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Abstract

First we study in detail the tensorization properties of weak gradients in metric mea-
sure spaces (X, d,m). Then, we compare potentially different notions of Sobolev space
H1,1(X, d,m) and of weak gradient with exponent 1. Eventually we apply these results
to compare the area functional

∫
√

1 + |∇f |2
w
dm with the perimeter of the subgraph of

f , in the same spirit as the classical theory.

1 Introduction

The aim of this paper is the investigation of some fine analytic questions related to the theory
of weak gradients in metric measure spaces. One of our motivations has been the study of
the area functional

A(f) =

∫

X

√

1 + |∇f |2w dm

in metric measure spaces (X, d,m), where |∇f |w denotes a suitable notion of weak gradient
induced by the metric measure structure. In the metric measure setting, the functional
A has been an object of investigation in the recent paper [HKL], see also [HKLL14] for
generalizations. In the classical theory, it is well known that A corresponds to the surface
area of the subgraph

Ef :=
{

(x, t) ∈ X × R : t < f(x)
}

of f . One of the aims of this paper is to investigate to what extent this correspondence
holds also in metric measure spaces. The question makes sense, because by now there is
a well established theory of BV functions and sets of finite perimeter in metric measure
spaces, initiated in [Mi] (see also [AmDi], [KLS13] for more recent developments). This
theory provides, among other things, a canonical definition of surface area for sets of finite
perimeter, see Section 2.5 for details.

Heuristically, the representation of A(f) as surface area of a subgraph seems to be closely
related to a tensorization property of the weak gradients in the product metric measure
structure, where one of the factors is simply the Euclidean real line endowed with the Lebesgue
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measure L 1. Specifically, we mean the following: if (X, dX ,mX) and (Y, dY ,mY ) are the
factors, then for the metric measure structure

(

X × Y,
√

d2X + d2Y ,mX ×mY

)

the weak gradient (for the sake of simplicity we ignore in this introduction its potential
dependence on the integrability exponent) should satisfy

|∇f(x, y)|2w = |∇f(·, y)|2w(x) + |∇f(x, ·)|2w(y) for mX ×mY -a.e. (x, y) ∈ X × Y . (1.1)

There exist many properties that are easily seen to be stable under tensorization: com-
pactness, properness, completeness, separability, length and geodesic properties, doubling,
Poincaré inequalities, etc. As a matter of fact, although there are heuristic arguments sug-
gesting that tensorization should always be true for the weak gradients (see Proposition 3.1,
dealing with Euclidean spaces endowed with general norms), this question has not been much
investigated so far. In [AGS11b] the tensorization property has been proved assuming a cur-
vature lower bound on the factors (X, dX ,mX), (Y, dY ,mY ) and the quadratic structure of the
Cheeger energy. In Section 3 we refine the analysis of [AGS11b] and we prove three results, all
independent of curvature assumptions (with the first and third also independent of doubling
and Poincaré assumptions, the first and the second independent of quadraticity assumptions):
(a) The weak gradient |∇f |w in the product structure always coincides with the L2(X ×
Y,mX ×mY ) relaxation of the squared “cartesian” slope

|∇f |2c(x, y) := |∇f(·, y)|2(x) + |∇f(x, ·)|2(y),

starting from the class of locally Lipschitz functions (here |∇g| is the slope, or local Lipschitz
constant, defined in (2.1)), see Theorem 3.2.
(b) Using (a), we show that if the factors are doubling and satisfy a (1, 2)-Poincaré inequality,
then (1.1) holds, see Theorem 3.4. Although we follow a different path for the proof, it
might be that this result could also be obtained starting from Proposition 3.1 using Cheeger’s
differentiable structure and a suitable notion of product of Cheeger’s charts. We also prove
a more refined result, namely if f ∈ L2(X × Y,mX × mY ) satisfies f(·, y) ∈ H1,2(X, dX ,mX)
for mY -a.e. y ∈ Y , f(x, ·) ∈ H1,2(Y, dY ,mY ) for mX-a.e. x ∈ X and

∫

X

∫

Y
|∇f(x, ·)|2w dmY dmY (x) +

∫

Y

∫

X
|∇f(·, y)|2w dmXdmY (y) < ∞,

then f ∈ H1,2(X × Y,
√

d2X + d2Y ,mX ×mY ).

(c) If the factors are strongly asymptotically Hilbertian, meaning that
∫

X |∇f |2 dmX and
∫

Y |∇g|2 dmY are quadratic forms on locally Lipschitz functions, then the tensorization prop-
erty (1.1) holds, see Theorem 3.5.

Section 4 is devoted to the analysis of the Sobolev space H1,1(X, d,m). We define
H1,1(X, d,m) in the spirit of the BV theory, considering those functions whose total vari-
ation |Df | is absolutely continuous w.r.t. m, and which are H1,1 along almost every curve
(in the sense of [AGS11a]). Then, in Theorem 4.3 we compare this definition with the other
ones already considered in the literature. An interesting fact is that, even though under
doubling and (1, 1)-Poincaré the spaces are the same, the associated notions of weak gradient
do not coincide (even though they are comparable, see (4.9) and (4.10)), see [HKLL14] and
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Remark 4.4. More precisely, the gradient |∇f |∗,1 singled out by the BV theory can be ap-
proximated only in the sense of measures by slopes of Lipschitz functions (see (2.15)) and, by
construction, it gives rise to a functional f 7→

∫

X |∇f |∗,1 dm which is lower semicontinuous on
locally Lipschitz functions. On the other hand, the gradient |∇f |w,1 singled out by the theory
of functions absolutely continuous along Mod1-a.e. curve enjoys a stronger approximation
property (see Proposition 4.5 for the simple proof) but, in general, it fails to give raise to a
lower semicontinuous functional f 7→

∫

|∇f |w,1 dm.
Finally, in Section 5 we prove upper and lower bounds for the perimeter of Ef , even for

f ∈ BV (X, d,m). For f ∈ H1,1(X, d,m), under the doubling and (1, 1)-Poincaré assumptions
we get

∫

B

√

1 + |∇f |2∗,1 dm ≤ P (Ef , B × R) ≤
∫

B

√

1 + |∇f |2w,1 dm

for any Borel set B ⊂ X, so that equalities hold if and only if the two notions of gradient
coincide for the metric measure structure. Besides the case of asymptotically Hilbertian
metric measure spaces with a curvature lower bound (see [GiHa], which are the so-called
RCD(K,∞) spaces introduced in [AGS11b]), we are not aware of conditions ensuring the
coincidence m-a.e. of the two gradients.

Acknowledgements. We would like to thank N. Shanmugalingam for helpful hints on the
theory of weak gradients in the critical case p = 1. The authors acknowledge the support of
the grant ERC ADG GeMeThNES. The second author has been partially supported by the
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA)
of the Istituto Nazionale di Alta Matematica (INdAM).

2 Notation and preliminary results

We assume that all metric measure spaces (X, d,m) are complete and separable, that m is a
finite Borel measure and that the support of m is the whole space X.

We denote by L d the Lebesgue measure in R
d. We say that f : X → R is locally Lipschitz

if all its restrictions to bounded sets are Lipschitz. The slope (or local Lipschitz constant) of
f : X → R is defined by

|∇f |(x) = lim sup
y→x

|f(y)− f(x)|
d(y, x)

. (2.1)

2.1 Doubling and Poincaré inequality

We say that (X, d,m) is doubling if there exists a constant C > 0 satisfying

m(B2r(x)) ≤ Cm(Br(x)) ∀x ∈ X, r > 0. (2.2)

Given p ∈ [1,∞), we say that the (1, p)-Poincarè inequality holds for Lipschitz functions
if, for all open balls Br(x) ⊂ X, one has

∫

Br(x)
|f − fx,r| dm ≤ cr

(
∫

Bλr(x)
|∇f |p dm

)1/p

∀f ∈ Liploc(X) (2.3)

for suitable c ≥ 0 and λ ≥ 1 independent of Br(x) (here −
∫

A denotes the averaged integral
on a Borel set A and fx,r = −

∫

Br(x)
f). In the sequel we say that a constant is structural if it

depends only on the doubling constant in (2.2) and the constants c, λ and the exponent p in
(2.3).
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2.2 Maximal functions and approximate continuity

Given g ∈ L1(X,m) nonnegative, we define

Mrg(x) := sup

{

∫

Bs(x)
g dm : s ∈ (0, r)

}

x ∈ X, r ∈ (0,∞]. (2.4)

More generally, if µ is a finite Borel measure, we define

Mrµ(x) := sup

{

µ(Bs(x))

m(Bs(x))
: s ∈ (0, r)

}

x ∈ X, r ∈ (0,∞], (2.5)

so that Mr(gm) = Mrg.
For doubling metric measure spaces (X, d,m) we will need the weak L1 estimate for the

maximal function; we need it in the stronger form, for M∞:

m

(

{M∞µ > λ}
)

≤ c
µ(X)

λ
∀λ > 0. (2.6)

The constant c in (2.6) depends only on the doubling constant of (X, d,m). For absolutely
continuous measures we will also use the more refined estimate

lim
λ→∞

λm
(

{M∞g > λ}
)

= 0. (2.7)

This asymptotic version follows by (2.6), taking the inclusion

{M∞g > 2λ} ⊂ {M∞(g − λ)+ > λ)}

into account.
Using maximal functions, and under the doubling assumption, one can prove the existence

of approximate limits of functions f ∈ L1(X,m): the approximate limit f̃(x) at x is defined
by the property

lim
r↓0

∫

Br(x)
|f(y)− f̃(x)| dm(y) = 0.

Points where the approximate limit exists are called approximate continuity points. It turns
out that the approximate limit exists m-a.e. in X and that f̃(x) = f(x) for m-a.e. x ∈ X
(notice that the first function is pointwise defined in its domain, while the latter belongs to
a Lebesgue equivalence class).

2.3 Pseudo gradients and Cheeger energies

In this section we recall the basic facts of the theory of relaxed gradients. As we will see,
even though the initial class of functions is a priori chosen to be the class of locally Lipschitz
functions, it is sometimes technically useful to consider objects different from the slope in the
relaxation process; for instance in Cheeger’s paper [Chee] upper gradients were used; while
in [AGS12, Section 8.3] and [AmCoDi] the so-called asymptotic Lipschitz constant was used,
and proved to be technically useful. See also [GoTr] for a closely related axiomatization.

Definition 2.1 (Pseudo gradient) We call a function G on Liploc(X) with values into
nonnegative Borel functions a pseudo gradient if the following properties hold:
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(i) G is positively 1-homogeneous, i.e. G(tf) = tG(f) for all t ≥ 0;

(ii) G is convex;

(ii) for some constant C,

G(χu+ (1− χ)v) ≤ χG(u) + (1− χ)G(v) + CLip(χ)|u− v|

for all u, v, χ ∈ Liploc(X), 0 ≤ χ ≤ 1.

The main example of pseudo gradient is the slope in (2.1), other examples are for instance
the one-sided slopes

|∇+f |(x) = lim sup
y→x

(f(y)− f(x))+

d(y, x)
, |∇−f |(x) = lim sup

y→x

(f(y)− f(x))−

d(y, x)
,

or the cartesian slope in product spaces, see (3.3) below.
Given a pseudo gradient G, the Cheeger energy ChG : L2(X,m) → [0,∞] associated to G

is defined by

ChG(f) := inf

{

lim inf
h→∞

∫

X
G2(fh) dm : fh ∈ Liploc(X), fh → f in L2(X,m)

}

,

with the convention inf ∅ = ∞. We shall denote by Ch the “canonical” Cheeger energy
associated to the slope and define

H1,2(X, d,m) :=
{

f ∈ L2(X,m) : Ch(f) < ∞
}

.

We call u ∈ L2(X,m) a G-relaxed slope of f if there exists Lipschitz functions fn satisfying
fn → f strongly in L2(X,m) and G(fn) → v weakly in L2(X,m), with v ≤ u m-a.e. in X.

The following results collect the main facts about Cheeger energies and G-relaxed slopes;
although the results in [Chee] and [AGS11a] are not stated in terms of pseudo-gradients, their
proof extend with no change to this more general framework.

Theorem 2.2 For any f ∈ L2(X,m) and any pseudo gradient G the following properties
hold.

(i) The collection of G-relaxed slopes of f is a convex closed set, possibly empty.

(ii) If the collection of G-relaxed slope is not empty, its element with minimal norm |∇f |∗,G
satisfies

|∇f |∗,G ≤ u m-a.e. in X for any G-relaxed slope u. (2.8)

Furthermore, |∇f |∗,G can be obtain as the strong L2(X,m) limit of a sequence G(fn),
with fn locally Lipschitz and fn → f in L2(X,m).

(iii)
√
ChG is a convex lower semicontinuous functional in L2(X,m), positively 1-homogeneous

and even if G is even. In addition, ChG(f) < ∞ if and only if the collection of G-relaxed
slopes is not empty. In this case,

ChG(f) =

∫

X
|∇f |2∗,G dm.
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We call |∇f |∗,G the minimal relaxed slope and, as we did for Ch, denote by |∇f |∗, the
“canonical” one associated to G(f) = |∇f |.

Recall that the subdifferential of a convex lower semicontinuous functional Φ : H →
(−∞,+∞] in a Hilbert space is defined, at any point u such that Φ(u) < ∞, by

∂Φ(u) := {ξ ∈ H : Φ(v) ≥ Φ(u) + 〈ξ, v − u〉 ∀v ∈ H} .

Now, denoting by ∆G the element with minimal norm in the subdifferential of ChG, one can
use the inequality

|∇(f + ǫg)|∗,G ≤ |∇f |∗,G + ǫ|∇g|∗,G m-a.e. in X, for all ǫ > 0,

which is a simple consequence of the convexity and homogeneity of G, to prove the follow-
ing integration by parts formula, see for instance [AGS11a, Proposition 4.15] (the second
part of the proposition, dealing with the equality cases, uses also the chain rule [AGS11a,
Proposition 4.8]).

Proposition 2.3 For all u ∈ D(ChG) and all v ∈ D(ChG) such that ∂ChG(v) is not empty,
one has

−
∫

u∆Gv dm ≤
∫

|∇u|∗,G|∇v|∗,G dm, (2.9)

with equality if u = φ(v) with φ : R → R Lipschitz, continuously differentiable and nonin-
creasing.

In Section 5 we will need to consider the Cheeger energy and associated weak gradient
for a measure finite on bounded sets; these are defined in the same way as for the finite case.
Locality of the weak gradients allows us to generalize statements about pointwise behaviour
also to this case (arguing as in ). The assumption that m is finite is not necessary in the
following fundamental result obtained, among other things, in [Chee].

Theorem 2.4 (Minimal relaxed slope coincides m-a.e. with the slope) Assume that
(X, d,m) is doubling and that (1, 2)-Poincaré holds for locally Lipschitz functions. Then

|∇f | = |∇f |∗ m-a.e. in X, for all f ∈ Liploc(X) ∩H1,2(X, d,m).

On X = R
d endowed with the distance induced by a norm ‖ · ‖ and with the Lebesgue

measure m = L d, it is easily seen that (for f smooth or locally Lipschitz)

Ch(f) =

∫

X
‖∇f‖2∗ dm, (2.10)

where ‖ · ‖∗ is the dual norm and ∇f is the canonical Euclidean gradient. Hence, Ch is a
quadratic form if and only if ‖ · ‖ is induced by a scalar product. As in [Gi12], this motivates
two possible definition of spaces which are “Hilbertian on small scales”.

Definition 2.5 (Strongly asymptotically Hilbertian m.m.s.) We say that (X, d,m) is
strongly asymptotically Hilbertian if f 7→

∫

X |∇f |2 dm is a quadratic form on Liploc(X).

Definition 2.6 (Asymptotically Hilbertian m.m.s.) We say that (X, d,m) is asymptot-
ically Hilbertian if Ch is a quadratic form on L2(X,m).
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Proposition 2.7 Any strongly asymptotically Hilbertian space is asymptotically Hilbertian.
If doubling and (1, 2)-Poincaré inequality hold, then the two properties are equivalent.

Proof. The first statement is a simple consequence of the fact that the lower semicontinuous
relaxation of a quadratic form is still a quadratic form. The second one follows by Theorem 2.4.

�

2.4 Quadratic forms

Let H be a separable Hilbert space and let Q : H → [0,∞] be a lower semicontinuous
quadratic form. We shall denote by A the associated bilinear form on D(Q) = {Q < ∞},
namely

A(u, v) =
1

4

(

Q(u+ v)−Q(u− v)
)

u, v ∈ D(Q).

Assuming D(Q) to be dense in H, we shall also denote by L the possibly unbounded operator
whose domain D(L) consists of all u ∈ D(Q) satisfying

A(u, v) = 〈w, v〉 ∀v ∈ D(Q) (2.11)

for some w ∈ H. Since the density of D(Q) in H ensures that w is uniquely determined by
(2.11) we can set w = Lu, so that

A(u, v) = 〈Lu, v〉 u ∈ D(L), v ∈ D(Q). (2.12)

The following classical result is the spectral theorem for compact operators, stated with
assumptions at the level of the quadratic form.

Theorem 2.8 (Spectral theorem) Let Q : H → [0,∞] be a lower semicontinuous quadratic
form with dense domain. Assume the existence of c > 0 satisfying Q(u) ≥ c‖u‖2 for all u ∈ H,
and that the sublevel sets

{

u ∈ H : Q(u) ≤ M
}

are compact in H for all M ≥ 0. Then there
exists a complete orthonormal basis of H made of eigenvectors of L.

Proof. It is simple to check, by the minimization of v 7→ 1
2Q(v)− 〈f, v〉, that L : D(L) → H

is onto. In addition,

c‖u‖2 ≤ Q(u) = A(u, u) = 〈Lu, u〉 ≤ ‖u‖‖Lu‖ ∀u ∈ D(L)

shows that L−1 is continuous, with ‖L−1‖ ≤ 1/c. In order to apply the classical spectral
theorem for compact operators to L−1 (see for instance [Bre, Theorem VI.11]), we need only
to show that any sequence (un) ⊂ D(L) such that (‖Lun‖) is bounded is relatively compact
in H. To this aim, notice that the previous inequality yields Q(un) ≤ ‖L(un)‖2/c, so that
Q(un) is bounded and (un) is relatively compact in H. �

2.5 BV functions

We recall the definition of BV introduced in [Mi] for locally compact spaces; this class has
been further studied in [AmDi], dropping the local compactness assumption, and it has been
characterized by the behaviour of the function along curves, see Theorem 2.12 below.
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Definition 2.9 (The space BV (X, d,m)) Let f ∈ L1(X,m). We say that f belongs to
BV (X, d,m) if there exist locally Lipschitz functions fn : X → R such that fn → f in
L1(X,m) and lim supn

∫

X |∇fn| dm < ∞.

For f ∈ BV (X, d,m) and A ⊂ X open, we may consider the set function

|Df |(A) := inf

{

lim inf
n→∞

∫

A
|∇fn| dm : fn ∈ Liploc(A), lim

n→∞

∫

A
|fn − f | dm = 0

}

. (2.13)

It can be proved that A 7→ |Df |(A) is the restriction to open sets of a finite Borel measure
(it is in this proof that it turns out to be useful to consider locally Lipschitz functions in
Definition 2.9 and (2.13)), that we still denote by |Df |. Notice also the elementary inequality
(first proved on open sets, and then extended to Borel sets)

|D(f + g)| ≤ |Df |+ |Dg| ∀f, g ∈ BV (X, d,m). (2.14)

By construction, we have the lower semicontinuity property

lim inf
n→∞

|Dfn|(X) < ∞ ⇒ f ∈ BV (X, d,m) and |Df |(X) ≤ lim inf
n→∞

|Dfn|(X)

for fn ∈ BV (X, d,m) convergent to f in L1(X,m).

Remark 2.10 (Sets of finite perimeter in locally finite m.m.s.) When concerned with
characteristic functions, we will apply these concepts also in m.m.s. whose reference measure
m is finite on bounded sets, i.e. we weaken the finiteness assumption on m by requiring that
m(B) < ∞ for any bounded Borel set B (specifically, in Section 5 we will consider the product
of a finite m.m.s. with the real line).
We say that E ⊂ X has finite perimeter in X if the characteristic function χE belongs to
BV (Y, d,m) for any closed subset Y ⊂ X with finite measure and supn |DχE |(Bn(x0)) < ∞
for some (and thus all) x0 ∈ X. By monotone approximation with open sets with finite mea-
sure, still |DχE|(B) is well defined for any open set B ⊂ X and B 7→ |DχE |(B) is a positive
finite Borel measure in X. Furthermore, the monotonicity of the approximation gives that
E 7→ |DχE |(A) is lower semicontinuous with respect to local convergence in m-measure (i.e.
L1
loc convergence of the characteristic functions) for any open set A ⊂ X.
When dealing with sets of finite perimeter, we will use the traditional notation

P (E,B) := |DχE|(B).

�

By a diagonal argument in (2.13), it is clear that there exist fn locally Lipschitz convergent
to f in L1(X,m) and satisfying lim supn

∫

X |∇fn| dm ≤ |Df |(X). Since, by the very definition
of |Df |(A), it holds

lim inf
n→∞

∫

A
|∇fn| dm ≥ |Df |(A) for any open set A ⊂ X,

a well known criterion for weak convergence of measures gives the approximation property:

∀f ∈ BV (X, d,m) ∃fn ∈ Liploc(X) with |∇fn|m ⇀ |Df | in duality with Cb(X). (2.15)
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We can now investigate the implications of doubling and (1, 1)-Poincaré for Lipschitz
functions. From (2.15) we immediately obtain the BV version of the Poincaré inequality in
BV , namely

∫

Br(x)
|f − fx,r| dm ≤ cr|Df |

(

Bλr(x)
)

∀f ∈ BV (X, d,m).

Possibly replacing λ by λ′ > λ, we will keep using the traditional form
∫

Br(x)
|f − fx,r| dm ≤ cr|Df |

(

Bλr(x)
)

∀f ∈ BV (X, d,m), (2.16)

stated with open sets. This estimate, when combined with the doubling property of (X, d,m),
leads by standard arguments (see for instance [Chee], [AmCoDi]) to the following proposition.

Proposition 2.11 Assume that (X, d,m) is doubling and that (1, 1)-Poincaré holds for Lip-
schitz functions. Then, there exists a structural constant c > 0 satisfying

|f̃(x)− f̃(y)| ≤ cd(x, y)
(

Mr|Df |(x) +Mr|Df |(y)
)

(2.17)

whenever f ∈ BV (X, d,m), x and y are approximate continuity points of f , r > 0 and
d(x, y) < r/c.

2.6 Equivalence of weak gradients and locality

We denote by C([0, 1];X) the space of continuous maps from [0, 1] to X endowed with the
standard Polish structure and denote by et : C([0, 1];X) → X, t ∈ [0, 1], the evaluation maps
at time t, namely et(γ) = γ(t). We shall also denote by (et)#π the push-forward probability
measure on X induced by π ∈ P(C([0, 1];X)), namely

∫

X
φd(et)#π =

∫

φ(γ(t)) dπ(γ)

for any φ : X → R bounded Borel, or Borel nonnegative.
We say that π ∈ P(C([0, 1];X)) is a ∞-test plan if it is concentrated on Lipschitz curves,

Lip(γ) ∈ L∞(C([0, 1];X),π) and the non-concentration property

(et)♯π ≤ Cm ∀t ∈ [0, 1] (2.18)

holds for some constant C ≥ 0. We shall denote by C(π) the least constant satisfying (2.18).
We say that a Borel family Γ ⊂ C([0, 1];X) is 1-negligible if π(Γ) = 0 for any ∞-test plan

π. This notion is weaker than the non-parametric notion of Mod1-negligible set. Recall that
Γ is said to be Mod1-negligible if for any ε > 0 there exists a Borel function ρ : X → [0,∞]
with

∫

X ρ dm < ε and
∫

γ ρ ≥ 1 for all ρ ∈ Γ. Since

π(Γ) ≤
∫ ∫

γ
ρ dπ(γ) ≤ ‖Lip(γ)‖∞

∫ 1

0

∫

ρ(γ(t)) dπ(γ) dt ≤ ‖Lip(γ)‖∞C(π)

∫

X
ρ dm

for any ∞-test plan π, we obtain that Mod1-negligible sets are 1-negligible. See [AmDiSa]
for a much more detailed comparison between notions of negligibility for families of curves,
both parametric and non-parametric.

The next theorem is one of the main results of [AmDi].
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Theorem 2.12 Let f ∈ L1(X, d,m). Then f ∈ BV (X, d,m) if and only if there exists a
finite Borel measure µ on X with the following property: for any ∞-test plan π one has:

(i) f ◦ γ ∈ BV (0, 1) for π-a.e. γ;

(ii)
∫

γ♯|D(f ◦ γ)| dπ(γ) ≤ C(π)‖Lip(γ)‖∞µ.

For all f ∈ BV (X, d,m), the smallest measure µ satisfying (ii) is |Df |.

Again, in (ii) by γ♯|D(f ◦ γ)| we mean the push-forward measure defined by

∫

X
φdγ♯|D(f ◦ γ)| =

∫ 1

0
φ ◦ γ d|D(f ◦ γ)|.

Notice that (i) and (ii) are invariant in the Lebesgue equivalence class of f : indeed, because
of (2.18), π-a.e. curve γ hits a prescribed m-negligible set in a L 1-negligible set of times, so
that the integral in (ii) does not change if we replace f by f̂ , with m({f 6= f̂}) = 0.

Remark 2.13 Let us split |D(f ◦ γ)| into absolutely continuous |Da(f ◦ γ)| and singular
|Ds(f ◦ γ)| parts w.r.t. L 1. Notice that without further assumptions on the metric measure
structure, while we know that

∫

γ♯|Da(f ◦ γ)| dπ(γ) ≪ m

(again because π-a.e. curve γ hits a m-negligible set in a L 1-negligible set of times), we can’t
say in general that

∫

γ♯|Ds(f ◦ γ)| dπ(γ)

is singular w.r.t. m. See [AmDi, Example 7.4] for an explicit example of a function f ∈
BV (X, d,m) (actually a characteristic function) with |Df | ≤ Cm, but |D(f ◦ γ)| singular
w.r.t. L 1 for any curve γ.

3 Tensorization of metric measure spaces

In this section, as in Section 6 of [AGS11b], we consider two complete and separable m.m.s.
(X, dX ,mX), (Y, dY ,mY ) and their product Z = X × Y , endowed with the product distance
d satisfying d2 = d2X + d2Y and the product measure m. We assume mX and mY to be finite.
We denote by Ch the Cheeger energy in (Z, d,m) and use the notation fx(y) = f(x, y),
f y(x) = f(x, y).

In Section 6 of [AGS11b], it is proved, under curvature assumptions on the factors, that
Ch is quadratic whenever ChX and ChY are quadratic. In addition, defining

Λ :=
{

f ∈ L2(Z,m) :

{

fx ∈ H1,2(Y, dY ,mY ) for mX-a.e. x ∈ X

f y ∈ H1,2(X, dX ,mX) for mY -a.e. y ∈ Y

}

, (3.1)

we have the inclusion H1,2(Z, d,m) ⊂ Λ and any f ∈ H1,2(Z, d,m) satisfies

|∇f |2∗(x, y) = |∇f y|2∗,X(x) + |∇fx|2∗,Y (y) for m-a.e. (x, y) ∈ Z. (3.2)
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Notice that (3.2) provides immediately that Ch is a quadratic form whenever ChX and
ChY are quadratic forms, since

Ch(f) =

∫

Y
ChX(f y) dmY (y) +

∫

X
ChY (f

x) dmX(x).

Notice also that, as illustrated by Proposition 3.1 below, (3.2) might be true independently of
quadraticity assumptions on ChX and ChY , just by “duality” with the formula d2 = d2X + d2Y
defining d, but the full validity of this dual formula is presently an open problem (more
precisely, the general validity of ≤ in (3.2) is not known, while we will prove that the converse
inequality always holds).

Proposition 3.1 (An easy case of tensorization) Assume that X and Y are Euclidean
spaces, with distances dX and dY induced by norms ‖ · ‖X and ‖ · ‖Y respectively. If mX and
mY are the corresponding Lebesgue measures, then (3.2) holds.

Proof. The norm ‖ · ‖Z in Z = X × Y corresponding to the distance dZ =
√

d2X + d2Y
obviously satisfies ‖(x, y)‖2Z = ‖x‖2X + ‖y‖2Y . According to (2.10), we have to prove that

‖(x∗, y∗)‖2∗,Z = ‖x∗‖2∗,X + ‖y∗‖2∗,Y ∀x∗ ∈ X∗, y∗ ∈ Y ∗,

where ‖ · ‖∗,Z denotes the dual norm of ‖ · ‖Z and ‖ · ‖∗,X and ‖ · ‖∗,Y denote the dual norms
in X and Y respectively. We can estimate

〈(x∗, y∗), (x, y)〉 = 〈x∗, x〉+ 〈y∗, y〉
≤ ‖x∗‖∗,X‖x‖X + ‖y∗‖∗,Y ‖y‖Y
≤

√

‖x∗‖2∗,X + ‖y∗‖2∗,Y ‖(x, y)‖Z .

This proves that ‖(x∗, y∗)‖2∗,Z ≤ ‖x∗‖2∗,X + ‖y∗‖2∗,Y . On the other hand, if we choose nonzero
vectors x, y such that 〈x∗, x〉 = ‖x∗‖∗,X‖x‖X and 〈y∗, y〉 = ‖y∗‖∗,Y ‖y‖X we obtain that the
first inequality is an equality. Then, replacing x by ax and y by by with a, b ≥ 0 in such a
way that

‖x‖X = ‖x∗‖∗,X and ‖y‖Y = ‖y∗‖∗,Y
we retain the first two equalities and we obtain that also the last inequality is an equality.

�

In Section 6 of [AGS11b], through a detailed analysis of the Hopf-Lax formula, inequality
≥ in (3.2) is proved independently of curvature assumptions, while curvature enters in the
proof of the converse one (see [AGS11b, Lemma 6.15]).

In this section we will revise carefully the arguments of [AGS11b], obtaining some refine-
ments independently of curvature assumptions.

We denote by |∇f |c : Liploc(Z) → [0,∞] the convex pseudo gradient

|∇f |c(x, y) :=
√

|∇f y|2(x) + |∇fx|2(y), (3.3)

corresponding to a “cartesian” slope. Notice that

|∇f |(x, y) ≥ max{|∇fx|(y), |∇f y|(x)} ≥ 1

2
|∇f |c(x, y). (3.4)
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We denote by Chc the Cheeger energy arising from the L2 relaxation of
∫

|∇f |2c dm re-
stricted to locally Lipschitz functions, namely

Chc(f) := inf

{

lim inf
n→∞

∫

Z
|∇fn|2c dm : fn ∈ Liploc(Z),

∫

Z
|fn − f |2 dm → 0

}

.

As we discussed in Section 2.3, we have a minimal relaxed gradient associated to any f ∈
D(Chc), that we shall denote by |∇f |∗,c. It is also clear from (3.4) that Chc ≤ 2Ch. Even
though it seems difficult to establish a pointwise converse inequality

|∇f |(x, y) ≤ Cmax{|∇fx|(y), |∇f y|(x)} ≤ C|∇f |c

for some constant C, we are able to refine a bit the scheme of [AGS11b] to prove the following
result, independently of doubling, quadraticity and Poincaré assumptions.

Theorem 3.2 Chc = Ch on L2(Z,m) and

|∇f |∗ = |∇f |∗,c m-a.e. in Z, for all f ∈ H1,2(Z, d,m). (3.5)

Proof. We provide the proof of the inequality Chc ≤ Ch in the appendix, since it involves
tools (Hopf-Lax formula, gradient flows) not directly connected to the rest of the paper. Let us
prove the inequality Ch ≤ Chc and the corresponding inequality ≤ in (3.5). By Lemma 6.14 in
[AGS11b] (in turn based on the calculus Lemma 4.3.4 of [AGS05]), |∇f |c is an upper gradient
for locally Lipschitz functions, namely

| d
dt
(f ◦ γ)| ≤ |∇f |c ◦ γ|γ̇| L

1-a.e. in (0, 1) (3.6)

for all γ ∈ AC([0, 1];Z) and f ∈ Liploc(Z). Recall now that for any f ∈ D(Chc) we can find
locally Lipschitz functions fn with fn → f in L2(Z,m) and |∇fn|c → |∇f |∗,c in L2(Z,m).
Then, the standard argument for the closure of weak upper gradients (even under weak
L2(Z,m) convergence, see [Sh, Lemma 4.11]) provides the inclusion D(Ch) ⊃ D(Chc) and the
inequality

|∇f |∗ ≤ |∇f |∗,c m-a.e. in Z. (3.7)

�

It will be useful to compare Chc with the convex functional (actually a quadratic form,
when ChX and ChY are quadratic)

J(f) :=

∫

Z
|∇f y|2∗,X(x) + |∇fx|2∗,Y (y) dm(x, y). (3.8)

The functional J is well defined on the set Λ in (3.1), and set equal to ∞ on L2(Z,m) \ Λ.

Lemma 3.3 If f ∈ L2(Z,m) is representable as fXfY , with fX ∈ H1,2(X, dX ,mX) and
fY ∈ H1,2(Y, dY ,mY ), then Chc(f) = J(f). Furthermore, if −ξX ∈ ∂ChX(fX) and −ξY ∈
∂ChY (fY ), then

− (fY ξX + fXξY ) ∈ ∂J
(

fXfY ). (3.9)
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Proof. The inequality Chc(f) ≥ J(f), even for all functions f , is guaranteed by the previous
lemma. In order to prove the converse inequality Chc(f) ≤ J(f) on tensor products f , by
a simple truncation argument we can assume with no loss of generality that fX and fY are
bounded functions. Let fn

X ∈ Liploc(X) with |∇fn
X | → |∇fX |∗,X in L2(X,mX ); analogously,

let fn
Y ∈ Liploc(Y ) with |∇fn

Y | → |∇fY |∗,Y in L2(Y,mY ). Since fX and fY are bounded, we
can also assume that (fn

X) and (fn
Y ) are uniformly bounded. Since fn

Xfn
Y ∈ Liploc(Z) and

|∇(fn
Xfn

Y )|2c = (fn
X)2|∇fn

Y |2 + (fn
Y )

2|∇fn
X |2

we can easily conclude.
The verification of (3.9) is straightforward. �

Now we can state the tensorization of doubling metric measure spaces satisfying a (1, 2)-
Poincaré inequality for locally Lipschitz functions. Note that, by a localization argument, the
following theorem is also valid for measures finite on bounded sets.

Theorem 3.4 Assume that (X, dX ,mX) and (Y, dY ,mY ) are doubling and satisfy a (1, 2)-
Poincaré inequality for locally Lipschitz functions. Then the tensorization property (3.2) of
weak gradients holds for all functions f ∈ D(Ch). In addition, Ch concides with the functional
J defined in (3.8).

Our third result on the tensorization provides the quadratic property of Ch independently
of curvature assumptions, but assuming the strong asymptotically Hilbertian property on
the factors. As we discussed in Section 2.3, this assumption is equivalent to asymptotic
Hilbertianity in the presence of doubling and (1, 2)-Poincaré inequality for locally Lipschitz
functions, which are already covered by Theorem 3.4. Again, by a localization argument, the
following theorem also holds for measures finite on bounded sets.

Theorem 3.5 If ChX , ChY are quadratic, then (3.2) holds iff Ch is quadratic. In particular,
if (X, dX ,mX) and (Y, dY ,mY ) are strongly asymptotically Hilbertian, then Ch is a quadratic
form and (3.2) holds.

We devote the rest of the section to the proof of Theorem 3.4 and Theorem 3.5.

Lemma 3.6 J is a convex and weakly lower semicontinuous functional on L2(Z,m). In
addition, Chc ≥ J on L2(Z,m) and |∇fx|2∗,Y (y) + |∇f y|2∗,X(x) ≤ |∇f |2∗,c(x, y) for m-a.e.
(x, y) ∈ Z.

Proof. Convexity of J is trivial, so it suffices to show lower semicontinuity of J in the strong
topology of L2(Z,m). This and the last part of the statement are a simple application of
Fubini’s theorem and of the fact that any convergent sequence gn → g in L2(Z,m) can be
refined to obtain a subsequence (nk) satisfying gxn(k) → gx in L2(Y,mY ) for mX-a.e. x ∈ X

and gyn(k) → gy in L2(X,mX) for mY -a.e. y ∈ Y . �

Proof. [of Theorem 3.4] Taking Lemma 3.6, (3.5) and the equality Ch = Chc into account, to
prove the tensorization property (3.2) for all functions f ∈ D(Ch) we need only to show that
Chc ≤ J on H1,2(Z, d,m) and that D(J) ⊂ H1,2(Z, d,m). To prove the inequality we need
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to find, for all f ∈ H1,2(Z, d,m) a sequence of functions fn ∈ Liploc(Z) ∩ L2(Z,m) satisfying
fn → f in L2(Z,m) and J(fn) → J(f). Indeed, since Theorem 2.4 gives

Chc(fn) ≤
∫

Z
|∇fn|2c dm = J(fn),

the lower semicontinuity of Chc provides the result.
Since (Z, d,m) is a doubling space satisfying the (1, 2)-Poincaré inequality on Lipschitz

functions, in order to build fn we can use the inequality (see for instance [AmCoDi, Lemma 46])

|f̃(z)− f̃(z′)| ≤ C
(

(M |∇f |2∗)1/2(z) + (M |∇f |2∗)1/2(z′)
)

d(z, z′)

valid at all approximate continuity of f , and the sets

En :=
{

z ∈ Z : max{|f̃(z)|, (M |∇f |2∗)1/2(z)} ≤ n
}

.

By the MacShane lemma we can extend the restriction of f̃ to En to a Lipschitz function fn
with Lip(fn) ≤ Cn and |fn| ≤ n. Then, a standard argument based on maximal inequalities
shows that fn → f in L2(Z,m), m(Z \ En) ↓ 0 and |∇fn|2 are equi-integrable in L1(Z,m).
Using the locality of weak gradients in the base spaces, this immediately yields J(fn) → J(f)
and completes the proof of the inequality Chc ≤ J on H1,2(Z, d,m).

Now, let us prove the more delicate inclusion D(J) ⊂ H1,2(Z, d,m). In this proof it will be
useful to assume that the distances dX and dY are geodesic; this is not restrictive, since the
geodesic distances associated to dX and dY are (because of doubling and Poincaré) equivalent
to the original distances and even induce the same weak gradients (see for instance [HKST,
Corollary 7.3.17], but note that we need only equivalence of distances). We will prove that
any h ∈ D(J) whose support is contained in a product of balls BR(x0) × BR(y0) belongs to
H1,2(Z, d,m). The general case can be easily achieved by approximation.

Let us proceed now to the proof of the inclusion D(J) ⊂ H1,2(Z, d,m). Notice that, by
the very definition of J , for any h ∈ D(J) one has not only hx ∈ H1,2(Y, dY ,mY ) for mX-a.e.
x ∈ X and hy ∈ H1,2(X, dX ,mX) for mY -a.e. y ∈ Y , but also ChY (h

x) ∈ L1(X,mX) and
ChX(hy) ∈ L1(Y,mY ). Thanks to Cheeger’s theory (see also Theorem 40 of the recent paper
[AmCoDi] for a different construction based on difference quotients and Γ-convergence which
uses only the doubling property of the metric space) we can find L2-lower semicontinuous
quadratic forms EX in L2(X,mX ) and EY in L2(Y,mY ) equivalent to the Cheeger energies,
namely

c1 ChX ≤ EX ≤ 1

c1
ChX , c2 ChY ≤ EY ≤ 1

c2
ChY (3.10)

for suitable positive structural constants c1, c2. The quadratic forms

EX,1(f) := EX(f) +

∫

X
f2 dmX , EY,1(g) := EY (g) +

∫

Y
g2 dmY .

induce Hilbertian structures in H1,2(X, dX ,mX) and H1,2(Y, dY ,mY ) respectively. We also
denote by J1 the quadratic form

J1(h) :=

∫

X
EY,1(f

x) dmX(x) +

∫

Y
EX,1(f

y) dmY (y)

and notice that D(J1) = D(J), because of (3.10).
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Fix x0 ∈ X, y0 ∈ Y and R > 0. Fix the notation:

D(x0, R) = {f : X → R : supp(f) ⊂ B(x0, R)},

D(y0, R) = {g : Y → R : supp(g) ⊂ B(y0, R)}.
Then, for every M > 0, the sets

{f ∈ D(x0, R) : EX,1(f) ≤ M},

{g ∈ D(y0, R) : EY,1(g) ≤ M},
are compact in L2(X,mX) and L2(Y,mY ) respectively. Indeed, [HK, Theorem 8.1] gives this
Rellich-Kondrachov type result for domains in which the measure is doubling and also a global
Poincaré inequality result holds (see [HK, Inequality (46)]). However, it is easy to see that
balls in geodesic spaces are John domains (see Section 9.1 in [HK] for the definition) and
hence [HK, Theorem 9.7] provides the required global Poincaré inequality. Let

HX = L2(X,mX ) ∩D(x0, R),

HY = L2(Y,mY ) ∩D(y0, R).

Notice that H1,2(X, dX ,mX)∩D(x0, R) is dense in HX with respect to the L2(X,mX ) norm
and similarly for H1,2(Y, dY ,mY ) ∩D(y0, R). Hence, by applying Theorem 2.8 to EX,1 in

HX = L2(X,mX) ∩D(x0, R)

and to EY,1 in
HY = L2(Y,mY ) ∩D(y0, R),

we can find complete orthonormal bases (fn) of HX and (gn) of HY made of eigenvectors of
the operators LX and LY associated to these quadratic forms. In particular:

(a) the linear semigroup PX
t associated to EX,1 on HX leaves all 1-dimensional vector spaces

Rfn invariant, and an analogous property holds for P Y
t ;

(b) the functions fn are mutually orthogonal for the scalar product induced by EX,1 and an
analogous property holds for gm.

Now, it is easily seen that the vector space E spanned by the tensor products fngm, where
fn ∈ H1,2(X, dX ,mX)∩D(x0, R) and gm ∈ H1,2(Y, dY ,mY )∩D(y0, R), is dense in the space

{h ∈ D(J) : supp(h) ⊂ B(x0, R)×B(y0, R)}

w.r.t. the norm induced by J1. Indeed, a simple functional analytic argument is based on
the fact that the linear semigroup Pt induced by the quadratic form J1 leaves E invariant,
thanks to (a) and

Pt(fngm) = (PX
t fn)(P

Y
t gm) t ≥ 0,

and on the fact that E is dense in L2(Z,m) norm; these two facts (see for instance [AGS11b,
Proposition 4.9]) imply density in the stronger norm induced by J1.
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In order to conclude the proof we use first the convexity and 1-homogeneity of
√
Ch and

then Lemma 3.3 to get

√
Ch(h) ≤

∑

n,m

|λn,m|
√
Ch(fngm) =

∑

n,m

|λn,m|
√
J(fngm)

≤ c
∑

n,m

|λn,m|
√

J1(fngm) ≤ c

(

∑

n,m

λ2
n,mJ1(fngm)

)1/2

= c
√

J1(h)

for any h ∈ E written as a sum
∑

n,m λn,mfngm, with only finitely many λn,m nonzero, where
in the last equality we used the fact that (fngm) are mutually orthogonal w.r.t. the scalar
product induced by J1 (as a consequence of (b)). Finally we can use the density of E and the
lower semicontinuity of Ch to conclude that Ch ≤ c2J1 on the set

{h ∈ D(J) : supp(h) ⊂ B(x0, R)×B(y0, R)}.

By letting R → ∞ we deduce Ch is finite on D(J) so that D(J) ⊂ D(Ch). �

A simple consequence of (3.9) is that, independently of quadraticity assumptions on ChX

and ChY , the semigroup Pt associated to J (namely the gradient flow of J) acts on tensor
products fXfY as follows

Pt(fXfY ) = (PX
t fX)(P Y

t fY ), (3.11)

where PX
t and P Y

t are the semigroups on the factors. Indeed, (3.9) with ξX = −∆PX
t fX and

ξY = −∆Y P
Y
t fY and the Leibniz rule give that

− d

dt
(PX

t fX)(P Y
t fY ) ∈ ∂J

(

(PX
t fX)(P Y

t fY )
)

,

which is the subdifferential formulation of the gradient flow.

Proof. [of Theorem 3.5] Assuming that ChX , ChY are quadratic, it is clear that (3.2) implies
that Ch are quadratic, so let us prove the converse implication from Ch quadratic to (3.2).
By Lemma 3.6 and the equality Chc = Ch provided by Theorem 3.2, we know that the two
lower semicontinuous quadratic forms

Q1(f) := Ch(f), Q2(f) := J(f)

satisfy Q1 ≥ Q2, hence Q = Q1 −Q2 is a nonnegative quadratic form which, by Lemma 3.3,
vanishes on tensor products. By the inequality Q(u+v) ≤ 2Q(u)+2Q(v), valid for nonnegative
quadratic forms, we obtain that Q vanishes on the vector space spanned by tensor products.
Now, as in the proof of Theorem 3.4, it is easily seen that the vector space E spanned by the
tensor products is dense w.r.t. the norm ‖·‖Q2

:=
√

‖ · ‖22 +Q2
2. Indeed, the linear semigroup

Pt induced by the quadratic form Q2 leaves E invariant (because of (3.11)) and E is dense
in L2(Z,m) norm; these two facts (see for instance [AGS11b, Proposition 4.9]) imply density
in the stronger norm induced by ‖ · ‖Q2

. Therefore for any f ∈ L2(Z,m) we can find fn ∈ E
convergent to f in L2(Z,m) with Q2(fn) → Q2(f). Using lower semicontinuity of Q1 we get

Q1(f) ≤ lim inf
n→∞

Q1(fn) = lim inf
n→∞

Q2(fn) = Q2(f).
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Taking into account the inequality |∇fx|2∗,Y + |∇f y|2∗,X ≤ |∇f |2c(x, y) for m-a.e. (x, y) ∈ Z
provided by the combination of Theorem 3.2 and Lemma 3.6, we obtain (3.2).

To prove the last statement of the theorem, assume that the factors are strongly asymp-
totically Hilbertian. Notice that

f 7→
∫

Z
|∇f |2c dm =

∫

X

(
∫

Y
|∇fx|2 dmY

)

dmX(x) +

∫

Y

(
∫

X
|∇f y|2 dmX

)

dmY (y)

is a quadratic form on Liploc(Z). Since the lower semicontinuous relaxation of a quadratic
form is still a quadratic form, it follows that Ch = Chc is a quadratic form. Therefore we can
apply the first part of the statement to obtain (3.2). �

4 The Sobolev space H1,1(X, d,m)

In this section we investigate in more detail the possible definitions of the spaceH1,1 described
in [AmDi]. We adopt the definition leading to the larger space and study a few structural
properties. Then, assuming doubling and (1, 1)-Poincarè, we compare with more restrictive
definitions. The results of this section will be applied in the next section, dealing with H1,1

functions in X × R. In this section we assume that m is finite on bounded sets.

Definition 4.1 (The space H1,1(X, d,m)) We denote by H1,1(X, d,m) the subspace of all
f ∈ BV (X, d,m) satisfying:

(i) f ◦ γ ∈ H1,1(0, 1) for 1-almost every γ ∈ C([0, 1];X);

(ii) |Df | ≪ m.

By analogy with the Sobolev case, we denote by |∇f |∗,1 the density of |Df | w.r.t. m.

In view of the example mentioned in Remark 2.13, we know that (ii) would not be suffi-
cient to provide Sobolev regularity of f along 1-almost every curve (not even if |Df | has a
bounded density), a natural requirement for Sobolev functions, also in view of the connection
with other definitions. In the presence of doubling and (1, 1)-Poincaré inequality for locally
Lipschitz functions, however, (ii) is sufficient, see the proof of the implication from (iii) to (i)
in Theorem 4.3 which only uses |Df | ≪ m (see also [HKLL14, Theorem 4.6]).

We use the notation |∇f |∗,1 because, at this level of generality, we expect that weak
gradients depend on the integrability exponent, even for Lipschitz functions, see [DiSp] for
examples compatible even with the doubling assumption. Notice that the obvious inequality
|Df | ≤ |∇f |m on locally Lipschitz functions gives |∇f |∗,1 ≤ |∇f | m-a.e. in X for all f ∈
Liploc(X), while additional assumptions are needed to reverse this inequality (see (4.5) below).

In the next proposition we are able to prove the locality of |∇f |∗,1. It was difficult for us to
prove this fact using only (2.15) (because, unlike the Sobolev case, the convergence of slopes
is weak and not strong), therefore we adopt the dual point of view provided by Theorem 2.12.

Proposition 4.2 (Locality of |∇f |∗,1) Let f ∈ H1,1(X, d,m). Then

|∇f |∗,1 = 0 m-a.e. in {f = 0}. (4.1)

In particular, if f, g belong to H1,1(X, d,m), then

|∇f |∗,1 = |∇g|∗,1 m-a.e. in {f = g}. (4.2)
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Proof. It is well known that for a Sobolev function g : (0, 1) → R the property holds, namely
g′ = 0 L 1-a.e. on {g = 0}. Given a ∞-test plan π, from part (i) of Definition 4.1 it follows
that

(f ◦ γ)′ = 0 L
1-a.e. on γ−1({f = 0}), for π-a.e. γ.

Since |D(f ◦γ)| = |(f ◦γ)′|L 1, the definition of push-forward gives γ♯|D(f ◦γ)|({f = 0}) = 0
for π-a.e. γ. By integration w.r.t. π, since π is arbitrary we get that the measure

µ := χ{f 6=0}|∇f |∗,1m = χ{f 6=0}|Df |

still satisfies (ii) of Theorem 2.12. Then, the minimality of |Df | = |∇f |∗,1m gives (4.1).
It follows from the inequalities (derived from (2.14)) that

−|∇(f − g)|∗,1 + |∇g|∗,1 ≤ |∇f |∗,1 ≤ |∇g|∗,1 + |∇(f − g)|∗,1 m-a.e. in X.

Using (4.1) we obtain (4.2) �

If we assume that the (1, 1)-Poincaré inequality for Lipschitz functions we can specialize
(2.16) to H1,1(X, d,m), obtaining

∫

Br(x)
|f − fx,r| dm ≤ cr

∫

Bλr(x)
|∇f |∗,1 dm ∀f ∈ H1,1(X, d,m). (4.3)

Analogously, (2.17) gives

|f̃(x)− f̃(y)| ≤ cd(x, y)
(

Mr|∇f |∗,1(x) +Mr|∇f |∗,1(y)
)

. (4.4)

When f is locally Lipschitz we can use (4.4) at approximate continuity points of Mr|∇f∗,1|
(see for instance the argument in [AmCoDi]) to get

|∇f | ≤ cMr(|∇f |∗,1) m-a.e. in X, for all f ∈ Liploc(X).

Letting r ↓ 0 eventually gives, for some structural constant c,

|∇f | ≤ c|∇f |∗,1 m-a.e. in X, for all f ∈ Liploc(X). (4.5)

Now, we can combine the “local” Lipschitz estimate (4.4), with the weak L1 and asymp-
totic estimates (2.6), (2.7) to get the following Lusin type approximation result of H1,1 func-
tions by Lipschitz functions; this way, we get the equivalence with other, a priori stronger,
definitions.

Theorem 4.3 (Equivalent definitions of H1,1(X, d,m)) Let f ∈ L1(X,m) and let us con-
sider the following conditions:

(i) there exist fn ∈ Lip(X) ∩ L1(X,m) with fn → f in L1(X,m), m({f 6= fn}) → 0 and
|∇fn| equi-integrable;

(ii) there exist a Borel function g : X → [0,∞) and a representative f̂ of f such that
∫

X g dm < ∞ and

|f̂(γ(1)) − f̂(γ(0))| ≤
∫

γ
g for Mod1-a.e. curve γ; (4.6)
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(iii) f ∈ H1,1(X, d,m).

Then (i)⇒(ii), with g limit point of |∇fn| in the weak L1(X,m) topology, and (ii)⇒(iii), with

|∇f |∗,1 ≤ g m-a.e. in X. (4.7)

If (X, d,m) is doubling and the (1, 1)-Poincaré inequality for locally Lipschitz functions holds,
then f ∈ BV (X, d,m) and |Df | ≪ m imply (i). In particular (iii)⇒(i).

Proof. (i)⇒(ii). See for instance [Sh], [Hei, Theorem 10.5] and the recent monograph [HKST]
for the construction of the representative f̂ . The main point is to find Lipschitz functions f̃n
convergent to f m-a.e. in X and upper gradients gn of f strongly convergent to g in L1(X,m),
using also the fact that this implies

∫

γ gn →
∫

γ g for Mod1-a.e. γ. The functions f̃n are finite
convex combinations of fn, where the coefficients of the convex combinations are chosen in
such a way that the corresponding convex combination gn of |∇fn|, which are upper gradients
of f̃n, are strongly convergent.
(ii)⇒(iii). Since families of subcurves of a Mod1-negligible set of curves are still Mod1-
negligible, the argument in [Sh] shows that f̂ is absolutely continuous (and not only H1,1)
along Mod1-a.e. curve, with

∣

∣

d

dt
f ◦ γ(t)

∣

∣ ≤ g(γ(t))|γ̇(t)| for L
1-a.e. t ∈ (0, 1), for Mod1-a.e. γ. (4.8)

Since we already observed that Mod1-negligible sets are 1-negligible, we obtain (i) of Defini-
tion 4.1. In connection with condition (ii) of Definition 4.1, we can use (4.8) to show that the
measure µ = gm satisfies

∫

γ♯|D(f ◦ γ)| dπ(γ) ≤ C(π)‖Lip(γ)‖∞µ

for any ∞-test plan π. The minimality property of |Df | stated in Theorem 2.12 then gives
|Df | ≤ gm, so that |Df | ≪ m.
(iii)⇒(i), under the doubling and Poincaré assumptions. We apply (2.17) with r = ∞ and
denote by En the set of approximate continuity points of f where M∞(|∇f |∗,1 + |f |) is
smaller than n. By McShane Lipschitz extension theorem, we can extend f̃ |En to a 2cn-
Lipschitz function on X, denoted by fn, with |fn| ≤ n. Since the weak L1 estimate holds,
it is then clear that fn ∈ L1(X,m) and m({f 6= fn}) ≤ m(X \ En) → 0. In connection with
equi-integrability of |∇fn|, namely

lim
z→∞

lim sup
n→∞

∫

{|∇fn|>z}
|∇fn| dm = 0,

it suffices to split the integral on En and on X \En. The former can be estimated uniformly
in n from above, thanks to (4.5) and locality, with

c

∫

En∩{|∇fn|∗,1>z/c}
|∇fn|∗,1 dm ≤ c

∫

{|∇f |∗,1>z/c}
|∇f |∗,1 dm

which is infinitesimal as z → ∞. The latter can be estimated using (2.7). A similar and
simpler argument shows that fn → f in L1(X,m). �
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The characterization (ii) in Theorem 4.3 of H1,1(X, d,m) suggests another definition of
minimal 1-gradient |∇f |w,1, namely the smallest function g (up to m-negligible sets) such

that, for some representative f̂ of f , the inequality (4.6) holds. This is the point of view also
adopted, besides the relaxation point of view, in the theory of Sobolev spaces with exponent
p > 1, see [Sh], [HKST] and [AGS12] for a comparison between the definitions. From (4.7)
we immediately get

|∇f |∗,1 ≤ |∇f |w,1 m-a.e. in X, (4.9)

while the inequality (4.5) gives, for some structural constant c,

|∇f |w,1 ≤ |∇f | ≤ c|∇f |∗,1 m-a.e. in X. (4.10)

Remark 4.4 In general equality does not hold in (4.9), not even under the doubling and
Poincaré assumptions: in [HKLL14], a metric measure space is built endowing X = [0, 1]
with the Euclidean distance and the weighted measure m = ωL 1 ∈ P(X), with ω ≡ 1 on a
“fat” Cantor set K ⊂ (0, 1) (i.e. a compact totally disconnected set with positive Lebesgue
measure) and ω = 1/2, say, on (0, 1) \K. It is clear that (X, d,m), being comparable to the
standard Euclidean structure, satisfies the doubling and Poincaré assumptions. On the other
hand, in [HKLL14] Lipschitz functions fn convergent to the identity function f in L1(X,m)
are built in such a way that

lim sup
n→∞

∫

X
|∇fn| dm <

∫

X
|∇f | dm.

Now, the very definition of H1,1(X, d,m) gives that |Df |(X) <
∫

X |∇f | dm, hence |Df | =
|∇f |∗,1m gives that |∇f |∗,1 < |∇f | in a set with positive m-measure. Since it is easy to check
that |∇f | = |∇f |w,1 = 1 m-a.e. for the identity function, we have a situation where the two
notions of weak gradient in the limiting case p = 1 differ. The difference of the notions arises
basically from the fact that f 7→

∫

X |∇f |∗,1 dm has a L1-lower semicontinuity property built
in, while f 7→

∫

X |∇f |w,1 dm a priori does not. �

In the following proposition we show that |∇f |w,1 enjoys a stronger approximation prop-
erty by Lipschitz functions, compared to (2.15). In the proof we will use the identity

|∇f | = |∇f |w,1 m-a.e. in X, for all f ∈ Liploc(X), (4.11)

which is proved in [HKST, Theorem 12.5.1] and it extends Theorem 2.4 to the limiting case
p = 1. For the sake of completeness we sketch the main ideas used to prove (4.11). Clearly,
it suffices to prove that for every f ∈ Liploc(X) it holds |∇f | ≤ |∇f |w,1 m-a.e. in X. By the
Vitali-Carathéodory theorem (see [HKST, Theorem 3.2.4]), it suffices to show that |∇f | ≤ g
for any countably valued lower semicontinuous upper gradient g ∈ L∞

loc(X) of f for which
there is a positive real number c with g ≥ c. By [HKST, Lemma 12.5.9] there is sequence (fk)
of Lipschitz functions, with a corresponding sequence (gk) of continuous upper gradients, such
that (fk) converges to f in L2

loc(X) and lim supk gk ≤ g m-a.e. in X. Then (fk) is bounded

in H1,2
loc (X) and we conclude exactly as in the proof of [HKST, Theorem 12.5.1].

Proposition 4.5 Assume that (X, d,m) is doubling and that the (1, 1)-Poincaré inequality
holds for locally Lipschitz functions. Then for all f ∈ H1,1(X, d,m) there exist locally Lipschitz
functions fn with fn → f and |∇fn| → |∇f |w,1 in L1(X,m).
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Proof. Using the identity (4.11) it suffices to prove |∇fn|w,1 → |∇f |w,1. Now, notice that,
because of the inequality (4.10), the weak gradient |∇g|w,1 is local on Borel sets as well as
|∇g|∗,1 (but, this property could be proved directly with the definition of |∇g|w,1). Therefore
the sequence (fn) provided by Theorem 4.3(i) provides the result. �

5 Sets of finite perimeter and the area formula

In the setup of the tensorization Section 3, assume that Y = R endowed with the standard
Euclidean structure and the Lebesgue measure L 1. This is a σ-finite and not finite metric
measure space, but we can use a localization argument for weak gradients (in the same spirit
of [AmDi, Theorem 1.1] or [AGS11a, Lemma 4.11]) and apply all results of that section to this
situation. Departing a bit from the notation of Section 3, we will then consider a m.m. space
(X, d,m) and endow X×R with the product distance d̃ and the product measure m̃ = m×L 1.

If we consider a set of finite perimeter E ⊂ X × R that is the subgraph of a function
f : X → R, namely

Ef :=
{

(x, t) ∈ X × R : t < f(x)
}

then it is natural to compare the perimeter of Ef , defined according to the well established
metric BV theory in X × R, to the area of the graph of f . In this context the natural
regularity condition on f is f ∈ H1,1(X, d,m) (or even BV (X, d,m)); namely we would like
to know whether

P (Ef , B × R) =

∫

B

√

1 + |∇f |2∗,1 dm for all B ⊂ X Borel (5.1)

for f ∈ H1,1(X, d,m). We will provide a partial positive answer using the tensorization
property of weak gradients; this is not surprising, since locally Lipschitz functions on A are
used to define the perimeter P (Ef , A) for A ⊂ X × R open.

Theorem 5.1 Assume that (X, d,m) is a doubling metric measure space, and that the (1, 1)-
Poincaré inequality holds for Lipschitz functions. Then:

(a) for all f ∈ H1,1(X, d,m) and all B ⊂ X Borel one has

P (Ef , B × R) ≤
∫

B

√

1 + |∇f |2w,1 dm. (5.2)

(b) for all f ∈ BV (X, d,m), denoting by |Df | = |∇f |∗,1m + |Dsf | the Radon-Nikodym
decomposition of |Df |, one has

P (Ef , B × R) ≥
∫

B

√

1 + |∇f |2∗,1 dm+ |Dsf |(B) for all B ⊂ X Borel. (5.3)

Proof. We first prove the inequality ≤ in (5.2), for f locally Lipschitz and B ⊂ X open. Let
χε ∈ C∞(R) be monotonically convergent to χ(0,∞) with 0 ≤ χε ≤ 1, χ′

ε ≥ 0 and
∫

χ′
ε dt ≤ 1.

Then,
gε(x, t) := χε(f(x)− t)

provides a locally Lipschitz approximation of the characteristic function of Ef . Given our
assumptions on (X, d,m), Theorem 2.4 (applied in (X×R, d̃, m̃) which is doubling and satisfies
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(1, 1)-Poincaré for locally Lipschitz functions), Theorem 3.4 and the chain rule for weak
gradients give

|∇gε|(x, t) = |∇gε|∗(x, t) =
√

|∇gxε |2∗,R(t) + |∇gtε|2∗,X(x)

= χ′
ε(f(x)− t)

√

1 + |∇f |2∗(x) = χ′
ε(f(x)− t)

√

1 + |∇f |2(x)
for m̃-a.e. (x, t) ∈ X ×R. If we integrate on B × R and use Fubini’s theorem, we get

∫

B×R

|∇gε| dm̃ ≤
∫

B

√

1 + |∇f |2 dm.

By the definition of P (Ef , B × R) we obtain the inequality

P (Ef , B × R) ≤
∫

B

√

1 + |∇f |2 dm. (5.4)

For f ∈ H1,1(X, d,m) and B open we use the Lipschitz approximation provided by Propo-
sition 4.5 and the lower semicontinuity of the perimeter in open sets to obtain (5.2). Being
an inequality between positive and finite Borel measures, it extends from open to Borel sets.

We now prove the inequality (5.3). Let gn ∈ Liploc(X× (−N,N)) be convergent to χEf
in

L1(X×(−N,N), m̃). By Fubini’s theorem, possibly refining the sequence, we can assume that
gtn → χt

Ef
= χ{f(x)>t} in L1(X,m) for L 1-a.e. t ∈ (−N,N), and that gxn → χx

Ef
= χ{t<f(x)}

in L1(−N,N) for m-a.e. x ∈ X. Applying once more Theorem 2.4 in X×R and Theorem 3.5
gives |∇gn|2(x, t) = |∇gxn|(t)2 + |∇gtn|2(x) m̃-a.e. in X × (−N,N). Fix now a, b : X → [0, 1]
continuous with a2 + b2 ≤ 1 and notice that

lim inf
n→∞

∫

X×(−N,N)

√

|∇gxn|2(t) + |∇gtn|2(x) dm̃(x, t)

≥ lim inf
n→∞

∫

X×(−N,N)
a(x)|∇gxn|(t) + b(x)|∇gtn|(x) dm̃(x, t)

≥
∫

X
lim inf
n→∞

∫

(−N,N)
a(x)|∇gxn|(t) dtdm(x) +

∫

(−N,N)
lim inf
n→∞

∫

X
b(x)|∇gtn|(x) dm(x)dt

≥
∫

X
aχf∈(−N,N) dm+

∫

(−N,N)

∫

X
b d|Dχ{f>t}| dt.

Now we use the fact that (gn) is arbitrary to get

P (Ef ,X × (−N,N)) ≥
∫

X
aχf∈(−N,N) dm+

∫

(−N,N)

∫

X
b d|Dχ{f>t}| dt.

Letting N ↑ ∞ and using the coarea formula

|Df | =
∫ ∞

−∞
|Dχ{f>t}| dt

(see for instance [Mi]) gives

P (Ef ,X × R) ≥
∫

X
a dm +

∫

b d|Df | =
∫

X
(a+ b|∇f |∗,1) dm +

∫

X
b d|Dsf |.

Since |Dsf | ⊥ m, taking the supremum among all admissible pairs (a, b) we get (5.3) with
B = X. Repeating the argument with any open set B ⊂ X the inequality is proved on all
open sets and then on all Borel sets. �
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In the proof of the statement made in the next remark, the following lemma will be useful.

Lemma 5.2 Let un ∈ L1(X,m) be nonnegative functions satisfying

lim sup
n→∞

∫

X

√

1 + u2n dm ≤
∫

X

√

1 + u2 dm

for some nonegative u ∈ L1(X,m). If unm weakly converge to a measure µ ≥ um, then
µ = um and un → u in L1(X,m).

Proof. Let ν = ν
m
m + µs be the Radon-Nikodym decomposition of ν with respect m. Since

the functional

ν 7→
∫

X

√

1 +
∣

∣

ν

m

∣

∣

2
dm+ νs(X)

is sequentially weakly lower semicontinuous and the density of µ is, by assumption, larger
than u m-a.e., we obtain

lim inf
n→∞

∫

X

√

1 + u2n dm ≥
∫

X

√

1 +
∣

∣

µ

m

∣

∣

2
dm+ µs(X) ≥

∫

X

√

1 + u2 dm+ µs(X),

hence µs(X) = 0, µ = um and
∫
√

1 + u2n dm converge to
∫ √

1 + u2 dm. We can now use the
strict convexity of z 7→

√
1 + z2 (see for instance Exercise 1.20 of [AFP]) to conclude. �

By the lower semicontinuous nature of both functionals, we believe that equality always
holds in (5.3) at least on f ∈ H1,1(X, d,m), i.e.

P (Ef , B × R) =

∫

B

√

1 + |∇f |2∗,1 dm for all B ⊂ X Borel.

In the next remark, instead, we compare with the relaxation point of view of [HKLL14].

Remark 5.3 Le us discuss the question of the validity of the equality

inf

{

lim inf
n→∞

∫

X

√

1 + |∇fn|2 dm : fn ∈ Liploc(X), fn → f in L1(X,m)

}

=

∫

X

√

1 + |∇f |2∗,1 dm
(5.5)

for f ∈ H1,1(X, d,m). Notice that the inequality ≥ follows at once from the lower semiconti-
nuity of the perimeter and (5.4), (5.3) with B = X. We can prove that equality holds if and
only if |∇f |∗,1 = |∇f |w,1 m-a.e. in X. Indeed, if equality holds, a diagonal argument provides
fn ∈ Liploc(X) such that fn → f in L1(X,m) and

lim sup
n→∞

∫

X

√

1 + |∇fn|2 dm ≤
∫

X

√

1 + |∇f |2∗,1 dm.

If we denote by µ a weak limit of |∇fn|, we obviously have µ ≥ |Df | on open sets A, hence
µ ≥ |∇f |∗,1m. From Lemma 5.2 we obtain that µ ≪ m and that |∇fn| → |∇f |∗,1 in L1(X,m).
As in [Sh], this implies the existence of representatives f̃ of f and g of |∇f |∗,1 such that

|f̃(γ(1)) − f̃(γ(0))| ≤
∫

γ
g

for Mod1-a.e. curve γ, hence |∇f |∗,1 ≥ |∇f |w,1 m-a.e. in X.
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6 Appendix: proof of the inequality |∇f |∗ ≥ |∇f |∗,c
In [AGS11a], a very detailed analysis of the fine properties of the Hopf-Lax semigroup

Qtg(w) := inf
w′∈W

g(w′) +
1

2t
d2W (w′, w) (6.1)

in a metric space (W,dW ) has been made. The analysis is based on the quantities

D+
g (w, t) := sup lim sup

n→∞
dW (w,w′

n), D−
g (w, t) := inf lim inf

n→∞
dW (w,wn),

where the supremum and the infimum run among all minimizing sequences (wn) in (6.1).
These quantities reduce respectively to the maximum and minimum distance from w of min-
imizers in the locally compact case. Confining for simplicity our discussion to the case of
bounded functions g : W → R, which suffices for our purposes, for all t > 0 it has been shown
that (see Propositions 3.2, 3.3 and 3.4 of [AGS11a]):

(a) D+
g and D−

g are respectively upper and lower semicontinuous in W × (0,∞) and, given
w, D+

g (w, t) = D−
g (w, t) with at most countably many exceptions;

(b) Qtg is Lipschitz in X, with Lip(Qtg) ≤ 2
√

osc(g)/t, where osc(f) = sup f − inf f ;

(c) D−
g (·, t)/t is an upper gradient of Qtg;

(d) the following pointwise equality holds:

d+

dt
Qtg(w) +

(D+
g (w, t))

2

2t2
= 0, (6.2)

where d+/dt stands for right derivative (part of the statement is its existence at every
point).

Notice that, since D+
g (·, t)/t ≥ D−

g (·, t)/t is an upper semicontinuous upper gradient of Qtg, it
bounds the slope of Qtg from above. Therefore (6.2) implies the Hamilton-Jacobi subsolution

property d+

dt Qtg+ |∇Qtg|2/2 ≤ 0, but the sharper form (6.2) is often essential for the proofs.
More precisely, our proof of the inequality |∇f |∗ ≥ |∇f |∗,c is based on a refinement of

Lemma 6.16, Lemma 6.17 and Proposition 6.18 of [AGS11b] and it is split in these steps:
Step 1. Let g : Z → R be a bounded function and set

Qtg(x, y) := inf

{

g(x′, y′) +
1

2t

(

d2X(x, x′) + d2Y (y, y
′)
)

}

. (6.3)

In this step we show that for L 1-a.e. t > 0 one has

d+

dt
Qtg +

1

2
|∇Qtg|2c ≤ 0 m-a.e. in Z. (6.4)

In (6.40) of [AGS11b], starting from (6.2), an inequality similar to (6.4) for all t > 0 has been
proved, where instead of |∇Qtg|2c the sum |(Qtg)

x|2∗,Y + |(Qtg)
y |2∗,X was used. Our refinement

(6.4) still relies on (6.2) and the pointwise inequality (see (6.43) of [AGS11b])

[D+
g ((x, y), t)]

2 ≥ [D−
Lt,y

(x, t)]2 + [D−
Rt,x

(y, t)]2 (6.5)
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where Lt,y(x
′) := QY

t g(x
′, ·)(y) and Rt,x(y

′) := QX
t g(·, y′)(x). By minimizing first w.r.t. to

one variable and then with respect to the other variable in (6.3) we have the easy identities

(Qtg)
y(x) = QX

t (Lt,y)(x), (Qtg)
x(y) = QY

t (Rt,x)(y). (6.6)

By (a) we can apply Fubini’s theorem to convert D− into D+ in (6.5), thus obtaining

[D+
g ((x, y), t)]

2 ≥ [D+
Lt,y

(x, t)]2 + [D+
Rt,x

(y, t)]2 for m-a.e. (x, y) ∈ Z

for L 1-a.e. t > 0. Since D+ is an upper semicontinuous upper gradient and upper semicon-
tinuous upper gradients bound, as we already said, the slope from above, we can use (6.6) to
get eventually (6.4).

Step 2. (the so-called Kuwada lemma). In this step we show that if h ∈ L∞(Z,m) is a
probability density, and ht is the solution to the gradient flow of Chc starting from h, then
µt = htm ∈ P(Z), t 7→ µt is locally absolutely continuous from [0,∞) to P(Z) endowed with
the quadratic Wasserstein distance W2. In addition, its metric speed satisfies

|µ̇t|2 ≤
∫

{ht>0}

|∇ht|2∗,c
ht

dm for L
1-a.e. t > 0. (6.7)

The proof of this fact uses the Hamilton-Jacobi subsolution property (6.4) of Step 1 (used
in integral form, so its validity for L 1-a.e. t > 0 is sufficient), as well as the integration by
parts formula (2.9) with the Laplacian ∆G corresponding to the energy ChG induced by the
pseudo gradient G(f) = |∇f |c.

Step 3. In this step we conclude the proof of the inequality |∇f |∗ ≥ |∇f |∗,c. Now for
any bounded nonnegative f ∈ D(Ch) with

∫

f2 dm = 1 we can find, arguing exactly as in
Proposition 6.18 of [AGS11b], a sequence of locally Lipschitz functions fn convergent to f in
L2(X,m) satisfying

lim sup
n→∞

∫

Z
|∇fn|2∗,c dm ≤ Ch(f) (6.8)

(the only difference is that the gradient flow of Chc has to be used, as in the previous steps).
Therefore f ∈ D(Chc) and Chc(f) ≤ Ch(f) which, in combination with (3.7), gives the result.
Using invariance under addition by constants and homogeneity, we extend the result to all
bounded functions f . Eventually a truncation argument and the locality of weak gradients
provide the result for general f . The preliminary reduction to nonnegative and normalized
f ’s is necessary in view of Step 2, because we use in the construction of fn the estimate (6.7)
on metric derivative for a P(Z)-valued map.

We briefly sketch, for the reader’s convenience the argument leading to (6.8), referring to
[AGS11a, Theorem 6.2] and [AGS11b, Proposition 6.18] for more details. By homogeneity and
invariance under addition of constants we can assume, besides

∫

f2 dm = 1, that c−1 ≥ f ≥
c > 0 m-almost everywhere in Z. We consider the gradient flow (ht) of Chc with initial datum
h := f2, setting µt = htm. The maximum principle yields c−2 ≥ ht ≥ c2 and a standard
argument based on chain rule and integration by parts (2.9) yields the energy dissipation
identity

d

dt

∫

ht log ht dm = −
∫

{ht>0}

|∇ht|2∗,c
ht

dm for L
1-a.e. t > 0. (6.9)
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Let g = h−1|∇h|∗; by the chain rule we know that log h is Sobolev along almost every
curve and we can use the same argument of [AGS11a, Theorem 6.2] to get

∫

(

h log h− ht log ht
)

dm ≤
∫

log h(h − ht) dm ≤
(

∫ t

0

∫

g2hs dm ds
)1/2(

∫ t

0
|µ̇s|2 ds

)1/2
.

Now, inequality (6.7) gives

∫

(

h log h− ht log ht
)

dm ≤ 1

2

∫ t

0

∫

g2hs dm ds+
1

2

∫ t

0
|µ̇s|2 ds

≤ 1

2

∫ t

0

∫

g2hs dm ds+
1

2

∫ t

0

∫

{hs>0}

|∇hs|2∗,c
hs

dm ds.

Recalling the entropy dissipation formula (6.9) we obtain

∫ t

0

∫

{hs>0}

|∇hs|2∗,c
hs

dm ds ≤
∫ t

0

∫

g2hs dm ds.

Now, the chain rule and the identity g = 2f−1|∇f |∗ give
∫ t
0 Chc(

√
hs) ds ≤

∫ t
0

∫

|∇f |2∗f−2hs dm ds,
so that dividing by t and passing to the limit as t ↓ 0 we get

lim sup
t↓0

1

t

∫ t

0
Chc(

√

hs) ds ≤
∫

X
|∇f |2∗ dm.

Therefore there exists si ↓ 0 with lim supi Chc(
√

hsi) ≤ Ch(f). Since
√

hsi are equibounded
and converge strongly to f in L2(Z,m) as s ↓ 0, a diagonal argument provides (6.8).
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and probability measures. ArXiv 1311.1381 (2013).

[Bre] H. Breziz, Analyse Fonctionelle. Masson, Paris, 1983.

[Chee] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces. Geom.
Funct. Anal., 9 (1999), 428–517.

[DiSp] S. Di Marino and G. Speight, The p weak gradient depends on p. ArXiv 1311.4171,
2013.

[Gi12] N. Gigli, On the differential structure of metric measure spaces and applications,
ArXiv 1205.6622 (2012), to appear on Memoirs AMS.

[GiHa] N. Gigli, B.-X. Han, Unifications of weak gradients on metric measure spaces. Paper
in progress.

[GoTr] V. Gol’dshtein and M. Troyanov, Axiomatic theory of Sobolev spaces. Expo
Math., 19 (2001), 289–336.

[Hei] J. Heinonen, Nonsmooth calculus. Bull. Amer. Mat. Soc., 44 (2007), 163–232.

[HK] P. Hajlasz and P. Koskela, Sobolev Met Poincaré, Memoirs AMS, 688 (2000).
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