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Abstract: Crowd surveillance plays a key role to ensure safety and security in public areas.1

Surveillance systems traditionally rely on fixed camera networks, which suffer from limitations2

in coverage of the monitored area, video resolution and analytic performance. On the other hand, a3

smart camera network provides the ability to reconfigure the sensing infrastructure by incorporating4

active devices such as pan-tilt-zoom (PTZ) cameras and UAV-based cameras, thus enabling the5

network to adapt over time to changes in the scene. We propose a new decentralised approach for6

network reconfiguration, where each camera dynamically adapts its parameters and position to7

optimise scene coverage. Two policies for decentralised camera reconfiguration are presented: a8

greedy approach and a reinforcement learning approach. In both cases, cameras are able to locally9

control the state of their neighbourhood and dynamically adjust their position and PTZ parameters.10

When crowds are present, the network balances between global coverage of the entire scene and high11

resolution for the crowded areas. We evaluate our approach in a simulated environment monitored12

with fixed, PTZ and UAV-based cameras.13

Keywords: Distributed Camera Network, Reinforcement Learning, Crowd Surveillance, UAV, PTZ,14

Simulation15

1. Introduction16

Camera networks for surveillance applications play a key role to ensure safety of public gatherings17

[1–4]. Security applications in crowded scenarios have to deal with a variety of factors which can lead18

to critical situations [5–7]. In such scenarios, a camera network must be able to record local events as19

well as to ensure a global coverage of the area of interest [8].20

Ensuring both coverage of the whole monitoring area and a good video quality of moving21

individuals is challenging using non-reconfigurable (fixed) cameras [5,9]. An high number of fixed22

cameras would provide the required coverage of the scene, but at a high cost. Moreover, fixed cameras,23

especially the ones with a large field of view (FoV) or a fisheye lens, would also capture areas of the24

scene where pedestrians are not present, thus creating an excessive amount of irrelevant data.25

Reconfigurable cameras can dynamically adapt their parameters, such as FoV, resolution and26

position. For example, pan-tilt-zoom (PTZ) cameras and cameras mounted on unmanned aerial27

vehicles (UAVs) can dynamically adapt their position and FOV. Such cameras allow to greatly reduce28

the number of cameras in the network while optimising coverage and target resolution given the29

current state of the crowded scene. The goal of such system is to ensure a good resolution for common30
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tasks such as face recognition in critical areas, while providing a sufficient video quality in other31

parts. UAVs have been particularly studied as a flexible and effective system for crowd gatherings32

surveillance in recent years [10,11].33

Reinforcement learning approaches have great potential for distributed camera networks34

optimization [2,12–15]. However, they have not been applied to the dynamic coverage of crowded35

scenes.36

In [9], we proposed a greedy approach to control the trade-off between covering the widest37

possible area of the scenario of interest (global coverage) and focusing on the most crowded parts of the38

scene (people coverage). In our previous work, we proposed a decentralised greedy empirical approach,39

where each camera aims at optimising the coverage performance in its local neighbourhood. In this40

paper, we introduce a novel decentralised approach based on Reinforcement Learning (RL) which41

allows every camera to learn how to optimise the coverage performances. Both approaches rely on the42

estimation of the state of the crowd by merging the observations from individual cameras at a global43

level while each camera locally decides on its next state. Both RL and greedy approaches allow the44

cooperative use of fixed, PTZ and UAV-mounted cameras which can track and survey a crowd relying45

only on cooperation and map sharing, without using classical tracking by detection algorithms.46

Our approach aims at guaranteeing the best possible coverage of the scene, exploiting the trade-off47

between global coverage and people coverage. For this goal, we employ different cameras, namely,48

fixed cameras, PTZ, and UAV-based cameras, which have different features and capabilities. Using49

multiple heterogeneous cameras enriches our coverage of an area of interest by providing different50

point of views and possible camera configurations, thus increasing the reliability of the collected data.51

Being able to reconfigure camera parameters, such as position and field of view, allows our network52

to seamlessly work in both static and dynamic scenarios in which people move continuously in the53

environment.54

Our contribution can be summarised as (1) a policy to trade-off between global coverage and55

people coverage, which can be fine tuned for different cameras types, (2) a new metric to evaluate56

the performances of the surveillance task, (3) a greedy framework to track the crowd flow based57

on cooperative approach, (4) a distributed machine learning framework based on reinforcement58

learning (RL) for covering crowded areas, and (5) a 3D simulator of crowd behaviors based on [16]59

and heterogeneous camera networks.160

The remainder of this paper is organized as follows: Section 2 discusses related papers. Section 261

describes our greedy approach for camera reconfiguration. Section 3.7 introduces the evaluation metrics62

and Section 3.8 discusses our RL-based approach. Section 4 presents the results of our simulation63

study, and Section 5 provides some concluding remarks together with a discussion about potential64

future work.65

2. Related Work66

Cooperative video surveillance system research has been developed to drastically reduce human67

supervision [17–19]. This framework usually allows cooperative cameras to share real-time information68

between them in order to capture events and to guarantee global coverage of the area of interest [1–3].69

When observing a crowded scenario, the state of the scene evolves dynamically and the camera70

network should be able to reconfigure and cover events as they happen. Due to their nature, events71

generated by moving pedestrians are unique and often can not be reproduced, thus making it difficult72

to test and evaluate different camera networks configuration and policies.73

Leveraging on simulators and virtual environments can be an effective tool to deal with these74

limitations. Virtualisation paradigms have been exploited both in camera surveillance [5,6] and crowd75

analysis [9,20].76

1 Simulator available at https://github.com/nick1392/HeterogenousCameraNetwork

https://github.com/nick1392/HeterogenousCameraNetwork
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In camera surveillance, fixed cameras can be used together with reconfigurable cameras such77

as UAV-based and PTZ cameras [5,6,21]. PTZs can dynamically set their parameter to optimise the78

coverage of areas of interest, progressively scanning a wide area or zooming in on events of interest.79

These cameras have been particularly employed to cooperatively track pedestrians, for example80

[21–24].81

UAVs have been employed for civil and military tasks, such as environmental pollution82

monitoring, agriculture monitoring, and management of natural disaster rescue operations [25–27].83

Military applications also involve surveillance, but their use in common crowd surveillance scenarios84

is limited because of regulations.85

In [28], the key features of a distributed network for crowd surveillance are (1) locating and86

re-identifying a pedestrian across multiple cameras, (2) tracking people, (3) recognising and detecting87

local and global crowd behavior, (4) clustering and recognising actions, and (5) detecting abnormal88

behaviors. To achieve these features, the following issues need to be tackled: how to fuse information89

coming from multiple cameras, performing crowd behavior analysis tasks, how to learn crowd behavior90

patterns, and how to cover an area with particular focus on key events.91

Reinforcement learning approaches [29] have been applied to distributed systems in the context92

of surveillance for different purposes. Hatanaka et al. [12] investigate the optimal theoretical coverage93

that a network of PTZ cameras can achieve in an unknown environment. In [2,13], online tracking94

applications using reinforcement learning are shown to outperform static heterogeneous cameras95

configuration. Khan et al. [14] employ reinforcement learning for resource management and power96

consumption optimisation in distributed cameras system. In [15] dynamic alignment of PTZ cameras97

is exploited to learn coverage optimisation. Although RL has demonstrated its effectiveness in camera98

networks, dynamic coverage of crowded scenes using UAVs has not been tackled yet.99

Recently, Altahir et al. [7] solve the camera placement problem with predefined risk maps which100

have an higher priority to be covered. In [30], a distributed PSO (Particle Swarm Optimisation) is101

employed to maximise the geometric coverage of the scene. Vejdanparast et al. [31] focus on the best102

zoom level selection for redundant coverage of risky areas using a distributed camera network.103

3. Method104

In this section, we introduce key part of our method. First, the observation model for the105

environment establishes a relation between the observation and its confidence. Next, camera types106

and features are described in detail. Finally we describe how the greedy reconfiguration policy and the107

RL-based approach exploit the network-wide trade-off between global coverage and crowd resolution.108

3.1. Observation Model109

The region of interest C, which has to be surveyed is divided into a uniform grid of I × J square110

cells, where the indexes i ∈ {1, 2, . . . , I − 1} and j ∈ {1, 2, . . . , J − 1} of each cell ci,j ∈ C represent the111

position of the cell in the grid. We assume a scenario evolving at discrete time steps t = 0, 1, 2, · · · , tend.112

At each time step, the network is able to gather the observation over the scene to be monitored, process113

it, and share it with the other camera nodes. Given the observation, each camera is able to compute its114

next position. For this purpose, we define115

• an observations vector Oi,j, which represents the number of pedestrians detected for each cell116

ci,j ∈ C;117

• a spatial confidence vector Si,j, which describes the confidence of the measures for each cell118

ci,j ∈ C. Our spatial confidence depends only on the relative geometric position of the observing119

camera and the observed cell;120

• a temporal confidence vector Lt
i,j, which depends on the time passed since the cell has last been121

observed; and122

• an overall confidence vector Ft
i,j, which depends on the temporal and spatial confidences.123
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The observations vector is defined as

Oi,j = {o1,1, o1,2, · · · , oi,j, · · · , oI,J}. (1)

The value oi,j for each cell ci,j is given as

oi,j =

{ ped
PEDmax

if ped ≤ PEDmax

1 if ped > PEDmax
(2)

where ped is the current number of pedestrians in a cell and PEDmax is the threshold for the number124

of pedestrians a cell is considered as crowded. PEDmax can be manually tuned depending on the125

application. Crowded cells should be monitored with a higher resolution.126

Occlusion of targets is one of the main challenges in crowded scenarios. We assume that our127

camera network is able to robustly detect a pedestrian when its head is captured with a resolution of at128

least 24× 24 pixels, which is in line with the smaller bound for common face detection algorithms [32].129

For each cell, a spatial confidence vector is defined as

Si,j = {s1,1, s1,2, · · · , si,j, · · · , sI,J} (3)

where the value 0 < si,j ≤ 1 is bounded and decreases as the distance between the observing camera130

and the cell of interest ci,j increases. The actual value of the spatial confidence si,j in a given cell131

depends on the type of observing camera and is described in Section 3.2.132

Similarly, a temporal confidence vector is defined as

Li,j = {lt
1,1, lt

1,2, · · · , lt
i,j, · · · , lt

I,J}. (4)

Each value lt
i,j is defined as

lt
i,j =

1−
t−t0

i,j
TMAX

if t− t0
i,j ≤ TMAX

0 if t− t0
i,j > TMAX

(5)

where t0
i,j is the most recent time instant, in which cell ci,j was observed, and TMAX represents the time133

instant, after which the confidence drops to zero. The value lt
i,j decays over time if no new observation134

oi,j on cell ci,j becomes available.135

Given the spatial and temporal confidence metrics, the overall confidence vector is defined as

Ft = { f t
1,1, f t

1,2, · · · , f t
i,j, · · · , f t

I,J} (6)

with
f t
i,j = si,j ∗ lt

i,j. (7)

Thus, for each cell ci,j we have an observation oi,j with an overall confidence f t
i,j. The confidence136

value varies between 0 and 1, where 1 represents the highest possible confidence. If a sufficient number137

of cameras is available for covering all cells concurrently, the overall confidence vector is given as138

FI = {1, · · · , 1}.139

3.2. Camera Models140

We briefly describe the models adopted for the three different camera types: fixed cameras, PTZ141

cameras, and UAV-based cameras. We assume that all fixed and PTZ cameras are mounted at a fixed142

height. For the same reason, UAV-based cameras fly at a fixed altitude, which also helps in reducing143

the computational complexity of the problem.144
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(a) A fixed camera observes the environment without
varying the spatial confidence for each cell at each time
step.

(b) Example of the distribution of the spatial confidence in
the area surveyed by an UAV.

(c) At each time step, PTZ camera can pan between
different positions.

(d) PTZ cameras can also zoom in to an area, which causes
their field of view to shrink, but improves the spatial
confidence in areas further away from the camera.

3.2.1. Fixed Cameras145

Fixed cameras (see Fig. 1(a)) provide a confidence matrix, which gradually decreases as the
distance from the camera increases. Being (x, y) a point in the space at a distance d from a fixed camera,
the value of the spatial confidence s(x, y) is defined as

s(x, y) =

{
− 1

dmax
∗ d + 1 if d < dmax

0 if d ≥ dmax
(8)

where dmax is the distance from the camera, over which the spatial confidence is zero. Thus, the
confidence value si,j of cell ci,j is defined as

si,j = max{s(x, y)}∀(x,y)∈ci,j
. (9)

3.2.2. PTZ Cameras146

PTZ cameras are modeled similarly to fixed cameras, with the additional capability to dynamically147

change the field of view (see Fig. 1(c)).148

PTZ cameras are able to pan-tilt and zoom between 9 different configurations and cover an area149

of 180◦ as shown in Figs. 1(c) and 1(d).150

Fig. 1(c) shows how a PTZ camera can achieve different configurations using only the pan151

movement along the horizontal axis. Each confidence map is defined as the one of a fixed camera. In152

Fig. 1(d) the camera is able to zoom on an area further away from the camera, which causes 3 effects:153

the FOV decreases, the confidence in the zoomed area increases, and the confidence in other areas154

decreases. Let (x, y) represent a point in the scene at distance d from a fixed camera, then the value of155

the spatial confidence for a PTZ camera while zooming s(x, y) is defined as156

s(x, y) =


0 if d < d0

− 1
dmax−d0

∗ d + dmax
dmax−d0

if d0 ≤ d < dmax

0 if d ≥ dmax

(10)
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where dmax is the distance from the camera over which we have 0 spatial confidence and d0 the closest157

distance captured in the FOV.158

3.2.3. UAV-based Cameras159

For UAV-based cameras, the FOV projection on the ground plane is different with respect to the
previous models, as shown in Fig. 1(b). The spatial confidence of point (x, y) at a distance d from the
UAV is computed as

s(x, y) =

{
− 1

duav
∗ d + 1 if d < duav

0 if d ≥ duav
(11)

where duav is the distance after which the confidence on the observation drops below a threshold g160

over which we consider the observation reliable.161

3.3. Reconfiguration Objective162

The objective of the heterogeneous camera network is to guarantee the coverage of the scene163

while focusing on more densely populated areas. The priority metric defines the importance of each164

cell to be observed. A high value indicates that the cell is crowded or that we have a low confidence on165

its current state, thus requiring an action.166

In order to formalise the reconfiguration objective, a priority vector P is defined as

Pt = {pt
1,1, pt

1,2, · · · , pt
i,j, · · · , pt

I,J}. (12)

The priority for each cell is defined as

pt
i,j = α ∗ ot

i,j + (1− α) f I
i,j (13)

where 0 ≤ α ≤ 1 represents a weighting factor to tune the configuration and f I
i,j represents the167

predefined ideal confidence for the cell.168

The objective G of each camera, given its possible set of actions, is to minimise the distance
between the confidence vector and the priority vector

G = min{||Ft+1 − Pt||} (14)

where α can vary between 0 and 1169 {
min{Ft+1 − FI} if α = 0

min{Ft+1 −Ot} if α = 1.
(15)

Setting α = 1 causes the network to focus on observing more densely populated areas with no170

incentive to explore unknown cells. In contrast, α = 0 causes the network to focus on global coverage171

only without distinguishing on the crowd density of the cells.172

3.4. Reconfiguration objectives: custom policies173

The policy presented in [9] and reported in Sec. 3.3 suffers from two main limitations:174

• The reconfiguration objectives are the same for the different camera types, namely UAVs and175

PTZs. In the real world, UAVs have a higher cost of deployment and movement with respect to176

PTZs, while they provide more degrees of freedom for their reconfigurability.177

• The priority maps do not share information about cameras’ type and position between different178

cameras. Especially in the case of UAVs, this can lead to a superposition of different cameras179

which decrease the network performances.180

We propose two approaches to tackle these limitations.181
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The first approach, called split priority, is to use different priority vectors for different type of
cameras, namely UAVs and PTZs. This allows to use different values of α for UAVs and PTZs, thus
allowing for different functionalities, such as ensuring a better coverage with UAVs while the PTZs
can focus on target areas, or vice versa. The two priority vector Pt

PTZ and Pt
UAV are defined as:

Pt
PTZ = αPTZ ·Ot + (1− αPTZ)(1− FI)

and
Pt

UAV = αUAV ·Ot + (1− αUAV)(1− FI).

This second approach, called position-aware UAVs, aims at solving the superposition issue which
comes from the different UAVs not being aware of each other’s position. The vector Pt

UAV is modified
as follows

Pt
UAV = αUAV ·Ot + (1− αUAV)(1− FI) + Ut

where Ut is a position vector containing a value uij for each cell, such that uij can take on two values:

ui,j =

{
0 i f 6 ∃ UAV in (i, j)

−1 i f ∃ UAV in (i, j).

By doing so, the cell priority is kept low whenever there is a UAV, thus penalizing the locations where
other UAVs are present. In order not to penalize its current position, each UAV UAVk updates its
priority vector pt

UAVk−i,j by recovering its contribution to Ut by adding 1 to its current position:

pt
UAVk−i,j =

pt
UAV−i,j + 1 i f ∃ UAVk in (i, j)

pt
UAV−i,j otherwise.

The last operation is that every UAV normalises its priority in the range [0 1] from the range [-1 1] so182

that it is compatible with the cost function in Eq. 14 to be minimised.183

3.5. Update Function184

At each time step t, the network has knowledge about the current observation vector Ot, the185

spatial confidence vector St, the temporal confidence vector Lt, and the overall confidence vector Ft.186

In order to progress to the next time step t + 1, an update function for these vectors is required.187

The temporary spatial confidence vector St+1
temp is determined by the geometry of cameras at time188

t + 1. For each cell, the value st+1
tempi,j

is the maximum spatial confidence value of all cameras observing189

the cell (i, j). Cells that are not covered by any camera have a spatial confidence value of 0.190

We estimate the temporal confidence vector as follows: Lt+1
time is computed by applying Eq. 5 to

each element of Lt. Another temporary temporal confidence vector Lt+1
new is computed by setting to 1 to

all cells currently observed, and setting to 0 all other cells. With the estimated vectors, we compute
two estimations of the overall confidence vector:

Ft+1
time = St ∗ Lt+1

time (16)

and
Ft+1

new = St+1
temp ∗ Lt+1

new. (17)

The new overall confidence vector is then computed as

Ft+1 = max{Ft+1
new , Ft+1

time}∀(i,j). (18)
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For each cell (i, j) in which f t+1
new > f t+1

time, we also need to update the last time the cell has been191

observed t0(i, j) = t + 1 and the observation vector ot(i, j).192

3.6. Local Camera Decision: Greedy Approach193

In our approach, all the information vectors described in Section 3.1 are shared and known to all194

cameras. Each camera locally decides its next position using a greedy approach to minimise the cost195

defined in Eq. 14 in its neighbourhood.196

At each time step, each PTZ and UAV-based camera select a neighbourhood that can be explored.197

The UAV’s neighbourhood is defined as a square centered at the cell where the drone is currently198

placed (see Fig. 1(b)). The PTZ neighbourhood is a rectangle which covers the space in front of the199

camera as shown in Fig. 1(c).200

For each cell in the neighbourhood, we center a window W of size Nw × Nw on each cell cW ∈W201

and we store in the cell the value202

cW = ∑ || f t+1
i,j − pt

i,j||. (19)

The UAV will then move toward the cell in its neighbourhood with the largest cW , and the PTZ203

steers its FOV to be centered on that cell. If two or more cells have the same value of cW , the camera204

selects one of them randomly.205

3.7. Evaluation Metrics206

We define the Global Coverage Metric (GCM) for evaluating the network coverage capability as

GCM(t) =

∑
∀ci,j | f t

i,j>g
1

I ∗ J
(20)

with g being the threshold over which the cell is considered to be covered. We then average the results
for the whole duration of the observation as

GCMavg =

∑
t=0,··· ,tend

GCM(t)

tend + 1
. (21)

We define the People Coverage Metric (PCM) for evaluating the network capability to cover
pedestrian in the scene as

PCMtot =

∑
∀person∈ci,j | f t

i,j>p
1

totalPeople
(22)

with p being the threshold over which the person is considered to be covered.207

3.8. Reinforcement learning208

On the one hand, an approach based on reinforcement learning presents a few advantages with209

respect to a greedy approach, such as better performance and the ability to have longer-term planning210

since the decision of each agent does not depend only on the last observation but also from past211

observations. On the other hand, reinforcement learning requires a training phase which is not needed212

in case of an empirical greedy approach.213

Our novel reinforcement learning approach is based on a set of UAV-based cameras. We focus214

on UAV-based cameras because it is the most challenging camera type with the most degrees of215

freedom. Using our predefined observation and priority models (Sec. 3.1 and Sec. 3.4), we control each216

UAV-based camera using an RL agent, which replaces the greedy approach for local camera decision217

from Sec. 3.6 in their local decision-making process.218
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Figure 1. The workflow of our RL approach.

We rely on the vanilla ML Agents reinforcement learning network provided by [33] for our219

deployment with UAVs. We use Soft Actor Critic (SAC) [34] as the backbone of our RL method. For220

our approach (shown in Fig. 1), we define:221

• a set of states S, which encodes the local visual observation of each UAV,222

• a set of possible actions A, which each UAV can choose to perform at the next time step, and223

• a set of rewards R, which depends on the observation vector Ot and its related confidence Ft.224

Figure 2. Visual observation of a drone is a 11× 11 portion of the plotted priority vector Pt in its
neighbourhood.

At each timestep t, the agent is provided with a visual observation embedded in St ∈ S, as shown
in Fig. 2. The visual observation consists of a texture which contains a visualisation of the priority
vector Pt, centered on the drone position with size 11× 11 cells. The visual observation is embedded
in the state vector St of each agent’s internal neural network. Each pixel and color channel of the
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visual information is normalised to the range [0− 0.1]. Based of the state St, the agent selects an action
At ∈ A. At is composed of all possible positions the drone can travel to in the observed window St.
With the state-action pair (St, At) the time t is incremented to t + 1, the environment is transitioned to
a new state St + 1 ∈ S and a reward Rt+1 ∈ R is provided to the agent. Our reward is computed as

Reward = (α− 1) · ∆GCMt + αPCMt (23)

where α can be set at training time to obtain the same effect described in Sec. 3.3. The two metrics are
defined as

∆GCMt = GCM(t)− GCM(t− 1)

and

PCMt =

∑
∀person∈ci,j | f t

i,j>p
1

totalCurrentPeople

which is the instantaneous People Coverage metric.225

For training, we set Tmax = 1 s and execute each episode for 50 timesteps such that the drone can226

experience loss of coverage early and improve on it. An episode is completed if the whole map is227

covered or if the timestep limit has been reached.228

4. Experimental Results229

For the experiments, we define an environment of size 60× 60m2. The scene is square-shaped,230

exhibiting people passing by cars and vegetation. Pedestrians can enter and exit the scene from any231

point around the square. Each cell ci,j is a square of 1× 1m2. In this environment, 2 fixed cameras, 2232

UAVs, and 2 PTZs are positioned as shown in Fig. 3(a). Sample images of the environment from a PTZ233

and a UAV-based camera are shown in Figures 3(b) and 3(c), respectively. For our experiments, we234

simulate the movement of 400 pedestrians crossing the scene with the following parameters :235

• Tmax = 3 s236

• PEDmax = 2237

• dmax = 10 m238

• fixed and PTZ cameras height = 5 m239

• UAV-based cameras height = 7 m240

(a) (b) (c)

Figure 3. (a) Top view of the simulation environment including the camera positions. (b) Top view of
the simulation environment including people. (c) Sample image from a PTZ camera.

4.1. Quantitative Results241

In this section, we present the quantitative results obtained with our 4 different approaches (greedy,242

split priority, position aware and RL-based) in the simulated environment. The goal is to evaluate the243
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ID g and p α GCM PCM
1 0.2 0 12.4 % 17.4 %
2 0.2 0.5 14.3 % 20.5 %
3 0.2 1 10.4 % 13.5 %
4 0.01 0 42.9 % 47.6 %
5 0.01 0.5 30.3 % 33.1 %
6 0.01 1 22.9 % 28.2 %
7 0.01 0 43.1 % 45.6 %
8 0.01 0.5 28.7 % 54.4 %
9 0.01 1 26.1 % 61.2 %

Table 1. Simulation experiments. Legend: ID–experiment; g,p–cell coverage thresholds; GCM–global
coverage metric; PCM–people coverage metric. Experiments (1-6) refer to a uniformly distributed
crowd, experiments (7-9) refer to a crowd with directional motion properties.

capabilities of the system to survey a crowded scene using the metrics defined in Sec. 3.7. We run 33244

different simulation experiments with varying values of g, p, and α.245

The same simulation setup (starting cameras’ positions and number of pedestrian in the scene) is246

used to evaluate the 4 different approaches: greedy approach (experiments(1-6), Tab. 1), split priority247

and position aware approaches (experiments(10-18), Tab. 2) and reinforcement learning based approach248

(experiments(19-24), Tab. 3). Experiments (7-9) display a single group of 10 pedestrians moving across249

the map and it is used to show the ability of our approach to track people in the scene.250

The values g and p indicate the threshold above which we consider an observation reliable in251

time and space, respectively. A threshold of 0.2 indicates that our observation is at most 2.4 seconds252

old, when taken with a spatial confidence equal to 1. A threshold of 0.01 represents the cells and253

pedestrians about which we have a minimum level of information.254

As baseline approach we assume that all 6 cameras are not able to change their configurations.255

Doing so, they are able to cover 6 % of the entire area with g = 0.2 and 12 % with g = 0.01.256

Table 1 summarises the results obtained using our greedy approach [9]. In experiments (3) and (6),257

α is set to 1, causing our camera network to focus only on observing pedestrians with no incentive to258

explore new areas in the environment. In experiments (1) and (4), α is set to 0 resulting in maximizing259

the coverage regardless of the position of pedestrians. In experiments (2) and (5), α is set to 0.5 aiming260

for balancing coverage and pedestrian tracking in crowded areas. We can observe that in experiments261

(1) and (4) we obtain the lowest values of GCM, which is expected since we are focusing on pedestrians.262

We also achieve the lowest scores in terms of PCM because cameras have no incentive in exploring263

new areas.264

Experiments (7-9) are conducted using a directional crowd (Fig. 3(b)). When the network focuses265

only on observation in (9), it obtains the best results in terms of PCM and the worst one in terms of266

global coverage GCM. As expected, we obtain the best results in terms of coverage of the environment267

(GCM) in experiments (3) and (6). Since the crowd is uniformly distributed in the space, we also obtain268

the best results in terms of PCM. In experiments (2) and (5), the network combines global coverage269

and crowd monitoring, the system under performs compared with the scenes where α = 0 and α = 1.270

Table 2 summarises the results obtained using our split priority approach. Splitting the priority271

for different type of camera shows how UAVs have a key role when they are allowed to focus on272

the global observation of the scene (experiments (10-12)). Otherwise the performances of the whole273

network decreases (experiments (13-18)).274

Both the greedy and split priority methods experience a decrease in performances when they have275

to focus on observing the more densely populated areas. When αUAV = 1, the UAVs tend to overlap276

and cover the same zone with a loss in the overall performance as shown in experiments (13-18).277

To fix this issue, we developed the position-aware method, which results are reported in Table 2.278

With this methodology, which includes the knowledge of the UAVs position, the performance279
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Split priority Position aware
ID g and p ffPTZ ffUAV GCM PCM GCM PCM

10 0.2 0 0 15.6% 18.8% 15.5% 20.3%
11 0.2 0.5 0 16.7% 18.8% 16.7% 19.1%
12 0.2 1 0 16.8% 18.5% 16.6% 20.6%
13 0.2 0 0.5 11.3% 14.4% 15.5% 20.7%
14 0.2 0.5 0.5 11.5% 14.3% 16.7% 21.8%
15 0.2 1 0.5 11.5% 12.0% 16.5% 21.2%
16 0.2 0 1 11.3% 11.6% 15.5% 20.4%
17 0.2 0.5 1 11.5% 14.0% 16.3% 19.1%
18 0.2 1 1 11.5% 11.2% 16.1% 20.4%

Table 2. Results of the simulations with method split priority and position aware

ID g and p α GCM PCM
19 0.2 0 14.2± 0.1% 12.2± 0.2%
20 0.2 0.5 14.7± 0.3% 13.6± 0.5%
21 0.2 1 11.7± 0.5% 13.0± 0.9%
22 0.01 0 26.1± 2.4% 25.23± 4.2%
23 0.01 0.5 26.5± 1.1% 24.0± 2.0%
24 0.01 1 24.4± 0.9% 20.8± 1.1%

Table 3. Simulation experiments with RL UAV control. Mean and standard deviation are computed
from the results of 3 runs of each simulation. SAC is an algorithm that produces a stochastic policy, a
single run would not be enough to evaluate the policy.

improves. The influence on the GCM with αUAV = 0 is almost negligible, while for greater values the280

improvement is clearly visible in both metrics (experiments (10-18)).281

With this methodology the problem of overlapping UAVs is solved and this lead to performance282

improvements since the UAVs collect information in different regions.283

In Table 3, we report the results obtained using our RL-based approach. Our approach (experiments284

(19-21)) is able to outperform the greedy approach (experiments (1-3)) when parameters g and p are285

set to 0.2. This method is thus more effective in long-term scenarios, when the temporal decay of the286

observations is slower and allows for longer-term planning. On the other hand, when g and p are287

set to 0.01, the greedy approach (experiments (4-6)) is more effective in aggressively moving camera288

configuration to the best place in a short amount of time and with a lower confidence threshold with289

respect to the the RL-based approach (experiments (22-24)).290

4.2. Qualitative Results291

In this section, we present the qualitative results obtained with our model in the simulated292

environment. The goal is to demonstrate how our system is able to follow the crowd relying only on293

detection of pedestrians in still frames rather then on classical tracking algorithms.294

For this purposes, we simulate a single group of five pedestrians crossing the scene from the295

bottom left to the top right as shown in the sequence depicted in Fig. 4. The UAV is able to closely296

follow the pedestrians in the environment, scoring a PCM = 70.4 % and GCM = 3.2 %, as shown in297

Fig. 5. Fig. 6 shows how observation priority and confidences maps are updated over time in order to298

guide the UAV in the tracking scenario.299

5. Conclusion300

In this paper, we have presented two camera reconfiguration approaches for crowd monitoring,301

a greedy camera approach and a RL-based one for UAV-mounted cameras. Our methods allow302

heterogeneous camera networks to focus on high target resolution or wide coverage. Although based303

on simplified assumptions for camera modeling and control, our approach is able to trade off coverage304
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(a) (b) (c) (d) (e)

Figure 4. Image sequence of a group of pedestrian moving from the bottom left of the environment (a)
to the top right (c). The image is captured by a top view camera during the simulation to demonstrate
the tracking behavior of our network.

(a) (b) (c) (d) (e)

Figure 5. Image sequence of a group of pedestrian moving from the bottom left of the environment (a)
to the top right (e) captured by a UAV surveying the scene.

Scenario Priority Pt Observation Ot temporal confidence Lt Spatial confidence St Overall confidence Ft

(1)

(2)

(3)

Figure 6. Graphical representation of priority Pt, observation Ot, temporal confidence Lt, spatial
confidence St and overall confidence Ft for 3 different scenarios: (1) Camera Network Sample, (2)
Tracking sample at time t = 0, (3) Tracking sample at time t = 10. In (2) and (3) the UAV focuses on
the observation matrix, such that the next priority map depends only on previous observations. Red
represent the value 0, and green represents value 1.
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and resolution of the network in a resource-efficient way. We have demonstrated how different cameras305

can be used in different manners to optimise the effectiveness of our method. In future work, we aim306

at testing our approach in the real world to show it potential development. Moreover, more camera307

features will be modeled in our framework, such as UAVs limited time of flight.308
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