighted with IDF features [105]. It is not surprising that Con-
volutional Neural Networks using those features produce strong baselines for the task [161,
109]. Despite its e�ectiveness, the count features are rather limited. A simple lexical overlap
does not capture word similarity. This is made more critical by the fact that neural mod-
els cannot identify lexical overlap automatically, thus show limited ability at automatically
extracting representation of document directly from raw text.

1https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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6.1.2 Attention

The attention mechanism is the standard for capturing semantic textural relatedness in a neu-
ral network for A2S. The component implicitly creates alignments between all the words in
the question and all the answer candidates’ words. This is done in three steps: (i) a similarity
function is used to compare each word in the question and the candidate’s words. (ii) the
alignment scores are normalized using a softmax function, enforcing a probability distribu-
tion. (iii) the probability distribution is used to create contextual words representation for
each word i, performing a weighted average of all the word representation of the answer.

Although the technique has been proven successful in many models, it has two main draw-
backs. First, the similarity function to compute the alignment is typically trained; hence it can
create instability during training, mainly when the data is scarce. Second, the Softmax func-
tion enforces the alignment between the two sentences, even though it may not be present
for negative candidates. These two drawbacks can introduce noise in the training process of
Neural Architecture causing. The second drawback is in e�ciency comes from the fact that
the attention operation is O(n2) in the length of the sentence. Therefore, heaving complex
alignment functions between the candidates signi�cantly impact the e�ciency of the model.

6.2 Word Embeddings

The core component of e�cient Neural Architectures is word embeddings. Word embed-
ding [81, 93] are �xed size dense vectors representing the words. Over the years, embedding
pretrained on large corpora be an essential building block of many NLP systems [37]. Many
reasons led to this success; among others, they can be used to transfer general information
gathered from large corpora, and they can e�ciently model word similarities. However, not
all word embeddings show the same characteristics.

The two most popular techniques to create word embeddings are prediction based language
and count based. An exemplar prediction based model is the Word2Vec skip-Gram model
[81]. The skip-gram model predicts the context of a word (the words surrounding it), given
the word’s vector representation. This representation is learned over big corpora such as
Wikipedia. A popular Count based algorithm is Glove [93]. In this case, the vectors are
created by directly modeling the co-occurrences of words. Count based methods allow us
to train the model on bigger corpora such as CommonCrawl, thus providing competitive or
better results than prediction-based models.

Word embeddings can model syntactic and semantic relationships among words. Notably,
unsupervised embeddings can capture word relatedness and word analogy information [102].

Despite word embeddings’ success in capturing word relations, unsupervised pre-training
of vectors often produces noisy representations. For example, Faruqui et al. [32] highlighted
that word embeddings tend to cluster according to the frequencies of the words in the dataset.
Therefore, this noise can limit their ability to model relationships among words that present
a di�erent frequency in the dataset.
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Kiela, Hill, and Clark [57] proposed to use the retro�tting [33] technique to specialize em-
beddings at word relatedness tasks. This idea has been further con�rmed by the winning
team of the Semeval 2017: Multilingual Semantic Word Similarity challenge [117]. The au-
thors specialized their word embeddings over the Concepnet knowledge graph. The main
idea is to derive new vectors qi, optimizing the objective of being close to the (i) original
vector q̂i, which is computed using standard count and prediction based techniques; and (ii)
embeddings of the neighbors in the graph E.

The loss is formally de�ned in the following way:

L(Q) =

n∑

i=1

[
αi‖qi − q̂i‖2 +

∑

(i,j)∈E
βi,j‖qi − qj‖2

]
. (6.1)

This model can infer embeddings for all the words in the knowledge graph. Words that
do not have an original embedding q̂i have an associated weight αi = 0. The scalar β(i,j)
corresponds to the weight associated with the edge. Although these embeddings obtained an
impressive result at the word similarity task, they have never been applied to downstream
tasks such as Question Answering to model word relations between the question and answer
passage.

6.3 Cosinenet

This section de�nes our neural network architecture to rank question and candidate pairs.
It is an extension of the Convolutional Neural Network (CNNs) by Yu et al., Severyn and
Moschitti [161, 109], which has been used as a baseline in several previous works.

The model f : Q,A→ [0, 1] takes a pair of short texts, q ∈ Q and a ∈ A, as input (where q is a
question, and a is a candidate answer passage) and produces a score y = f(q, a), representing
the relevance of the answer passage with respect to the question. The model processes q and
a independently using two di�erent convolutional encoders. These operate in three steps: (i)
map each word i ∈ S in the sentence S to its corresponding word embedding wi ∈ Rn, (ii)
perform a convolutional operation, and (iii) reduce the input sentence to a �xed size vector
using a max-pooling operation. The output representations of the sentence encoders, i.e.,
qemb and aemb, are concatenated and then compared using a multi-layer perceptron (MLP).
The latter provides a single score in the interval [0, 1]

Despite its e�ectiveness, the architecture still requires hand-crafted relational features to
achieve state-of-the-art results [149, 21].

For that reason, as described in Section 6.1.1, di�erent techniques to model interaction be-
tween sentences have been developed. The most used features for the task are based on lexical
overlap [109]. This provides information about words appearing in both questions and an-
swer candidates. The information is then encoded in the form of a global count feature for
the pair (i.e., the total number of overlapping words, [161], or in the form of word overlap



Chapter 6. Cosinenet: Semantic Relation Learning 75

Figure 6.1: On the left, a representation of the network using word overlaps (only exact
match of words are marked with ones). The �gure on the right de�nes CosineNet; in this
setting, word overlaps are substituted with the score of the more similar word present in the
other document.

features [111]. The latter mark each word in the pair with a binary feature indicating if a
word appears in both text pieces.

6.3.1 Word overlaps

This technique is �rst introduced by Severyn and Moschitti [111] and then adopted in sub-
sequent works [105]. In this setting, the word overlap feature is a word-level binary feature
marking words that appear in both question and passage, i.e., a word in a sentence is marked
with 1 if an exact match of the word appears in the other sentence 0 otherwise. Formally:

OVword(i) =

{
1 if i ∈ A
0 otherwise

(6.2)

i is a word in the question Q, and A is the candidate answer passage. This feature can be
directly encoded in the model by concatenating it to the word embedding vector relative to
each word.

Alternatively, the feature can be modeled using an embedding as proposed by Severyn and
Moschitti [111]. Feature embeddings are �xed size trainable vectors wo0/1 ∈ Rm (word
overlap embeddings) that are concatenated to the word embedding of each word and used as
input of the convolutional operation (as depicted in Figure ??).

OVemb(i) =

{
wo1 if i ∈ A
wo0 otherwise

(6.3)

We refer to these two models as Binary Word Overlaps (OV-Bin) and Embedded Word Over-
laps (OV-Emb) respectfully for the rest of the work.
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6.3.2 Cosine word overlaps

Word overlap features are an e�ective way to encode relations between short texts [105].
However, they cannot capture similarities and relatedness between words. Utilizing an exact
lexical match, it is impossible to identify related words such as synonyms, hypernyms, or
syntactic variations of the same words.

Word embeddings can model relations thanks to the latent information present in the vectors
[81, 93]. For this reason, we propose to replace the lexical overlaps of the model with a cosine
similarity score computed among the words in the question and the answer. Rather than
encoding a feature that tells if there is the same word in the other document, the cosine word
overlap feature tells howmuch is similar the most similar word in the other document. Formally,
the feature is computed by the following:

OVcos(i) = max
j∈A

similarity(wi, wj), (6.4)

where i is a word in the question q andwi is its word embedding. The semantic word overlaps
are then included in the model by concatenating the feature with each word’s word embed-
ding. For the rest of the discussion, this model will be called CosineNet.

6.4 Experiments

We experiment with our neural networks on two benchmark datasets for A2S. To verify the
e�ectiveness of CosineNet, (i) we analyze the performance of the model when compared with
a simple CNN without word overlaps (CNN), (ii) the network extended with simple binary
word overlaps (OV-Bin), and (iii) word overlap embeddings (OV-Emb) as in [111]. Addition-
ally, (iv), we analyze the impact of di�erent word embeddings on the overall performance
and the k-best similarity scores. Finally, (v) CosineNet is compared with the state of the art
approaches.

6.4.1 Datasets

We tested our model on two datasets:
TrecQA: this is a factoid open-domain answer passage reranking dataset de�ned in [143].
The training set, composed of 1229 questions, was automatically constructed using regular
expressions to mark relevant answers. The development and the test data contains 82 and
100 questions, respectively. In this work, we use the so-called Raw TrecQA evaluation setup,
where questions with all positive and all negative answers are included in the dataset. This
setup has been previously used by several related works2.

WikiQA: TrecQA is a small and noisy dataset. In particular, the test set contains only 100
questions, of which only 65 contains both positive and negative answers, thus negatively
a�ecting the reliability of the evaluation. Thus, to better assess our system’s quality, we carry

2https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)

https://aclweb.org/aclwiki/Question_Answering_(State_of_the_art)
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our evaluations on the WikiQA dataset [149]. This is larger than TrecQA, and it is created
in a more realistic setting. Questions are real queries of the Bing search engine users, and
answers are extracted from Wikipedia and annotated by crowd workers. Thus, the dataset
is cleaner and an order of magnitude bigger than TrecQA for a total of 2,118 training, 296
development, and 633 test questions. Following the setup of Yin et al. [158], we remove the
question without positive answers.

6.4.2 Model Setup

For both datasets, texts are tokenized using the Spacy v. 2.0.33 tokenizer. Words are mapped
to �xed size word embeddings (whose size depends on the embeddings being used). All words
that do not have an associated embedding are mapped to an unknown token. Embeddings are
kept �xed (i.e., not �ne-tuned on the task) for all the experiments. The convolution operations
use a window of size �ve and maps each "5-gram" to a feature vector of size 100. The multi-
layer perceptron uses a hidden layer of 200 dimensions with a dropout regularization of 0.5.
The activation used for both the convolution and the hidden layers is the hyperbolic tangent
(tanh).

The network is trained in classi�cation setting (i.e., with binary cross-entropy loss) using the
Adam optimizer with mini-batches of size 50, learning rate 10−5, and weight decay of 10−5.
We use early stopping on the development set. The model is implemented in PyTorch v1.3.

6.4.3 Embeddings

We perform experiments with four di�erent types of word embeddings. All the vectors are
popular and used in di�erent Question Answering systems, except the Numberbatch [117]
embeddings.

The embeddings used in this work are the following:

Wiki+AQUAINT: Skip-gram [81] embeddings of size 50 trained on a joint corpus, the En-
glish Wikipedia, and the Aquaint corpus that are the sources of WikiQA and TrecQA, respec-
tively. The vectors are used in several works, e.g., [109, 111, 130, 126]. The embeddings are
available at the GitHub repository of Severyn and Moschitti [109]4.

Google News: Skip-gram [81] embeddings of size 300 trained on a joint corpus, trained on a
corpus of news. A variation of the vectors are used in several works [138]. The embeddings
are available Severyn and Moschitti [109]5.

Glove: Glove embeddings [93] of size 300 trained on the Common Crawl corpus using 840
billion tokens. Those are the most popular word vectors used in question answering [41, 145,
115]6.

3https://spacy.io/
4https://github.com/aseveryn/deep-qa
5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/

https://spacy.io/
https://github.com/aseveryn/deep-qa
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
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Numberbatch: embeddings [117] of size 300 are an ensemble of di�erent word embeddings
trained on di�erent sources and then retro�tted [33] on the Concepnet 5.5 [117] knowledge
base. The embeddings are publicly available on their github repository7.

6.4.4 Results

DEV TEST

Model Embeddings MAP MRR MAP MRR
CNN Wiki+AQUAINT 65.85 70.30 60.95 65.89
CNN Google News 61.53 64.53 61.61 67.91
CNN Glove 67.81 70.13 65.52 72.15
CNN Numberbatch 63.58 66.66 65.46 72.02
OV-Emb Wiki+AQUAINT 76.94 83.05 71.75 77.32
OV-Emb Google News 76.00 82.26 70.20 76.16
OV-Emb Glove 80.08 84.87 76.84 80.87
OV-Emb Numberbatch 77.05 84.45 73.09 78.47
OV-Bin Wiki+AQUAINT 77.39 82.98 74.87 79.67
OV-Bin Google News 75.33 80.97 73.67 79.88
OV-Bin Glove 79.13 84.10 75.83 81.53
OV-Bin Numberbatch 76.05 82.10 72.70 77.79
CosineNet Wiki+AQUAINT 78.99 84.71 77.33 82.16
CosineNet Google News 76.39 81.05 76.25 81.84
CosineNet Glove 80.53 84.61 74.81 78.67
CosineNet Numberbatch 81.10 85.44 79.39 83.57
Word overlaps N/A - - 64.96 68.11
Idf-weighted word overlaps N/A - - 70.14 76.88
Severyn and Moschitti [109] Wiki+AQUAINT - - 74.59 80.78
Tay et al. [126] Wiki+AQUAINT - - 74.99 81.53
Tay, Tuan, and Hui [125] Pointcare - - 77.00 82.50
Rao, He, and Lin [99] Glove - - 78.00 83.40

Table 6.1: Results on the TrecQA dataset

Table 6.1 presents the results on the TrecQA dataset. The �rst set of experiments exhibit
the performance using CNNs without word overlap features. The results of the models vary
depending on the word embeddings being used. However, the results are below the IDF-
weighted word overlap baseline, stressing the need for including the word overlap baseline.
Additionally, from the results, it is possible to understand that Glove embeddings that are
trained on bigger unsupervised datasets perform better than word2vec-based embeddings.

The second set of experiments presents the result of our reimplementation of the [111] system
with word overlap embeddings (OV-Emb). In this setting, the model achieves ∼ 10% points
of improvement compared with models not using lexical overlap features.

The third set of experiments shows that using word overlaps as binary (OV-Bin) feature is a
7https://github.com/commonsense/conceptnet-numberbatch

https://github.com/commonsense/conceptnet-numberbatch
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DEV TEST

Model Embeddings MAP MRR MAP MRR
CNN Wiki+AQUAINT 70.41 70.99 63.56 64.93
CNN Google News 68.93 69.00 60.97 62.31
CNN Glove 70.69 71.17 64.88 66.31
CNN Numberbatch 70.29 70.95 65.84 67.83
OV-Emb Wiki+AQUAINT 71.61 71.92 69.74 71.21
OV-Emb Google News 71.94 72.78 69.14 70.51
OV-Emb Glove 73.06 73.72 68.14 69.74
OV-Emb Numberbatch 71.32 71.81 70.07 71.52
OV-Bin Wiki+AQUAINT 72.69 72.82 68.4 69.89
OV-Bin Google News 72.73 72.89 64.66 66.25
OV-Bin Glove 74.14 74.35 67.81 69.85
OV-Bin Numberbatch 73.71 74.01 68.38 70.14
CosineNet Wiki+AQUAINT 74.11 74.86 68.34 70.26
CosineNet Google News 76.43 76.90 67.03 69.12
CosineNet Glove 71.11 71.41 61.87 63.53
CosineNet Numberbatch 75.70 76.22 72.79 75.07

Severyn and Moschitti [111] Wiki+AQUAINT - - 69.51 71.07
Tay et al. [126] Wiki+AQUAINT - - 70.90 72.30
Tay, Tuan, and Hui [125] Pointcare - - 71.25 72.30
He, Gimpel, and Lin [41] Glove - - 71.80 73.10
Shen, Yang, and Deng [115] Glove - - 73.30 75.00
Wang and Jiang [145] Google News - - 73.41 74.18
RelCNN+CTK[130] Wiki+AQUAINT 75.50 76.66 74.17 75.88

Wang and Jiang [145] Glove - - 74.33 75.40

Table 6.2: Results on the WikiQA dataset

viable way to model word overlaps and obtain comparable (or better) results in the OV-Emb
model.

The fourth set of experiments shows that an embedding similarity is a practical approach that
outperforms the lexical overlap feature of OV-Bin. It is important to note that the capability
of performing word similarity of di�erent types of embeddings determines the amount of
improvement. In particular, CosineNet using retro�tted word overlap embeddings gives ∼
5% of improvement. The obtained result, i.e., 79.39, outperforms the state-of-the-art models
on the Raw TrecQA dataset.

We performed the same set of experiments on the WikiQA dataset. Interestingly, the overlap
features still a�ect the model’s performance, but the impact of the overlap is lower. This is
expected since the WikiQA dataset is more challenging and relies less on lexical overlap [149].
CosineNet improves the overall performance of the system when using the Numberbatch
retro�tted embeddings. The model achieves a MAP score of 72.79, which is an improvement
of ∼ 3 over the OV-Emb baseline model.

The proposed similarity-based model obtains results comparable to the attention-based mod-
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els without requiring any additional trainable parameters (except Compare-Aggregate CNN
[145] that exhibits slightly better results, ∼ 1.5 MAP and ∼ 0.33 MRR).

6.5 Summary

In this chapter, we presented CosineNet, a DNN model for Question Answering, which ex-
ploits word embedding similarities to encode relations among words from the question and
answer candidates. CosineNet achieves competitive results when compared with the attention-
based model when using word embeddings trained with retro�tting. The proposed model is
much more e�cient than attention based architecture8. The raw TrecQA dataset results show
a∼ 2.5 improvement over the MAP achieved by the previous best system, which does not use
contextualized language models. Interestingly, our model can achieve results comparable to
complex attentive models for the more challenging WikiQA dataset. The results further con-
�rm that to exploit word embeddings similarities in a downstream task fully, the embedding
model needs to be specialized to the word relatedness task, e.g., using retro�tting. CosineNet
does not require any additional parameter than the baseline RelCNN model, thus preserving
its simplicity and e�ciency while obtaining results comparable with models based on the
attention mechanism.

8See Chapter 7 for additional results on e�ciency
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Chapter 7

Encoding the Document Structure

Although Answer Sentence Selection is a structured output problem, most neural models
assign a score to each sentence, independently of the others, using a point-wise approach both
for training and inference. A possible explanation for this choice could be that in standard IR-
based ranking, such as TrecQA [144], there is a lack of strong dependencies between ranking
candidates since passages are retrieved from di�erent sources by a search engine.

However, QA shows somewhat di�erent settings, e.g., in the WikiQA task [149], all the can-
didates for each question are extracted from the same document, a Wikipedia article. Thus,
although the initial document is retrieved with a search engine, the set of answer candidates
is given by all the sentences in the �rst paragraph of the article. WikiQA provides sentences
in their natural order, thus preserving the source document discourse structure. This also
induces a not uniformly answer distribution. For example, Figure 7.1 shows that the �rst
sentence of the document answers 46.09% of the questions, which would lead to an MRR of
64.27 evaluated over the sentence rank preserving the original sequential structure. This
performance is close to a basic Convolutional Neural Network (CNN) trained for the task.

In this chapter, we �rst verify the hypothesis that in several QA applications, the data often
presents an underlying global structure. The latter refers to the relation between a question
with all its candidates and the candidates’ inter-dependencies. Then, we propose a neural
network that can capture the above structure in the actual rank. For this purpose, we need
to model two main logic blocks: (i) An e�cient model that captures intra-pair relations be-
tween the question and each candidate; and (ii) the structure of the sentence rank, e.g., the
similarities and dissimilarities between candidates for the same question.

For the �rst point, we capitalize on the work in our previous chapter, i.e., the Cosinenet.
Regarding the second block, we use an additional layer constituted by a Recurrent Neural
Network, which is fed with the representation of question/answer candidate pairs. The latter
are joint representations of the question and the answer, obtained throughout the Cosinenet.

We tested our models on three di�erent datasets, the well-known WikiQA dataset, the adap-
tations of SQuAD [98], and Natural Questions [65] datasets to the AS2 task. Additionally,
the results show that the global component outperforms the same models, not exploiting it.
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Figure 7.1: The community Question Answering task structure

Despite this adds a small overhead during training and testing, we show that the RNN com-
ponent is crucial to capture the structure of data. For example, The results on WikiQA show
that BiRNN added to the Cosinenet improves of ∼ 4 points previous baselines.

The proposed model results do not compare with the current state-of-the-art in terms of pure
performances; see Table 7.2. The main reason for that comes from the fact that the best per-
forming system at the task of A2S is based on the Transformer architecture, and they are
pre-trained on a large amount of data. These models constitute a problem for many real-
world scenarios because the size of large pre-trained models like BERT limits their applica-
bility in production environments where high transactions per second are required. Addi-
tionally, transformer-based architectures require many pre-training resources, e.g., both data
and compute power (TPUs). These resources may not be available for low resource languages
or domain-speci�c applications.

In this work, we focus on e�cient architectures that can obtain high transactions per second.
Our approach can process 700 questions per second (with all their answer candidates) during
training. In comparison, BERT-base processes six questions per second on the same machine.

7.1 Answer Sentence Selection Datasets

AS2 datasets can be divided into two categories: retrieval based and document-based. The
di�erence between the two categories resides in the source of the answer candidates. In
the former, answer candidates are retrieved from a search engine, i.e., TrecQA [144] and,
more recently, MSMarco [5]. For the latter, a search engine is often used to retrieve the
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WikiQA SQuAD NQ-LA
# questions (Q) 633 11873 6230
# sentences (C) 6165 63959 193k
% Q answered 38.39 49.92 55.47
avg. # passages 9.74 5.38 30.95
avg. Q lenght 7.28 10.02 9.38
avg. C lenght 25.36 23.75 98.76
P@1 (random) 14.43 18.34 3.24
MAP (random) 25.15 43.81 12.33
P@1 (RR) 46.09 30.54 46.06
MAP (RR) 64.21 53.53 57.30
P@1 (WO) 32.51 65.48 23.06
MAP (WO) 51.02 77.90 38.08
P@1 (WO+RR) 56.38 73.12 41.01
MAP (WO+RR) 68.25 83.60 53.98

Table 7.1: Statistics of the di�erent datasets (the test-set are taken into account).

relevant document, but the task is to select the relevant answer candidate from the document
itself. Notable examples of document-based AS2 are the WikiQA dataset [149] and the "long-
answer" version of Natural Question [64].

Despite the heterogeneous nature of the datasets, both types present strong features for de-
tecting relevant answers in the candidate set: substantial lexical overlap between the question
and the answer candidate and a global structure, i.e., the original order of the sentences in
the rank.

7.1.0.1 Lexical Overlap

One of the strongest features in AS2 datasets is the lexical overlap, i.e., whether words ap-
pear in both questions and answer candidates. The importance of this feature is highlighted
in Table 7.1. We used the number of unique words in both the question and the candidates
as a single feature to rank question-answer pairs. From the table, it is clear that this fea-
ture alone signi�cantly outperforms the random baseline in most datasets. For Squad-sent,
which is an adaptation of the SQuAD v. 2.0 dataset where the task is to identify the sentence
containing the answer, in particular, this feature alone identi�es the sentence containing the
answer 65.48% of the times. All of the recent literature models have tried to model such fea-
tures; for example, [111] uses the relational feature that marks words appearing in both the
question. The answer attention mechanism has been primarily used by many state-of-the-art
approaches [145, 10, 114].

7.1.1 Global Structure

Another relevant feature for AS2 datasets is the global structure present in the original rank.
The structure of the document in a document-based dataset provides a critical signal needed
to answer sentence selection. Table 7.1 shows that in the case of WikiQA, SQuAD, and Natural
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Questions, there is a high chance that the answer is contained in the �rst sentence/paragraph.
This is particularly true for WikiQA and Natural Questions. In these datasets, the P@1 using
the reciprocal of the rank in the original sequence as a signal for ranking is ∼ 46, i.e., the
reciprocal of the original rank 1/rank. There may be several reasons for this distribution. For
example, we believe that there is an intrinsic correlation between the real world distribution
of questions and the Wikipedia document structure. We believe that encyclopedic knowledge
is usually organized in a way that more general information about a topic is summarized and
organized at the beginning of the document.

In contrast, by construction, the signal is less present in datasets such as SQuAD, where an-
notators are asked to write questions after reading the whole paragraph. Thus the answer
distribution is less skewed. However, for the same reason, it is essential to note that anno-
tators tend to introduce more lexical overlap bias when writing questions after reading the
source of the answers.

Additionally, Table 7.1 shows that the combination of the two features, word-overlap, and
reciprocal rank, gives a strong baseline for all the datasets in consideration. This simple
rule-based model ranks candidates according to the lexical overlap between question and
candidates, and, in the case when two sentences have the same amount of overlapping words,
it uses the reciprocal rank as a discriminator.

7.2 E�cient Model for AS2

To build an e�cient yet accurate model for AS2, it is crucial to leverage all the strong signals
present in the dataset without increasing the model’s complexity. For this reason, we design
a model as follow:

• We build an e�cient encoder to capture the question-candidate pair’s lexical-overlap,
i.e., the cosinenet.

• We add a recursive neural network on top of the question-candidate pairs to capture
the original rank’s global structure.

• We apply a global, list-wise, optimization approach to rank all the candidate pairs
jointly.

7.2.1 Cosinenet

The Cosinenet has three building blocks: (i) a word-relatedness encoder that performs the co-
sine similarity between the word embeddings in the question and the answer, which extracts
word relatedness features; (ii) similarly to [111], the relational features are concatenated to
the word embeddings and fed to one layer of CNN, to create a representation for the ques-
tion and candidate pair; and (iii) similarly to [20], the information of the question and the
candidate is combined at classi�cation stage, by concatenating the vectors. As a result of the
point-wise multiplication between the vector of the question and the answer, their di�erence.
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7.2.1.1 Word-Relatedness encoder

To encode the word-relatedness information, we �rst map the words in the question and the
answer to their respective word embeddings. We then perform a comparison between all
the embeddings in the question wqi and all the embedding of the answer wcj using the cosine
similarity.

ri,j =
wqiw

c
j

‖wqi ‖‖wcj‖
(7.1)

Instead of performing the weighted sum of the embeddings as in standard attention, for each
word in the question, we take the maximum relatedness score between the word embedding
of the question and each word embedding of the candidate, i.e., ri = maxj(ri,j). The same
process is performed for each word in the answer. This feature represents how much a word
is similar to the most similar word in the other text.

This simple feature is concatenated with the word embedding of the question ŵqi = [ŵqi ; ri]

and vice-versa ŵcj = [ŵcj ; rj ]. The resulting word representations are passed to the question-
candidate encoder to create the pair representation.

It is important to note that we keep the word embedding static during training, so this op-
eration does not cause much overhead during training as we do not need to back-propagate
through it.

For this model, we use Numberbatch word embeddings [117], as unsupervised word embed-
ding representations, such as Glove [93] often provides noisy representations for semantic
relatedness. For example, [32] showed that standard word embeddings tend to cluster ac-
cording to the frequency of words in the unsupervised dataset. For this reason, [117] adopted
retro�tting. This technique aims to reduce the distance between word embeddings of entities
related to a knowledge base, i.e., ConcepNet.

7.2.1.2 Question-Candidate encoder

Similarly to [111] we encode the question and candidate independently using two single lay-
ers of CNN with a kernel size of 5 and global max pooling. This results in an embedding for
the question qe and the candidate ce. The two embeddings are combined using them in a pair
embedding, concatenating the element-wise multiplication of the two embeddings with their
di�erence, i.e., qce = [qe � ce; qe − ce]

7.2.2 Global optimization

Standard approaches take the pair representation qce and apply a feed-forward network that
outputs the score si for the pair (q, ci). However, this simple model cannot capture the inter-
dependencies between the candidates for the question q. Thus, it does not capture the global
structure of the rank.

In this work, to leverage the global structure of the rank, we make use of a Recurrent Neural
Network applied on top of the qce representations for each ci of a given question q. The
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resulting contextual representations q̂ce are passed to the feed-forward network (in our ex-
periments, we use a single layer to produce the �nal score).

Finally, similarly to [10], we apply a softmax function to the scores s1, .., sn of all the n
candidate answers of a given question. Then, we minimize the KL-divergence of the predicted
probabilities and the normalized gold labels. [10] proved that this approach could improve
the convergence speed of the model compared with point-wise approaches.

7.3 Experiments

7.3.1 Datasets

To align with previous works, we remove questions without answers, and we lowercase and
tokenize question and passages1. We used the following datasets:

WikiQA Questions are randomly sampled from the Bing search engine logs. The candidate
answers are the sentences that constitute the �rst paragraph of the related Wikipedia article.
Additionally, answers are concentrated in the �rst part of the paragraph.

SQuAD-sent For each question, the SQuAD dataset provides a paragraph and annotations
for the exact answer span. For the answer sentence selection task, we split the paragraph
into sentences using the SpaCy sentence tokenizer. The gold labels are inferred from the
answer spans, i.e., the sentence that contains the answer. Since the SQuAD test set is not
publicly available, we use the validation set for testing and 10% of the questions in training
set for validation. In contrast with our dataset, QNLI (the GLUE adaptation of SQuAD [137])
provides an even amount of positive and negative question/answer pairs, sampled from the
SQuAD dataset. This creates decontextualized sentences, which prevent to exploit the se-
quential structure. In contrast, we propose a dataset that maintains the original document
structure. Our models are evaluated using two metrics: precision at 1 (P@1) and Mean Re-
ciprocal Rank (MRR). The SQuAD dataset exhibits a much stronger lexical overlap between
question and answers passages. This e�ect can be noted in Tab. 7.1: the simple word-overlaps
count baseline, i.e., the number of unique words that appear in both question and passage,
achieves a P@1 of 65.48.

NQ-LA The Natural Question dataset uses question sampled from the Google search engine
logs. The questions are given to the annotators together with the retrieved Wikipedia page.
The annotator is asked to select (i) a long answer, i.e., the smallest HTML bounding box
containing all the information needed to answer the question, and (ii) a short answer (if
available), that is, the actual answer to the question. Although the dataset can be useful in
an industrial setting, we prefer to consider only paragraphs as long answers, thus removing
tables and lists. A paragraph is de�ned by the HTML bounding box <p >and <\p >. The
dataset has a similar answer distribution of the others, i.e., P@1 46.06% and MAP 57.30,

1Tokenization with SpaCy v2.1 https://spacy.io

https://spacy.io


Chapter 7. Encoding the Document Structure 89

Model MAP MRR

Baselines
RR 64.21 64.26
WO 51.02 51.24
WO+RR 68.25 69.43

Related Work w/o pre training
Tay, Tuan, and Hui [125] 71.20 72.70
Wang and Jiang [145] 74.33 75.45
Wang and Jiang [145]† 72.38 ±1.4 73.44 ±1.5
Sha et al. [114] 74.62 75.76
Bian et al. [10] 75.40 76.40

Related Word with pre-training
Yoon, Shin, and Jung [159] 83.40 84.80
Lai et al. [67] 85.70 87.20
Garg, Vu, and Moschitti [36] 92.00 93.30

Table 7.2: Related Work on WikiQA test-set. †We run the o�cial implementation with
di�erent random seeds.

even if the candidates are much longer (paragraphs). This may be considered surprising as a
Wikipedia page contains an average of 30.95 paragraphs of 98.76 words. We note that most
pages give essential information about an entity in the �rst paragraph, i.e., in the summary
paragraph. Similarly to SQuAD, the annotations for the test set of Natural Questions are
not publicly available. Therefore, we used the o�cial development set as our test set and a
portion of the validation training set.

7.3.2 Models and parameters

In our experiments, we used two di�erent encoder architectures: the newly proposed Cosinenet
and our re-implementation of the Compare-Aggregate CA architecture. The former uses
static numberbatch embeddings2 of size 300; the convolution hidden layer of size 300 and a
kernel of size 5. For the compare aggregate architecture, we use the standard parameters of
the original paper, but in contrast with it, we keep the embedding static as we empirically
found that it leads to similar results while having the highest number of trainable parame-
ters. For the RNN and the LSTM, we used the same hidden size as the input, i.e., double the
size of the convolutional operation hidden size. For the Bidirectional variations, i.e., BiRNN
and BiLSTM, we set the hidden size as half of the input size in each direction, resulting in a
comparable number of parameters.

All the models were trained for three epoch using slanted triangular learning rate scheduling
[46] without early stopping. In the case of the point-wise models, we used Adam optimizer
with a maximum learning rate set at 2e-3, whereas for the list-wise approaches, we used a
learning rate of 2e-4. All the experiments are performed on an Nvidia GTX 1080 ti GPU and
an Intel Core I9-7900X processor.

2https://github.com/commonsense/conceptnet-numberbatch

https://github.com/commonsense/conceptnet-numberbatch
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Model RNN MAP MRR params train-time

Baselines
RR - 64.21 64.26 - -
WO - 51.02 51.24 - -
WO + RR - 68.25 69.43 - -

Our Models
Cosinenet - 70.95± 0.6 72.86± 0.7 904k 6 sec
Cosinenetlist - 71.22± 0.2 73.07± 0.3 904k 5.5 sec
Cosinenetlist RNN 74.78± 0.6 76.35± 0.6 1.17M 7.5 sec
Cosinenetlist BiRNN 75.62± 0.8 77.13± 0.9 1.12M 8.9 sec
Cosinenetlist LSTM 74.31± 0.8 75.78± 0.9 1.99M 7 sec
Cosinenetlist BiLSTM 75.32± 0.6 76.85± 0.5 1.81M 9.5 sec
CA - 72.03± 1.6 73.39± 1.7 2.89M 19 sec
CAlist - 71.43± 1.0 73.55± 1.0 2.89M 18 sec
CAlist RNN 74.73± 1.0 76.35± 1.2 5.05M 20 sec
CAlist BiRNN 74.97± 1.2 76.44± 1.2 4.87M 21 sec
CAlist LSTM 74.82± 1.1 76.42± 1.2 11.53M 25 sec
CAlist BiLSTM 74.27± 1.0 75.74± 1.1 10.81M 25 sec
BERTbase - 81.32 82.50 110.00M 17 min 50 sec

Table 7.3: Model comparison on the WikiQA test-set.

Model RNN P@1 MRR params train-time

Baselines
RR - 30.55 53.53 - -
WO - 65.48 77.90 - -
WO + RR - 73.12 83.60 - -

Our Models
Cosinenet 86.18± 0.2 91.81± 0.1 904k 1 min 47 sec
Cosinenetlist 85.12± 0.1 91.16± 0.1 904k 8 min 10 sec
Cosinenetlist BiRNN 86.18± 0.2 91.97± 0.1 1.12M 12 min 30 sec
CA 85.71± 0.2 91.49± 0.1 2.89M 6min 30 sec
CAlist 85.17± 0.6 90.69± 1.0 2.89M 24 min 11 sec
CAlist BiRNN 86.32± 0.3 92.05± 0.2 4.87M 28 min 30 sec
BERTbase - 92.44 95.62 110.00M 6 hr 50 min

Table 7.4: Model comparison on the SQuAD sent test-set.

7.3.3 Results

Table 7.3 shows the results in the WikiQA dataset. The �rst block shows the baselines; these
models are computed using the simple features described in Section 7.1: the lexical overlap
and the reciprocal rank, both achieving results comparable with baseline CNN architectures.
The second block of results shows the performance of models from the literature that do
not use contextualized pretrained language models. The third section presents the results of
models that make use of both pretrained language models and transfer learning. In particular,
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Model RNN MAP MRR params train-time

Baselines
RR - 57.30 60.41 - -
WO - 38.09 39.57 - -
WO + RR - 53.98 56.45 - -

Our Models
Cosinenet 69.74 72.69 904k 1 hr 13 min
Cosinenetlist 68.16 71.06 904k 17 min
Cosinenetlist BiRNN 73.28 76.05 1.12M 34 min
CA 69.88 72.77 2.89M 5h 39min
CAlist 69.82 72.78 2.89M 2h
CAlist BiRNN 74.21 76.88 4.87M 2h 10 min

Table 7.5: Model comparison on the NQ-LA test-set.

[159] uses the ELMO language model and transfer learning on the QNLI dataset; [67] uses
BERT and performs transfer learning on the QNLI dataset, and [36] uses RoBERTa large and
performs transfer learning from he Natural Question dataset. Our approach’s performance
is shown in table 7.3: the Cosinenet architecture achieves comparable results compared with
the more complex compare aggregate framework while having much lower trainable param-
eters. Cosinenet and CA are the standard point-wise approach, trained on all the data using a
�xed batch size and binary cross-entropy (BCE).Cosinenetlist andCAlist are the same base
architecture but trained with a listwise approach, with KL-Divergence loss on all the question-
answer candidate pairs for the same question. We then analyzed what RNN architecture is
best suited for identifying the structure of the original rank. For both the Cosinenet and the
CA architecture, we found no statistical di�erence between the RNN and LSTM. However,
Bidirectional RNNs seems to outperform the other models consistently.

The same is true for the SQuAD dataset in Table 7.4. Our base architecture achieves com-
parable results with the more complex CA model. Additionally, adding the BiRNN to the
model further improves the results. It is important to note how simple semantic matching
models can achieve very high results on the task. In SQuAD, the lexical overlap feature is
more prominent than the global rank feature. Therefore the impact is given by the Global
Optimization with the BiRNN.

Finally, Table 7.5 shows the results of the bigger Natural Question dataset. Despite the di�er-
ent nature of the data, i.e., the candidates are paragraphs rather than sentences, our proposed
model improves the baselines in particular when combined with the BiRNN.

7.3.4 Performance analysis

From the experiments on all three datasets, the proposed architecture is more e�cient than
the compare aggregate architecture as it has much fewer parameters and a more e�cient
attention computation. On the small WikiQA dataset, the model takes up to 9.5 seconds to
train, achieving results comparable with the best models that do not use pretrained language
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models — in contrast, training BERT-base on the same dataset tasks requires 17 min and 50
sec. Additionally, our model has roughly 100x less trainable parameters than BERT-base. The
di�erence between the two models is more apparent when comparing the training time on
the SQuAD dataset. The BiRNN based Cosinenet trains in slightly more than 12 minutes,
which is much lower than the 6 hours and 50 minutes needed to train BERT-base on the same
task, and around half the time needed to train the Compare-Aggregate architecture.

7.4 Summary

In this work, we argue that by exploiting the original rank’s intrinsic structure and an e�ec-
tive word-relatedness encoder, we can achieve competitive results compared to the state of
the art while retaining high e�ciency. We �rst analyzed the structure of standard datasets,
highlighting the importance of the original rank’s global structure. Capitalizing on this, we
propose a model that both exploits the rank structure using a simple RNN and the standard
word-relatedness features, while preserving high e�ciency. The model uses around 1M pa-
rameters depending on the con�guration and achieves better results than the previous work
that does not use computationally expensive pre-trained language models. Our model takes
9.5 seconds to train on the WikiQA dataset, i.e., very fast compared to the ∼ 18 minutes re-
quired by a standard BERT-base �ne-tuning. On SQuAD, this di�erence is even higher, i.e.,
minutes vs. hours, required by Transformer-based models.



Chapter 8

Encoding the Task Structure

Community Question Answering (cQA) websites enable users to freely ask questions in web
forums and get some right answers in the form of comments from other users. Given many
question/answer pairs available on cQA sites, researchers started to investigate the possibility
of exploiting user-generated content for training automatic QA systems. Unfortunately, the
cQA scenario’s text is rather noisy; therefore, providing models that outperform the simple
bag-of-words representation can appear rather complicated.

The task of cQA is formalized as follows: given a new user question, qnew , and a set of forum
questions,Q, answered by a comment set,C , the main task consists in determining whether a
comment c ∈ C is a suitable answer to qnew or not. Interestingly, the task can be divided into
three sub-tasks, as shown in Fig. 8.1: given qnew , the main Task C is about directly retrieving
a relevant comment from the entire forum data. This can also be achieved by solving Task B
to �nd a similar question, qrel, and then executing Task A to select comments, crel, relevant
to qrel.

Figure 8.1: The 3 tasks of cQA at SemEval: the arrows show the relations between the new
and the related questions and the related comments.

Figure 8.1 shows the structure of the task. The three tasks of cQA are semantically connected
and follows a strict structure, i.e., if qnew and qrel are semantically equivalent than a good
comment crel for qrel is likely to be a good comments for qnew . Most systems have extensively
explored this relation at the Semeval 2016: Community Question Answering competition
[89], which used a pipeline approach for solving Task C by solving Task B and Task A. In
most cases, the pipeline approach outperformed the systems that were trying to solve Task C
directly. One of the reasons for this may be due to the fact that between qnew and crel there
is less lexical overlap than between qrel and crel.
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Another result of the Semeval competition is that traditional feature-based approaches and
Structured Tree Kernel-based architectures outperform most neural network approaches to
cQA. One reason for that comes from the fact that high-quality data for cQA is challenging
to collect; hence, a dataset to e�ectively train neural architectures is expensive.

Finding a general solution to data scarcity for any task is an open issue; however, we can alle-
viate it for some classes of applications by using multi-task learning (MTL). Recent work has
shown that it is possible to jointly train a general system for solving di�erent tasks simultane-
ously. For example, [25] used MTL to train a neural network for carrying out many sequence
labeling tasks (e.g., pos-tagging, named entity recognition, etc.), whereas [73] trained a DNN
with MTL to perform multi-domain query classi�cation and reranking of web search results
with respect to user queries.

The above work has shown that MTL can be e�ectively used to improve NNs by leveraging
di�erent data kinds. However, the obtained improvement over the base DNN was limited
to 1-2 points, raising the question if this is the kind of enhancement we should expect from
MTL. Analyzing the di�erent tasks involved in the model by [73], it appears that query clas-
si�cation provides little and very coarse information to the document ranking task. Indeed,
although the vectors of queries and documents lie in the same space, the query classi�er only
chooses between four di�erent categories, restaurant, hotel, �ight and nightlife, whereas the
documents can potentially span in�nite subtopics.

In this chapter, we conjecture that when MTL tasks are more semantically connected, more
considerable improvement can be obtained. More speci�cally, MTL can work more e�ectively
when we can encode the instances from di�erent tasks using the same representation layer
expressing similar semantics.

Given the above setting, we de�ne an MTL model that solves Task C, learning at the same
time the auxiliary tasks A and B. Considering that (i) qnew and qrel have the same nature and
(ii) comments tend to be short. Their text is comparable to one of the questions,1 we could
model a signi�cant, shared semantic representation. Indeed, our experiments with the data
from SemEval 2016 Task 3 [90] show that our MTL approach improves the single DNN for
solving Task C by roughly 8 points in MAP (almost 20% of relative improvement). Finally,
given the strong connection between the objective functions of the DNNs, we could train our
network with the three di�erent tasks simultaneously, performing a single forward-backward
operation over the network.

8.1 Our MTL model for cQA

MTL aims to learn several related tasks simultaneously to improve some (or possibly all)
tasks using joint information [17]. MTL is particularly well-suited for modeling Task C as
it is a composition of tasks A and B; thus, it can bene�t from having both questions qnew
and qrel in input better model the interaction between the new question and the comment.

1In cQA domains, these are typically longer than standard questions, i.e., up to few paragraphs containing sub-
questions and an introduction.



Chapter 8. Encoding the Task Structure 95

Figure 8.2: Our MTL architecture for cQA. Given the input sentences qnew , qrel and crel (at the
bottom), the NN passes them to the sentence encoders. Their output is concatenated into a new vector,
hj , and fed to a hidden layer, hs, whose output is passed to three independent multi-layer perceptrons.
The latter produce the scores for the individual tasks.

More precisely, it can use the triplets, 〈qnew, qrel, crel〉, in the learning process, where the
interaction between the triplet members is exploited during the joint training of the three
models for the tasks A, B, and C.

A better model for question-comment similarity or question-question similarity can lead to
a better model for new question-comment similarity (Task C).

Additionally, each thread in the SemEval dataset is annotated with the labels for all the three
tasks, and therefore it is possible to apply joint learning directly (using a global loss) rather
than training the network by optimizing the loss of the three single tasks independently.
Note that, in previous work [25, 73], each input example was annotated for only one task,
and training the model required to alternate examples from the di�erent tasks.

8.1.1 Joint Learning Architecture

Our joint learning architecture is depicted in Figure 8.2, it takes three pieces of text as input,
i.e, a new question, qnew , the related question, qrel, and its comment, crel, and produces three
�xed size representations, xqnew

, xqrel andxcrel , respectively. This process is performed using
the sentence encoders, xd = f(d, θd), where d is the input text and θd is the set of parameters
of the sentence encoder. In previous work, di�erent sentence encoders have been proposed,
e.g., Convolutional Neural Networks (CNNs) with max-pooling [59, 109] and Long-short term
memory (LSTM) networks [45].

We concatenate the three representations, hj = [xqnew , xqrel , xcrel ], and fed them to a hidden
layer to create a shared input representation for the three tasks, hs = σ(Whj + b). Next, we
connect the output of hs to three independent Multi-Layer Perceptrons (MLP), which produce
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Task A Task B Task C
Train 37.51% 39.41% 9.9%

Train + ED 37.47% 64.38% 21.25%
Dev 33.52% 42.8% 6.9%
Test 40.64% 33.28% 9.3%

Table 8.1: Percentage of positive examples in the training datasets for each task.

the scores for the three tasks.

At training time, we compute the global loss as the sum of the individual losses for the three
tasks for each example, where each loss is computed as binary cross-entropy.

8.1.2 Shared Sentence Models

The SemEval dataset contains ten times less new questions than related questions by con-
struction. However, all questions have the same nature (i.e., generated by forum users), thus,
we can share the parameters of their sentence models as depicted in Figure 8.2. Formally, let
xd = f(d, θ) be a sentence model for a text, d, with parameters, θ, i.e., the embedding weights
and the convolutional �lters: in a standard setting, each sentence model uses a di�erent set
of parameters θqnew , θqrel and θcrel . In contrast, our proposed sentence model encodes both
the questions, qnew and qrel, using the same set of parameters θq .

8.2 Experiments

8.2.1 Setup

Dataset: the data for the tasks mentioned above are distributed in three datasets for Task A,
which contains 6, 938 related questions and 40, 288 comments. Each comment in the dataset
was annotated with a label indicating its relevancy to its thread question. Task B, which
contains 317 new questions. For each new question, ten related questions were retrieved,
summing to 3, 169 related questions. In this case, the related questions were annotated with
a relevancy label, which tells if they are relevant to the new question. Task C contains 317 new
questions, together with 3, 169 related questions (same as in Task B) and 31, 690 comments.
Each comment was labeled with its relevancy with respect to the new question. Each of the
three datasets is, in turn, divided into training, dev. and test sets.

Table 8.1 reports the label distributions with respect to the di�erent datasets. The data for
Task C presents a higher number of negative than positive examples. Thus, we automatically
extended the set of positive examples in our joint MTL training set using Task A data. More
speci�cally, we take the pair (qrel, crel) from the training set of Task A and create the triples,
(qrel, qrel, crel), where the label for question-question similarity is positive, and the labels
for Task C are inherited from those of Task A. We ensured that the questions in the extended
data (ED) generated from the training set do not overlap with questions from the dev. and
test sets. The resulting training data contains 34, 100 triples: its relevance label distribution
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Model MAP MRR
LSTM 43.91 49.28
CNN 44.43 49.01
CNN Train 44.43 49.01
CNN Train + ED3

44.77 52.07

Table 8.2: Impact of CNN vs. LSTM sentence models on the baseline network for Task C.

is shown in the row, Train + ED, of Table 8.1. 2

Pre-processing: we tokenized and put both questions and comments in lowercase. More-
over, we concatenated the question subject and body to create a unique question text. For
computational reasons, we limited the document size to 100 words. This did not cause any
degradation in accuracy.

Neural Networks: we mapped words to embeddings of size 50, pre-initializing them with
standard skip-gram embeddings of dimensionality 50. The latter embeddings were trained
on the English Wikipedia dump using word2vec toolkit [82]. We encoded the input sentence
with a �xed-sized vector, whose dimensions are 100, using a convolutional operation of size
�ve and a k-max pooling operation with k = 1. Table 8.2 shows the results of our preliminary
experiments with the sentence models of CNN and LSTM, respectively, on the dev. set of
Task C. In our further experiments, we opted for CNN since it produced a better MAP and is
computationally more e�cient.

For each MLP, we used a non-linear hidden layer (with hyperbolic tangent activation, Tanh),
whose size is equal to the previous layer’s size, i.e., 100. We included information such as
word overlaps [130] and rank position as embeddings with an additional lookup table with
vectors of size dfeat = 5. The rank feature is provided in the SemEval dataset and describes
the position of the questions/comments in the search engine output.

Training: we trained our networks using SGD with shu�ed mini-batches using the rmsprop
update rule [127]. We set the training to iterate until the validation loss stops improving, with
patience p = 10, i.e., the number of epochs to wait before early stopping, if no progress on
the validation set is obtained.

We added dropout [118] between all the layers of the network to improve generalization and
avoid co-adaptation of features. We tested di�erent dropout rates (0.2, 0.4) for the inputs and
(0.3, 0.5, 0.7) for the hidden layers obtaining better results with the highest values, i.e., 0.4
and 0.7.

8.2.2 Results

Table 8.3 shows the results of our individual and MTL models, in comparison with the Random
and IR baselines of the challenge (�rst two rows), and the SemEval 2016 systems (rows 3–12).

2We make out MTL data available at
http://ikernels-portal.disi.unitn.it/repository/

3Extended Dataset for Task C computed using questions from Task A.

http://ikernels-portal.disi.unitn.it/repository/
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Model DEV TEST
MAP MRR MAP MRR

Random - - 15.01 15.19
IR Baseline - - 40.36 45.83
SUper-team - - 55.41 61.48
KeLP - - 52.95 59.23
SemanticZ - - 51.68 55.96
MTE-NN - - 49.38 51.56
ICL00 - - 49.19 53.89
SLS - - 49.09 55.98
ITNLP-AiKF - - 48.49 55.21
ConvKN - - 47.15 51.43
ECNU - - 46.47 51.41
UH-PRHLT - - 43.20 47.79
〈qnew, crel〉 44.77 52.07 41.95 47.21
〈qnew, qrel, crel〉 45.59 51.04 46.99 55.64
〈qnew, qrel, crel〉 + ↔ 47.82 53.03 46.45 51.72
MTL (BC) 47.80 52.31 48.58 55.77
MTL (AC) 46.34 51.54 48.49 54.01
MTL (ABC) 49.63 55.47 49.87 55.73
MTL + one feature - - 52.67 55.68

Table 8.3: Results on the validation and test set for the proposed models

Rows 13-15 illustrate the results of our models when trained only on Task C. 〈qnew, crel〉
corresponds to the basic model, i.e., the single network, whereas the 〈qnew, qrel, crel〉 model
only exploits the joint input, i.e., the availability of qrel. Rows 16-18 report the MTL models
combining Task C with the other two tasks. The di�erence with the previous group (rows
13-15) is in the training phase, which is also operated on the instances from tasks A and B.

We note that: (i) the single network for Task C cannot compete with the challenge systems,
as it would be ranked at the last position, according to the o�cial MAP score (test set result);
(ii) the joint representation, 〈qnew, qrel, crel〉, highly improves the MAP of the basic network
from 41.95 to 46.99 on the test set. This con�rms the importance of having highly related tasks
using input encoding closely related semantics. (iii) The shared sentence model for qnew and
qrel (indicated with ↔) improves MAP on the dev. set only. (iv) The MTL (ABC) provides
the best MAP, improving BC and AC by 1.29 and 1.38, respectively. Most importantly, it
also improves, 〈qnew, qrel, crel〉 by 2.88 points, i.e., it improves the best model using the joint
representation and no training on the auxiliary tasks.

Additionally, our full MTL model would have ranked 4th on Task C of the SemEval 2016
competition.

This is an essential result since all the challenge systems use many manually engineered
features, whereas our model does not (except for the necessary initial rank). If we add the
most powerful feature used by the top systems to our model, i.e., the weighted sum between
the score of the task A classi�er and the Google rank [80, 35], our system would achieve a
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MAP of 52.67, i.e., very close to the second system.

Finally, we do not report the results of the additional tasks for lack of space and also because
our idea of using MTL is to improve the target Task C. Indeed, by their de�nition, tasks A and
B are simpler than C and are designed for solving it. Thus, attempting to improve the more
straightforward A and B tasks by solving the more complex Task C, although interesting,
looks less realistic. Indeed, we did not observe any important improvement of tasks A and B
in our MTL setting.

8.3 Related Work

The work related to cQA spans two major areas: question and answer passage retrieval.
Hereafter, we report some important research about them and then conclude with speci�c
work on MTL.

Question-Question Similarity. Early approaches to question similarity used statistical
machine translation techniques, e.g., Jeon, Croft, and Lee, Zhou et al. [51, 164], to measure
the similarity between questions. Language models for question-question similarity were
explored by Cao et al. [16], who incorporated information from the category structure of
Yahoo! Answers when computing similarity between two questions. Instead, Duan et al. [30]
proposed an approach that identi�es the topic and focuses on questions, and computes their
similarity.

Ji et al. [52] and Zhang et al. [163] learned a probability distribution over the topics that gen-
erate the question/answers pairs with LDA and used it to measure the similarity between
questions. Recently, Da San Martino et al. [28] showed that e�ectively combining tree ker-
nels (TKs) with text similarity features can improve the results over strong baselines such as
Google.

Question-Answer Similarity: Yao et al. [153] used a conditional random �eld trained on a
set of powerful features, such as tree-edit distance between the question and answer trees.
Heilman and Smith [42] used a linear classi�er exploiting syntactic features to solve di�er-
ent tasks such as recognizing textual entailment, paraphrases, and answer selection. Wang,
Smith, and Mitamura [144] proposed Quasi-synchronous grammars to select short answers
for TREC questions. Wang and Manning [142] used a probabilistic Tree-Edit model with
structured latent variables for solving textual entailment and question answering. Severyn
and Moschitti [112] proposed SVM with tree kernels to learn structural patterns between
questions and answers encoded in the form of shallow syntactic parse trees, whereas, in Ty-
moshenko, Bonadiman, and Moschitti, Barrón-Cedeño et al. [131, 7] the author’s used TKs
and CNNs to rank comments in web forums, achieving state of the art on the SemEval cQA
challenge. Wang and Nyberg [140] trained an extended short-term memory model for select-
ing answers to TREC questions.

Finally, a recent work close to ours is Guzmán, Màrquez, and Nakov [40], which build a
neural network for solving Task A of SemEval. However, this does not approach the problem
as MTL.
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Relatedwork onMTL:A good overview of MTL, i.e., learning to solve multiple tasks using a
shared representation with mutual bene�t, is given in [17]. Collobert and Weston [25] trained
a convolutional NN with MTL, which, given an input sentence, could perform many sequence
labeling tasks. They showed that jointly training their system on di�erent tasks, such as
speech tagging, named entity recognition, etc., signi�cantly improves the performance on
the main task, i.e., semantic role labeling, without requiring hand-engineered features.

Liu et al. [73] is the closest work to ours. They used multi-task deep neural networks to map
queries and documents into semantic vector representations. This representation is later
used in two tasks: query classi�cation and question-answer reranking. Their results showed
a competitive gain over strong baselines. Our work presented an architecture that can also
exploit the joint representation of questions and comments, given the strong interdependen-
cies among the di�erent SemEval Tasks.

8.4 Summary

We proposed an MTL architecture for cQA, where we could exploit the structure of auxiliary
tasks, which are highly semantically connected with our main task. This enabled using the
same semantic representation to encode the text objects associated with all the three tasks,
i.e., new questions, related questions, and comments. Our shared semantic representation
provides an essential advantage over previous MTL applications, whose subtasks share a less
consistent semantic representation.

Our experiments on the dataset of SemEval 2016 Task 3 show that our MTL approach rela-
tively improves the individual DNNs by almost 20%. This is due to the shared representation
and training on the instances of the two auxiliary tasks.



Part IV

Conclusion and Future Work





Chapter 9

Conclusion

In this thesis, we propose an e�cient solution for the task of Answer Sentence Selection (A2S).
This is achieved by exploring di�erent aspects of the task: the local structure of question and
answer pairs, and the global structure. We refer to local structure as the syntactic structure of
the question and the answer candidate, and the inter-sentence relational structure among the
constituent of both sentences. In contrast, global structure includes features that are external
to individual question-candidate pairs — for example, the structure of the original document
that contains the answer candidate in context.

To this end, (i) in Chapter 4, we analyzed the di�erences between fast CNN architectures
and Structural Tree Kernel approaches at modeling syntactic and relational information we
proposed a solution for combining the two approaches obtaining competitive results on A2S.
The result suggests that the two machine learning approaches learn di�erent types of fea-
tures from the input text. Capitalizing on this result, (ii) in Chapter 5, we used a teacher-
student approach to inject syntactic and relational information of CTK architecture in an
e�cient Relational Neural Network. The resulting CNN model outperforms both the indi-
vidual architectures. This result has multiple implications: it shows that we can capitalize
on the fact that CTK architecture provides competitive results in a data scarcity regime, and
that CNN architectures can implicitly encode the structural information of Tree-Kernels. (iii)
Chapter 6 proposes a novel neural network architecture, the Cosinenet, that capitalize on
ad-hoc retro�tted relational word embeddings to improve the capabilities of the network to
encode inter-sentence relational structure. The proposed model achieves performances that
are comparable with attention-based architectures while maintaining a limited number of
parameters.

Finally, in Chapter 7, (iv) we presented a solution for encoding the document structure in
A2S architecture. In particular, we propose extending standard point-wise A2S architectures
with a component capable of encoding the global structure, i.e., a biRNN that takes as input
all the question-candidate representations for the same question. We trained the model using
list-wise learning to rank strategy obtaining consistent improvements over the point-wise
counterparts. Moreover, we show that this simple modi�cation to the architecture can lead
to consistent improvements when combined with e�cient architectures with little increase in
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the parameters. In particular, we show that adding the document structure and listwise train-
ing to the Cosinenet architecture of Section 6 greatly increases its accuracy, outperforming
all the other e�cient approaches to the task. Additionally, we show that the proposed model
can process up to 700 questions per second during training on a single GPU. In perspective,
the more general architecture of BERT can process just six questions per second on the same
GPU.

Additionally, in Chapter 8, we studied one aspect of the Global structure: the structure of the
task of community Question Answering (cQA). In cQA, short text reranker, that are the basic
models for A2S, can be applied to three di�erent sub-tasks: (A) selecting the best answer to
a user question from a thread in a forum, (B) selecting a relevant question to a new question,
and (C) identifying the best answer to the new question. We show that not only task (C) is
logically derived by the output for tasks (B) and (A), but that task (A) is semantically connected
to the task (C) as it learns similar features. Therefore, we presented a novel architecture for
task C, based on Relational CNNs, that learns to solve all the three sub-tasks simultaneously
in a multi-task learning framework, e�ectively – and e�ciently – encoding the task structure
of cQA.

9.1 Future Work

In this thesis, we show that creating specialized architecture for the task of A2S is a funda-
mental step to achieve competitive results without exponentially increase the computational
cost of the model. Although we proposed a model that outperforms all other e�cient models
for A2S, pretrained transformer architectures, such as BERT, are still unmatched. Moreover,
BERT does not use any global structure, relying on features extracted by individual QA pairs.

In the future, we plan to extend BERT with global structural information. However, this
advancement is currently limited by the current generation of GPUs, as BERT requires a con-
siderable amount of memory during training, and it cannot process all the answer candidates
for a single question at the same time.

On the other end, we plan to capitalize on the novelties introduced by the BERT architec-
ture to improve e�cient Neural Network architectures’ performances further. We want to
explore the possibility of pretraining the Cosinenet on related (possibly unsupervised) tasks.
In particular, we would like to use unsupervised tasks for pretraining the neural network
component that captures the document structure of sentences in the original document.
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