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We introduce a two-dimensional metric (interval) temporal logic whose internal and external time flows are
dense linear orderings. We provide a suitable semantics and a sequent calculus with axioms for equality and
extralogical axioms. Then we prove completeness and a semantic partial cut elimination theorem down to
formulas of a certain type.
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1 Introduction

In recent years, metric temporal logics gained popularity because of their applicative aspects, e.g., those relative
to the formalization of time-critical systems. At the same time, under the paradigm of time granularity, there
appeared in the literature a number of proposals on how to combine temporal logics into n-dimensional systems
(very often with n = 2). Cf., e.g., [4, 5, 11]. To the best of our knowledge, proof-theoretic properties of those
multi-dimensional systems have not been investigated yet.

In computer science, multi-dimensional temporal structures and the corresponding logics are often used. E.g.,
there are temporal structures modelling computations, with internal and external temporal quantifications ranging
on states and computations, respectively. There are also the structures for time granularity, which come equipped
with an internal time flow (for each of the so called time grains) and an external one (for the whole structure of time
grains). In this paper we took inspiration from the latter structures to develop a corresponding two-dimensional
metric temporal logic, where both time flows are dense linear orderings. First of all we establish completeness
of the proposed system with respect to a suitable class of structures. Secondly we get a semantic proof of cut
elimination as a byproduct of the technique used to establish completeness. More specifically, regarding cut
elimination, we aim at a semantic partial cut elimination result in the vein of [7, Theorem 2.7.1]. We get our result
by using semantic techniques, as done in [7, 3.1.9]. We show that every provable sequent has a proof whose cut
formulas are among those occurring in some extralogical axiom.

We recall that, in presence of extralogical axioms, a full cut elimination result that preserves the subformula
property does not hold in general. Cf. [7, Remark 2.7.7] for an example. For simplicity, in the following we shall
simply refer to our result as “cut elimination”. In [2], we introduced an infinitary extension of a fragment of the
Metric Interval Temporal Logic over dense time domains, called MTL∞. We recall that Metric Interval Temporal
Logic was introduced in [1] as a fragment of Metric Temporal Logic in which temporal operators may “quantify”
over nonsingular intervals only. More precisely, the logic MTL∞ is a modification and an extension of a system
proposed in [9]. Same as with the latter system, only quantifications over nonsingular intervals are allowed in
MTL∞. Differently from the system in [9], an induction schema is provable in MTL∞, thanks to the presence of
some infinitary rules and axioms. Moreover, applications of the cut rule can be restricted to very simple formulas
(cf. [2, Theorem 3.4]). In MTL∞ there are relational formulas that describe properties of the underlying time flow
and labelled formulas that express temporal statements. Regarding labelled deductive systems, we refer the reader
to [6, 12].

In MTL∞, binary propositional connectives only apply to formulas of the same kind and the deduction rules
deal separately (as much as possible) with the relational and the labelled component of the deductive system.
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Apart from recovering an induction schema and retaining a suitable cut elimination property, a motivation for
studying MTL∞ was the remark made in [9] that, differently from the fully developed model checking techniques,
proof-theoretic investigations of Metric Temporal Logic had been only partly attempted until that time.

Although familiarity with the content of [2] might be helpful, we shall keep this paper as much self-contained
as possible. We shall refer to [2] to avoid unnecessary repetitions or for comments and further motivations for
introducing MTL∞.

In this paper we aim at temporalizing MTL∞. More precisely, but still vaguely, we want to put a copy of MTL∞
on top of itself and investigate the properties of the resulting two-dimensional system, to be called MTL2

∞. The
semantic intuition is that there are two kinds of time flows, an internal one and an external one, each being a dense
linear ordering with least but no greatest element. At each point of the external flow it corresponds a copy of the
internal time flow. Roughly speaking, each copy of the internal time flow and the external one will be governed
by the MTL∞ logic of [2]. Temporal operators do quantify over (possibly unbounded) intervals in the same way
as in MTL∞.

It is worth mentioning that the temporalization of certain systems has been studied in [4], where the authors
investigate the so called external way of temporalizing a logic system. In the external approach it is not necessary
to have detailed knowledge about the components of the system. We anticipate that, differently from [4], we shall
need a detailed knowledge of the components in order to establish cut elimination for the resulting system.

Various techniques for combining temporal logic systems have been developed also in [5]. In that approach,
constraints need to be specified in order to ensure that properties of the combining logics are retained by the
combined system. More precisely, in [5], the authors investigate the transfer of soundness, completeness and
decidability from the components to the system they generate. We point out that they do not establish any proof-
theoretic property of the resulting systems. In this paper, in addition to proving soundness and completeness of
MTL2

∞ with respect to adequate semantics and sequent calculus, we shall also get a semantic proof of a partial
cut elimination theorem.

We also point out that a two-dimensional system can be used to describe a temporal logic for time granularity.
For such a logic can be regarded as a combination of simpler temporal logics in a way that properties of the
resulting system can be derived from those of its components. For a survey on temporal logics for time granularity,
we refer the reader to [3].

Eventually we recall that, in the literature, one can find general methods for obtaining a system that admits
full cut elimination, starting from a system with axioms. They are based on the replacement of axioms with rules.
Cf. the method introduced in [10] and subsequently developed by the same authors in other works. In our opinion,
the technique proposed in [10] is a clever way of hiding the cuts within the added rules. The reader should bear
in mind that, differently from our work, [10] originates from purely proof-theoretical motivations. A stronger
motivation for dealing with a system which is not completely cut-free is that application of the technique in [10]
to a concrete deduction system with axioms like ours results in the replacement of naturally formulated axioms
(whose intuitive meaning is clearly understood) with rules which are far less intuitive. In our opinion, the latter
phenomenon is not a point in favor of a potential usability of the resulting system.

The rest of the paper is organized as follows. In § 2, we introduce syntax and semantics of MTL2
∞. In § 3, we

introduce the sequent calculus. We also point out that two induction schemas (one for each kind of time flow)
are provable in MTL2

∞. In § 5 we establish completeness and we get cut elimination, by suitably modifying the
reduction tree construction technique of predicate logic. Differently from [2], we do not make use of any first
order translation of the MTL2

∞ temporal formulas, but we directly construct the reduction tree of a sequent by
means of the MTL2

∞ deduction rules. Eventually, by applying a result in [2], we get completeness of MTL2
∞ with

respect to the family of structures where the underlying time flows are given by the nonnegative rational numbers
and the time intervals are determined by a very simple function.

2 Syntax and semantics

We recall that the logic Lω1ω is an extension of first order logic where countable conjunctions and disjunctions
are allowed (cf. [8]). As is usual we identify a language L with its extra logical symbols. We write ϕ ∈ L as an
abbreviation for “ϕ is an L-formula”. Similarly with L-terms. We denote the set of natural numbers by ω.
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2.1 Syntax

The language of MTL2
∞ is formed by an internal language L i and an external language Le. Each of these two

languages comprises a relational component L∗,r and a labelled component L∗,�, where ∗ ∈ {i, e}. We begin by
introducing the two components of L i and the corresponding formulas.

The language L i,r = { f,<, c} is a first order language with equality and f , <, c are a unary function, a binary
relation and a constant symbol, respectively. We have one additional connective

∨
for (countable) infinitary

disjunction. We use lower case letters v,w, x, y, z (possibly indexed) for the (meta)variables of L i,r. We denote
by Vi the set of L i,r-variables. We denote by Ti the set of L i,r-terms. We use letters s, t, u (possibly indexed) for
the L i,r-terms. The set Fi,r of L i,r-formulas (to be called internal relational formulas) is the least set containing:

(i) the finitary L i,r-formulas;
(ii) all the subformulas (in the sense of the Lω1ω logic) of the infinitary formulas of the form ∀x

∨
n∈ω(x <

f n(c)). Hence the set of subformulas of ∀x
∨

n∈ω(x < f n(c)) contains the formula itself,
∨

n∈ω(t < f n(c))
and t < f k(c) for all relational terms t and all k ∈ ω. (Here and in the following we let f 0(t) = t for all
terms t .)

The language L i,t is a propositional language with a set P = {pn : n ∈ ω} of propositional letters; the proposi-
tional connectives and, for all m < n in ω, the temporal operators

�[m,n] , �]m,n] , �[m,n[ , �]m,n[ , �[m,∞[ , and �]m,∞[ .

The semantics of the temporal operators will be introduced in § 2.2. We write �(m,n) to denote any of the above
operators, where m ∈ ω and n ∈ ω ∪ {∞}.

The set Fi,t of L i,t-formulas (to be called internal temporal formulas) is the least set A that contains the
proposition symbols and is closed under application of the propositional connectives and under the following
formation rules: if α ∈ A then �(m,n)α is in A, where �(m,n) is any of the temporal operators.

The set Fi,� of internal labelled formulas is the set of all expressions of the form s : ψ , where s ∈ Ti and
ψ ∈ Fi,t.

What we have introduced so far is basically the syntax of MTL∞. The logic MTL∞ has two kinds of formulas:
the relational and the labelled ones. To sum up: the formulas in Fi,t are those of the propositional metric temporal
logic underlying MTL∞. A formula α ∈ Fi,t can be decorated by an internal label s (an element of Ti) to form
the internal labelled formula s : α. Once s : α has been formed, it cannot be used to construct a more complicated
formula. By this we mean that, e.g., the conjunction of two internal labelled formulas is not an internal labelled
formula, but it will be a formula at the second level of the temporalization, as we explain below.

As we said already, MTL2
∞ is obtained by putting a copy of MTL∞ on top MTL∞ itself. Therefore we

define Le,r, Te, Fe,r, (“e” for “external”) as above, by using the same symbols, this time in upper case, for the
extralogical symbols and the variables. There will be no ambiguity in using < for both the internal and the external
predicate symbols.

Let F i,� be the the set obtained by closing Fi,� under application of (external) propositional connectives and
temporal operators. The intuition is that the formulas in Fi,� play the role of the atomic temporal formulas for
the external logic and F i,� is thus the set of all the external temporal formulas. The set Fe,� of external labelled
formulas is the set of all expressions of the form S : β, where S ∈ Te and β ∈ F i,� ∪ Fi,r. The definition of Fe,�

agrees with the spirit of MTL∞, where the relational and the labelled formulas are not “mixed”. We shall use
upper case letters A, B, . . . (possibly indexed) to denote formulas in Fe,r ∪ Fe,�. We say that a formula S : β in
Fe,� is atomic if the formula β is atomic.

Here is a simple example: let S be an external term and t1 : α1, t2 : α2 be internal labelled formulas. As we
said above, the expression (t1 : α1) ∧ (t2 : α2) is not an internal labelled formula, but S : (t1 : α1) ∧ (t2 : α2) is an
external labelled one. Even if we have not defined the semantics yet, to help the reader’s intuition we anticipate
that the latter formula will be true in a structure at the external time instant “S” if, in the internal time flow
corresponding to “S”, formulas α1 and α2 are true at time instants “t1” and “t2”, respectively.

In the following we shall deal with sequents. As is usual, a sequent is a formal expression of the form
A1, . . . , Am 	 B1, . . . , Bn , for some m, n ∈ ω, where A1, . . . , Am and B1, . . . , Bn are lists of formulas in
Fe,r ∪ Fe,�.
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2.2 Semantics

The notation introduced in § 2.1 is in force. In the following we use standard model-theoretic notation; cf., e.g.,
[8]. A pre-structure is a a tuple of the form (M, (Na)a∈A)) such that

(i) M = (M,<, 0, g : M → M), where (M,<, 0) a dense linear ordering with least element 0 but no greatest
element and g a strictly increasing function such that, for all a ∈ M , a < g(a) and the sequence {gn(0) :
n ∈ ω} is cofinal in M (viz. for all a ∈ M there exists n ∈ ω such that a < gn(0));

(ii) for each a ∈ M , Na = (Na,<a, 0a, ga : Na → Na) is a first-order structure that satisfies analogous prop-
erties to those of M.

For notational simplicity, we shall write (M, Na)a∈A for (M, (Na)a∈A)). In order to assign a truth value to a
formula (internal or external) we fix

(i) an assignment σ : Ve → M , where we denote by Ve the set of Le,r-variables;
(ii) a family of assignments {σa : Vi → Na}a∈M , where where we denote by Vi the set of L i,r-variables;

(iii) a family {pNa : p ∈ P} of subsets of Na , for each a ∈ M . The set pNa is intended to be the set of points in
Na where the propositional letter p is true.

We write tNa ,σa to denote the interpretation of t ∈ Ti in Na under σa . Let b ∈ Na . We denote by σa(x/b)
the assignment that differs from σa at most on the variable x , on which it takes value b. The truth value of an
L i,r-formula in Na under σa is given by its first-order semantics. Let t ∈ Ti and let ψ ∈ Fi,t. We fix a ∈ M . Let
b = tNa ,σa . We recursively define Na, σa, (pNa )p∈P |= t : ψ as follows:

Na, σa, (pNa )p∈P |= t : p if b ∈ pNa ;

Na, σa, (pNa )p∈P |= t : �[m,n]ψ if, for all d ∈ Na such that (ga)m(b) ≤a d ≤a (ga)n(b),

we have that Na, σa(x/d), (pNa )p∈P |= x : ψ ;

Na, σa, (pNa )p∈P |= t : �]m,∞[α if, for all d ∈ Na such that gm
a (b) <a d,

we have that Na, σa(x/d), (pNa )p∈P |= x : ψ ;

and the cases for the propositional connectives are treated as expected and the cases for the other temporal
operators are similar to �[m,n] and �]m,∞[ .

We let M = (M, Na, (pNa )p∈P, σ, σa)a∈M and, with a little abuse of the model-theoretic terminology, we call
M a structure. We say that M is based on the pre-structure (M, Na)a∈M . As with the internal relational formulas,
the truth value of an Le,r-formula α in M under σ is given by by its first-order semantics. Relative to such an α,
we shall often write M |= α instead of M, σ |= α, since there is no ambiguity. Relative to M, σ we shall use the
same notation previously introduced for Na, σa , a ∈ M . Let T ∈ Te and let a ∈ M be the interpretation T M,σ of
T in M under σ . If ϕ ∈ Fi,r, then M |= T : ϕ if Na, σa |= ϕ.

Next we say when M |= T : ϕ, for ϕ ∈ F i,�. Basically we shall repeat (with the necessary changes) the
definition that we gave in the case of the internal formulas. We provide some details for sake of clarity (recall that
the “atomic” formulas in F i,� are those of the form t : ψ , where t ∈ Ti and ψ ∈ Fi,t):

M |= T : t : ψ if Na |= t : ψ ;

M |= T : �[m,n]η if, for all d ∈ M such that gm(a) ≤ d ≤ gn(a),

we have that (M, Na, (pNa )p∈P, σ (X/d), σa)a∈M |= X : η;

and the propositional cases are treated as expected and the cases for the other temporal operators are similar.
We say that a sequent 
 	 � is true, or satisfied, in a structure M (and we write M |= 
 	 �) if M does

not satisfy some of the formulas in 
 or satisfies some of the formulas in �. A sequent is valid if it is true in
all structures.
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3 Sequent calculus

In this section we introduce the axioms and the rules of MTL2
∞. Most of the axioms are formulated as Post rules.

In the following we first introduce some axiom schemas, then we shall consider instances of those schemas. We
assume that the reader can easily figure out what we mean by an instance of some axiom schema. E.g., for all S1, S2

in Te, the sequent S1 = S2, �[S1/Z ] 	 �[S2/Z ] is an instance of the axiom schema X = Y, �[X/Z ] 	 �[Y/Z ].
The reason for dealing with instances rather than with schemas is to obtain a suitable cut elimination theorem.

The reader who is not interested in proof-theoretic issues may opt for axiom schemas.

Axioms for equality

Among the axioms for equality are all instances of the following axiom schemas.

	 X = X ; X = Y, �[X/Z ] 	 �[Y/Z ] (� an atomic formula in Fe,r);

	 T : x = x ; and T : x = y, T : �[x/z] 	 T : �[y/z] (T ∈ Te, � an atomic formula in Fi,r).

In addition, we have the following equality axioms:

T = S, T : η 	 S : η (η an atomic formula in F i,� ∪ Fi,r).

As it can be immediately realized, the axiom schemas on the second line are obtained from those on the first
one by using internal variables/symbols and by “decorating” with a same external label all the formulas involved.
Loosely speaking, we shall say that the latter schemas are the internal formulations of the former. Later we shall
adopt the same terminology relative to the rules.

Extralogical axioms

With the extralogical axioms, we axiomatize the class of structures under consideration (cf. § 2.2). We start with
external extralogical axiom schemas stating that < is a dense linear ordering with least element C :

X < X 	 ; X < Y, Y < Z 	 X < Z ; 	 X < Y, X = Y, Y < X ;

	 C < X, C = X ; and X < Y 	 ∃Z(X < Z ∧ Z < Y ).

We do not include an axiom stating that there is no greatest element, because the latter property can be derived
from the leftmost axiom of the following list. The external extralogical axioms also express the properties of the
function symbol F and of the sequence {Fn(C) : n ∈ ω}:

	 X < F(X); X < Y 	 F(X) < F(Y ); and 	
∨

n∈ω

(X < Fn(C)).

The external extralogical axioms are all instances of the above schemas. As with the axioms for equality, we
have internal versions of all the external extralogical axioms. We leave to the reader the easy task of formulating
them. In the following we refer to [7, Chapter 2] for a formulation of the rules of first-order sequent calculus.

Identity axiom and cut rule

The identity axiom and cut rule are

A 	 A (id) and

 	 A,�
, A 	 �


 	 �
(cut),

respectively. They apply to any formula A ∈ Fe,r ∪ Fe,�.
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Structural rules

The structural rules are those of Weakening, Exchange and Contraction from sequent calculus. They apply to any
formula in Fe,r ∪ Fe,�.

Rules for relational formulas

The rules for the external relational formulas are those of the first-order sequent calculus for the finitary connectives
and the quantifiers. In addition, we have the following rules for the infinitary disjunction:

{
, T < Fn(C) 	 �}n∈ω


,
∨

n∈ω

(T < Fn(C)) 	 �
and


 	 T < Fm(C),�

 	 ∨

n∈ω

(T < Fn(C)),�
, for all m ∈ ω.

We also have internal versions of all the rules above for the labelled external formulas of the form T : �, where
T ∈ Te and � ∈ Fi,r. For sake of clarity, we formulate the rules concerning the infinitary disjunction:

{
, T : t < f n(c) 	 �}n∈ω


, T :
∨

n∈ω

(t < f n(c)) 	 �
and


 	 T : t < f m(c),�

 	 T :

∨
n∈ω

(t < f n(c)),�
, for all m ∈ ω.

Propositional rules

The propositional rules for the external labelled formulas closely follow the standard propositional rules. As an
example, we give the the rules for implication:


, T : α 	 T : β,�


 	 T : α → β,�
and


, T : β 	 � 
 	 T : α,�


, T : α → β 	 �
(α, β ∈ F i,� or α, β ∈ Fi,r).

Notice the constraint on the application of the two rules above, which is a consequence of the constraint that
we put on the formation of the set Fe,� of external labelled formulas. As we already said, we do not want to “mix
up” the relational and temporal components of the system.

We also have internal versions of all the propositional rules for the external labelled formulas. E.g., the internal
versions of the last two rules are the following:


, T : t : η 	 T : t : ξ,�


 	 T : t : η → ξ,�
and


, T : t : ξ 	 � 
 	 T : t : η,�


, T : t : η → ξ 	 �
(η, ξ ∈ Fi,t).

Temporal rules

The rules for temporal operators are essentially the same as in [2]. As above, we have a “duplication” of the rules to
take into account the internal and the external level of the deductive system. E.g., the rules governing �[m,n] are:


, Fm(T ) ≤ X, X ≤ Fn(T ) 	 X : α,�


 	 T : �[m,n]α,�
(α ∈ F i,�; X not free in 
 ∪ � ∪ {T }),


 	 Fm(T ) ≤ S,� 
 	 S ≤ Fn(T ),� 
, S : α 	 �


, T : �[m,n]α 	 �
(α ∈ F i,�),


, T : f m(t) ≤ x, T : x ≤ f n(t) 	 T : x : η,�


 	 T : t : �[m,n]η,�
(η ∈ Fi,t; x not free in 
 ∪ � ∪ {t}), and


 	 T : f m(t) ≤ s,� 
 	 T : s ≤ f n(t),� 
, T : s : η 	 �


, T : t : �[m,n]η 	 �
(η ∈ Fi,t).

The rules for the other temporal operators are similar. They can be easily derived from the rules above. Proofs
are standardly defined. Notice that, although each branch in a proof is finite, the proof itself may have infinite
height because of the infinitary rules. It may help the reader’s intuition to keep in mind that, from the point of
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view of the internal logic, the atomic temporal formulas are those in the set P of propositional letters. The latter
set gets closed under (internal) boolean connectives and (internal) modal operators to form the set Fi,t of internal
temporal formulas.

From the point of view of the external logic, the formulas in the set Fi,� of internal labelled formulas play
the role of atomic temporal formulas. By taking the closure F i,� of Fi,� under (external) boolean connectives
and (external) modal operators we get the external temporal formulas. Forgetting about the labels, the deduction
rules governing Fi,t are those of propositional sequent calculus and those for the (internal) temporal operators.
Similarly, the deduction rules governing F i,� are those of propositional sequent calculus and those for the (external)
temporal operators. Basically, we have two copies of the same sequent calculus, one for each level. Each relational
component is governed by the deduction rules of the first-order sequent calculus, plus the corresponding infinitary
rule for disjunction. As is usual, we denote by 	 the provability relation in MTL2

∞.
We end this section by remarking that two induction schemas are provable in MTL2

∞. More precisely, let
T ∈ Te and α ∈ F i,�. Then

	 T : (α ∧ �[0,∞[(α → �[0,1]α)) → �[0,∞[α (1)

is provable in MTL2
∞. Up to typographic changes, the proof is the same as the induction schema in [2]. In a similar

way, for every T ∈ Te, t ∈ Ti and η ∈ Fi,t, we have

	 T : t : (η ∧ �[0,∞[(η → �[0,1]η)) → �[0,∞[η. (2)

We refer the reader to [2] for a remark on the unprovability of (1) when the infinitary axiom 	 ∨
n∈ω(X <

Fn(C)) gets removed. The example given therein can be easily adapted to show the unprovability of (2) without
the axiom 	 T :

∨
n∈ω(x < f n(c)).

4 Underlying unlabelled systems

Some labelled logics are built on top of unlabelled systems. Even if we have deliberately chosen not to describe
in full detail a possible unlabelled system underlying MTL2

∞, in this subsection we provide some insight about
the semantics of the latter. We are reluctant to call the resulting object a logic. For it should be clear that, for the
purposes of this paper, a logic is made of two components: a semantic and a deductive one. Indeed the reader can
easily convince himself that deduction rules for the temporal operators corresponding to those introduced in § 3
cannot be formulated in absence of labels, even in case of the one-dimensional system MTL∞ introduced in [2].

For sake of simplicity, let us consider MTL∞. The formation rules for the underlying unlabelled formulas are
those of propositional first-order logic expanded with those for the temporal operators �(m,n) , with m ∈ ω and
n ∈ ω ∪ {∞}. More precisely: if α is a formula then so is �(m,n)α, for all possible choices of the operator �(m,n) .

The pre-structures which are adequate to interpret those unlabelled formulas are of the form M = (M,<, 0, g :
M → M), where (M,<, 0) is a dense linear ordering with least element 0 but no greatest element and g a strictly
increasing function such that, for all a ∈ M , a < g(a) and the sequence {gn(0) : n ∈ ω} is cofinal in M . In order
to get a structure we must provide a family {pM : p ∈ P} of subsets of M . We let

M = (M, (pM)p∈P). (3)

The semantics is Kripke-like. Let M be as in (3) and m ∈ M . The definition of M, m |= α is by induction on
α. We skip the the details (cf. § 2 or [2] for insights). We stipulate that an unlabelled formula α is valid if, for all
M as in (3) and all m ∈ M , M, m |= α.

We make the trivial observation that, for M as (3) and m ∈ M , by letting Mm = {x ∈ M : m ≤ x} and by
denoting with the same names the restrictions of by < and g to Mm , respectively, the tuple Mm = (Mm,<, m, g)
together with the family {pM ∩ Mm : p ∈ P} forms a structure as in (3). It follows that validity of α is equivalent
to the statement “for all M as in (3), M, 0 |= α”.

Eventually, we notice that the latter is equivalent to the validity of the labelled formula c : α with respect to the
MTL∞ semantics. By soundness and completeness of MTL∞ (cf. [2, Theorem 3.4]), validity of the unlabelled
formula α is equivalent to the provability in MTL∞ of the labelled sequent 	 c : α.

Therefore we may use the MTL∞ calculus to investigate validity in the underlying unlabelled system. Admit-
tedly, this is of limited interest because of the above mentioned fact that the unlabelled system lacks deduction
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rules for its temporal operators. As such, it is not a logic whose validity or provability relation we may want to
investigate within another logic.

In light of soundness and completeness (cf. Corollary 5.3), we may proceed as above in the case of MTL2
∞

In this latter case, the underlying system should have two families of temporal operators �i
(m,n) and �e

(m,n) , with
m ∈ ω and n ∈ ω ∪ {∞} and with the obvious intuitive meaning of the superscripts i and e. We should also
impose, among others, syntactic restrictions on the formation rules of formulas. E.g., no �e

(m,n) can occur on the

right-hand side of a �i
(m,n) operator. The structures which are adequate to interpret the resulting class of formulas

can be easily defined, by closely following § 2.2.
As in the case of MTL∞, it is possibile to relate validity in the unlabelled system to validity with respect

to the MTL2
∞ semantics. We skip the details and we provide a simple example: validity of the unlabelled

formula �e
[0,1]�i

[0,1] p turns out to be equivalent to the validity of the sequent 	 C : �[0,1]c : �[0,1] p. The same
considerations as in the one-dimensional case apply. Unfortunately, even in this case the unlabelled system lacks
deduction rules for the temporal operators.

5 Reduction tree construction and completeness

At the end of § 2.2 we already said when a sequent is valid. It is a lengthy but easy task to verify that all the axioms
are valid and that every provable sequence is valid. To prove the latter, proceed by induction on a derivation of
a provable sequent. We aim at proving that MTL2

∞ is complete with respect to the class of structures that we
introduced in § 2.2.

5.1 The reduction tree

In this section we suitably modify the reduction tree construction technique of first order logic (cf., e.g., [7, § 3.1,
Theorem 3.1.9 and Remarks 3.1.11 and 3.1.12]). Our aim is to get either a proof in MTL2

∞ of a sequent 
 	 � or
a tree with an infinite branch whose root is labelled 
 	 �. In § 5.2 we shall derive the unprovability of 
 	 �

from the existence of such an infinite branch.
For simplicity we identify a node in a tree with its associated label.
We fix a sequent 
 	 �. We also fix

1. an ordering A1, . . . , Am of all the formulas in 
 	 � (recall that all the Ai ’s belong to Fe,r ∪ Fe,�);
2. an enumeration of all axioms different from (id), in which each axiom is repeated infinitely many times;
3. an enumeration {ti }i<ω of the set Ti of L i,r-terms;
4. an enumeration {Si }i<ω of the set Te of Le,r-terms.

Next we recursively define a sequence {Tn}n<ω of well founded trees. We say that a branch in Tn is closed if
its leaf is an axiom (of any kind), otherwise it is called open. It is intended that the following construction only
applies to the open branches in a tree. Therefore, if for some n all branches in Tn are closed, then Tn = Tm for all
n < m.

Recursion base: T0 is 
 	 �.

Recursion step: Assume that the trees Tm , m ≤ n, have been already defined in a way that, for all h < k ≤ m,
Tk is an upwards extension of Th . If all the branches in Tn are closed, we stop. If not, we define Tn+1 by extending
each of the open branches in Tn upwards. With each open branch we proceed as follows.

Let 
n 	 �n be the leaf of an open branch in Tn . The formulas in 
n 	 �n come equipped with an ordering
A1, . . . , Aq that has been determined by the previous steps of the construction (cf. Cases 1 to 3 below). We
examine various cases, depending on the first formula A1 in the ordering. In the following, we write

S1==
S2

if the sequent S2 can be proved from the sequent S1 by application of finitely many structural rules.
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Case 1: 
n 	 �n is provable by means of structural rules only from some axiom (of any kind), say, from

′ 	 �′. In this case we extend 
n 	 �n upwards with the corresponding bit of derivation.


′ 	 �′
====== .

n 	 �n

Notice that the branch so obtained is closed. Therefore it will not be further extended.
Case 2: Case 1 does not happen and A1 is atomic. In this case we examine the nth element in the enumeration

of the axioms. Let B1, . . . , Bk 	 D1, . . . , Dm be such element. If B1, . . . , Bk all occur in 
n , we extend 
n 	 �n

upwards as follows:

B1, . . . , Bk 	 D1, . . . , Dm===================

n, D1 	 �n
n 	 D1, . . . , Dm,�n


n 	 D2, . . . , Dm,�n
(cut)


n, D2 	 �n

... cuts

(cut)

n, Dm 	 �n


n 	 �n
(cut)

For each 1 ≤ i ≤ m, the ordering of the formulas in the leaf 
n, Di 	 �n is A2, . . . , Aq , Di , A1. If some among
B1, . . . , Bk does not occur in 
n , we do not add any node to the current branch and we re-order the formulas in

n 	 �n as follows: A2, . . . , Aq , A1.

Case 3: Case 1 does not happen and A1 is not atomic. We consider several subcases (one for each logical rule
of the calculus). In the following we deal with few cases only. We invite the reader to work out the missing cases.

Subcase 3a: A1 occurs in 
n .

(3a1) If A1 is T : t : η → ξ , we extend 
n 	 �n upwards as follows:


n, T : t : ξ 	 �n 
n 	 T : t : η,�n

============================== .

n 	 �n

The new orderings of the formulas in the left and the right leaf are A2, . . . , Aq , T : t : ξ, A1 and
A2, . . . , Aq , T : t : η, A1, respectively.

(3a2) If A1 is T : t : �[i, j ]η, let s be the first term in the enumeration {ti }i<ω that has not been used in the current
branch in a previous application of this case to the formula A1. We extend 
n 	 �n upwards as follows:


n 	 T : f i (t) ≤ s,�n 
n 	 T : s ≤ f j (t),�n 
n, T : s : η 	 �n

=================================================== .

n 	 �n

The orderings of the formulas in the new leaves are (from left to right): A2, . . . , Aq , T : f i (t) ≤ s, A1,
A2, . . . , Aq , T : s ≤ f j (t), A1, and A2, . . . , Aq , T : s : η, A1.

(3a3) If A1 is T :
∨

i∈ω(t < f i (c)), we extend 
n 	 �n upwards as follows:

{
n, T : t < f i (c) 	 �n}i∈ω===================== .

n 	 �n

The ordering of the formulas in the leaf 
n, T : t < f i (c) 	 �n is A2, . . . , Aq , T : t < f i (c), A1, for all
i ∈ ω.

Subcase 3b: A1 occurs in �n .

(3b1) If A1 is T : t : η → ξ , we extend 
n 	 �n upwards as follows:


n, T : t : η 	 T : t : ξ,�n

==================== .

n 	 �n

The ordering of the formulas in the new leaf is A2, . . . , Aq , T : t : η, T : t : ξ, A1.
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(3b2) If A1 is T : t : �[i, j ]η, we pick an internal variable x that does not occur free in 
n ∪ �n ∪ {t} and we
extend 
n 	 �n upwards as follows:


n, T : f i (t) ≤ x, T : x ≤ f j (t) 	 T : x : η,�n

==================================== .

n 	 �n

The ordering of the formulas in the new leaf is A2, . . . , Aq , T : f i (t) ≤ x, T : x ≤ f j (t), T : x : η, A1.
(3b3) If A1 is T :

∨
i∈ω(t < f i (c)), let m be the least natural number k such that T : t < f k(c) does not occur

in �n . We extend 
n 	 �n upwards as follows:


n 	 T : t < f m(c),�n

================== .

n 	 �n

The ordering of the formulas in the new leaf is A2, . . . , Aq , T : t < f m(c), A1.

Remark 5.1 By our construction, T = ⋃
n∈ω Tn is a tree, called the reduction tree of 
 	 �. Notice that the

presence of axioms with empty premiss and the fact that each axiom different from (id) is repeated infinitely many
times in the enumeration imply that any open branch keeps on being extended upwards. Therefore if T has no
infinite branch there exists some n ∈ ω such that all the branches in the tree Tn are closed. It follows immediately
from the construction that T = Tn yields a proof 
 	 �. Since all applications of the cut rule take place in
Case 2, we actually get a proof of 
 	 � where all cut-formulas occur in the righthand side of some axiom
different from (id).

If there is some infinite branch in T, in § 5.2 we show how to get a countermodel of 
 	 � from such an
infinite branch.

5.2 Completeness

Let us assume that the reduction tree T of the sequent 
 	 � constructed in § 5.1 has an infinite branch
(
n 	 �n)n∈ω. Let 
 = ⋃


n and � = ⋃
�n .

We define a structure M = (M, Na, (pNa )p∈P, σ, σa)a∈M by using 
 and �. First we define M. We define
a relation ∼ on the set Te of external terms by letting S ∼ T ⇔ (S = T ) ∈ 
. The tree construction and the
first order axioms for equality imply that ∼ is an equivalence relation. Let T ∼ be the ∼-equivalence class of
term T . We let M = {T ∼ : T ∈ Te}, FM(T ∼) = F(T )∼, CM = C∼, S∼ <M T ∼ if and only if (S < T ) ∈ 
,
and M = (M,<M, CM, FM). (Notice the small notational abuse.) The axioms for equality and the reduction tree
construction imply that everything is well-defined. Furthermore, the extralogical axioms and the reduction tree
construction imply that M satisfies the required properties. Namely, (M,<M, CM) is a dense linear ordering with
least element CM but no greatest element; the function FM is strictly increasing; for all T ∼ ∈ M , T ∼ <M F(T )∼

and the sequence {Fn(C)∼ : n ∈ ω} is cofinal in M .
We define σ : Ve → M as follows: σ (X) = X∼. By induction on external terms it follows that the interpretation

T M,σ of term T in M under σ is just T ∼, for each T ∈ Te.
Next we basically repeat the construction of M to get Na , for each a ∈ M . For each S ∈ Te, we define an

equivalence relation ∼S on Ti by t1 ∼S t2 ⇔ (S : t1 = t2) ∈ 
. Let t S be the ∼S-equivalence class of t ∈ Ti. For
each S ∈ Te, we let NS = {t S : t ∈ Ti}, f NS (t S) = f (t)S , cNS = cS , and t S

1 <NS t S
2 if and only if (S : t1 < t2) ∈ 
.

Moreover, for each p ∈ P, we let pNS = {t S : (S : t : p) ∈ 
}. (Recall that we denote by pNS the set of points in
NS where p is true.) As above, the reduction tree construction implies that everything is well-defined and that, for
all S ∈ Te, NS satisfies the required properties.

We define σS : Vi → NS as follows: σ (x) = x S . It follows easily that, for each t ∈ Ti, tNS ,σS = t S .
The careful reader may have already noticed that the support of the external time flow is the {T ∼ : T ∈ Te}, but

we defined above a family {NS}S∈Te (instead of an indexed family on the ∼-equivalence classes of Te, as required
by the definition of pre-structure). We explain why: from the axioms and the construction of the reduction tree it
follows that NS = NT whenever T ∼ = S∼. E.g., let us assume that T = S and T : t = s are both in 
n and that
T = S, T : t = s 	 S : t = s is the n-th element in the enumeration of the axioms (one such n does exist because
of the infinitely many repetitions). Then, extending upwards 
n 	 �n as prescribed by case 2 of the reduction
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tree construction, we get that 
n+1 	 �n+1 is 
n, S : t = s 	 �n . Hence S : t = s is in 
. Similarly, assuming
T ∼ = S∼, we get σS = σT and pNS = pNT , for all p ∈ P.

Hence we simply let NS∼ = NT for some (for all) T ∈ Te such that S ∼ T . Similar considerations ap-
ply to pNS∼ and σS∼ . Thus we get the structure M = (M, NS∼ , (pNS∼ )p∈P, σ, σS∼)S∈Te . However, motivated
by the above considerations (and for sake of notational simplicity), in the following we identify M with
(M, NS, (pNS )p∈P, σ, σS)S∈Te .

Next we show that M witnesses the unprovability of the sequent 
 	 �. To do that we prove a stronger result.

Theorem 5.2 Let M be the structure defined above. For every formula A ∈ Fe,r ∪ Fe,� it holds that

(1) A ∈ 
 implies M |= A;
(2) A ∈ � implies M �|= A.

P r o o f . We prove simultaneously (1) and (2) by induction on each of the various classes of formulas.

Case 1: A ∈ Fe,r. The deduction rules governing A are the rules for relational formulas (cf. § 3). For those rules,
the construction of the reduction tree proceeds as in the first order case. Therefore (1) and (2) can be proved in the
same way as in the construction of the reduction tree for first order logic. The infinitary formulas are taken care of
by the cases corresponding to (3a3) and (3b3) in the construction of the reduction tree for the external relational
formulas. E.g., let us assume that

∨
n∈ω(T < Fn(C)) occurs in �. Notice that such formula becomes infinitely

many times the first formula in the ordering of formulas in a sequent occurring in some infinite branch. Moreover,
same as in case (b3) above, the reduction tree is constructed by systematically adding, for each n ∈ ω, the formula
T < Fn(C) to �. Therefore, by inductive assumption, M �|= T < Fn(C), for all n ∈ ω. The conclusion follows.

Case 2: A is of the form T : β, for some β ∈ Fi,r. We notice that the rules governing A are “labelled” versions
of those involved in the previous case. Basically, we proceed as in that case to get (1) and (2).

Case 3: A is of the form T : β, for some β ∈ F i,�.
(3.1) First we simultaneously prove (1) and (2) for β of the form t : α, for some t ∈ Ti and α ∈ Fi,t. We proceed

by induction on α. Since T M,σ = T ∼ and tNT ,σT = tT , the cases when α is some propositional letter p hold by
definition of pNT . The propositional cases are straightforward by the construction of the reduction tree and by
inductive assumption.

We are left with the case when α is of the form �[i, j ]η (the cases relative to the other temporal operators are
similar). Let us assume that T : t : α is in 
. Let n ∈ ω be such that T : t : α is the first in the ordering of the
formulas in 
n 	 �n . (Notice that there are infinitely many such n’s.) With reference to case (3a2) of the reduction
tree construction, we notice that: (i) if f i (t)T ≤T sT , viz. if T : f i (t) ≤ s is in 
, then 
n+1 	 �n+1 cannot be
the leftmost leaf; (ii) if sT ≤T f j (t)T , then, similarly to the previous case, we get that 
n+1 	 �n+1 cannot be the
middle leaf.

Therefore, for all s such that f i (t)T ≤T sT ≤T f j (t)T , it holds that T : s : η is in 
. Hence, by inductive
assumption, M |= T : s : η. Since, in (3a2), s was chosen as the first term in the enumeration {ti }i∈ω which was
not used so far, for all s ∈ Ti the formula T : s : η is in 
. Therefore M |= T : t : α.

Next, we assume that T : t : α is in �. Let n ∈ ω be such that T : t : α is the first in the ordering of the formulas in

n 	 �n . With reference to case (3b2) of the reduction tree construction, we have that, for a suitably chosen variable
x , T : f i (t) ≤ x and T : x ≤ f j (t) are in 
 and T : x : η is in �. By inductive assumption and by the semantics,
we get M �|= T : x : η, M |= T : f i (t) ≤ x , and M |= T : x ≤ f j (t). Therefore M �|= T : t : �[m,n]η.

(3.2) The propositional cases are straightforward.
(3.3) Let β be of the form �[i, j ]γ , for some γ ∈ F i,�. By the same argument used in (3.1) in the case relative

to the the temporal operator, we get the required conclusion. �
Corollary 5.3 (Completeness) Every valid sequent is provable in MTL2

∞.

P r o o f . If a sequent is valid then, by Theorem 5.2, its reduction tree has no infinite branch. Therefore the
reduction tree yields a proof of the sequent. �

In the following we extend to pre-structures the isomorphism relation � between first order structures. We still
use � for the extended relation.

We say that two pre-structures (D, Ed)d∈D and (D′, E′
d)d∈D′ are isomorphic if there exists a first-order isomor-

phism g : D → D′ such that, for all d ∈ D, Ed � E′
g(d) .
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Let Q+ be the set of nonnegative rationals and let h : Q+ → Q+ be the function defined by h(q) = q + 1. Let
Q = (Q+,<, 0, h). We call the pre-structure Q2 = (Q, Qr )r∈Q+ , where, for all r ∈ Q+, Qr = Q, canonical.

Next we recall [2, Proposition 3.3], which is a variant of the back-and-forth technique by means of which
the ℵ0-categoricity of the theory of linear orders without endpoints is established. The content of the above
mentioned proposition is the following: let M = (M,<, 0, g : M → M), where (M,<, 0) is a countable dense
linear ordering with least element 0 but no greatest element; g is a strictly increasing function such that, for all
a ∈ M , a < g(a) and the sequence {gn(0) : n ∈ ω} is cofinal in M . Then M is isomorphic to Q.

We apply [2, Proposition 3.3] to M and NS defined as in § 5.1 and we get M � Q � NS , for all S ∈ Te. It follows
that (M, NS)S∈Te � (Q, Qr )r∈Q+ . By Remark 5.1, we finally get the following strong form of a completeness
theorem:

Theorem 5.4 Let 
 	 � be a sequent. Then exactly one of the following holds:

(1) there exists a proof of 
 	 � in MTL2
∞ where each cut formula occurs in the righthand side of some axiom

different from (id);
(2) there exists a structure M having Q2 as underlying pre-structure such that M �|= 
 → �.

In particular, MTL2
∞ is complete with respect to the family of structures whose underlying pre-structure is the

canonical one.

6 Final remarks

An application to be pursued in a future work is the mechanization of the MTL2
∞ sequent calculus. Mechanization

is a relevant issue within the class of temporal logics, in light of its strong connections with the area of formal
verification. There are two main approaches to mechanization: one based on model checking; the other based
on proof coding in a so called logical framework or proof assistant (e.g., CoQ or Isabelle). By the nature of the
MTL2

∞ sequent calculus, in which the deduction rules relative to each operator are independent of the others, and
by the validity of a suitable form of cut elimination, the proof coding approach seems to be the most promising.

Regarding the theoretical issues, we stress that ours is a study of the meaning of temporal operators in a
two-dimensional time structure. The MTL2

∞ rules do obey the structural proof theory paradigm that deduction
rules must syntactically provide the “meaning” of each operator. It is worth noticing that the MTL2

∞ rules show
great similarity with those for bounded first order quantifiers.

Moreover, our approach does not require the temporalized and the temporalizing system being the same. In
particular, the underlying time flows might have different structures or the systems might be endowed with different
temporal operators. What is crucial is that both system do have a reasonably good sequent calculus. In this regard,
we may investigate an intuitionistic version of MTL2

∞ so to address issues like the the computational content of
proofs; the Brower-Heyting-Kolmogorov interpretation of temporal operators; the existence of a lambda-calculus
having the MTL2

∞ formulas as types.
Notice that we have obtained a completeness theorem by using a syntax-driven technique. In our opinion, a

Hilbert style formulation of MTL2
∞ would hardly allow to achieve completeness.

It is worth noticing that application of our temporalization technique can be iterated in order to obtain an
n-dimensional system, for each n > 2. All the constructions and the results obtained in this paper generalize to
n-dimensional systems.

We point out that our technique does not allow to express properties of the interaction between the two
dimensions. This requires the introduction of new types of formulas, the definition of their semantics and an
extension of the deductive system. In this way the resulting system would be closer to a full combination of logics,
rather than to the temporalization of one logic by means of another. As pointed out in [5], a full combination may
affect completeness or the cut elimination property. It may worth investigating to what extent it is possible to
increase the expressive power of the resulting system while retaining the properties of the logics to be combined.

It may also worth investigating the decidability of MTL2
∞. One first step would be to establish the decidability

of the one-dimensional logic MTL∞. We notice that the MTL∞ axioms for the relational component do extend
the axioms of a first order theory of dense linear orderings. The decidability of the latter theory can be quite easily
achieved by means of model-theoretic techniques. Decidability is likely to be inherited by our extension.
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In this regard, we recall the decidability result for Metric Interval Temporal Logic that has been obtained in [1]
by reducing the satisfiability problem for that logic to a decidable problem for timed automata. The latter result
refers to a subclass of our class of structures (the so called timed state sequences), but it is possible that a similar
reduction technique applies to our setting.

Still it is not clear whether it is possible to combine two such completely different decision procedures in order
to establish decidability of MTL∞, also in consideration of the interaction between the relational and the temporal
component of MTL∞ due to the presence of labels.

In conclusion, even proving decidability of the one-dimensional MTL∞ seems to be nontrivial. We leave it as
an open problem.
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