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Abstract

In order to interact with the real world, humans need to perform several tasks

such as object detection, pose estimation, motion estimation and distance estima-

tion. These tasks are all part of scene understanding and are fundamental tasks

of computer vision. Depth estimation received unprecedented attention from the

research community in recent years due to the growing interest in its practical ap-

plications (i.e. robotics, autonomous driving, etc.) and the performance improve-

ments achieved with deep learning. In fact, the applications expanded from the

more traditional tasks such as robotics to new fields such as autonomous driving,

augmented reality devices and smartphones applications. This is due to several

factors. First, with the increased availability of training data, bigger and bigger

datasets were collected. Second, deep learning frameworks running on graphical

cards exponentially increased the data processing capabilities allowing for higher

precision deep convolutional networks, ConvNets, to be trained. Third, researchers

applied unsupervised optimization objectives to ConvNets overcoming the hurdle

of collecting expensive ground truth and fully exploiting the abundance of images

available in datasets.

This thesis addresses several proposals and their benefits for unsupervised depth

estimation, i.e. , (i) learning from resynthesized data, (ii) adversarial learning,

(iii) coupling generator and discriminator losses for collaborative training, and

(iv) self-improvement ability of the learned model. For the first two points, we

developed a binocular stereo unsupervised depth estimation model that uses re-

constructed data as an additional self-constraint during training. In addition to

that, adversarial learning improves the quality of the reconstructions, further in-

creasing the performance of the model. The third point is inspired by scene under-

standing as a structured task. A generator and a discriminator joining their efforts

in a structured way improve the quality of the estimations. Our intuition may



sound counterintuitive when cast in the general framework of adversarial learn-

ing. However, in our experiments we demonstrate the effectiveness of the pro-

posed approach. Finally, self-improvement is inspired by estimation refinement,

a widespread practice in dense reconstruction tasks like depth estimation. We de-

vise a monocular unsupervised depth estimation approach , which measures the

reconstruction errors in an unsupervised way, to produce a refinement of the depth

predictions. Furthermore, we apply knowledge distillation to improve the student

ConvNet with the knowledge of the teacher ConvNet that has access to the errors.
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1

Introduction

1.1 Motivation

We are in the middle of a data driven revolution, given that the invention of writing around

3000 BC, 90% of the data produced by humans was generated in 2017 and 20185 alone. This

vast amount of data is nowadays commonly defined as big data. The trend is still exponentially

growing with the expansion of web-related services such as streaming platforms (e.g. YouTube,

Netflix), social networks (e.g. Facebook, SnapChat, Instagram) and messaging applications

(e.g. WhatsApp, Telegram) to cite some of them. Users around the world consume all these

data, and there is still room for expanding services and market opportunities. The huge amount

of data available to web-services corporations such as Amazon, Google and Facebook allowed

them to become the most valuable companies by market capitalization in the world, and among

the most profitable companies in the world. However, it is not only the data that made them

valuable, but also the capability to use it.

The tool used by these big corporations is Artificial Intelligence (AI). It is employed to

analyze the data and extract useful and remunerative information, e.g. , suggesting to a potential

customer an item to purchase, a new brand they could like or a piece of news that may be

of interest. We are fully immersed in a big hype created by the media around AI, where it

would be more appropriate to talk about machine learning. Machine learning is, in reality,

the tool used to conveniently extract statistics, patterns, and generate forecasts starting from

big data. Recently, a branch of machine learning stood out and started to revolutionize many

5https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-

blowing-stats-everyone-should-read/
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1. INTRODUCTION

applications, i.e. , deep learning. Deep learning is a family of machine learning algorithms

for representation learning. It is based on artificial neural networks, i.e. stacks of non-linear

layers composed of units or neurons that perform simple operations. As a consequence, these

networks can be expanded to have a very big capacity and consequently be powerful enough

to represent complex data. The drawback is that until very recently, the computational power

required to train them and the data did not exist. The processing power issue was resolved in

the early 2010s with the development of deep learning frameworks running on graphic cards

(GPUs). At the same time, the research community proposed more demanding challenges

based on big datasets. In this dissertation, we study computer vision, and the paradigm shift

towards deep learning for images came from the spectacular success of AlexNet [1] on the

ImageNet [2] Challenge.

From that point on, deep learning started to outperform all other methods in terms of ac-

curacy. AlexNet is a Convolutional Neural Network (ConvNet), composed of several convo-

lutional filters that extract image representations, from low-level features to high-level repre-

sentation of the whole image. Indeed, from then, the research has evolved rapidly, and better

architectures have been proposed. However, we can still list some key advantages and key

disadvantages of deep learning. The advantages are the big capacity of the models that can an-

chieve great performance and the ability to learn an efficient representation of the data without

humans designing the feature extractor. The drawbacks are, to some extent, the low general-

ization ability, i.e. these models are very specialized on the data used for training, they require

big amounts of labelled data to supervise the training and computational resources to perform

it. Addressing the labelling problem, in this thesis, we will work towards improving depth

estimation state-of-the-art with self-supervision. In other words, we aim to train good models

by using only images and avoiding costly and tedious labelling. In fact, for depth estimation,

every image depicting a scene requires a LiDaR synchronized with the camera to register the

real distance of every point of the scene from the camera. Introducing errors is probable if the

sensors set up is not arranged carefully with calibration and synchronization.

While the cost of annotations for thousands of images can be easy to grasp, let us in-

troduce the reason behind the choice of depth estimation. Depth is a central task of scene

understanding in computer vision, along with semantic segmentation, object recognition and

motion understanding for example. These are all tasks that we, as humans, learned to perform

very efficiently to find food, relate with other people and avoid dangers. Therefore, it is of

great importance for us, in particular now that we are able to build any kind of machines, to

2



1.2 Outline

instruct them to relate with the real world. Depth has potentially infinite applications, surgery

micro robots, autonomous cars, industrial robots, big machinery for natural resources extrac-

tion, remote sensing. All these applications do not rely only on depth but on an ensemble of

sensors and scene understanding algorithms among which depth is an important component.

We mentioned autonomous driving, and we will now provide a brief example of the multiple

uses we may have for a depth estimation algorithm on a car. The main task of depth estimation

would be probably, to provide redundancy for the LiDaR used to sense the distance from other

objects. Nevertheless, it has the advantage to produce dense estimations and not point clouds.

Moreover, it can be combined with other tasks such as semantic segmentation and optical flow;

in fact an object has a flow in the scene and can probably be segmented with a single semantic

label. When the object is identified, re-identification could be performed to track it. In addition

to that, since the real world is in 3D, traditional object detection with a 2D bounding box is not

sufficient, so depth estimation is used to the provide the 3D object detection coordinates for

the points delimiting the object. The 3D bounding boxes are then exploited for the collision

avoidance, for example, with pedestrians. This approach is only one of the examples of the

possible application of depth in the real world, and we propose it as a motivation for our depth

estimation studies.

1.2 Outline

In this thesis, we present the advances on unsupervised depth estimation achieved during the

doctoral studies. Depth estimation methods learn to infer the depth of a scene from an image,

the supervised ones need dense depth annotations of the pixels in the image to learn with in a

supervised fashion. Whereas, unsupervised methods exploit scene geometry to devise effec-

tive optimization objectives to learn the depth of the scene. Therefore, we chose as our field

of research unsupervised depth estimation. More in detail, we researched whether adversarial

learning and data augmentation can improve unsupervised depth estimation, whether generator

and discriminator in an cooperative adversarial learning setting can be more accurate for un-

supervised depth estimation, and if a model can refine the predictions it inferred without any

ground truth supervision.

We demonstrated that they positively impact unsupervised depth estimation methods, and

the details will be addressed more extensively in the following chapters. In Chapter 4, "Stereo

Adversarial Depth Estimation", we will address adversarial learning and use of resynthesized

3



1. INTRODUCTION

data - starting from Section 4.1 - and then further improvement of our method with better

integration of stereo features in a follow-up work presented in Section 4.2. In the following

Chapter 5, "Structured Coupled Depth Estimation", we will continue our research investigat-

ing if we could improve our work with adversarial learning to obtain collaborative network

structure between discriminator and generator. In this case, we will describe the design of

a conditional random field that couples the losses of generator and discriminator and jointly

backpropagates them. Finally, in Chapter 6 "Monocular Depth Refinement", we will present

our research on model knowledge self-distillation and prediction refinement in the challenging

setting of monocular depth estimation.

In the remaining of this Chapter, we will give an overview of the topics addressed in each

Chapter (sub-sections 1.2.1, 1.2.2 and 1.2.3). After that, in sub-section 1.3, we will list our

main contributions, then the last sub-section of the Introduction 1.4 will contain the papers

published during the author’s doctoral studies.

1.2.1 Stereo Adversarial Depth Estimation

Stereo matching is a well known problem in computer vision. The research community devel-

oped unsupervised or self-supervised depth estimation to solve it without requiring disparity

or depth ground truth. Given two stereo views of the same scene, it is possible to calculate the

dense correspondence map or disparity that aligns each corresponding pixel. Furthermore, in

recent years, brilliant performance were shown from deep learning methods [3, 4, 5] based on

Convolutional Neural Networks (ConvNets). Inspired by these successes, and the advances in

image generation based on Generative Adversarial Networks (GANs) [6, 7, 8], in Chapter 4,

we will explore if adversarial learning is beneficial for unsupervised depth estimation.

In Section 4.1, we will present the first part of our studies focusing on adversarial learning

and learning from resynthesized data. GANs were designed to generate realistic images from

random noise and some adaptation to our problem was needed. Firstly, the generator for stereo

depth estimation takes in two stereo views and outputs the scene disparity. Secondly, the dis-

parity is used by a warping function to reconstruct one of the views and then learn from the

reconstruction error. We proposed then to use the discriminator network on top of the recon-

structed image to infer if the image was reconstructed or original. In this way, we applied the

adversarial learning principle to unsupervised depth estimation.

To complement the proposed improvement in disparity estimation and thus image recon-

struction quality, we introduce reconstructed images as input data. Our intuition is that better

4



1.2 Outline

quality of reconstructed images can be used to tune our model during learning further. There-

fore, we propose to use a second network stacked after the first one to estimate depth from the

reconstructed images. These two networks then form a cycle where the similarity of the final

reconstructed images are evaluated against the original ones. The concept is similar to previ-

ous research [7, 8] where a source domain image is translated to a target domain (e.g. sketch

to picture) and then back to the source domain. Although, with the difference that in our work,

the source and target images are from the same domain and different stereo views.

In Section 4.2, we will present the continuation of the work in 4.1 where we focus on fea-

ture fusion for better depth estimations, simplification of the training process and significantly

extend our ablation studies and state-of-the-art benchmarking. The research community intro-

duced several methods to obtain better feature representation from the two stereo views and

consequently, achieving performance gains. These techniques, such as cost volumes and 3D

convolutions [9] are computationally costly. Instead, in our work, we offer a simple and ef-

fective feature warping and concatenation that improves performance at a lower computational

cost.

1.2.2 Structured Coupled Depth Estimation

Our works demonstrated the benefit of introducing adversarial learning for unsupervised depth

estimation. Therefore, we took our research one step forward, and we explored if generator

and discriminator could cooperate to get better results. We introduce a monocular method, at

inference time, for unsupervised depth estimation with generator and discriminator that cou-

ple the losses to actively learn from each other (Chapter 5). In detail, during training, the

generator infers the disparity map and the synthesizes the stereo view, then the reconstruction

error is computed. The discriminator outputs a per-pixel decision whether the image is real

or synthetic. The coupling module takes all this information as input and processes it before

backpropagation. In this way, a joint optimization process is performed for both generator and

discriminator.

The proposed coupling is based on a Conditional Random Field (CRF). CRFs have been

already employed successfully for supervised depth estimation [10, 11]. Unlike previous re-

search, we propose to use CRFs for coupling generator and discriminator losses in an unsuper-

vised depth estimation model. This choice is based on two primary goals. First, to exploit the

structure of the images used to train the model with the CRF and second, to learn the best way

to couple the losses without having to hand-craft any rule.

5



1. INTRODUCTION

1.2.3 Monocular Depth Refinement

In the last Chapter 6, we will focus on monocular unsupervised depth estimation with pre-

diction refinement. This scenario is more challenging because the model needs to infer from

a single stereo view the depth of the scene. During training, the model is trained with self-

supervised learning on both stereo views. However, during inference, one stereo view is enough

to infer the pixel-wise depth map. Depth estimation literature, as in Eigen et al. [12] and Go-

dard et al. [5], demonstrated the ability of the monocular setting to obtain high accuracy. In

our work, building on previous findings, we proposed a self-refinement strategy to refine the

model predictions [13, 14] and show with extensive experimental results that it dramatically

improves performances. Finally, we propose self-distillation as a way to improve the original

estimations with the additional knowledge available to the refinement network. Distillation is

the practice of training a smaller student model with additional information from a bigger and

more accurate teacher model, a more complete introduction about distillation can be found in

Related Works Section 2.5. In our case, we call it self-distillation because the teacher and the

student are part of the same model and contribute to the optimization process together.

More in detail, we devise a monocular cycled network capable of resynthesizing the input

image and thus measure, in an unsupervised fashion, the reconstruction error. We call this first

block student network. Later the error is employed by a refinement network, called teacher,

for refining the predictions. The choice of the name student and teacher is due to the fact

that the teacher infers the depth, not only from the RGB images as the student, but can ex-

ploit additional information contained in the reconstruction error aforementioned. On top of

that, we propose to use the knowledge distillation paradigm to transfer knowledge from the

better performing teacher to the student. While knowledge distillation is interesting from a

research perspective, it is even more useful in practice, because in a real case scenario with

finite resources it allows to achieve good performance by employing only the student network.

1.3 Contributions

Working in the context of 3D scene understanding, on one side, we contribute to the field of

unsupervised depth estimation with novel models. On the other we explore alternative opti-

mization objectives. We then perform an extensive qualitative and quantitative experimental

evaluation of the proposed solutions, to quantify their effectiveness.

Specifically, we present

6



1.4 Publications

• improved reconstruction loss via adversarial learning, we devise adversarial learning, in

the context of unsupervised depth estimation, by integrating it in the image recostruction

optimization objective. Concretely, as our experiments demonstrated, a better image

reconstruction translates in more accurate depth inference.

• additional optimization constraint with resynthesized data, we propose a cycled gen-

erative network. In this way, the model will learn from both original images and the

resynthesized images used for the computation of the reconstruction loss. Moreover,

the cycled network, not only exploits resynthetized images, but also enforces additional

constraints resulting in better optimization of the network.

• a stereo feature fusion network, Progressive Fusion Network (PFN), in the context of

binocular stereo depth estimation we developed a general multi-scale refinement net-

work that combines information from both stereo views. In principle, it can be applied

to any multi-scale application for feature sharing, independently of the supervised or un-

supervised scenario. We proved in our experimental section its effectiveness for depth

estimation.

• a coupled Generative Adversarial Network to better structure the loss before backprop-

agation, we propose to couple the adversarial learning with the image reconstruction

task in a structured way, such that, both tasks can benefit each other. Which, is ob-

tained during training, by fusing generator and discriminator predictions and errors with

a convolutional Conditional Random Field (CRF).

• a model capable of self-refining the predictions and self-improving itself, we revisit the

cycled network for monocular depth estimation and devise a student-teacher model. By

exploiting student model errors, the teacher model refines the predictions to obtain better

accuracy. Furthermore, we apply knowledge distillation from the teacher model to the

student model to improve the latter one.

1.4 Publications

The following list gives an overview of the publications included in this thesis in chronological

order, note that a few of these works (marked with *) are not included in this thesis
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2

Related Work

In this Chapter we focus on related works, mainly about depth estimation. More in detail,

we will discuss those that were important for our research. In Section 2.1, we discuss the

benchmark datasets for depth estimation, we will then move to describe relevant depth estima-

tion works with supervised learning in Section 2.2. In Section 2.3, we introduce unsupervised

depth estimation. Finally, in Section 2.4 and in Section 2.5 we give an overview of adversarial

learning and knowledge distillation, respectively.

2.1 Datasets

Supported by multiple public datasets, depth estimation made major advancements in recent

years. Some of them are monocular (i.e. each image is a view of a different scene), as [15, 16],

while others are stereo datasets (e.g. a stereo binocular camera setting with two cameras is used,

two views of the same scene are available). NYUD [15] is a monocular dataset recorded indoors

and depicts several different rooms (e.g. kitchen, office, etc.) while Make3D [16] is composed

of outdoor scenes. These two datasets are relatively small having a total number of images in

the order of few hundreds. Binocular stereo examples are KITTI [17], CityScapes [18] and

ApolloScape [19], these datasets are recorded from cars driving around several cities, the first

two in Germany and the third in China. These dataset have much larger scale and are composed

by thousands of images with annotations. Annotations are also more extensive covering several

different tasks. For example CitiScapes has fine grained annotations for semantic segmenta-

tion, while KITTI contains more annotation for depth estimation and stereo matching acquired

with a LIDAR. ApolloScape has annotations for the aforementioned tasks and in addition lane
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segmentation, trajectory and tracking. With the same spirit of generalizing to several com-

puter vision problems NuScenes [20] dataset was released in 2019. With more than 1.4 million

images it is much bigger than the previous and has annotations for depth, semantic segmenta-

tion, 3D object detection. Another difference is the stereo camera setting with 6 cameras that

guarantee a 360 degree view around the car.

2.2 Supervised Depth Estimation

Literature in the field of computer vision and more recently of deep learning based computer

vision demonstrated that is possible to achieve outstanding results with supervised learning.

Nowadays, supervised learning requires large amounts of labelled data to feed to deep neural

networks. More precisely, in the case of depth estimation, the deep neural network will regress

from the input image pixels their distance from the camera.

Several monocular depth estimation methods have been proposed [3, 10, 21, 22, 23] and

they proved to be very effective given enough training data. Eigen et al. [3] proposed a con-

volutional neural network (ConvNet) demonstrating the benefit of exploiting local and global

information. Laina et al. [23] build on the previous findings to propose a deeper ConvNet

architecture. Fu et al. [24] greatly improve performance by casting the continuous depth esti-

mation problem as a discretized depth classification problem. Probabilistic graphical models,

to better exploit structural information of the scene, were integrated into deep end-to-end Con-

vNets by [10, 21, 25, 26]. Wang et al. [25] proposed hierarchical CRFs for joint depth and

semantic segmentation estimation. Xu et al. [26] combined multi-scale features with Condi-

tional Random Fields (CRFs). Further improving it in [10] with the introduction of an attention

mechanism for the feature fusion.

Other works use ConvNets to learn supervised stereo matching. Chang et al. [27] pro-

posed a pyramid pooling model to learn global context aware features. [28] propose residual

prediction refinement, while [29] a MAP criterion with sub-pixel precision to address ambigu-

ous stereo matching. More recently pyramid models have been revisited in Yin et al. [30] for

probabilistic based hierarchical stereo matching.

Tackling the growing variety of datasets and applications, Tonioni et al. [31] proposed

a method for real-time depth estimation with adaptation to novel environments. Another ap-

proach is [32] where a model is initially pretrained on synthetic data and successively trained

on the target domain.
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2.3 Unsupervised Depth Estimation

Large annotated dataset are the bottleneck for supervised learning. For this reason self-supervised

or unsupervised depth estimation emerged and quickly reached comparable results as super-

vised methods. Unsupervised methods exploit the geometry of the scene in binocular stereo

images [4, 5, 33, 34] or in consecutive video frames [35, 36, 37]. The first, compute the dense

correspondence map (i.e. disparity) between the stereo frames, whereas the latter reproject suc-

cessive temporal frames by estimating camera parameters and relative pose to infer the depth.

The depth map D can be calculated from the disparity map d through D = fB/d, where f is

the cameras focal length and B is the baseline distance between two stereo cameras.

Garg et al. [4] proposed to take in input the left stereo view and estimate the disparity with

a CNN. Then through a warping operation reconstruct the left stereo view from the right stereo

view using the disparity. They minimize the reconstruction error on the left stereo view, thus

not requiring explicit depth ground truth but just rectified stereo image pairs. Shortly after Go-

dard et al. [5] building on top of [4] proposed ot estimate both the right-to-left disparity, aligned

with the left input stereo view, and the left-to-right disparity, aligned with the right stereo view.

They also propose an additional structured loss and a disparity consistency objective to further

constrain the model. In [9] instead they focus on better feature representation, with 3D convo-

lutions. Their method is effective but has the drawback of increased computational cost due to

the 3D operations. In [35] they propose to use monocular video sequences and, based on the

reconstruction loss among successive frames together with an occlusion aware criterion they

are able to optimize a model for depth and pose estimation. Zhan et al. [34] add the temporal

constraint further improving depth estimation by joint visual odometry and depth learning. A

similar intuition was followed by Godard et al. [38] where they jointly estimate pose and depth

of the scene, propose to use an occlusion aware loss to obtain better convergence and estima-

tions. An orthogonal approach was proposed by Lai et al. [39] where they successfully use

an optical flow model for guaranteeing temporal consistency, alongside an unsupervised depth

estimation model between binocular stereo views.

Domain adaptation for unsupervised depth estimation, exploiting synthetic data for train-

ing, following the idea of [32] was proposed by Kundu et al. [40]. They propose an adversarial

unsupervised adaptation setup for high dimensional features. Successively in [41] they imple-

ment joint training from real and synthetic data, while Zhao et al. [42] take advantage of the

CycleGAN [7] approach to augment training data for their self-supervised model.
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2.4 Adversarial Learning

Generative Adversarial Networks (GAN) were first proposed by Goodfellow et al. [6] as a

novel approach for image generation. They propose to learn an image generator from a noise

vector to fool a discriminator model that has to discriminate if the image is real or generated.

These two models are trained to compete with each other, on one side the generator should

improve the quality of generated images while on the other the discriminator has to become

better in discriminating fakes, thus the name of adversarial learning. Since then, the research

community worked hard to improve Goodfellow’s approach generation quality and training

stability. Some works concentrate on improving the model architecture, as in Radford et al.

[43] where they propose a deep convolutional architecture. While others introduce class super-

vision or conditioning as a further constrain [44, 45]. Another research direction is to improve

the optimization objective, with Wasserstein distance in [46], later with Cramer distance in [47]

or more simply with least squares distance as proposed by [48]. Several computer vision appli-

cations employ GANs, some examples are image-to-image translation [7, 8] where an image

is transformed into a desired domain image, generation of images in different poses [49] and

image animation [50].

2.5 Distillation

Since the breakthrough of deep learning with AlexNet [1] on the image classification bench-

mark ImageNet [2] deep ConvNets grew larger and larger to increase performance. Model

distillation aims to train a small student model, by small lower capacity (i.e. number of param-

eters) and computations requirements has to be intended, imitating a large teacher network.

This idea, applied to deep learning, was first proposed by Hinton et al. [51] by adding to

the traditional discriminative training objective of the student model an additional term. This

term aims to make the logit prediction of the student similar to those of the teacher. In [52]

they exploit distillation to obtain faster training, whereas in [53] they improve the optimization

objective by using attention. The distillation principle found several applications in computer

vision as domain adaptation [54], learning from noisy labels [55], face recognition [56] and

lane detection [57].
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Datasets and Evaluation

We will now detail the evaluation metrics used throughout this thesis and the training and

evaluation dataset splits used in the different chapters.

3.1 Evaluation Metrics

To quantitatively evaluate the proposed approaches, we follow several standard evaluation met-

rics used in previous works [3, 5, 25]. Let P be the total number of pixels in the test set and

d̂i, di the estimated depth and ground truth depth values for pixel i. We compute the following

metrics:

• Mean relative error (abs rel): 1
P

∑P
i=1

‖d̂i−di‖
di

,

• Squared relative error (sq rel): 1
P

∑P
i=1

‖d̂i−di‖
2

di
,

• Root mean squared error (rmse):

√

1
P

∑P
i=1(d̂i − di)2,

• Mean log 10 error (rmse log):

√

1
P

∑P
i=1 ‖ log d̂i − log di ‖2

• Accuracy with threshold τ , i.e. the percentage of d̂i such that δ = max(di
d̂i
, d̂i
di
) < ατ .

We employ α = 1.25 and τ ∈ [1, 2, 3] following [3].

Even though, in Chapters 4 and partially 5, the models perform inference from stereo im-

ages, we chose to align our evaluation with the depth from monocular images metrics. This is

motivated, on one hand, by our goal to devise models to perform inference from monocular, as

in Chapter 6 and as outlined in the proposed future works Section 7.1. On the other hand, it

allows for a better comparative performance among all the methods presented in this thesis.
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3.2 Evaluation Datasets

In Section 2.1 we introduced the main datasets used nowadays for depth estimation. Now

we will detail the training and testing splits used in the following chapters. All the proposed

methods will be evaluated on two large stereo images dataset KITTI and CityScapes. Both

datasets are recorded from driving vehicles through several German cities, during different

times of the day and seasons.

For the KITTI dataset, we use the Eigen split [3] for training and testing. This split contains

22,600 training image pairs, and 697 test pairs. We do data augmentation with online random

horizontal flipping of the images during training. Note that when flipped, the images are also

swapped, to guarantee they are in correct position relative to each other. We added also random

colour augmentations, namely gamma, brightness and color distributions. The input images

are down-sampled to a resolution of 512× 256 from 1226× 370.

The Cityscapes dataset presents higher resolution images and is annotated mainly for se-

mantic segmentation. To train our model we combine the densely and coarse annotated splits to

obtain 22,973 image-pairs. For testing we use the 1,525 image-pairs of the densely annotated

split. The test set also has pre-computed disparity maps for the evaluation. During training,

the bottom one fifth of the image is cropped following [5] and then is resized to 512 × 256.

Similarly to KITTI we perform data augmentation on-the-fly with the same settings during

training.

Furthermore, in Section 4.2, we add additional experiments on ApolloScape dataset. It

has been collected from a stereo camera attached to a car driving in different Chinese cities.

To the best of our knowledge, we are the first to benchmark depth estimation methods on

the ApolloScape dataset. We employ two sequences from the Scene Parsing data split, scene

road02 and road03, obtaining 9156 training image pairs and 2186 testing image pairs. Note

that, the other sequences use varying setting stereo camera settings and, as a consequence,

cannot be used easily for depth estimation. The dataset provides dense depth ground-truth for

all the images. At training time, we applied the same online random augmentations that we

applied to KITTI dataset.
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Stereo Adversarial Depth Estimation

In this Chapter we will present our research on learning from resynthesized data and adversarial

learning applied to stereo unsupervised depth estimation. In Section 4.1, we devise a adver-

sarial optimization objective for a dense prediction task as depth estimation. After that, we

propose a cycled network for data augmentation. The cycled structure allows us to learn from

both original and resynthesized images. We show in experimental results that the proposed

ideas benefit model performance. The extension of this work is presented in Section 4.2, where

we devise a multiscale feature refinement strategy, called Progressive Fusion Network, with the

goal of reducing training times and model parameters. Moreover, we extensively benchmark

this approach against state-of-the-art on large publicly available datasets.

4.1 Unsupervised Adversarial Depth Estimation using Cycled Gen-

erative Network 1

While recent deep monocular depth estimation approaches based on supervised regression have

achieved remarkable performance, costly ground truth annotations are required during training.

To cope with this issue, in this Section we present a novel unsupervised deep learning approach

for predicting depth maps and show that the depth estimation task can be effectively tackled

within an adversarial learning framework. Specifically, we propose a deep generative network

that learns to predict the correspondence field (i.e. the disparity map) between two image

1"Unsupervised Adversarial Depth Estimation Using Cycled Generative Networks", A. Pilzer, D. Xu, M. Pus-

cas, E. Ricci and N. Sebe; 2018 International Conference on 3D Vision (3DV), Verona, 2018, pp. 587-595
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Fusion

DlDr

True? Fake? True? Fake?

Il

Ir

Îl

Ir

Îr

Îl
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Figure 4.1: Motivation of the proposed unsupervised depth estimation approach using cycled gen-

erative networks optimized with adversarial learning. The generator model takes two stereo image

views as input and resynthesizes Îl. Then, as in a cycle, the model resynthesizes Îr. The left and

right image synthesis in a cycle provides strong constraint and supervision to better optimize both

generators. Final depth estimation is obtained by fusing the output from both generators.

views in a calibrated stereo camera setting. The proposed architecture consists of two genera-

tive sub-networks jointly trained with adversarial learning for reconstructing the disparity map

and organized in a cycle such as to provide mutual constraints and supervision to each other.

Extensive experiments on the publicly available datasets KITTI and Cityscapes demonstrate

the effectiveness of the proposed model and competitive results with state of the art methods.

4.1.1 Introduction

As one of the fundamental problems in computer vision, depth estimation has received a sub-

stantial interest in the past, also motivated by its importance in various application scenarios,

such as robotics navigation, 3D reconstruction, virtual reality and autonomous driving. Over

the last few years the performances of depth estimation methods have been significantly im-

proved thanks to advanced deep learning techniques.

Most previous works considering deep architectures for predicting depth maps operate in

a supervised learning setting [3, 10, 21, 58] and, specifically, devise powerful deep regression

models with Convolutional Neural Networks (CNN). These models are used for monocular

depth estimation, i.e. they are trained to learn the transformation from the RGB image domain
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4.1 Unsupervised Adversarial Depth Estimation using Cycled Generative Network 1

to the depth domain in a pixel-to-pixel fashion. In this context, multi-scale CNN models have

shown to be especially effective for estimating depth maps [3]. Upon these, probabilistic graph-

ical models, such as Conditional Random Fields (CRFs), implemented as neural networks for

end-to-end optimization, have proved to be beneficial, boosting the performance of deep re-

gression models [10, 21]. However, supervised learning models require ground-truth depth

data which are usually costly to acquire. This problem is especially relevant with deep learning

architectures, as large amount of data are typically required to produce satisfactory perfor-

mance. Furthermore, supervised monocular depth estimation can be regarded as an ill-posed

problem due to the scale ambiguity issue [59].

To tackle these problems, recently unsupervised learning-based approaches for depth esti-

mation have been introduced [60, 61]. These methods operate by learning the correspondence

field (i.e. the disparity map) between the two different image views of a calibrated stereo cam-

era using only the rectified left and right images. Then, given several camera parameters, the

depth maps can be calculated using the predicted disparity maps. Significant progresses have

been made along this research line [4, 5, 62]. In particular, Godard et al. [5] proposed to

estimate both the direct and the reverse disparity maps using a single generative network and

utilized the consistency between left and right disparity maps to constrain on the model learn-

ing. Other works proposed to facilitate the depth estimation by jointly learning the camera

pose [35, 36]. These works optimized their models relying on the supervision from the image

synthesis of an expected view, whose quality plays a direct influence on the performance of

the estimated disparity map. However, all of these works only considered a reconstruction loss

and none of them have explored using adversarial learning to improve the generation of the

synthesized images.

We follow the unsupervised learning setting and propose a novel end-to-end trainable deep

network model for adversarial learning-based depth estimation given stereo image pairs. The

proposed approach consists of two generative sub-networks which predict the disparity map

from the left to the right view and viceversa. The two sub-networks are organized in a cycle

(Fig. 4.1), such as to perform the image synthesis of different views in a closed loop. This new

network design provides strong constraint and supervision for each image view, facilitating

the optimization of both generators from the two sub-networks which are jointly learned with

an adversarial learning strategy. The final disparity map is produced by combining the output

from the two generators.

In summary, the main contributions of this Section are threefolds:
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(b) Our adversarial unsupervised stereo depth estimation
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(c) Our cycled generative networks for adversarial unsupervised stereo depth estimation
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Figure 4.2: An illustrative comparison of different methods for unsupervised stereo depth estima-

tion: (a) traditional supervised stereo-matching-based depth estimation, (b) the proposed unsuper-

vised adversarial depth estimation and (c) the proposed cycled generative networks for unsuper-

vised adversarial depth estimation. The symbols Dl, Dr denote discriminators, and Gl, Gr denote

generators. The symbol Ŵ denotes a warping operation.

• To the best of our knowledge, we are the first to explore using adversarial learning to

facilitate the image synthesis of different views in a unified deep network for improving

the unsupervised depth estimation;

• We present a new cycled generative network structure for unsupervised depth estimation

which can learn both the forward and the reverse disparity maps, and can synthesize the

different image views in a closed loop. Compared with the existing generative network

structures, the proposed cycled generative network is able to enforce stronger constraints

from each image view and better optimize the network generators.

• Extensive experiments on two large publicly available datasets (i.e. KITTI and Cityscapes)

demonstrate the effectiveness of both the adversarial image synthesis and the cycled gen-

erative network structure.

4.1.2 Proposed Approach

We propose a novel approach for unsupervised adversarial depth estimation using cycled gen-

erative networks. An illustrative comparison of different unsupervised depth estimation mod-

els is shown in Fig. 4.2. Fig. 4.2a shows traditional stereo matching based depth estimation

approaches, which basically learn a stereo matching network for directly predicting the dis-

parity [60]. Different from the traditional stereo approaches, we estimate the disparity in an
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Figure 4.3: Illustration of the detailed framework of the proposed cycled generative networks

for unsupervised adversarial depth estimation. It is based on an encoder-decoder structure that

processes separately the two stereo views. The symbol c© denotes a concatenation operation; ×
denotes a learned weighted average, implemented as a 1 × 1 convolution; Lrec represents the

reconstruction loss for different generators; Lcon denotes a consistency loss between the disparity

maps generated from the two generators.

indirect means through image synthesis from different views with the adversarial learning strat-

egy as shown in Fig. 4.2b. Fig. 4.2c shows our full model using the proposed cycled generative

networks for the task. In this section we first give the problem statement, and then present

the proposed adversarial learning-based unsupervised stereo depth estimation, and finally we

illustrate the proposed full model and introduce the overall end-to-end optimization objective

and the testing process.

4.1.2.1 Problem Statement

We target at estimating a disparity map given a pair of images from a calibrated stereo camera.

The problem can be formally defined as follows: given a left image Il and a right image Ir

from the camera, we are interested in predicting a disparity map d in which each pixel value

represents an offset of the corresponding pixel between the left and the right image. If given

the baseline distance bd between the left and the right camera and the camera focal length fl,

a depth map D can be calculated with the formula of D = (bd ∗ fl)/d. We indirectly learn

the disparity through the image synthesis. Specifically, assume that a left-to-right disparity

d
(l)
r is produced from a generative network Gl with the left-view image Il as input, and then a

warping function fw(·) is used to perform the synthesis of the right image view by sampling
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from Il, i.e. Îr = fw(d
(l)
r , Il). A reconstruction loss between Îr and Ir is thus utilized to

provide supervision in optimizing the network Gl.

4.1.2.2 Unsupervised Adversarial Depth Estimation

We now introduce the proposed unsupervised adversarial depth estimation approach. Assum-

ing we have a generative network Gl composed of two sub-networks, a generative sub-network

G
(l)
l with input Il and a generative sub-network G

(r)
l with input Ir. These are used to produce

two distinct left-to-right disparity maps d
(l)
r and d

(r)
r respectively, i.e. d

(l)
r = G

(l)
l (Il) and

d
(r)
r = G

(r)
l (Ir). The sub-network G

(l)
l and G

(r)
l exploit the same network structure using

a convolutional encoder-decoder, where the encoders aim at obtaining compact image repre-

sentations and could be shared to reduce the network capacity. Since the two disparity maps

are produced from different input images, and show complementary characteristics, they are

fused using a linear combination implemented as concatenation and 1× 1 convolution, and we

obtain an enhanced disparity map d
′
r, which is used to synthesize a right view image Îr via the

warping operation, i.e. Îr = fw(d
′
r, Il). Then we use an L1-norm reconstruction loss Lrec for

optimization as follows:

L
(r)
rec = ‖Ir − fw(d

′
r, Il)‖1 (4.1)

To improve the generation quality of the image Îr and benefit from the advantage of adver-

sarial learning, we propose to use adversarial learning here for a better optimization due to its

demonstrated powerful ability in the image generation task [6]. For the synthesized image Îr, a

discriminators Dr outputting a scalar value which is used to discriminate if the image Îr or Ir

is fake or true, and thus the adversarial objective for the generative network can be formulated

as follows:

L
(r)
gan(Gl,Dr, Il, Ir) = EIr∼p(Ir)[logDr(Ir)]

+ EIl∼p(Il)[log(1−Dr(fw(d
′
r, Il)))]

(4.2)

where we adopt a cross-entropy loss to measure the expectation of the image Il and Ir against

the distribution of the left and the right view images p(Il) and p(Ir) respectively. Then the joint

optimization loss is the combination of the reconstruction loss and the adversarial loss written

as:

L
(r)
o = γ1L

(r)
rec + γ2L

(r)
gan (4.3)

where γ1 and γ2 are the weights for balancing the loss magnitude of the two parts to stabilize

the training process. In the testing phase, the inferred d
′
r is the final output.
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4.1.2.3 Cycled Generative Networks for Adversarial Depth Estimation

In the previous section, we presented the adversarial learning-based depth estimation approach

which reconstructs from one image view to the other one in a straightforward way. In order

to make the image reconstruction from different views implicitly constrain on each other, we

further propose a cycled generative network structure. An overview of the proposed network

structure is shown in Fig. 4.3. The network produces two distinct disparity maps from differ-

ent view directions, and synthesizes different-view images in a closed loop. In our network

design, not only the different view reconstruction loss helps for better optimization of the gen-

erators, but also the two disparity maps are connected with a consistence loss to provide strong

supervision from each half cycle.

We described the half-cycle generative network with adversarial learning in Section 4.1.2.2.

The cycled generative network is based on the half-cycle structure. To simplify the description,

we follow the notations used in Section 4.1.2.2. Assume we have obtained a synthesized image

Îr from the half-cycle network, and then Îr is further used as input of the next cycle generative

network. Let us denote the generator as Gr, which we exploit the encoder-decoder network

structure similar as Gl in Sec. 4.1.2.2. The encoder part of Gr can be also shared with the

encoder of Gl to have a more compact network model (we show the performance difference

between using and not using the sharing scheme), and the two distinct decoders are used to

produce two right-to-left disparity maps d
(l)
l and d

(r)
l corresponding the left- and the right-

view input images respectively. The two maps are also combined with the combination and

the convolution operation to have a fused disparity map d
′
l. Then we synthesize the left-view

image Îl via the warping operation as Îl = fw(d
′
l, Ir). An L1-norm reconstruction loss is used

for optimizing the generator Gr. Then the objective for optimizing the two generators of the

full cycle writes

L
(f)
rec = ‖Ir − fw(d

′
r, Il)‖1+‖Il − fw(d

′
l, Îr)‖1 (4.4)

We add a discriminator Dl for discriminating the synthesized image Îl, and then the adversarial

learning strategy is used for both the left and the right image views in a closed loop. The

adversarial objective for the full cycled model can be formulated as

L
(f)
gan(Gl, Gr, Dr, Il, Ir) = EIr∼p(Ir)[logDr(Ir)]

+EIl∼p(Il)[log(1−Dr(fw(d
′
r, Il)))] + EIl∼p(Il)[logDl(Il)]

+EIr∼p(Ir)[log(1−Dl(fw(d
′
l, Îr)))]

(4.5)
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Each half of the cycle network produces a disparity map corresponding to a different view

translation, i.e. d
′
l and d

′
r. To make them constrain on each other, we add an L1-norm consis-

tence loss between these two maps as follows:

L
(f)
con = ||d′

l − fw(d
′
l,d

′
r)||1 (4.6)

where since the two disparity maps are for different views and are not aligned, we use the

warping operation to make them pixel-to-pixel matched. The consistence loss put a strong

view constraint for each half cycle and thus facilitates the learning of both half cycles.

Full objective. The full optimization objective consists of the reconstruction losses of both

generators, the adversarial losses for both view synthesis and the half-cycle consistence loss. It

can be written as follows:

L
(f)
o = γ1L

(f)
rec + γ2L

(f)
gan + γ3L

(f)
con. (4.7)

Where {γi}3i=1 represents a set of weights for controlling the importance of different optimiza-

tion parts.

Inference. When the optimization is finished, given a testing pair {Il, Ir}, the testing is

performed by combining the output disparity maps d′
l and d

′
r in a weighted averaging scheme.

We treat the two half cycles with equal importance, and the final disparity map D is obtained

as the mean of the two, i.e. D = (d′
l + fw(d

′
l,d

′
r))/2.

4.1.2.4 Network Implementation Details

To describe the details of the network implementation, in terms of the generators Gl and Gr,

we use a ResNet-50 backbone network for the encoder part, and the decoder part contains

five deconvolution with ReLU operations in which each 2 times up-samples the feature map.

The skip connections are also used to pass information from the backbone representations to

the deconvolutional feature maps for obtaining more effective feature aggregation. For the

discriminators Dl and Dr, we employ the same network structure which has five consecutive

convolutional operations with a kernel size of 3, a stride size of 2 and a padding size of 1, and

batch normalization [63] is performed after each convolutional operation. Adversarial loss is

applied to output patches. For the warping operation, a bilinear sampler is used as in [5].
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RGB Image Eigen et al. [3] Zhou et al. [35] Garg et al. [4] Godard et al. [5] Ours GT Depth Map

Figure 4.4: Qualitative comparison with different competitive approaches with both supervised

and unsupervised settings on the KITTI test set. The sparse groundtruth depth maps are filled with

bilinear interpolation for better visualization.

4.1.3 Experimental Results

We present both qualitative and quantitative results on publicly available datasets to demon-

strate the performance of the proposed approach for unsupervised adversarial depth estimation.

4.1.3.1 Experimental Setup

Datasets and Evaluation We carry out experiments on two large datasets, i.e. KITTI [17] and

Cityscapes [18] . We detailed in Chapter 3 the dataset splits and preprocessing used. Similarly,

the evaluation metrics have beed throughly described in Chapter 3.

Parameter Setup. The proposed model is implemented using the deep learning library Ten-

sorFlow [64]. The input images are down-sampled to a resolution of 512×256 from 1226×370

in the case of the KITTI dataset, while for the Cityscapes dataset, at the bottom one fifth of the

image is cropped following [5] and then is resized to 512 × 256. The output disparity maps

from two input images are fused with a learned linear combination to obtain the final disparity

map with a size 512× 256. The batch size for training is set to 8 and the initial learning rate is

10−5 in all the experiments. We use the Adam optimizer for the optimization. The momentum

parameter and the weight decay are set to 0.9 and 0.0002, respectively. The final optimization
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Method
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle Mono 0.240 4.264 8.049 0.334 0.710 0.871 0.937

Half-Cycle Stereo 0.228 4.277 7.646 0.318 0.748 0.892 0.945

Half-Cycle + D 0.211 2.135 6.839 0.314 0.702 0.868 0.939

Full-Cycle + D 0.198 1.990 6.655 0.292 0.721 0.884 0.949

Full-Cycle + D + SE 0.190 2.556 6.927 0.353 0.751 0.895 0.951

Table 4.1: Quantitative evaluation results of different variants of the proposed approach on the

KITTI dataset for the ablation study. We do not perform cropping on the depth maps for evaluation

and the estimated depth range is from 0 to 80 meters.

objective has weighed loss parameters γ1 = 1, γ2 = 0.1 and γ3 = 0.1. The learning rate is

reduced by half at both [80k, 100k] steps. For our experiments we used an NVIDIA Tesla K80

with 12 GB of memory.

Detailed Training Procedure. We train the half-cycle model with a standard training

procedure, i.e. initializing the network with random weights and making the network train

for a full 50 epochs. For the cycled model we optimize the network with an iterative training

procedure. After random weights initialization, we train the first half branch {Il, Ir} → Îr,

with generator Gl and discriminator Dr for a 20k iteration steps. After that we train the second

half branch {Îr, Il} → Îl with generator Gr and discriminator Dl for another 20k iterations.

For the training of the first cycle branch, we do not use the cycle consistence loss since the

second half branch is not trained yet. Finally we jointly train the whole network with all the

losses embedded for a final round of 100k iterations.

4.1.3.2 Ablation Study

To validate the adversarial learning strategy is beneficial for the unsupervised depth estimation,

and the proposed cycled generative network is effective for the task, we present an extensive

ablation study on both the KITTI dataset (see Table 4.1) and on the Cityscape dataset (see

Table 4.3).

Baseline Models. We have several baseline models for the ablation study, including (i)

Half-cycle with a monocular setting (half-cycle mono), which uses a straight forward branch to

synthesize from one image view to the other with a single disparity map output and the single

RGB image is as input during testing; (ii) half-cycle with a stereo setting (half-cycle stereo),
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Method Sup
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Saxena et al. [59] Y 0.280 - 8.734 - 0.601 0.820 0.926

Eigen et al. [3] Y 0.190 1.515 7.156 0.270 0.692 0.899 0.967

Liu et al. [21] Y 0.202 1.614 6.523 0.275 0.678 0.895 0.965

AdaDepth [40], 50m Y 0.162 1.041 4.344 0.225 0.784 0.930 0.974

Kuznietzov et al. [33] Y - - 4.815 0.194 0.845 0.957 0.987

Xu et al. [10] Y 0.132 0.911 - 0.162 0.804 0.945 0.981

Zhou et al. [35] N 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [4] N 0.169 1.08 5.104 0.273 0.740 0.904 0.962

AdaDepth [40], 50m N 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Godard et al. [5] N 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Ours N 0.166 1.466 6.187 0.259 0.757 0.906 0.961

Ours with shared enc N 0.152 1.388 6.016 0.247 0.789 0.918 0.965

Ours, 50m N 0.158 1.108 4.764 0.245 0.771 0.915 0.966

Ours with shared enc, 50m N 0.144 1.007 4.660 0.240 0.793 0.923 0.968

Table 4.2: Comparison with state of the art. Training and testing are performed on the KITTI [17]

dataset. Supervised and semi-supervised methods are marked with Y in the supervision column,

unsupervised methods with N. Numbers are obtained on Eigen test split with Garg image cropping.

Depth predictions are capped at the common threshold of 80 meters, if capped at 50 meters we

specify it.

Method Sup
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle Mono N 0.467 7.399 5.741 0.493 0.735 0.890 0.945

Half-Cycle Stereo N 0.462 6.097 5.740 0.377 0.708 0.873 0.937

Half-Cycle + D N 0.438 5.713 5.745 0.400 0.711 0.877 0.940

Full-Cycle + D N 0.440 6.036 5.443 0.398 0.730 0.887 0.944

Table 4.3: Quantitative evaluation results of different variants of the proposed approach on the

Cityscapes dataset for the ablation study.
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RGB Image Half-Cycle Mono Half-Cycle Stereo Half-Cycle + D Full-Cycle + D GT Depth Map

Figure 4.5: Qualitative comparison of different baseline models of the proposed approach on the

Cityscapes testing dataset.

which uses a straight forward branch but with two disparity maps produced and combined; (iii)

half-cycle with a discriminator (half-cycle + D), which use a single branch as in (ii) while adds

a discriminator for the image synthesis; (iv) full-cycle with two discriminators (full-cycle + D),

which is our whole model using a full cycle with two discriminators added; (v) full-cycle with

two discriminators and sharing encoders (full-cycle + D + SE), which has the same structure

as (iv) while the parameters of the encoders of the generators are shared.

Evaluation on KITTI. As we can see from Table 4.1, the baseline model Half-Cycle

Stereo shows significantly better performance on seven out of eight evaluation metrics than

the baseline model Half-Cycle Mono, demonstrating that the utilization of the stereo images

and the combination of the two estimated complementary disparity maps clearly boosts the

performance.

By using the adversarial learning strategy for the image synthesis, the baseline Half-Cycle

+ D outperforms the baseline Half-Cycle Stereo with around 1.7 points gain on the metric of

Abs Rel, which verifies our initial intuition of using the adversarial learning to improve the

quality of the image synthesis, and thus gain the improvement of the disparity prediction. In

addition, we also observe in the training process, the adversarial learning helps to maintain a

more stable convergence trend with small oscillations in terms of the training loss than the one

without it (i.e. Half-Cycle Stereo), probably leading to a better optimized model.
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It is also clear to observe that the proposed cycled generative network with adversarial

learning (Full-Cycle + D) achieved much better results than the models with only half cycle

(Half-Cycle + D) on all the metrics. Specifically, the Full-Cycle + D model improves the Abs

Rel around 2 points, and also improves the accuracy a1 around 1.9 points over Half-Cycle + D.

The significant improvement demonstrates the effectiveness of the proposed network design,

confirming that the cycled strategy brings stronger constraint and supervision to optimize the

both generators. Finally, we also show that the propose cycled model using a sharing encoder

for the generator (Full-Cycle + D + SE). By using the sharing structure, we obtain even better

results than the non-sharing model (Full-Cycle + D), which is probably because the shared one

has a more compact network structure and thus is relatively easier to optimize with a limited

number of training samples.

Evaluation on Cityscapes. We also conduct another ablation study on the Cityscapes

dataset and the results are shown in Table 4.3. We can mostly observe similar trend of the

performance gain of the different baseline models as we already analyzed on the KITTI dataset.

The performance comparison of the baselines on this challenging dataset further confirms the

advantage of the proposed approach. For the comparison of the model Half-Cycle + D and

the model Full-Cycle + D, although the latter one achieves slightly worse results on the first

two error metrics, it still produces clearly better performance on the remaining six evaluation

metrics. Since there is no official evaluation protocol for depth estimation on this dataset, the

results are evaluated with the protocol on the KITTI, and are directly evaluated on the disparity

maps as they are directly proportional to each other. In Fig. 4.5, some qualitative comparison

of the baseline models are presented.

State of the Art Comparison In Table 4.12, we compare the proposed full model with sev-

eral state-of-the-art methods, including the ones with the supervised setting, i.e. Saxena et al.

[59], Eigen et al. [3], Liu et al. [21], AdaDepth [40], Kuznietzov et al. [33] and Xu et al.

[10], and the ones with the unsupervised setting, i.e. Zhou et al. [35], AdaDepth [40], Garg et

al. [4] and Godard et al. [5]. Among all the supervised approaches, we have achieved very

competitive performance to the best one of them (i.e. Xu et al. [10]), while ours is totally

unsupervised without using any ground-truth depth data in training. For comparison with the

unsupervised methods, we are also very close to the best competitor (i.e. Godard et al. [5]).

AdaDepth [40] is the most technically related to our approach, which considers adversarial

learning in a context of domain adaptation with extra synthetic training data. Ours significantly
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outperforms their results with both the supervised and unsupervised setting, further demon-

strating the effectiveness of the means we considered and proposed for unsupervised depth

estimation with the adversarial learning strategy. As far as we know, there are not quantitative

results presented in the existing works on the Cityscapes dataset.

Analysis on the Time Aspect. For the training of the whole network model, on a single Tesla

K80 GPU, it takes around 45 hours on KITTI dataset with around 22k training images. For the

running time, in our case with the resolution of 512 × 256, the inference of one image takes

around 0.140 seconds, which is a near real-time processing speed.

4.1.4 Conclusions

We have presented a novel approach for unsupervised deep learning for the depth estimation

task using the adversarial learning strategy in a proposed cycled generative network structure.

The new approach provides a new insight to the community that shows depth estimation can be

effectively tackled via an unsupervised adversarial learning of the stereo image synthesis. More

specifically, a generative deep network model is proposed to learn to predict the disparity map

between two image views under a calibrated stereo camera setting. Two symmetric generative

sub-networks are respectively designed to generate images from different views, and they are

further merged to form a closed cycle which is able to provide strong constraint and supervision

to optimize better the dual generators of the two sub-networks. Extensive experiments are con-

ducted on two publicly available datasets (i.e. KITTI and Cityscapes). The results demonstrate

the effectiveness of the proposed model, and show very competitive performance compared to

state-of-the-arts on the KITTI dataset.
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tion using Cycled Networks 2

Recent deep monocular depth estimation approaches based on supervised regression have

achieved remarkable performance. However, they require costly ground truth annotations dur-

ing training. To cope with this issue, in this Section we present a novel unsupervised deep

learning approach for predicting depth maps. We introduce a new network architecture, named

Progressive Fusion Network (PFN), that is specifically designed for binocular stereo depth

estimation. This network is based on a multi-scale refinement strategy that combines the infor-

mation provided by both stereo views. In addition, we propose to stack twice this network in

order to form a cycle. This cycle approach can be interpreted as a form of data-augmentation

since, at training time, the network learns both from the training set images (in the forward

half-cycle) but also from the synthesized images (in the backward half-cycle). The architecture

is jointly trained with adversarial learning. Extensive experiments on the publicly available

datasets KITTI, Cityscapes and ApolloScape demonstrate the effectiveness of the proposed

model which is competitive with other unsupervised deep learning methods for depth predic-

tion.

4.2.1 Introduction

Most previous works considering deep architectures for predicting depth maps operate in a su-

pervised learning setting [3, 10, 21, 58] and employ powerful deep regression models based on

Convolutional Neural Networks (ConvNet). These models are usually designed for monocular

depth estimation, i.e. they are trained to learn the transformation from a single RGB image to

a depth map in a pixel-to-pixel fashion. However, supervised learning models require ground-

truth depth data which are usually costly to acquire. This problem is especially relevant with

deep learning architectures, as large amounts of data are typically required in order to produce

satisfactory performance. Furthermore, monocular depth estimation is an inherently ill-posed

problem due to the well-known scale ambiguity issue [59]. For instance, given an image patch

of a blue sky, it is difficult to predict if this patch is infinitely far away (sky), or whether it

is part of a blue object. Therefore, local information such as the texture must be combined

2"Progressive Fusion for Unsupervised Binocular Depth Estimation using Cycled Networks", A. Pilzer, S.

Lathuilière, D. Xu, M. M. Puscas, E. Ricci and N. Sebe; IEEE Transactions on Pattern Analysis and Machine

Intelligence, DOI: 10.1109/TPAMI.2019.2942928
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}

}
Figure 4.6: Motivation of the proposed unsupervised depth estimation approach using cycled gen-

erative networks.

with contextual information. Additionally, in complex environments as those encountered by

autonomous driving cars, current depth estimation methods still have difficulties in predicting

accurately depth maps from a single camera. These difficulties are encountered in particular

when many objects are present in the scene due to the several occlusions.

To tackle these problems, unsupervised (also called self-supervised) learning-based ap-

proaches for depth estimation operating on a stereo setting have been introduced [5, 60, 61, 62].

These methods operate by learning the correspondence field (i.e. the disparity map) between

two different image views of a calibrated stereo camera using only the left and right RGB im-

ages (no ground-truth depth map). The disparity refers to the difference in image location of

an object seen by the left and right cameras. Importantly, the disparity value is inversely pro-

portional to the object depth at the corresponding pixel location. Then, given the calibration

parameters of the stereo cameras, the depth maps can be calculated using the predicted dispar-

ity maps. At test time, depending on the network architecture, depth is estimated either from a

single stereo view [5] (referred to as monocular depth estimation) or stereo pairs[65] (referred

to as binocular or stereo depth estimation). Thanks to this formulation, we avoid ground-

truth data collection, using lidar for instance, that is much more complex (eg. multimodal-

synchronization, hardware constraints) and expensive than adding a second camera. Another

potential advantage of unsupervised depth estimation can be found in online adaptation as in

[31], where the network is self-adapted in an online fashion at testing time when depth super-

vision is no more available. Most of previous works [5, 62] are based on a common strategy
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introduced in [4]: given a pair of left and right images a neural network is trained for the task

of predicting the right-to-left disparity map from the left image. The left image can then be

re-synthesized by warping the right image accordingly to the predicted disparity. The network

is trained by minimizing a left image reconstruction loss (see Sec 4.2.2.1 for technical details).

This approach relies on the supervision from the image synthesis of an expected view, whose

quality plays a direct influence on the performance of the estimated disparity map. Significant

progress has been made recently along this research line [5, 35, 36].

We follow this research thread and propose a novel end-to-end trainable deep network

model for adversarial learning-based depth estimation given stereo image pairs. Contrary to

most recent works [4, 5, 62], we focus on the binocular scenario where stereo image pairs

are available both at training and test time. The proposed approach consists of a generative

sub-network which predicts the two disparity maps from the right to the left views and vice-

versa. This sub-network is stacked twice in order to form a cycle as illustrated in Fig. 4.6.

This novel network design provides strong constraints and supervision for each image view,

facilitating the optimization of the network. It is important to mention that, despite the cycle

shape and the use of adversarial loss, our cycle approach is not directly related to Cycle-GAN

[7]. Cycle-GAN is designed for image-to-image translation when paired data are not available.

In the case of binocular stereo depth estimation, paired data are available (i.e. corresponding

left/right images). Our cycle approach can be interpreted as a form of data-augmentation since,

at training time, the network learns to predict disparity maps from images of the training set

(in the forward cycle pass), but also from synthesized images (in the backward cycle pass).

In addition, it prevents the sub-network to predict blurred or deformed images in the forward

cycle pass, since it would suffer the consequences in the backward cycle pass. The whole cycle

is jointly learned and the final disparity map is produced by the first G network. The current

Section extends 4.1 in several ways:

• First, we present a more detailed analysis of related works by including recently pub-

lished works dealing with supervised and unsupervised depth estimation.

• Second, we propose a novel network architecture named Progressive Fusion Network

(PFN), that is specifically designed for binocular stereo depth estimation. This network

is based on a multi-scale refinement strategy that combines the information provided by

the left and right images.
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• Third, the cycle model proposed in 4.1 is adapted in order to benefit from the two dis-

parity maps predicted by the proposed PFN.

• Finally, we significantly extend our quantitative evaluation by performing an in-detail

ablation study and by comparing our binocular stereo model with the very recent works

in this area. Our extensive experiments on three large publicly available datasets (i.e.

KITTI [66], Cityscapes [18] and ApolloScape[19]) demonstrate the effectiveness of the

proposed adversarial image synthesis, cycled generative network structure and Progres-

sive Fusion Network. On the widely used KITTI dataset, our approach is competitive

with state of the art methods on the static unsupervised setting.

The details of our method are presented in Section 4.2.2. Section 4.2.3 presents the exper-

imental evaluation and conclusions are drawn in Section 4.2.4.

4.2.2 Proposed Approach

As mentioned in the introduction, our framework for unsupervised depth estimation has two

main contributions. First, we propose to exploit cycle consistency in order to regularize better

our model and therefore achieve better performance. The cycle consistency approach is com-

bined with an adversarial learning strategy in order to further improve the predictions. The

details of our model are given in Sections 4.2.2.2 and 4.2.2.3. Second, we propose a network

architecture named Progressive Fusion Network, that uses a multi-scale approach to fuse the

information provided by each image. The motivations and the details of this network archi-

tecture are given in Section 4.2.2.4. Before presenting the details of our approach, we briefly

introduce in Sec. 4.2.2.1 the basics of unsupervised depth estimation and the notations used in

the remaining of the paper.

4.2.2.1 Unsupervised Binocular Depth Estimation

In this work, we aim at estimating a depth map given a pair of images from calibrated stereo

cameras. A supervised approach would consist in learning a stereo matching network that

predicts depth [60]. In this scenario, the network is trained via minimization of a pixel-wise

error measure between the predicted and the ground-truth disparities. Conversely, we follow

an unsupervised approach: given a left image Il and a right image Ir, we are interested in

predicting the disparity maps dr and dl. The disparity map dr is defined as the 2D map

where each pixel value represents the offset of the corresponding pixel from the left and the
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<latexit sha1_base64="tftRal2Qeumfg5Rw5lf09Qj0kbg=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkoMuCGxcuKtgHtCFMppN26GQSZiZCCPVX3LhQxK0f4s6/cdJmoa0HBg7n3Dtz5gQJZ0o7zrdV2djc2t6p7tb29g8Oj+zjk56KU0lol8Q8loMAK8qZoF3NNKeDRFIcBZz2g9lN4fcfqVQsFg86S6gX4YlgISNYG8m366MI6ynBPL+b+znJCKdz3244TWcBtE7ckjSgRMe3v0bjmKQRFZpwrNTQdRLt5VhqVtxXG6WKJpjM8IQODRU4osrLF+Hn6NwoYxTG0hyh0UL9vZHjSKksCsxkEVWteoX4nzdMdXjt5UwkqaaCLB8KU450jIom0JhJSjTPDMFEMpMVkSmWmGjTV82U4K5+eZ30Lpuu03TvW412q6yjCqdwBhfgwhW04RY60AUCGTzDK7xZT9aL9W59LEcrVrlThz+wPn8AdQGVPA==</latexit><latexit sha1_base64="tftRal2Qeumfg5Rw5lf09Qj0kbg=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkoMuCGxcuKtgHtCFMppN26GQSZiZCCPVX3LhQxK0f4s6/cdJmoa0HBg7n3Dtz5gQJZ0o7zrdV2djc2t6p7tb29g8Oj+zjk56KU0lol8Q8loMAK8qZoF3NNKeDRFIcBZz2g9lN4fcfqVQsFg86S6gX4YlgISNYG8m366MI6ynBPL+b+znJCKdz3244TWcBtE7ckjSgRMe3v0bjmKQRFZpwrNTQdRLt5VhqVtxXG6WKJpjM8IQODRU4osrLF+Hn6NwoYxTG0hyh0UL9vZHjSKksCsxkEVWteoX4nzdMdXjt5UwkqaaCLB8KU450jIom0JhJSjTPDMFEMpMVkSmWmGjTV82U4K5+eZ30Lpuu03TvW412q6yjCqdwBhfgwhW04RY60AUCGTzDK7xZT9aL9W59LEcrVrlThz+wPn8AdQGVPA==</latexit><latexit sha1_base64="tftRal2Qeumfg5Rw5lf09Qj0kbg=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkoMuCGxcuKtgHtCFMppN26GQSZiZCCPVX3LhQxK0f4s6/cdJmoa0HBg7n3Dtz5gQJZ0o7zrdV2djc2t6p7tb29g8Oj+zjk56KU0lol8Q8loMAK8qZoF3NNKeDRFIcBZz2g9lN4fcfqVQsFg86S6gX4YlgISNYG8m366MI6ynBPL+b+znJCKdz3244TWcBtE7ckjSgRMe3v0bjmKQRFZpwrNTQdRLt5VhqVtxXG6WKJpjM8IQODRU4osrLF+Hn6NwoYxTG0hyh0UL9vZHjSKksCsxkEVWteoX4nzdMdXjt5UwkqaaCLB8KU450jIom0JhJSjTPDMFEMpMVkSmWmGjTV82U4K5+eZ30Lpuu03TvW412q6yjCqdwBhfgwhW04RY60AUCGTzDK7xZT9aL9W59LEcrVrlThz+wPn8AdQGVPA==</latexit><latexit sha1_base64="tftRal2Qeumfg5Rw5lf09Qj0kbg=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBVUmkoMuCGxcuKtgHtCFMppN26GQSZiZCCPVX3LhQxK0f4s6/cdJmoa0HBg7n3Dtz5gQJZ0o7zrdV2djc2t6p7tb29g8Oj+zjk56KU0lol8Q8loMAK8qZoF3NNKeDRFIcBZz2g9lN4fcfqVQsFg86S6gX4YlgISNYG8m366MI6ynBPL+b+znJCKdz3244TWcBtE7ckjSgRMe3v0bjmKQRFZpwrNTQdRLt5VhqVtxXG6WKJpjM8IQODRU4osrLF+Hn6NwoYxTG0hyh0UL9vZHjSKksCsxkEVWteoX4nzdMdXjt5UwkqaaCLB8KU450jIom0JhJSjTPDMFEMpMVkSmWmGjTV82U4K5+eZ30Lpuu03TvW412q6yjCqdwBhfgwhW04RY60AUCGTzDK7xZT9aL9W59LEcrVrlThz+wPn8AdQGVPA==</latexit>

Dr

Dl

G
<latexit sha1_base64="/AdhhilAGniGaKShnssB2wsvJ5w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCBz22YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOl5t2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDl7+MvQ==</latexit><latexit sha1_base64="/AdhhilAGniGaKShnssB2wsvJ5w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCBz22YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOl5t2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDl7+MvQ==</latexit><latexit sha1_base64="/AdhhilAGniGaKShnssB2wsvJ5w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCBz22YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOl5t2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDl7+MvQ==</latexit><latexit sha1_base64="/AdhhilAGniGaKShnssB2wsvJ5w=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCBz22YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2Akmt3O/84RK81g+mGmCfkRHkoecUWOl5t2gXHGr7gJknXg5qUCOxqD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sceiMXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPe+BmXSWpQsuWiMBXExGT+NRlyhcyIqSWUKW5vJWxMFWXGZlOyIXirL6+T9lXVc6tes1ap1/I4inAG53AJHlxDHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDl7+MvQ==</latexit>

Ir dl
<latexit sha1_base64="+hBEd5HPY3mNFwoZc/S840dT5eA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7FsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEJujbk=</latexit><latexit sha1_base64="+hBEd5HPY3mNFwoZc/S840dT5eA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7FsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEJujbk=</latexit><latexit sha1_base64="+hBEd5HPY3mNFwoZc/S840dT5eA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7FsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEJujbk=</latexit><latexit sha1_base64="+hBEd5HPY3mNFwoZc/S840dT5eA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7FsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEJujbk=</latexit>

dr
<latexit sha1_base64="WAG2cCnFBMvHPdXFeEQClcfRdog=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7VsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEuGjb8=</latexit><latexit sha1_base64="WAG2cCnFBMvHPdXFeEQClcfRdog=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7VsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEuGjb8=</latexit><latexit sha1_base64="WAG2cCnFBMvHPdXFeEQClcfRdog=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7VsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEuGjb8=</latexit><latexit sha1_base64="WAG2cCnFBMvHPdXFeEQClcfRdog=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48V7Qe0oWw2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmGLZZIhLVC6hGwSW2DTcCe6lCGgcCu8Hkdu53n1BpnshHM03Rj+lI8ogzaqz0EA7VsFpz6+4CZJ14BalBgdaw+jUIE5bFKA0TVOu+56bGz6kynAmcVQaZxpSyCR1h31JJY9R+vjh1Ri6sEpIoUbakIQv190ROY62ncWA7Y2rGetWbi/95/cxEN37OZZoZlGy5KMoEMQmZ/01CrpAZMbWEMsXtrYSNqaLM2HQqNgRv9eV10rmqe27du2/Umo0ijjKcwTlcggfX0IQ7aEEbGIzgGV7hzRHOi/PufCxbS04xcwp/4Hz+AEuGjb8=</latexit>

d0l
<latexit sha1_base64="jd14ZyWgw3bzc3MwbQPixdoo5Xc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN+Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6Ohjeo=</latexit><latexit sha1_base64="jd14ZyWgw3bzc3MwbQPixdoo5Xc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN+Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6Ohjeo=</latexit><latexit sha1_base64="jd14ZyWgw3bzc3MwbQPixdoo5Xc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN+Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6Ohjeo=</latexit><latexit sha1_base64="jd14ZyWgw3bzc3MwbQPixdoo5Xc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN+Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6Ohjeo=</latexit>

d0r
<latexit sha1_base64="Fm/lIcMEA5K4QU6DpUf0ETHbrRI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN1Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6y/jfA=</latexit><latexit sha1_base64="Fm/lIcMEA5K4QU6DpUf0ETHbrRI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN1Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6y/jfA=</latexit><latexit sha1_base64="Fm/lIcMEA5K4QU6DpUf0ETHbrRI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN1Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6y/jfA=</latexit><latexit sha1_base64="Fm/lIcMEA5K4QU6DpUf0ETHbrRI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoMeCF48V7Ae0oWw2m3bp7ibsboQQ+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8IOFMG9f9diobm1vbO9Xd2t7+weFR/fikp+NUEdolMY/VIMCaciZp1zDD6SBRFIuA034wuyv8/hNVmsXy0WQJ9QWeSBYxgk0hhWN1Oa433Ka7AFonXkkaUKIzrn+NwpikgkpDONZ66LmJ8XOsDCOczmujVNMEkxme0KGlEguq/Xxx6xxdWCVEUaxsSYMW6u+JHAutMxHYToHNVK96hfifN0xNdOvnTCapoZIsF0UpRyZGxeMoZIoSwzNLMFHM3orIFCtMjI2nZkPwVl9eJ73rpuc2vYdWo90q46jCGZzDFXhwA224hw50gcAUnuEV3hzhvDjvzseyteKUM6fwB87nD6y/jfA=</latexit>

Ŵ

Îl
<latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit><latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit><latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit><latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit>

Dl
<latexit sha1_base64="+DoyWyDgxBSkFtU8HBe5MX+5U0Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh9uBGJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwARro2Z</latexit><latexit sha1_base64="+DoyWyDgxBSkFtU8HBe5MX+5U0Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh9uBGJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwARro2Z</latexit><latexit sha1_base64="+DoyWyDgxBSkFtU8HBe5MX+5U0Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh9uBGJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwARro2Z</latexit><latexit sha1_base64="+DoyWyDgxBSkFtU8HBe5MX+5U0Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FPXisaD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh9uBGJQrbtVdgKwTLycVyNEclL/6w5ilEUrDBNW657mJ8TOqDGcCZ6V+qjGhbEJH2LNU0gi1ny1OnZELqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73qzcX/vF5qwms/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0SjYEb/XlddK+qnpu1buvVRq1PI4inME5XIIHdWjAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwARro2Z</latexit>

True?  

Fake?

Îr
<latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit><latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit><latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit><latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit>

Îl
<latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit><latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit><latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit><latexit sha1_base64="8A1yvH37tM7jPMwqor2ModGg1/g=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22SohtWaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xuwGJT+</latexit>

Îr
<latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit><latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit><latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit><latexit sha1_base64="Sr+rfLxPbvwp7TK+Q0WQr51oxsw=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIREpQRNNAFiTxQEkXryyY55fzQ3RopsvwVtFDRIVo+hoJ/wTYuIGGq0cyudnbcUElDtv1plVZW19Y3ypuVre2d3b3q/kHbBJEW2BKBCnTXBYNK+tgiSQq7oUbwXIUdd3ad+Z1H1EYG/j3NQxx4MPHlWAqgVHroT4Hi22Soh9WaXbdz8GXiFKTGCjSH1a/+KBCRhz4JBcb0HDukQQyapFCYVPqRwRDEDCbYS6kPHppBnAdO+ElkgAIeouZS8VzE3xsxeMbMPTed9ICmZtHLxP+8XkTjy0Es/TAi9EV2iKTC/JARWqZNIB9JjUSQJUcufS5AAxFqyUGIVIzSaippH87i98ukfVZ37Lpzd15rXBXNlNkRO2anzGEXrMFuWJO1mGAee2LP7MVKrFfrzXr/GS1Zxc4h+wPr4xu5cpUE</latexit>

G
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Figure 4.7: Illustration of the detailed framework of the proposed cycled generative networks with

Progressive Fusion Network for unsupervised adversarial depth estimation. Lrec represents the

reconstruction loss for different generators; Lcon denotes a consistence loss between the disparity

maps generated from the two generators.

right images. Symmetrically, dl encodes the offsets from the right to the left images. We

propose to estimate the disparity in an indirect way through image synthesis from different

views. Specifically, the approach consists in training a network to predict disparity maps that

can be used to generate the left images from the right images or vice-versa. Formally speaking,

we assume that a right-to-left disparity map dl is produced from a generator network G with

both the left and right images, Il and Ir, as inputs. The warping function fw(·) is used to

perform the synthesis of the left image view by sampling from Ir

Îl = fw(dl, Ir). (4.8)

with

dl,dr = G(Il, Ir). (4.9)

Importantly, the image sampler used to implement the warping function fw(·) needs to be

differentiable in order to be able to train the whole model via gradient descent. Therefore,

we use the image sampler from the spatial transformer network [67] that employs a bilinear

sampler. A reconstruction loss between Îl and Il is thus utilized to provide supervision in

optimizing the network G. Usually, the L1 loss is employed:

L
l
rec = ‖Il − Îl‖1. (4.10)
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4. STEREO ADVERSARIAL DEPTH ESTIMATION

Symmetrically, we use the left-to-right disparity dr to synthesize the left image:

Îr = fw(dr, Il). (4.11)

and obtain the corresponding loss:

L
r
rec = ‖Ir − Îr‖1. (4.12)

Finally, if we assume that the images are rectified, and that we know the baseline distance b

between the two cameras and the focal length f , we can obtain the depth at a pixel location

(x, y) of the left image from the predicted disparity with dl = b f
d(x,y) . We now detail how this

general unsupervised approach can be extended to a cycle binocular model.

4.2.2.2 Network Training for Binocular Depth Estimation

In this section, we detail the training loss employed in our binocular depth estimation model.

The reconstruction loss is defined as the sum of the reconstruction losses of the two images.

Lrec = L
r
rec + L

l
rec (4.13)

where Lrec is defined as in Eqn. (4.10). In order to constrain the predicted disparities on each

other, we also add an L1-norm consistency loss as follows:

Lcon = ||dl − fw(dl,dr)||1+||dr − fw(dr,dl)||1 (4.14)

Since the two disparity maps correspond to different views, they are not aligned and their

consistency cannot be measured directly with an L1 loss . Inspired by [5], we use the warping

operation to make them pixel-to-pixel aligned. More precisely, in the first term of Eqn. (4.14),

since the left-to-right disparity dr is aligned with the right image, we use the right-to-left

warping fw(dl, .) introduced in Eqn. (4.8) to obtain a disparity aligned with dl.

In order to further improve the quality of the synthesized images, we also propose to use

adversarial learning [6]. The key idea of adversarial learning is to train two networks simulta-

neously, a discriminator and a generator. The objective of the generator is to generate realistic

images (in our case the right image from the left image and vice-versa). The goal of the discrim-

inator is to distinguish real images of the training set from generated images. In our particular

case, we add two discriminators Dr and Dl. The discriminator network Dr is trained to distin-

guish real right images Ir from right images that were synthesized from left images Îr. Simi-

larly, Dl is trained to distinguish real left images Il from left images Îl that were synthesized
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Figure 4.8: Illustration of the proposed Progressive Fusion Network (PFN). The network is com-

posed of two streams that take as input the left and the right images respectively.

from right images. In [6] the proposed adversarial loss is formulated as a min-max objective

function that involves a cross entropy loss. However, in this standard GAN formulation, the

optimization generally suffers from vanishing gradients due to the sigmoid cross-entropy loss.

There have been recent improvements in the GAN methodology to stabilize training and, to

this aim, we use a least-square GAN loss [48] by substituting the cross-entropy loss by the

least-squares function with binary coding (1 for real, 0 for synthesized). Consequently, the for-

mulation in Eqn. (4.16) is split in two losses used to trained the discriminator and the generator

respectively:

L
D,r
gan(Dr) =EIr∼p(Ir)[(Dr(Ir)− 1)2]

+ EIl∼p(Il)[Dr(fw(dr, Il))
2]

(4.15)

L
G,r
gan(G) =EIl∼p(Il)[(Dr(fw(dr, Il))− 1)2] (4.16)

The intuition behind Eqn. (4.15) is that the discriminator is trained to output 1 when the input

image is a real right images and 0 when the input is a synthesized image. In Eqn. (4.15), the

G network is trained in order to predict a dr disparity map such that the discriminator confuses

the synthesized image with real right images and, thus, outputs 1. The total adversarial loss for

the left-to-right stream is given by:

L
r
gan = L

D,r
gan + L

G,r
gan (4.17)
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Figure 4.9: Detail of the PFN Stereo Fusion Layer in Fig. 4.8. In the left-to-right stream (in dark

red) all tensors are aligned with right image. Conversely, in the right-to-left stream (in dark blue)

all the tensors are aligned with the left image. The estimated left-to-right disparity d
(0)
r is used

to align the left image feature map ξ
(0)
l and the right-to-left disparity d

(0)
l with the left-to-right

stream. The aligned tensor ξ̂
(0)
r is then concatenated with the right-to-left stream. Skip connections

(dotted lines) are used to transfer local information from the encoder to the decoder. ⊕ denotes the

concatenation operator, w© denotes the warping operator introduced in (4.20), Up© denotes the 2× 2

Up-sampling operator.

We define similarly the adversarial loss for the right-to-left stream L
l
gan and obtain the total

adversarial:

Lgan = L
r
gan + L

l
gan (4.18)

A major advantage of considering an adversarial loss is that it imposes a global consistency

loss oppositely to the L1 loss used in Eqn.(4.13) that acts only locally. Note that, at test time,

the inferred dl and dr are used as final outputs of the model and the discriminators are not used

anymore.

4.2.2.3 Cycled Generative Networks for Binocular Depth Estimation

In order to further exploit the left and right images synthesized by our half-cycle network,

we propose a cycled network structure. An overview of the proposed framework is shown in

Fig. 4.7. A first generator network, forward half-cycle, produces two distinct disparity maps

(dr, dl) from different view directions, and synthesizes different-view images as described

in Section 4.2.2.2, namely Îr,Îl. In the second half-cycle, the generator network G takes as

inputs these two synthesized images Îr,Îl and predicts new disparity maps d′r, d′l that are again

used to synthesize the opposite views Î
′
r ,̂I

′
l from the synthesized images. The overall model we
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obtain in this way forms a cycle. This cycle formulation can be seen as a data augmentation

approach since, at training time, the network learns to predict disparity maps from the images

of the training (in the forward half-cycle), but also from synthesized images (in the backward

half-cycle). In the literature, standard methods using GANs for data augmentation [68], use

generally two separated networks: a data generator network and the network finally used for

prediction. In our case, we employ only a single network exploiting the left-right consistency of

the data since the G network is used both to generate training data and to estimate depth. The

second half-cycle prevents the first half-cycle network from predicting inconsistent disparity

pairs. Indeed inconsistencies in the disparities predicted in the forward half-cycle would harm

the estimations of the second half-cycle network. Consequently, imposing cycle consistency

favors consistent predictions in the first half-cycle. At inference time, the second half-cycle is

not used anymore. More formally, the cycled generative network is based on the half-cycle

structure previously described. Assuming that we obtained the synthesized image Îr and Îl

from the half-cycle network, we now aim at predicting the original left image from Îr and

the original right image from Îl. To this aim, Îr and Îl are used as input of the next cycle

generative network G. G produces again two disparity maps d′
l and d

′
r. Again, we synthesize

the left-view image Î
′
l from Îr and Î

′
r from Îl via the warping operation fw. Similarly to

the forward half-cycle, a reconstruction loss L
′
rec is used for the backward half-cycle as in

Eqn. (4.13). We also add a consistency loss L
′
rec and an adversarial L′

gan as in Eqn.(4.14)

and Eqn.(4.18), respectively. During adversarial learning, synthesized and real images are

independently passed to the discriminator networks.

The full optimization objective consists on the combination of the reconstruction, adver-

sarial and consistency losses for both half-cycles and can be written as follows:

L = γ1(Lrec + L
′
rec) + γ2(Lgan + L

′
gan)

+ γ3(Lcon + L
′
con). (4.19)

where {γi}3i=1 represents a set of weights for controlling the importance of different terms.

Importantly, when the optimization is finished, given a testing pair {Il, Ir}, the testing is

performed using only the first half-cycle. Therefore, the proposed cycle approach does not

increase the testing computation time but only the training complexity. Nevertheless, note that

this cycle framework increases the training complexity by increasing the number of computa-

tion operations but it does not increase the number of parameters. Note that the discriminators

of the two half-cycles share their parameters in order to avoid an increase in the number of
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Layer K S Channels left to right branch right to left branch

Encoder (layers share weights among branches) Input Output Input Output

conv 7 2 64 IL conv1L2R IR conv1R2L

pool 3 1 64 conv1L2R pool1L2R conv1R2L pool1R2L

ResNetBlock 3 256 pool1L2R resblock1L2R pool1R2L resblock1R2L

ResNetBlock 4 512 resblock1L2R resblock2L2R resblock1R2L resblock2R2L

ResNetBlock 6 1024 resblock2L2R resblock3L2R resblock2R2L resblock3R2L

ResNetBlock 3 2048 resblock3L2R resblock4L2R resblock3R2L resblock4R2L

Decoder (layers do not share weights among branches) Input Output Input Output

UpConv 3 2 512 resblock4L2R upconv6L2R resblock4R2L upconv6R2L

conv 3 1 512 upconv6L2R + resblock3L2R iconv6L2R upconv6R2L + resblock3R2L iconv6R2L

UpConv 3 2 256 iconv6L2R upconv5L2R iconv6R2L upconv5R2L

conv 3 1 256 upconv5L2R + resblock2L2R iconv5L2R upconv5R2L + resblock2R2L iconv5R2L

UpConv 3 2 128 iconv5L2R upconv4L2R iconv5R2L upconv4R2L

conv 3 1 128 upconv4L2R + resblock1L2R ξ0r upconv4R2L + resblock1R2L ξ0l
conv 3 1 1 ξ0r d0r ξ0l d0l

UpConv 3 2 64 ξ0r upconv3L2R ξ0l upconv3R2L

bilinear upsampling - - 1 d0r up-d0r d0l up-d0l

iconv3 3 1 64 upconv3L2R + pool1L2R + up-d0r + ξ̂0l ξ1r upconv3R2L + pool1R2L + up-d0l + ξ̂0r ξ1l
disp3 3 1 1 ξ1r d1r ξ1l d1l

upconv2 3 2 32 ξ1r upconv2L2R ξ1l upconv2R2L

updisp3 - - 1 d1r up-d1r d1l up-d1l

iconv2 3 1 32 upconv2L2R + conv1L2R + up-d1r + ξ̂1l ξ2r upconv2R2L + conv1R2L + up-d1l + ξ̂1r ξ2l
disp2 3 1 1 ξ2r d2r ξ2l d2l

upconv1 3 2 16 ξ2r upconv1L2R ξ2l upconv1R2L

updisp2 - - 1 d2r up-d2r d2l up-d2l

iconv1 3 1 16 upconv1L2R + up-d2r + ξ̂2l ξ3r upconv1R2L + up-d2l + ξ̂2r ξ3l
disp1 3 1 1 ξ3r d3r ξ3l d3l

Table 4.4: Detailed architecture of the proposed network, for readability reasons we show the half-

cycle structure. K, S and Channels denote convolutions kernel size, stride and output channels

respectively. For ResNet blocks K denotes the number of blocks. The + indicates concatenation

between feature maps.

parameters. In other words, we use a right view discriminator for the right images (Ir, Îr, Î′r)

and a left view discriminator for the left view images (Il, Îl, Î
′
l), they are denoted in Fig. 4.7 as

Dr and Dl respectively.

4.2.2.4 Progressive Fusion Network

When it comes to binocular depth estimation, the question of how to fuse the information

provided by each image needs to be addressed. A standard approach, as used in [5], consists

in simply concatenating the two images over the color axis. We denote this approach as early

fusion. On the contrary, in the previous Section 4.1, we used a late fusion approach that consists

in estimating the two disparities separately employing two separated networks, before fusing

them. In this section, we first explain why these two approaches suffer from the misalignment

between the input images and the output disparity map. Secondly, we propose a neural network

architecture to face this issue. Let us consider again the case in which we aim at estimating the

38



4.2 Progressive Fusion for Unsupervised Binocular Depth Estimation using Cycled

Networks 2

right-to-left disparity dl from the images Il and Ir. When looking at the images, we can notice

that the edges in Il are perfectly aligned with the edges of dl. This observation results directly

from the disparity definition. Therefore, in order to estimate dl at a pixel location (u, v), the

model needs to look at the pixel values of Il in the neighbour of the pixel Il(u, v). Conversely,

the edges in dl and Ir are not aligned. More precisely, the model would need to look at the

pixel around Ir(u+ dl(u, v), v) in order to estimate dl(u, v).

In the context of convolutional neural network, this observation leads to two conclusions.

First, when using an early fusion approach, the local information can be fused by the network,

in practice, only after several layers, when the receptive field of the activations are larger than

the disparity value we want to estimate. Second, in the case of a late fusion network, the

dl disparity estimated from Il will have better edges since the network can benefit from the

alignment. Conversely, Ir will have a lower quality since the corresponding network has to

handle the input-output misalignement. Therefore, the benefit brought by the use of Ir will not

be substantial.

To tackle this issue, we propose a Progressive Fusion Network (PFN). The key idea behind

PFN is to first estimate low resolution disparity maps that are then used to align the image

features. These aligned feature maps are employed to refine the disparity maps at the higher

resolutions. This method is applied iteratively until we obtain the desired high resolution dis-

parity maps. This iterative procedure is well in line with the multi-scale approaches that have

shown good performances in the monocular supervised setting (see Sec 2). The details of the

architecture are given in Fig. 4.8 and Fig. 4.9.

We first apply an encoder network on each input images obtaining two feature maps ξ
(0)
r

and ξ
(0)
l . In our particular case, we use a ResNet-50 architecture since it has already shown

good performances on the depth estimation problem [5, 23]. We then estimate the left and right

low resolution disparities (d
(0)
l and d

(0)
r respectively) from ξ

(0)
l and ξ

(0)
r respectively. To do

so, we employ a single 3 × 3 convolutional layer with sigmoid activations. Now that we have

a first estimation of the disparity from the left to the right image, we can employ this disparity

d
(0)
r to warp the feature maps ξ

(0)
l and the disparity d

(0)
l from the opposite stream:

ξ̂(0)r = fw(d
(0)
r , ξ

(0)
l ⊕ d

(0)
l ) (4.20)

where ⊕ denotes the concatenation operator. By concatenating the features and the disparity,

we provide to the left-to-right stream all the information currently available in the right-to-left

stream. We obtain a complete left image representation that is aligned with the right image.
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Symmetrically, d
(0)
l is used to warp the feature maps ξ

(0)
r and d

(0)
l computed in the opposite

stream according to ξ̂
(0)
l = fw(d

(0)
l , ξ

(0)
r ⊕ d

(0)
r ). Then, we concatenate ξ

(0)
r , ξ̂

(0)
r and d

(0)
r

and perform 2 × 2 up-sampling. Finally, the next resolution feature map ξ
(1)
r is obtained by

concatenation with the feature maps of the encoder with the same dimension as in a standard

U-Net [69]. The skip connections are employed to transfer directly the local information from

the encoder to the decoder. A similar operation is applied on the left network leading to ξ
(1)
l .

All these operations are performed four times in order to obtain the full resolution disparities.

In order to further benefit from the multi-scale approach, we employ the L1-norm recon-

struction loss Lrec at every resolution i ∈ {0..3} for both the right and left images:

L
(i)
rec = ‖I(i)l − fw(d

(i)
l , I(i)r )‖1+‖I(i)r − fw(d

(i)
r , I

(i)
l ).‖1,

Note that L
(3)
rec corresponds to the highest dimension, and in this way, to the loss given in Eqn.

(4.13). Consequently, when training this multi-scale model, Eqn. (4.13) is replaced by the

following multi-scale loss:

Lrec =

3
∑

i=0

L
(i)
rec. (4.21)

A multi-scale loss is also employed in [4, 5], however, in our model, the low resolution

depth maps are not only used to deeply supervise the network as in [5]. Instead, the low

resolutions depth maps are used to correct the misalignment between the images and, in this

way, help the network to better predict the higher resolutions.

4.2.2.5 Network Implementation Details

We now describe the details of the network implementation. For the encoder of G, we use

a ResNet-50 backbone network as in [23]. The left and right encoders share the weights.

Conversely, the forward and the backward cycle paths share their parameters. For the discrim-

inators Dl and Dr, we employ a network structure which has five consecutive convolutional

operations with a kernel size of 3, a stride size of 2 and a padding size of 1, and batch normal-

ization [63] is performed after each convolutional operation. The adversarial loss is applied to

output patches and is implemented following[48]. The encoder network takes as input images

of size 256× 512. The ResNet-50 encoder outputs high level features of size (4× 8× 2048).

As mentioned in Sec 4.2.2.4, each up-sampling is followed by a convolution layer. We employ

3 × 3 convolution layers with number of channels of 512, 256, 128 and 64 respectively with

Elu activations.
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Method Warping
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle Mono+ Lgan4.1 w/o 0.165 1.756 6.164 0.257 0.773 0.914 0.962

Half-Cycle Stereo + Lgan4.1 w/o 0.163 1.620 6.129 0.254 0.770 0.913 0.962

Cycle Stereo + Lgan4.1 w/o 0.153 1.388 6.016 0.247 0.789 0.918 0.965

Half-Cycle Stereo d 0.159 1.374 6.105 0.261 0.764 0.909 0.960

Half-Cycle Stereo d⊕ ξ 0.153 1.260 5.960 0.254 0.777 0.915 0.963

Half-Cycle Stereo + Lgan d⊕ ξ 0.148 1.209 5.827 0.246 0.789 0.921 0.966

Cycle Stereo d 0.146 1.246 5.833 0.239 0.791 0.922 0.968

Cycle Stereo d⊕ ξ 0.141 1.235 5.661 0.234 0.807 0.930 0.970

Cycle Stereo + Lgan d⊕ ξ 0.137 1.199 5.721 0.234 0.806 0.928 0.970

Cycle Stereo + Lgan + SSIM d⊕ ξ 0.102 0.802 4.657 0.196 0.882 0.953 0.977

Table 4.5: Quantitative evaluation results of different variants of the proposed approach on the

KITTI dataset for the ablation study. The estimated depth range is from 0 to 80 meters. Lgan

denotes the use of the adversarial loss

The detailed architecture of our network is described in Table 4.4 where we present the

structure of our half-cycle network. We specify the inputs and outputs of each part of the

network. In particular, following the notation of previous Section 4.2.2.4 we denoted with ξ̂

the concatenation of features and disparity of one branch of the network after the warping that

aligns them with the other branch.

4.2.3 Experimental Results

4.2.3.1 Experimental Setup

Datasets and Evaluation We carry out experiments on three large stereo images datasets, i.e.

KITTI [17], Cityscapes [18] and ApolloScape [19]. For the details about dataset preparation,

preprocessing and evaluation metrics please refer to Chapter 3.

Training Procedure and Parameter Setup. We train the models denoted with Half-Cycle

Stereo with a standard training procedure, i.e. initializing the network with random weights and

making the network train for 10 epochs. This corresponds to ≈ 28K steps for both the KITTI

and Cityscapes datasets and 11.5K steps for ApolloScape. The models denoted with Cycle

Stereo are optimized starting from the corresponding pre-trained half-cycle model. We train

the full cycle model for 10 additional epochs with the same optimization hyper-parameters.

We use the Adam optimizer for the optimization. The momentum parameter and the weight
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Method Warping
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle Mono 4.1 w/o 0.468 7.399 5.741 0.493 0.735 0.890 0.945

Half-Cycle Stereo 4.1 w/o 0.462 6.098 5.740 0.377 0.708 0.873 0.937

Half-Cycle + Lgan 4.1 w/o 0.439 5.714 5.745 0.400 0.711 0.877 0.940

Cycle + Lgan 4.1 w/o 0.440 6.037 5.443 0.398 0.730 0.887 0.944

Half-Cycle Stereo d 0.465 6.783 5.503 0.429 0.732 0.887 0.945

Half-Cycle Stereo d⊕ ξ 0.436 6.357 4.877 0.364 0.778 0.915 0.958

Half-Cycle Stereo +Lgan d⊕ ξ 0.429 6.304 5.051 0.343 0.778 0.913 0.957

Cycle Stereo d 0.445 6.008 5.372 0.488 0.743 0.893 0.947

Cycle Stereo d⊕ ξ 0.420 5.767 4.749 0.379 0.790 0.919 0.959

Cycle Stereo + Lgan d⊕ ξ 0.418 5.799 4.698 0.343 0.787 0.917 0.959

Cycle Stereo + Lgan+ SSIM d⊕ ξ 0.404 5.677 4.534 0.324 0.792 0.922 0.962

Table 4.6: Quantitative evaluation results of different variants of the proposed approach on the

Cityscapes dataset for the ablation study. Lgan denotes the use of the adversarial loss.

decay are set to 0.9 and 0.0002, respectively. The final optimization objective has weighed loss

parameters γ1 = 1, γ2 = 0.1 and γ3 = 0.1. The batch size for training is set to 8 stereo image

pairs and the learning rate is 10−5 in all the experiments. Unlike in 4.1 where the learning

rate is reduced, in this work it is constant and each experiment is performed for 10 epochs,

significantly reducing the training time. In addition, in Section 4.1, the network is trained

for 50 epochs, while the model proposed in this work requires only 20 epochs to converge.

The simpler training procedure can be explained by the lower number of parameters of our

proposed model. Indeed the four decoders used in 4.1 are replaced by two decoders that share

parameters. Importantly, in our preliminary experiments, we observed that the SSIM loss is

really sensitive to the training schedule (number of iterations and learning decay) on KITTI. In

order to draw a fair comparison with [5], we employ the training schedule of [5], when using

SSIM on KITTI.

With respect to the time aspect, the training of the Half-Cycle Stereo network models, on

two Titan Xp GPUs and KITTI dataset for 10 epochs, takes around 4.5 hours for the simpler to

7 hours for the more complex model. The full model Cycle Stereo requires 10 additional epochs

of training that take from 5 to 8 hours depending on the complexity of the model. Regarding

testing, in our experiments the inference time for each stereo pair is 45 ms.

The proposed model is implemented using the deep learning library TensorFlow [64]. The

input images are down-sampled to a resolution of 512×256 from 1226×370 in the case of the
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RGB Image Half-Cycle, d Half-Cycle, d⊕ ξ Half-Cycle + LGAN , d⊕ ξ GT Depth Map

Figure 4.10: Qualitative comparison of different baseline models of the proposed Half-Cycle ap-

proach on KITTI Eigen test split. From left to right our stereo disparity progressive fusion, then

stereo disparity and features progressive fusion and in the fourth column the full Half-Cycle model

with adversarial learning. First column on the left is the RGB images and right the ground truth

depth.

KITTI dataset, while for the Cityscapes dataset, at the bottom one fifth of the image is cropped

following [5] and then is resized to 512 × 256. The resolution of the ApolloScape original

images is 3384×2710 pixels. After rectification and cropping using the API of [19], we obtain

2048 × 1268 pixel images. We then adopt the standard preprocessing used for the Cityscapes

dataset.

4.2.3.2 Ablation study: Baseline Models

We compare several baseline models for the ablation study:

1. Half-cycle with a monocular setting (Half-Cycle Mono), which uses the forward branch

to synthesize from one image view to the other with a single disparity map output and

the single RGB image is as input during testing;

2. Half-cycle with a stereo setting (Half-Cycle Stereo), which uses the forward branch but
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RGB Image Cycle, d Cycle, d⊕ ξ Cycle + LGAN , d⊕ ξ Cycle + LGAN&SSIM GT Depth Map

Figure 4.11: Qualitative comparison of different baseline models of the proposed Cycle Stereo

approach on KITTI Eigen test split. From left to right RGB images, Cycle Stereo with continuous

disparity fusion, Cycle Stereo with disparity and features fusion, in column four the full model

trained with adversarial learning, in column five the futher refined full model with SSIM (self-

similarity) loss and in the right column the ground truth depth maps.

the network takes as input the two images. It corresponds to the model as described in

Sec 4.2.2.2 where G is a PFN as described in Sec 4.2.2.2;

3. Cycle Stereo, which corresponds to the model as described in Sec 4.2.2.3 where G is

also a PFN as described in Sec 4.2.2.2.

We propose to evaluate each model with and without the use of the adversarial loss. In addi-

tion, in order to understand the role of our PFN, we propose to compare three variants of the

compared models:

1. The model without warping (referred to as w/o in Tables 4.5). In that case, we adopt a

late fusion approach as in 4.1;

2. A model in which only the estimated disparities (referred to as d in Tables 4.5 and 4.6)

are shuttled to the other stream. Formally speaking, Eqn. (4.20) is replaced by ξ̂
(0)
r =

fw(d
(0)
r ,d

(0)
l ).

3. The full model in which both the disparities and the feature maps are shuttled (referred

to as d⊕ ξ in Tables 4.5 and 4.6).

44



4.2 Progressive Fusion for Unsupervised Binocular Depth Estimation using Cycled

Networks 2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc
u
ra
cy

Half-Cycle d

Half-Cycle d⊕ ξ
Half-Cycle LGAN d⊕ ξ

Cycle d

Cycle d⊕ ξ
Cycle + LGAN d⊕ ξ

Cycle + LGAN SSIM d⊕ ξ

(a) KITTI dataset
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(b) Cityscape dataset
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(c) ApolloScape dataset

Figure 4.12: Accuracy plot with a varying threshold parameter value τ for the KITTI, Cityscapes

and ApolloScape datasets. The accuracy threshold α is set to α = 1.10 for better visualization

Method Warping
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle d 0.485 14.585 16.098 0.452 0.533 0.802 0.897

Half-Cycle d⊕ ξ 0.469 13.443 15.779 0.448 0.568 0.797 0.886

Half-Cycle + Lgan d⊕ ξ 0.446 12.283 14.600 0.432 0.571 0.822 0.903

Cycle d 0.452 13.079 14.927 0.437 0.573 0.815 0.902

Cycle d⊕ ξ 0.436 11.699 14.661 0.426 0.595 0.810 0.897

Cycle + Lgan d⊕ ξ 0.423 11.582 14.415 0.422 0.624 0.824 0.905

Cycle + Lgan + SSIM d⊕ ξ 0.387 10.097 13.449 0.396 0.669 0.843 0.915

Table 4.7: Quantitative evaluation results of different variants of the proposed approach on the

ApolloScape dataset.

4.2.3.3 Ablation study: Results and discussion

To validate that the proposed cycled generative network helps and that the proposed PFN is

effective for the task, we present an extensive ablation study on both the KITTI dataset (see

Table 4.5), on the Cityscape dataset (see Table 4.6) and on the ApolloScape dataset (see Ta-

ble 4.7).

First, we observe, that the cycle approach consistently outperforms the Half-Cycle ap-

proach. For instance on KITTI, if we compare the Half-Cycle Stereo+LGAN model with Cycle

Stereo+LGAN in which we warp d ⊕ ξ, we observe a 0.0114 gain according to the Abs Rel

metric, that corresponds to a 7.76% improvement. Similar gain can be observed for all the

metrics used in the comparison. Second, we consistently observe a gain when we employ our

PFN network with respect to the fusion model proposed in 4.1 independently of the use of
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Method Cycle Inputs Warping Dataset
KITTI ApolloScape

Abs Rel Sq Rel RMSE RMSE log Abs Rel Sq Rel RMSE RMSE log

Half-Cycle + Lgan - d⊕ ξ K 0.148 1.209 5.827 0.246 0.446 12.283 14.600 0.432

Cycle + Lgan (Îr,Il) d⊕ ξ K 0.146 1.466 5.918 0.244 0.441 12.292 14.877 0.438

Cycle + Lgan (Îr,Îl) d⊕ ξ K 0.137 1.199 5.721 0.234 0.423 11.582 14.415 0.422

Table 4.8: Ablation study: exploiting resynthesized images. We compare two different approaches

for exploiting the resynthesized images in our cycle network. We present results for the KITTI

dataset (left) and for the ApolloScape dataset (right).

the cycle approach. Again, this boost in performance brought by the PFN is observed on both

datasets and according to all the metrics employed in this comparison. Interestingly, we no-

tice that, independently of the use of cycle or adversarial loss, warping both the features and

the disparities, performs better than warping only the disparities. We observe that, on both

datasets, the adversarial loss helps predicting better depth maps. It confirms that adding a loss

that acts globally can be beneficial for depth estimation. Finally, we report the results when

we add the self-similarity loss proposed in [5] (referred to as +SSIM in Table 4.5), Intuitively,

the SSIM loss measures how the object structure in the scene, is preserved in the synthesized

image, independently of the average luminance and contrast. For more technical details, please

refer to [70]. We observe that it further improves the results of our proposed model.

In order to further compare the different baselines, we propose to plot the accuracy metric

described in Sec. ?? for different threshold values. More precisely, considering that d̂i, di are

the estimated and ground truth depth values for pixel i, we measure the percentage of d̂i such

that δ = max(di
d̂i
, d̂i
di
) < aτ when τ varies. Note that contrary to the scores reported in Table

4.5 and 4.6, we chose α = 1.1 for the sake of better visualization. The obtained plots are

reported in Fig. 4.12.

On the KITTI dataset, we first notice that the results in the plot are in line with those

presented in Table 4.5 since we clearly observe the benefit of the use of both our cycle setting

and the proposed PFN. Interestingly, for both the Half-Cycle and the Cycle models, the use of

the adversarial loss (red lines) reduces the amount of small errors (τ < 1.00). The amount of

large errors (τ > 1.00) is similar to what is obtained without adversarial loss (green lines). We

also observe that the performance gain of the Cycle approach (solid lines) is spread uniformly

over the whole range of errors. Similarly, adding the SSIM loss reduces uniformly the errors

and leads to the best performing model. Concerning the Cityscapes dataset, the accuracy plot

confirms the benefit of using our Cycle approach. Similarly to the KITTI dataset, for both
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the Half-Cycle and the Cycle models, the use of the adversarial loss (red lines) reduces the

amount of small errors (τ < 1.00) but the amount of large errors (τ > 1.00) is similar to

what is obtained without adversarial loss (green lines). Nevertheless, the boost of the Cycle

approach is smaller than that on the KITTI dataset. When warping only the disparities, the

Half-Cycle and Cycle models perform similarly but the use of a cycle improves the predictions

when warping the feature maps (green and red lines). As observed on the KITTI dataset, the

SSIM loss further reduces the prediction errors.

In addition to KITTI and Cityscapes, we report an ablation study on the ApolloScape

dataset in Table 4.7. This dataset provides dense depth annotation and therefore allows more

accurate evaluation. We observe that, for both the Half-Cycle and the Cycle, our proposed

feature alignment and sharing among stereo branches improves the perfomance. Moreover, it

is clear that adversarial learning contributes to improving the results. In both Half-Cycle and

Cycle settings, every evaluation metric shows an improvement. These observations are well

in-line with the numbers reported on the KITTI and Cityscapes and further demonstrate the

effectiveness of our approach.

We also perform a qualitative comparison of the different baseline models with the pro-

posed model. This qualitative evaluation is performed on the KITTI dataset and the results are

shown in two figures in which we compare the Half-Cycle models (Fig. 4.10) and the Cycle

models (Fig. 4.11) respectively. First, we observe that the Cycle setting generates smoother dis-

parity maps than the Half-Cycle setting. In addition, when only the disparities are exchanged

between the two streams of the PFN, we obtain very smooth predictions but with a low level of

detail. When both the disparity and the feature maps are warped (d⊕ ξ models), the predicted

depth maps are more detailed and have sharper edges. In addition, by looking at the rows 6 and

8 of Figs. 4.10) and 4.11), we notice that the models without feature warping have difficulty in

estimating the depth of nearby objects. Predicting accurate depth maps for these examples is

challenging since the network needs to handle larger misalignment between the two input im-

ages. These examples illustrate the benefit of our proposed model which is better handle these

difficult cases. Finally, by looking at the rows 1, 2, 4, 5 and 7, we can see that the models with-

out adversarial loss underestimate the depth of the roads in foreground. Estimating the depth

of the road is challenging since the image is almost uniform in these regions and the network

cannot exploit the edges to estimate the disparity values. The fact that the GAN loss seems

to help predicting the depth better for the uniform image regions may explain the reduction of

small errors observed with the adversarial loss in Fig.4.12. Concerning the Cityscapes dataset,
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Method Discriminator Warping
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Half-Cycle + Lgan D shared d⊕ ξ 0.155 1.398 5.951 0.245 0.785 0.919 0.966

Half-Cycle + Lgan Dr and Dl non-shared d⊕ ξ 0.148 1.209 5.827 0.246 0.789 0.921 0.966

Table 4.9: Ablation study: discriminator usage. We evaluate on KITTI the impact of sharing

weights among discriminators.

Method Discriminator Warping
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Cycle w/o d⊕ ξ 0.149 1.338 5.837 0.247 0.792 0.921 0.966

Cycle + Lgan 1st half-cycle d⊕ ξ 0.144 1.399 5.794 0.237 0.801 0.927 0.969

Cycle + Lgan 2nd half-cycle d⊕ ξ 0.141 1.229 5.685 0.235 0.804 0.927 0.969

Cycle + Lgan Both half-cycles d⊕ ξ 0.137 1.199 5.721 0.234 0.806 0.928 0.970

Table 4.10: Ablation study: discriminator usage. We evaluate on KITTI the impact of discrimina-

tors on different part of the architecture.

we observe a similar trend to the KITTI dataset by looking at the qualitative results reported in

Figs. 4.13 and 4.14. The proposed PFN produces very smooth disparities but without much

details when exchanging only the disparity maps between the two streams. For example the

road sign in row 6 (Fig. 4.13 and 4.14) is barely distinguishable and the parked cars in row

5 appear in the disparity maps as a single continuous object. Models trained with feature and

disparity warping (d ⊕ ξ) improve the estimations allowing to capture better the details of the

objects and the background for images in row 1, 2 and 5 (Fig. 4.13 and 4.14). This is further

improved by the cycle setting and the adversarial training that, as shown in Fig. 4.14, produces

more detailed disparities especially in challenging image areas such as those corresponding to

the background.

Ablation study: exploiting resynthesized images. Our proposed model is designed in two

Half-Cycle blocks. The first reconstructs images that are used as input in the second Half-Cycle.

In Table 4.8, we compare two different approaches for exploiting the resynthetised images on

both KITTI and Apolloscape. We perform an experiment where we input in the second Half-

Cycle the right resynthetised image and the real left image. This approach is compared to our

approach where we input both synthesized images. We observed that the performances de-

crease when we use (Îr, Il) as input compared to our proposed Cycle model that takes in input

(Îr, Îl). The performances are similar to our half-cycle baseline according to several metrics.
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Method Alignment Warping
KITTI ApolloScape

Abs Rel Sq Rel RMSE RMSE log Abs Rel Sq Rel RMSE RMSE log

Half-Cycle w/o d 0.169 1.503 6.204 0.265 0.501 14.352 16.134 0.462

Half-Cycle w/o d⊕ ξ 0.159 1.468 6.087 0.251 0.491 14.383 16.366 0.458

Half-Cycle + Lgan w/o d⊕ ξ 0.151 1.501 5.905 0.249 0.468 13.107 15.023 0.445

Half-Cycle With d 0.160 1.374 6.105 0.261 0.485 14.585 16.098 0.452

Half-Cycle With d⊕ ξ 0.154 1.260 5.960 0.254 0.469 13.443 15.779 0.448

Half-Cycle + Lgan With d⊕ ξ 0.148 1.209 5.827 0.246 0.446 12.283 14.600 0.432

Table 4.11: Ablation study: impact of feature alignment: we compare the results without alignment

of disparities and features between the two stereo branches (upper half) and with alignment (bottom

half). We conducted experiments on KITTI and Apolloscape.

It validates experimentally our design choice for the cycle inputs.

Ablation study: discriminator usage. In our model as described in Sec.4.2.2, we employ two

discriminators, the first Dr is applied to the right reconstructed images and the second Dl to the

left reconstructed images. We perform an experiment where we apply a single discriminator

D on both images. In Table 4.9, we observed that using two discriminators (Dr for Ir and Dl

for Il) is more effective. A possible explanation is that the reconstruction errors are different

between the two synthesized images. Indeed, when generating the right image, the pixels lo-

cated in the right side of the objects are not visible in the left image because of self-occlusion.

Therefore errors are larger on the right of objects. Symmetrically, when synthesizing the left

image, errors are larger on the left side of objects. The difference distribution of reconstruction

errors can explain why separated discriminators work better. The second set of experiments

concerning the use of disciminator focuses on the question of where the discriminators should

be employed. Table 4.10 presents results obtained by using the discriminators at different

locations on the KITTI dataset. These experiments illustrate the contribution of both the dis-

criminators, on the first and the second Half-Cycles.

Ablation study: impact of feature alignment. In each stereo fusion layer, we align the fea-

ture maps as formulated in Eqn. (4.20) in order to avoid misalignment issues . We now present

experiments to measure the impact of this design choice. We evaluate a variant of our model

without using our proposed disparity and feature alignment. More precisely, instead of aligning

the feature maps before concatenation, we simply concatenate the disparities and the feature

maps in each PFN layer as in the the U-Net architecture. Results are reported in Table 4.11 for

both KITTI and ApolloScape. These experiments demonstrate the impact of feature alignment
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RGB Image Half-Cycle, d Half-Cycle, d⊕ ξ Half-Cycle + LGAN , d⊕ ξ GT Depth Map

Figure 4.13: Qualitative comparison of different Stereo Half-Cycle models on the Cityscapes test-

ing dataset. The second column presents progressive disparity fusion, they are in general smoother

but don’t present the level of detail that we can find in third and fourth column where we have

progressive feature fusion. Columns three and four present results from models learned with ad-

versarial loss.

and illustrate that a U-Net-based architecture performs better when handling feature misalign-

ment.

4.2.3.4 Comparison with the State of the Art

In Table 4.12, we compare the proposed full model with several state-of-the-art methods, in-

cluding the ones with the supervised setting, i.e. Saxena et al. [59], Eigen et al. [3], Liu et

al. [21], AdaDepth [40], Kuznietzov et al. [33], Xu et al. [10], Jiang et al. [71], Gan et al.

[72] and Guo et al. [73], and the ones with the unsupervised setting, i.e. Zhou et al. [35],

AdaDepth [40], Garg et al. [4], DispNet [61], MADNet [31] and Godard et al. [5]. As far as

we know, there are not quantitative results presented in the existing works on the Cityscapes

dataset and for this reason, we perform the comparison on the KITTI dataset. These results

further demonstrate the potential of unsupervised training for depth estimation. Note that we

do not include the recent work in [75] in Table 4.12 as a different experimental setup is con-

sidered (different training/test split). Furthermore in [75] additional information (ego-motion
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RGB Image Cycle, d Cycle, d⊕ ξ Cycle + LGAN , d⊕ ξ Cycle + LGAN&SSIM GT Depth Map

Figure 4.14: Qualitative comparison of different Stereo Cycle models on the Cityscapes testing

dataset. Similarly to Fig. 4.13 in column two we present the results with progressive disparity

fusion, while columns three, four and five have progressive features fusion.

RGB Image Eigen et al. [3] Zhou et al. [35] Garg et al. [4] Godard et al. [5] Ours Section 4.1 Ours GT Depth Map

Figure 4.15: Qualitative comparison with different competitive approaches with both supervised

and unsupervised settings on the Eigen test set of KITTI dataset. The sparse groundtruth depth

maps are filled with bilinear interpolation for better visualization.

information) is exploited for depth prediction.

For comparison with the unsupervised methods, we outperform previous methods, accord-

ing to four metrics: Abs Rel, Sq Rel, RMSE and RMSE log. In particular, we outperform
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Method Sup Camera Video
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Saxena et al. [59] Y M N 0.280 - 8.734 - 0.601 0.820 0.926

Eigen et al. [3] Y M N 0.190 1.515 7.156 0.270 0.692 0.899 0.967

Liu et al. [21] Y M N 0.202 1.614 6.523 0.275 0.678 0.895 0.965

AdaDepth [40], 50m Y M N 0.162 1.041 4.344 0.225 0.784 0.930 0.974

Kuznietzov et al. [33] Y M N - - 4.815 0.194 0.845 0.957 0.987

Xu et al. [10] Y M N 0.132 0.911 - 0.162 0.804 0.945 0.981

Jiang et al. [71] Y M N 0.131 0.937 5.032 0.203 0.827 0.946 0.981

Gan et al. [72] Y M N 0.098 0.666 3.933 0.173 0.890 0.964 0.985

Guo et al. [73] Y M N 0.097 0.653 4.170 0.170 0.889 0.967 0.986

DF-Net [74] N M Y 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Godard et al. [38] N M Y 0.115 1.010 5.164 0.212 0.858 0.946 0.974

Zhou et al. [35] N M N 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [4] N M N 0.169 1.08 5.104 0.273 0.740 0.904 0.962

Godard et al. [5] N M N 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Godard Stereo [5] N S N 0.109 1.120 5.013 0.205 0.908 0.954 0.973

Ours Section 4.1 N S N 0.152 1.388 6.016 0.247 0.789 0.918 0.965

DispNet [61] N S N 0.126 0.919 4.733 0.200 0.885 0.954 0.978

MADNet [31] N S N 0.118 1.090 4.926 0.213 0.896 0.954 0.973

PFN (Ours) N S N 0.102 0.802 4.657 0.196 0.882 0.953 0.977

AdaDepth [40], 50m N M N 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Ours Section 4.1, 50m N S N 0.144 1.007 4.660 0.240 0.793 0.923 0.968

DispNet [61], 50m N S N 0.131 0.712 3.288 0.189 0.901 0.961 0.982

MADNet [31], 50m N S N 0.112 0.753 3.648 0.200 0.907 0.958 0.976

PFN (Ours), 50m N S N 0.097 0.586 3.502 0.185 0.893 0.957 0.979

Table 4.12: Comparison with the state of the art. Training and testing are performed on the KITTI

[17] dataset. Supervised and semi-supervised methods are marked with Y in the supervision (Sup.)

column, unsupervised methods with N. Monocular methods are marked M and binocular methods

using stereo images at inference time are marked with S in the Camera. Methods using a frame

sequence in input and, thus, exploiting temporal information, are marked with Y in the Video

column. Numbers are obtained on Eigen test split with Garg image cropping. Depth predictions

are capped at the common threshold of 80 meters, if capped at 50 meters we specify it. Best scores

among static unsupervised methods are in bold. Best scores among other method categories are in

italic.

the binocular methods DispNet [61], MADNet [31] and the method proposed by Godard et al.

[5]. According to accuracy metrics, we are on par with theses recent approaches. These results

illustrate the benefit of our approach. Note that we compared with DispNet [61], MADNet [31]

since they are two recent architectures for stereo matching with a code that is publicly available

and ready-to-use. Even though, these architectures are trained with supervision in the original
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Method Sup Camera Video
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Eigen [3] N M N 1.006 16.840 20.620 1.156 0.229 0.435 0.583

Godard [5] N M N 0.432 12.199 14.497 0.426 0.591 0.832 0.911

Godard Stereo [5] N S N 0.397 10.468 13.865 0.402 0.594 0.848 0.933

Ours Section 4.1 N S N 0.473 13.660 15.556 0.451 0.558 0.800 0.893

PFN (Ours) N S N 0.387 10.097 13.449 0.396 0.669 0.843 0.915

Table 4.13: Comparison with the state of the art on ApolloScape. We compare out model trained

on ApolloScape with those of Godard et al. [5] and Ours Section 4.1 using the code provided by

the authors.

work, we report the performances obtained when training in the self-supervised setting. Con-

cerning AdaDepth [40], we must mention that their approach is, to some extent, related to our

approach since they employ adversarial learning in a context of domain adaptation with extra

synthetic training data. Therefore, the better performance of our model illustrates the superior-

ity of the proposed cycle-based data-augmentation approach compared to their use of synthetic

data. When we consider the methods that use several frames at training and test time, only

[38] performs better. Regarding ApolloScape dataset, to the best of our knowledge, we are the

first to benchmark depth estimation methods on this dataset. We compare our approach with

the competitive unsupervised models proposed in [5] and Section 4.1 using publicly available

codes. Results are presented in Table 4.13, our proposed model improves by a large margin

over the method presented in 4.1 and the monocular model of [5], and, importantly, it improves

also with respect to the binocular model of [5] according to five metrics over seven.

The conclusion drawn in this quantitative comparison are confirmed by the qualitative eval-

uation reported in Fig 4.15. Compared to the previous Section 4.1, we see that our model esti-

mates better the edges of the objects that appear in the image. For instance in the second row,

we can distinguish better the shape of the trunk of the tree in foreground. The same remark

stands for the reconstruction of the cars in the 2nd, 3rd, 4th and 6th rows. Comparing with [5],

we distinguish similarly the edges of the objects but we estimate better the depth of large hor-

izontal regions of the images. For instance, the depth of the road is much better estimated by

our proposed model. This is especially true for the rows 1, 5 and 6 in which[5] underestimates

the depth of the road. It can be explained by the difficulty of handling large displacements

between the left and the right object when the image region does not contain many edges.
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In addition to the several novelties presented in this Section with respect to our previous

Section 4.1, the newly proposed model has fewer parameters and a lower training complexity.

The best performing model of 4.1 consisted of seven main blocks, an encoder extracting the

features from the images, four decoders, trained to reconstruct disparities and two discrimi-

nators, one for the right stereo view and one for the left stereo view. This complex model

is trained iteratively to guarantee a good starting point for fine-tuning the network. Despite

the good performance, the model proposed in our previous work has a complex optimization

process.

4.2.4 Conclusions

We have presented a novel approach for unsupervised deep learning for the depth estimation

employing a cycle structure. This new approach uses cycle consistency such that the network

does not only learn from the training set images but also from the images generated in the first

half-cycle. In addition, we proposed a generative deep network model specifically designed

for binocular stereo depth estimation. By combining a refinement approach with a multi-scale

strategy we improve the quality of the predicted depth map. It is worth noticing that although

tested in the unsupervised setting, the proposed PFN can be also used in a supervised stereo

scenario. In this work we decided to focus on the unsupervised setting because of the afore-

mentioned practical advantages. However, monocular depth estimation methods can also ben-

efit from the proposed adversarial approach. Extensive experiments were conducted on three

publicly available datasets i.e. the popular KITTI, Cityscapes and ApolloScape datasets. Our

results demonstrate the effectiveness of the proposed model, which is competitive with state of

the art approaches for unsupervised depth estimation.
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5

Structured Coupled Depth Estimation

After devising adversarial learning for self-supervised depth estimation in Chapter 4, we take a

step forward in the use of adversarial learning for self-supervised depth estimation. We propose

to couple the loss of discriminator and generator in a structured way. This is particulalrly useful

in dense regression tasks for scene unserstanding because a lot of objects and features of the

real world are characterized by precise shapes. The Conditional Random Field (CRF) coupling

is devised to highlight these patterns and improve the optimization process.

5.1 Structured Coupled Generative Adversarial Networks for Un-

supervised Monocular Depth Estimation 3

Inspired by the success of adversarial learning, we propose a new end-to-end unsupervised deep

learning framework for monocular depth estimation consisting of two Generative Adversarial

Networks (GAN), deeply coupled with a structured Conditional Random Field (CRF) model.

The two GANs aim at generating distinct and complementary disparity maps and at improving

the generation quality via exploiting the adversarial learning strategy. The deep CRF coupling

model is proposed to fuse the generative and discriminative outputs from the dual GAN nets.

As such, the model implicitly constructs mutual constraints on the two network branches and

between the generator and discriminator. This facilitates the optimization of the whole network

for better disparity generation. Extensive experiments on the KITTI, Cityscapes, and Make3D

3"Structured Coupled Generative Adversarial Networks for Unsupervised Monocular Depth Estimation", M.

M. Puscas, D. Xu, A. Pilzer and N. Sebe; 2019 International Conference on 3D Vision (3DV), Québec City, QC,

Canada, 2019, pp. 18-26

55



5. STRUCTURED COUPLED DEPTH ESTIMATION

datasets clearly demonstrate the effectiveness of the proposed approach and show superior

performance compared to state of the art methods.

5.1.1 Introduction

Estimating scene depth from monocular images is a fundamental task in computer vision which

can be potentially applied in various applications such as autonomous driving [76], Visual

SLAM [77]. The main drawback of supervised-based systems is their dependence on costly

depth-map annotations. As such, researchers have proposed unsupervised-based deep models

using self-supervised view synthesis based on photometric error estimation [4, 5]. Within this

pipeline, the quality of the view synthesis directly affects the performance of the final depth

prediction. Adversarial learning has been introduced to improve the synthesis process in depth

estimation systems [40, 65] by simply adding a frame-level discriminative loss for the image

synthesis. However, the depth prediction maps and the discriminative error maps share mean-

ingful structural information, e.g., objects in the input images are recognizable in both maps,

and similar/close regions with higher generative errors tend to output higher discriminative

errors. These structured relationships cannot be directly modeled in a standard GAN as the

generator and the discriminator are not directly connected and thus do not explicitly flow gra-

dients between them during the network optimization process. We argue that the discriminative

and generative sub-networks hold complimentary structural information and jointly modeling

it leads to a concurrent refinement of the produced discriminative error maps and the disparity

maps used in the synthesis process, further improving the learned depth prediction model.

In this Chapter, we propose a structured adversarial deep model for unsupervised monoc-

ular depth estimation. The model consists of a dual generative adversarial network (DGAN),

which takes stereo training images as input and performs image synthesis with the two branches

containing separate generators and discriminators formulated as GANs [6]. The produced dis-

parity maps are used to synthesize images from a single view, the complimentary stereo in-

formation is learned by a hallucinatory sub-network such that during inference the system can

operate in a monocular fashion.

We further propose a deep CRF model to couple the network on two levels: We bind the

two branches corresponding to each stereo image together, such that the complimentary stereo

information is modeled. At the same time we model the complimentary structured informa-

tion observed between the synthesized depth maps and discriminative error maps, through the
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<latexit sha1_base64="NVNnCl+gVN2mMCunS5Wcs8hsUOw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBB/yNmQ==</latexit><latexit sha1_base64="NVNnCl+gVN2mMCunS5Wcs8hsUOw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBB/yNmQ==</latexit><latexit sha1_base64="NVNnCl+gVN2mMCunS5Wcs8hsUOw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBB/yNmQ==</latexit><latexit sha1_base64="NVNnCl+gVN2mMCunS5Wcs8hsUOw=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBB/yNmQ==</latexit>

Da
<latexit sha1_base64="FHHw5+8CKdLwCYQg7zMWJGxZIw8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBA2qNlg==</latexit><latexit sha1_base64="FHHw5+8CKdLwCYQg7zMWJGxZIw8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBA2qNlg==</latexit><latexit sha1_base64="FHHw5+8CKdLwCYQg7zMWJGxZIw8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBA2qNlg==</latexit><latexit sha1_base64="FHHw5+8CKdLwCYQg7zMWJGxZIw8=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPMbfaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0VZk8YiVp0ANRNcsqbhRrBOohhGgWDtYHwz89tPTGkey0czSZgf4VDykFM0Vnq47WO/XHGr7hxklXg5qUCORr/81RvENI2YNFSg1l3PTYyfoTKcCjYt9VLNEqRjHLKupRIjpv1sfuqUnFllQMJY2ZKGzNXfExlGWk+iwHZGaEZ62ZuJ/3nd1IRXfsZlkhom6WJRmApiYjL7mwy4YtSIiSVIFbe3EjpChdTYdEo2BG/55VXSuqh6btW7v6zUr/M4inACp3AOHtSgDnfQgCZQGMIzvMKbI5wX5935WLQWnHzmGP7A+fwBA2qNlg==</latexit>

Db
<latexit sha1_base64="1hDwbT8+vwNLq1x6G+z8ke49kNA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDBO6Nlw==</latexit><latexit sha1_base64="1hDwbT8+vwNLq1x6G+z8ke49kNA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDBO6Nlw==</latexit><latexit sha1_base64="1hDwbT8+vwNLq1x6G+z8ke49kNA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDBO6Nlw==</latexit><latexit sha1_base64="1hDwbT8+vwNLq1x6G+z8ke49kNA=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFQAvLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDBO6Nlw==</latexit>

Gb
<latexit sha1_base64="Qkm+984cMhYHP/H2FUyQF3cNKOQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDCYCNmg==</latexit><latexit sha1_base64="Qkm+984cMhYHP/H2FUyQF3cNKOQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDCYCNmg==</latexit><latexit sha1_base64="Qkm+984cMhYHP/H2FUyQF3cNKOQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDCYCNmg==</latexit><latexit sha1_base64="Qkm+984cMhYHP/H2FUyQF3cNKOQ=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbeaSJXt7x+6eEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JEcG1c99sprK1vbG4Vt0s7u3v7B+XDo5aOU8WwyWIRq05ANQousWm4EdhJFNIoENgOxjczv/2ESvNYPppJgn5Eh5KHnFFjpYfbftAvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bnzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IRXfsZlkhqUbLEoTAUxMZn9TQZcITNiYgllittbCRtRRZmx6ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzgvzrvzsWgtOPnMMfyB8/kDCYCNmg==</latexit>

LossG
<latexit sha1_base64="gkQvjepn9ttjW5fGdJXR+xC1F9o=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjwoAcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+AB4YlIE=</latexit><latexit sha1_base64="gkQvjepn9ttjW5fGdJXR+xC1F9o=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjwoAcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+AB4YlIE=</latexit><latexit sha1_base64="gkQvjepn9ttjW5fGdJXR+xC1F9o=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjwoAcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+AB4YlIE=</latexit><latexit sha1_base64="gkQvjepn9ttjW5fGdJXR+xC1F9o=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjwoAcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+AB4YlIE=</latexit>

LossD
<latexit sha1_base64="yHR+cK7ZAKcxyby3GInnMdJ+55E=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjQgwcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+ABmJlH4=</latexit><latexit sha1_base64="yHR+cK7ZAKcxyby3GInnMdJ+55E=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjQgwcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+ABmJlH4=</latexit><latexit sha1_base64="yHR+cK7ZAKcxyby3GInnMdJ+55E=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjQgwcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+ABmJlH4=</latexit><latexit sha1_base64="yHR+cK7ZAKcxyby3GInnMdJ+55E=">AAAB+nicbVBNS8NAEN34WetXqkcvwSJ4KokI9VjQgwcPFewHtCFstpt26WY37E7UEvNTvHhQxKu/xJv/xm2bg7Y+GHi8N8PMvDDhTIPrflsrq2vrG5ulrfL2zu7evl05aGuZKkJbRHKpuiHWlDNBW8CA026iKI5DTjvh+HLqd+6p0kyKO5gk1I/xULCIEQxGCuxKH+gjqDi7kVrnQXaVB3bVrbkzOMvEK0gVFWgG9ld/IEkaUwGEY617npuAn2EFjHCal/uppgkmYzykPUMFjqn2s9npuXNilIETSWVKgDNTf09kONZ6EoemM8Yw0oveVPzP66UQXfgZE0kKVJD5oijlDkhnmoMzYIoS4BNDMFHM3OqQEVaYgEmrbELwFl9eJu2zmufWvNvzaqNexFFCR+gYnSIP1VEDXaMmaiGCHtAzekVv1pP1Yr1bH/PWFauYOUR/YH3+ABmJlH4=</latexit>
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Figure 5.1: Illustration of the proposed structured coupling approach for adversarial monocular

depth estimation. Ga, Gb and Da, Db denote generators and discriminators respectively.

linkage of the generative and discriminative sub-networks (see Fig. 5.1). This 2D linkage con-

strains the generative process through the use of a structured error, allowing for a structured

refinement of the final synthesized depth map. The learning of the CRF model is thus jointly

determined by the errors from both the generators and the discriminators.

We show how the proposed coupled CRF model can be solved with the mean-field theory,

and present a neural network implementation for the CRF inference, enabling the model to be

jointly optimized with the backbone DGAN in an end-to-end fashion. In the testing phase, only

one single image is required. To summarize, our main contribution is threefold:

• We propose a novel CRF coupled Dual Generative Adversarial Network (CRF-DGAN)

for unsupervised monocular depth estimation, which implicitly explores making the ad-

versarial and structured learning benefit each other in an unified deep model for the task.

• Our model contains a dual GAN structure able to exploit the inherent relationship be-

tween stereo images to better learn the disparity maps. A coupled CRF model, imple-

mented as a CNN, is presented to provide a structured fusion of the two sub-networks,

as well as a structured connection between the discriminator and the generator.

• We conduct extensive experiments on the KITTI, Cityscapes, and Make3D datasets,

clearly demonstrating the advantage of structured coupling in the designed dual GAN

networks for the monocular depth estimation task. The proposed model is potentially

useful for other GAN based applications possessing rich structural information. A very
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Figure 5.2: Framework overview of the proposed CRF-DGAN for unsupervised monocular depth

estimation. Ŵ is a warping operation to obtain a synthesized image. Da and Db are two dis-

criminators corresponding to the two generative sub-networks. NMF denotes the neural network

implementation of the continuous mean-field updating which composes the deep CRF model for

structured coupling of the dual GANs. The training phase utilizes a pair of stereo images Il and Ir

as input, while in the testing phase, only one single image is required.

competitive performance is reported on KITTI as compared to state-of-the-art methods.

The code will be made publicly available upon acceptance.

5.1.2 Proposed Approach

In this section, we present the proposed approach for unsupervised monocular depth estimation.

A framework overview is depicted in Fig. 5.2. We first introduce the designed dual generative

adversarial network, and then elaborate how we couple the two sub-networks upon both the

generator and the discriminator, and perform a structured refinement of the outputs within a

joint CRF model. Finally, we describe how the whole model can be organized into a unified

deep network and can be simultaneously optimized in an end-to-end fashion.

5.1.2.1 Dual Generative Adversarial Networks

Basic Network Structure. As formalized in previous works [5, 34], unsupervised monocular

depth estimation can be treated as a problem of learning a dense correspondence field between

two calibrated image spaces. Given a set of N stereo image pairs {(Inl , Inr )}Nn=1, the target is

to learn a generator G which is able to estimate the dense correspondence (i.e. the disparity
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map) dn
r from I

n
l to I

n
r , and the supervision is obtained from a reconstruction of Inr using a

warping function fw, i.e. Ĩ
n
r = fw(d

n
r , I

n
l ). The network can be optimized by minimizing the

difference between I
n
r and Ĩ

n
r . As shown in Fig. 5.2, we propose a dual generative adversarial

network with a pair of stereo images (Inl , I
n
r ) as input in the training phase. The two generative

networks Ga and Gb are designed to estimate two disparity maps d
n
ra

and d
n
rb

respectively,

and part of shallow layers of Ga and Gb are shared to reduce the network capacity. Then

two warping functions fwa
and fwb

are separately used to generate two synthesized right-view

images via sampling from the same left-view image I
n
l . Since d

n
ra

and d
n
rb

are generated from

different inputs while similar images and the warping is performed on the the same image, the

two disparity maps are well aligned and are complementary to each other. For the synthesized

images, we use two discriminators Da and Db to benefit from the advantage of adversarial

learning. To only learn the dual generative adversarial network, the optimization objective is:

Lgan(Ga, Gb, Da, Db, I
n
l , I

n
r ) =

EInr∼p(Inr )
[logDb(I

n
r )]+EI

n

l
∼p(In

l
)[log(1−Db(Ga(I

n
l )))]+

EInr∼p(Inr )
[logDa(I

n
r )]+EInr∼p(Inr )

[log(1−Da(Gb(I
n
r )))]

(5.1)

We adopt a sigmoid cross entropy to measure the expectation of the image Il and Ir against

the distribution p(Il) and p(Ir) of the left- and right-view images respectively. Along with the

adversarial objective, we have also an L1 reconstruction objective for the generators:

Lrec(Ga, Gb, I
n
r , I

n
l ) =‖ Ĩ

n
r − I

n
r ‖1 + ‖ Ĩ

n
l − I

n
r ‖1 (5.2)

where Ĩ
n
l = fw(d

n
r , I

n
l ) and Ĩ

n
r = fw(d

n
l , I

n
r ) are the synthesized images with the disparity

maps dn
r and d

n
l estimated by the two generators Ga and Gb respectively.

Network Hallucination. Monocular depth estimation uses only a single image as input in the

test phase. To achieve this, we designed a hallucination sub-network H(·) with a convolutional

encoder-decoder structure, which aims at approximating the disparity map d
n
rb

using d
n
ra

, i.e.

d
n
rh

= H(dn
ra
,Wh), where Wh are the parameters of the network H . In this way, the network

H preserves the information coming from the image I
n
r , while only the input image I

i
l is re-

quired in the testing. During the training we use an L1 loss to optimize the network parameters

Wh as follows: Lh(d
n
ra
,dn

rb
,Wh) =

∑N
n=1 ‖ H(dn

ra
,Wh)−d

n
rb

‖1. The proposed approach

is general, if we have the stereo images in the testing phase, the network H can be disabled to

support testing with stereo images.
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5.1.2.2 Structured Coupling via Deep CRFs

Probabilistic graphical models such as conditional random fields (CRFs) have shown great

success in supervised-based approaches [21, 78]. We investigate here how the CRF can be

used for structured unsupervised monocular depth estimation. Since we have two generative

adversarial networks, we propose a CRF coupling model for a structured fusion of the outputs

of the two nets from both the generator and the discriminator. We first give the formulation of

our model in coupling two disparity maps from the two generators, and then illustrate how this

can also be done together with the two adversarial score maps.

Given the observed disparity maps dra and drh from the backbone network, let us de-

note dr as a hidden disparity map to be inferred, and dir is an element of dr at position i

(in analogy to drh and dra). The model can be expressed as a Gibbs conditional distribution

P (dr|dra ,drh , Ir,Θ) = exp(−E(dr|dra ,drh , Ir,Θ))/Z(Ir,Θ), where Θ is a set of param-

eters and, E and Z are an energy and a normalization function, respectively. We formally

define the energy in Eq. 5.3, where fi and fj are features calculated from the input image Ir

at position i and j; α1 > 0 and α2 > 0 are weighting factors for the two unary terms; kl is a

gaussian kernel for similarity between the features:

E(dr|dra ,drh , Ir,Θ)) =
∑

i

(α1(d
i
r − dira)

2 + α2(d
i
r − dirh)

2)

+
∑

i 6=j

∑

l

(βlkl(f
(l)
i , f

(l)
j )(dir − djr)

2),

(5.3)

For the unary term, an isotropic Gaussian function is used to describe the potential between

the observation and the hidden disparity map, as a constrain that the hidden map to be as close

as possible to the observation ones. For the pairwise term, following [79] we use both an

appearance and a smoothness kernel (i.e. for l=1, 2 then βl are weights for the kernels) to have

structured constraints on the hidden disparity map.

Inference. Exact inference of the fully connected model requires high complexity because

of the calculation of inverse matrices [21, 80]. We approximate the inference using mean-

field theory. The target is to approximate the distribution P (dr|dra ,drh) with another simpler

distribution Q(dr|dra ,drh) which can be expressed with a set of independent marginal dis-

tributions, i.e. Q(dr|dra ,drh) =
∏

iQi(d
i
r|dra ,drh). We obtain an optimal solution Q̃ by

minimizing the KL divergence between the distribution P and Q, i.e. log Q̃i(d
i
r|dra ,drh) =
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Ej 6=i[logP (dr|dra ,drh)]+C with C as a const. The mean-field inference for Q can be derived

as follows:

Q̃i(d
i
r) ∝ exp (− (α1 + α2)d

i
r

2
+ 2dir(α1d

i
ra

+ α2d
i
rh
)

−
∑

l

βlkl(f
(l)
i , f

(l)
j )(dir

2 − 2dird
i
r])). (5.4)

The equation implies that the log distribution of Q̃i takes a Gaussian distribution and its ex-

pectation produces the maximum probability. Then we have the mean-field updating for the

continuous hidden variable dir written as

dir =
α1d

i
ra

+ α2d
i
rh

+
∑

l

∑

j 6=i kl(f
(l)
i , f

(l)
j )djr

α1 + α2 +
∑

l

∑

j 6=i kl(f
(l)
i , f

(l)
j )

(5.5)

The updating of dir is an iterative operation, and we are able to achieve a local minimum after

T iterations. In the following we discuss how we implemented the continuous mean-field in

neural network (NMF) for the inference of the hidden variables, enabling a joint end-to-end

optimization with the proposed backbone dual GAN network.

Mean-Field Updating in Neural Network (NMF). In Eq. 5.5, we have three steps to perform

the mean-field updating. The first step is a linear combination of the unary terms, i.e. α1d
i
ra

+

α2d
i
rh

, which can be implemented with 1 × 1 convolutions with a ReLU operation, and then

an element-wise addition operation. The second step is the message passing. To calculate

the message with the Gaussian convolution operation, i.e.
∑

j 6=i kl(f
(l)
i , f

(l)
j )djr, due to the

high complexity, we utilize a local receptive field considering a locally connected graph. The

message passing can be performed using element-wise addition operation. The third step is

a normalization step. The calculation of the normalization factor (i.e. the denominator) is

similar to that of the previous steps, and an element-wise division operation is used to perform

the normalization. We have in total four parameters to optimize, i.e. two linear combination

weights for the observation maps dra and drh , and other two weights for the gaussian kernels.

Since each forward step is differentiable, the mean-field updating can be optimized with the

back-propagation, and we can stack several mean-field blocks by sharing parameters for a deep

CRF inference.

Joint Coupling of the Generator and Discriminator. To model the structured relationship

between the generator and discriminator, we use one single CRF model to learn the fusion and

refinement of both. The discriminators and the generators from the dual GAN produce the
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Method
Error (lower is better) Accuracy (higher is better)

rel sq rel rms rms log δ < 1.25 δ < 1.252 δ < 1.253

CRF-DGAN (baseline model) 0.1650 1.7563 6.164 - 0.773 0.914 0.962

CRF-DGAN (w/ deep network hallucination ) 0.1617 1.4834 5.991 0.242 0.779 0.917 0.964

CRF-DGAN (w/ adversarial learning ) 0.1528 1.4005 6.029 0.247 0.785 0.918 0.965

CRF-DGAN (w/ coupled adversarial learning) 0.1423 1.3067 5.687 0.238 0.813 0.928 0.968

CRF-DGAN (w/ dual coupled adversarial learning) 0.1407 1.2831 5.677 0.237 0.815 0.930 0.968

Table 5.1: Quantitative analysis of the main components of our method on the KITTI dataset. The

evaluation is conducted on the predicted depth maps following the standard evaluation protocol.

same number of outputs, i.e. two disparity maps and correspondingly two real/fake adversarial

score maps, where we consider a pixel-level discriminator. Then we respectively input them

into the deep CRF coupling model introduced above with two separate forward computations,

and collect gradients from both to perform one backward computation to update the model

parameters during learning. By doing so, the outputs from the generators and the discriminators

will jointly affect the model learning, contributing implicitly as mutual constraints to better

optimize both parts. Fig. 5.3 shows examples of structured outputs of the generated disparity

and the discriminative errors. We use only one adversarial loss using the refined and fused the

adversarial score map from the deep coupling CRF model. Let us denote Dcrf
real and Dcrf

fake as

the adversarial score for the real and fake samples, and thus we replace Eq. 5.1 as:

L
crf
gan(Ga, Gb, Da, Db, I

n
l , I

n
r ) =

EInr∼p(Inr )
[logDcrf

real] + EI
n

l
,Inr∼p(In

l
,Inr )

[log(1−Dcrf
fake)].

(5.6)

End-to-End Joint Optimization. The learning of the whole network involves optimization of

both the dual generative adversarial network and the deep CRF model. For the CRF model,

the final output disparity map is used to synthesize another right-view image d
n
rc, and we

use an l1 reconstruction loss Lcrf to supervise the learning of the CRF model with Lcrf =
∑N

n=1||Irc,n−Ir,n||1. To combine the loss functions of the dual generative adversarial network,

the whole deep network optimization objective becomes: Lo = γ1Lrec + γ2Lh + γ3(L
crf
gan +

Lcrf ), where {γi}3i=1 is a set of weights for balancing the loss from different parts.

5.1.3 Experimental Results

We now present the experimental setup and results to demonstrate the effectiveness of the

proposed approach.
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Input RGB Structured Disparity Output Structured Adversarial Score Map

Figure 5.3: Examples of the structured output of the disparity maps and the adversarial score

maps on KITTI using the proposed CRF-DGAN. The CRF model couples not only two GAN sub-

networks but also connects the generators and the discriminators with mutual constraints in joint

optimization.

Method
Error (lower is better) Accuracy (higher is better)

rel sq rel rms rms log δ < 1.25 δ < 1.252 δ < 1.253

CRF-DGAN (baseline model) 0.4676 7.3992 5.741 0.493 0.735 0.890 0.945

CRF-DGAN (w/ deep network hallucination ) 0.4397 6.3369 5.444 0.456 0.730 0.887 0.944

CRF-DGAN (w/ adversarial learning ) 0.4327 6.2006 5.541 0.424 0.738 0.890 0.944

CRF-DGAN (w/ coupled adversarial learning) 0.4109 5.9848 4.636 0.403 0.756 0.897 0.953

Table 5.2: Quantitative analysis of the main components of our method on the Cityscapes dataset.

Cityscapes does not provide a standard evaluation protocol for depth estimation. We directly eval-

uate the performance on the predicted disparity maps.

5.1.3.1 Experimental Setup

Datasets. We have conducted experiments on the KITTI [66], Cityscapes [18] and Make3D [16,

59] datasets. The KITTI dataset contains depth images captured with a LiDAR sensor mounted

on a driving vehicle. In our experiments we follow the experimental protocol proposed by [3]

containing 22,600 training images and 697 images test images. The RGB image resolution is

reduced by half with respect to the original 1224 × 368 pixels. To evaluate the transfer learn-

ing capabilities of our method, we test the model trained on Cityscapes and evaluate it on the

Make3D dataset, which contains only 400 single training RGB and depth map pairs, and 134

test samples. The Cityscapes is a large-scale dataset mainly used for semantic urban scene
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RGB Image Eigen et al. [3] Zhou et al. [35] Garg et al. [4] Godard et al. [5] Ours GT Depth Map

Figure 5.4: Examples of depth prediction results on the KITTI raw dataset. Qualitative comparison

with other depth estimation methods on this dataset is presented. The sparse ground-truth depth

maps are interpolated for better visualization.

understanding. The annotated split contains 2975 training, 500 validation, and 1525 test im-

ages. The dataset also provides pre-computed disparity maps associated with the rgb images.

As the images of the dataset have a high resolution (2048× 1024), we resize the image to size

of 512 × 256 as in [5] for training due to the limitation of the GPU memory, and the bottom

one fifth of the image is removed.

Implementation Details. Messages are passed via locally connected convolutions i.e. con-

sidering a local receptive field for the Gaussian convolution with a kernel window size of

15× 15. In our CRF model we consider dependencies only for the last scale. The initial learn-

ing rate is set to 1e-4 in all our experiments, and decreases 5 times after for each step reached

in [30000, 55000]. The momentum and weight decay parameters are set to 0.9 and 0.0002, as

in [81]. The batch size of the algorithm is set to 8.

5.1.3.2 Experimental Results

We first conduct an in-depth analysis of the proposed approach, and then carry out a state-

of-the-art comparison with other competing methods, and finally provide a discussion on the

qualitative results.
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RGB Image Baseline (i) Baseline (ii) Baseline (iii) Full model GT Depth Map

Figure 5.5: Qualitative comparison of different variants of the proposed CRF-DGAN model on

the Cityscapes dataset.

Method
Setting Error (lower is better) Accuracy (higher is better)

cap supervised? rel sq rel RMSE RMSE (log) δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [16] 80m
√

0.280 - 8.734 0.601 0.820 0.926

Eigen et al. [3] 80m
√

0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [21] 80m
√

0.202 1.614 6.523 0.275 0.678 0.895 0.965

AdaDepth [40]* 50m
√

0.162 1.041 4.344 0.225 0.784 0.930 0.974

Kuznietsov et al. [33] 80m
√

- - 4.815 0.194 0.845 0.957 0.987

Xu et al. [26] 80m
√

0.120 0.764 4.341 0.181 0.852 0.959 0.987

Gan et al. [72] 80m
√

0.098 0.666 3.933 0.173 0.890 0.964 0.985

Garg et al. [4] 80m ✕ 0.177 1.169 5.285 0.282 0.727 0.896 0.962

Garg et al. [4] L12 + Aug 8x 50m ✕ 0.169 1.080 5.104 0.273 0.740 0.904 0.958

Godard et al. [5] 80m ✕ 0.148 1.344 5.927 0.247 0.803 0.922 0.963

Kuznietsov et al. [33] 80m ✕ - - 8.700 0.367 0.752 0.904 0.952

Zhou et al. [35] 80m ✕ 0.208 1.768 6.858 0.283 0.678 0.885 0.957

AdaDepth [40] 50m ✕ 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Mahjourian et al. [36]† 80m ✕ 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Pilzer et al. 4.1 80m ✕ 0.152 1.388 6.016 0.247 0.789 0.918 0.965

Wang et al. [62] 80m ✕ 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Zou et al. [74]† 80m ✕ 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Zhan et al. [34]† 80m ✕ 0.144 1.391 5.869 0.241 0.803 0.933 0.971

Guo et al. [73]* 80m ✕ 0.105 0.811 4.634 0.189 0.874 0.959 0.982

CRF-DGAN (ours) 80m ✕ 0.1354 1.1815 5.582 0.235 0.828 0.933 0.967

CRF-DGAN (ours) 50m ✕ 0.1283 0.8681 4.223 0.222 0.840 0.941 0.971

Table 5.3: State of the art comparison on the KITTI dataset. Methods that require additional image

data are marked with *, and those that require video data are marked with †. We bold the metrics

where our method achieves the best results under the same settings.
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Baseline Models. We mainly aim to demonstrate the effectiveness of the proposed approach

from three aspect: first, the monocular depth estimation with adversarial learning strategy, sec-

ond, the proposed dual GAN network structure, and third, the coupling scheme to fuse and

refine the proposed dual GAN in a structured fashion. Thus we present an ablation study based

on several baselines, including (i) CRF-DGAN (baseline model): a single branch model which

uses only the generator without using the adversarial loss; (ii) CRF-DGAN (w/ deep network

hallucination): a dual-branch model with network hallucination, which has two branches each

synthesizing a right view new image, and sharing the parameters of the encoder part. The dual-

branch model is used as the backbone network structure of our approach. A hallucinator is

added in order to predict images in a monocular fashion in the testing phase; (iii) CRF-DGAN

(w/ adversarial learning): we train the backbone adversarially, i.e. adding a discriminator

per branch; (iv) CRF-DGAN (w/ coupled adversarial learning): the two discriminators of the

dual-GAN are coupled with the proposed CRF model; (v) CRF-DGAN (w/ dual coupled ad-

versarial learning): both the discriminators and the generators are coupled with the proposed

CRF model.

Model Analysis. We conduct the ablation study on the KITTI raw and Cityscapes datasets,

as shown in Table 5.1 and 5.2. Comparing baseline (i) and (ii), we observe a minor improve-

ment in absolute error, but a more substantial improvement in all accuracy metrics, especially

on Cityscapes dataset. This performance boost is likely caused by the network hallucination

learning the complimentary information between the two stereo viewpoints, resulting in a bet-

ter learned model. The effectiveness of adversarial learning has been demonstrated in previous

chapters for GAN-based depth estimation, a benefit also observed between the baseline mod-

els (iii) and (ii). Baseline models (iv) and (v) evaluate the effectiveness of the proposed CRF

model using different coupling strategies, between the disparity maps produced by the genera-

tors and the adversarial score maps by the discriminators. By comparing (v) and (iii), we have

1.2 points gain on the metric rel on KITTI. We should note that this is not a trivial gain on this

very challenging and almost performance-saturated dataset. From the accuracy aspects: we

improve 4 points from 0.779 to 0.813, clearly demonstrating the effectiveness of the proposed

CRF-based structured coupling approach. We observe a more significant boost (around 2.7

points) on the rel metric on the Cityscapes dataset, and that coupling both the discriminators

and the generators achieves better performance than coupling only the discriminators, meaning

that the joint coupling brings extra constraints for each part, and facilitates the network opti-

mization, confirming our initial motivation. In overall, our approach has 2.5 points gain on the
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Figure 5.6: Examples of depth prediction results on the Make3D dataset. Qualitative comparison

between structured and non-structured disparity maps is presented. From left to right, RGB image,

non-structured disparity prediction, structured disparity prediction, ground truth depth. Structured

disparities show improved prediciton over non-structured disparities.

difficult rel metric over the single branch basic baseline model, demonstrating the effectiveness

of the CRF coupled dual GAN structure.

State-of-the-art Comparison. Table 5.3 compares the depth estimation results of our full

CRF-DGAN model with other supervised and unsupervised methods. We outperform most

competitors due to a joint structured optimization of both the discriminators and the generators

sign. The concise network design also facilitates the overall optimization process. With regard

to [4], we also report results for a 50m depth cap. The full CRF-DGAN model achieves better

performance in both the 50m and 80m settings. Of interest is that CRF-DGAN outperforms [5]

in all metrics. Our performance is much better than AdaDepth which also considers generative

adversarial networks while used extra synthetic training data. [34], DF-Net [74], and [36]

do not use the same setting as our approach, requiring video training data for extra temporal

information. In contrast, CRF-DGAN requires only image pairs in training and single images

in testing. Although our approach is not directly comparable to them, it outperforms their

results on all the metrics. Our approach is outperformed by [72], which uses stereo-matching

techniques to improve upon available sparse LiDaR ground truth. As so it is a method with

a different setting to ours and is not directly comparable. [73] uses a stereo model trained on

the KITTI raw and then synthetic SceneFlow [61] are used to distil a monocular model reaches

higher performance than CRF-DGAN, but it requires both a large amount of additional stereo

data for training and a more complex optimization process.

Qualitative Analysis. The performance can be qualitatively observed in Fig. 5.4 and 5.5 for

KITTI and Cityscapes, respectively. The advantage of structured modeling between the gen-

erator and the discriminator can be observed in Fig. 5.4, where our method is able to capture
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Figure 5.7: Examples of structured outputs of the real and the fake discriminative score-maps

on the Make3D dataset, with the associated depth predictions. From left to right, RGB image,

discriminator predictions for RGB image, discriminator prediction for synthesized RGB image

and depth prediction. The discriminator infers higher error

object details as well as objects in their entirety. Furthermore, we qualitatively evaluate a

model learned on the Cityscapes dataset and tested on the Make3D dataset. The results are

shown in Figure 5.6. The importance of adding structural information when inferring on unfa-

miliar data can be clearly observed. Conditioning on the input images allows the approach to

maintain a good detail consistency. Figure 5.7 shows the structured output of the discriminative

score-maps generated from associated real and synthesized samples. The areas in which the

synthesized disparity values with low accuracy produce a high discriminative error. Fig. 5.5

showcases different variants of the proposed CRF-DGAN approach and the improvement in

quality.

Discussion on the Time Aspect. On a single Titan V-100, with a batch size of 4, the model

can infer 6 images with a resolution of 512 × 256 per second, which is near real-time speed.

Further performance improvements in speed can be achieved through decreasing the size of

the CRF receptive field and also consider approximation approaches in the expensive Gaussian

convolutional operations, e.g. permutohedral lattice algorithm [82].

5.1.4 Conclusions

We have presented an end-to-end unsupervised deep learning framework for monocular depth

estimation. The proposed framework consists of two generative adversarial sub-networks, aim-

ing at on one hand generating distinct while complementary disparity maps, through accepting

images from different views as input, and on the other hand, improving the generation quality

via exploiting the adversarial learning strategy. We couple the dual-GAN by a deep CRF model,
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which is able to perform structured refinement and fusion of the predicted disparity maps from

the generators and the adversarial scoremaps from the discriminators. The deep CRF coupling

also makes the discriminator and the generator explicitly constrain on each other, and thus fa-

cilitates the optimization of the whole network for better disparity generation. We conducted

extensive experiments on the challenging KITTI, Cityscapes, and Make3D datasets, clearly

demonstrating the effectiveness of the proposed approach.
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Monocular Depth Refinement

Chapters 4 and 5, presented stereo binocular methods. Despite suggesting in Chapter 5, a

hallucinator module to avoid using stereo images at testing time, the method is still based on

stereo a setting. Improving on that we devise a model that at inference time is totally monocular

and more interestingly has the ability to self-improve the predictions at inference time, without

using any ground-truth data.

6.1 Refine and Distill: Exploiting Cycle-Inconsistency and Knowl-

edge Distillation for Unsupervised Monocular Depth Estima-

tion 4

Nowadays, the majority of state of the art monocular depth estimation techniques are based

on supervised deep learning models. However, collecting RGB images with associated depth

maps is a very time consuming procedure. Therefore, recent works have proposed deep ar-

chitectures for addressing the monocular depth prediction task as a reconstruction problem,

thus avoiding the need of collecting ground-truth depth. Following these works, we propose

a novel self-supervised deep model for estimating depth maps. Our framework exploits two

main strategies: refinement via cycle-inconsistency and distillation. Specifically, first a stu-

dent network is trained to predict a disparity map such as to recover from a frame in a camera

view the associated image in the opposite view. Then, a backward cycle network is applied to

4"Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for Unsupervised Monocular

Depth Estimation", A. Pilzer, S. Lathuilière, N. Sebe, E. Ricci; The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2019, pp. 9768-9777
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Figure 6.1: Outline of the proposed approach: from the right view image, we predict the left image

from which we re-synthesize the right image. The inconsistencies are used by the inconsistency-

module to improve the depth estimation. The refined depth maps are used to improve the Student

Network via knowledge distillation.

the generated image to re-synthesize back the input image, estimating the opposite disparity. A

third network exploits the inconsistency between the original and the reconstructed input frame

in order to output a refined depth map. Finally, knowledge distillation is exploited, such as to

transfer information from the refinement network to the student. Our extensive experimental

evaluation demonstrate the effectiveness of the proposed framework which outperforms state

of the art unsupervised methods on the KITTI benchmark.

6.1.1 Introduction

In the last few years, deep learning-based approaches for depth estimation [3, 5, 10, 21, 35,

36, 58, 65] have attracted a growing interest, motivated, on the one hand, by their ability to

predict very accurate depth maps and, on the other hand, by the importance of recovering

depth information in several applications, such as robot navigation, autonomous driving, virtual

reality and 3D reconstruction.

Exploiting the availability of very large annotated datasets, Convolutional Neural Networks

(ConvNets) trained in a supervised setting are now state-of-the-art in many computer vision

tasks such as object detection [83], instance segmentation [84], human pose estimation [85].
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However, a major weakness of these approaches is the need of collecting large-scale labeled

datasets. In the case of depth estimation, acquiring data is especially costly. For instance, in the

scenario of depth estimation for autonomous driving, it implies driving a car equipped with a

laser LiDaR scanner for hours under diverse lighting and weather conditions. Self-supervised

depth estimation, also referred to as unsupervised, recently emerged as an interesting paradigm

and an effective alternative to supervised methods [4, 5, 60, 61, 62]. Roughly speaking, in

the self-supervised setting, stereo image pairs are considered as input and a deep predictor is

learned in order to estimate the associated disparity maps. Specifically, the predicted disparity

is employed to synthesize, from a frame in a camera view (e.g. from the left camera), the op-

posite view through warping. The deep network is trained via gradient descent by minimizing

the discrepancy between the original and the reconstructed image. Importantly, even if stereo

images pairs are required for training, depth can be recovered from a single image at test time.

In this Chapter, we follow this research thread and propose a novel self-supervised deep

architecture for monocular depth estimation. The proposed approach, illustrated in Fig 6.1,

consists of a first sub-network, referred to as the student network, which receives as input

an image from a camera view and predicts a disparity map such as to recover the opposite

view. On top of this network, we propose several contributions. First, from the generated

image, we propose to re-synthesize the input image by estimating the opposite disparity. The

resulting network forms a cycle. Second, a third network exploits the cycle inconsistency

between the original and the reconstructed input images in order to refine the estimated depth

maps. Our intuition is that inconsistency maps provide rich information which can be further

exploited, as they indicate where the first two networks fail to predict disparity pixels. Finally,

we propose to use the principle of distillation in order to transfer knowledge from the whole

network, seen as a teacher, to the student network. Interestingly, our framework produce two

outputs, corresponding to the depth maps estimated respectively by the student and the teacher

networks. This is extremely relevant in practical applications, as the student network can be

exploited in case of low computation power or real-time constraints.

Our extensive experiments on two large publicly available datasets, i.e. the KITTI [66]

and the Cityscapes [18] datasets, demonstrate the effectiveness of the proposed framework.

Notably, by combining the proposed cycle structure with our inconsistency-aware refinement,

our unsupervised framework outperforms previous usupervised approaches, while obtaining

comparable results with the state-of-the-art supervised methods on the KITTI dataset.
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.

Figure 6.2: The proposed approach is composed of two modules. A first network Gs predicts the

right-to-left disparity map dl from the right image and synthesizes the left image as described in

Sec. 6.1.2.4. In the second module, a generator network Gb predicts the left-to-right disparity map

dr in order to re-synthesize the right image. The model obtained in this way forms a cycle. The

cycle inconsistency is used by a third network to predict the final disparity map. We use a set of

losses (orange dot arrows) detailed in Sec. 6.1.2.4

6.1.2 Proposed Approach

6.1.2.1 Overview

The aim of this chapter is to estimate the depth of a scene from a single image. However, at

training time, we consider that we dispose of pairs of images {Il, Ir} of size H ×W , derived

from a stereo pair and corresponding to the same time instant. Here, Il denotes the left camera

view and Ir is the right camera view. Given Ir, we are interested in predicting a correspondence

map dl ∈ R
H×W , namely the right-to-left disparity, in which each pixel value represents the

offset of the corresponding pixel between the right and the left images. Finally, assuming that

the images are rectified, the depth at a pixel location (x, y) of the left image can be recovered

from the predicted disparity with dl =
f.b

d(x,y) , where b is the distance between the two cameras

and f is the camera focal length.

An overview of the proposed framework is shown in Fig. 6.2. A first network Gs predicts

the right-to-left disparity map dl from the right image Ir, and synthesizes the left image by

warping Ir according to dl. Roughly speaking, the network Gs is trained to minimize the

discrepancy between the real and the reconstructed left image (Sec. 6.1.2.4).

We employ a second generator network Gb that takes as input the synthesized left image and
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predicts a left-to-right disparity map dr that is used to re-synthesize the right image. The model

obtained in this way forms a cycle. This cycle design has three advantages. First, at training

time, by sharing weights between Gs and Gb, the networks learn to predict disparity maps

from the images of the training set (in the forward half-cycle Gs) but also from the synthesized

images (in the backward half-cycle Gb). In that sense, the use of the cycle can be seen as a sort

of data augmentation. Second, in order to re-synthesize correctly the right image, the second

network Gb requires a correct input left image. Thus, Gb imposes a global constraint on the

estimated disparity dl oppositely to standard pixel-wise discrepancy losses, such as L1 or L2

that act only locally. Third, by comparing the input right image Ir and the output right image

Îr synthesized after applying our cycle framework, we can measure the cycle inconsistency.

At a given location of the input image, if we observe no inconsistency, Gs and Gb must have

predicted correctly the disparity maps. Conversely, in case of inconsistency, Gs or Gb (or both)

must have predicted incorrectly the disparity maps. Note that inconsistencies may also appear

on objects regions that are visible in only one of the two views. Interestingly, these regions are

usually located on the object edges. Therefore, looking at cycle inconsistency also provides

information about object edges that can help to predict better depth maps. Importantly, this

inconsistency can be measured both at training and testing times, even if at testing time, we

dispose only of the right image.

The main contribution of this chapter consists in exploiting the cycle inconsistency by

training a third network in order to improve the prediction performance and output a refined

depth map d
′
l. In addition, since employing our inconsistency-aware network leads to more

accurate depth predictions, we propose to use the disparity maps predicted by Gi in order to

improve Gs training via a knowledge distillation approach.

Note that, another possible cycle approach, as proposed in [75], would consist in using a

single network to predict the two disparity maps. The two disparities can be used to obtain the

synthesized left image and then the re-synthesized right image. Nevertheless, this approach

has a major disadvantage with respect to our approach, i.e. , since only the warping operator in

employed between the two synthesized images, and consequently the receptive field of Îr in Il

is very small. In particular, when implementing the warping operator via bilinear sampling, the

receptive field of the warping operator in only 2× 2. Therefore, the right image reconstruction

loss can act on the reconstructed left image only locally. Conversely, our backward network

Gb imposes a global consistency on dl thanks to its large receptive field.
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The outputs of our method correspond to the estimated depth maps dl and d
′
l. While

the estimated depth d
′
l corresponding to the teacher model is typically more accurate, in some

applications, e.g. in resource-constrained settings, it could be convenient to exploit only a small

student network.

In the following, we describe the design of our cycled network. Then, we introduce our

novel inconsistency-aware network. Finally, we present the optimization objective including

our proposed distillation approach.

6.1.2.2 Unsupervised Monocular Cycled Network

We adopt a setting in which the model is trained without the need of ground truth depth maps.

This approach is often referred to as unsupervised or self-supervised depth estimation. Roughly

speaking, it consists in training a network to predict a disparity map that can be used to generate

the left image from the right image. Formally speaking, we employ a first network Gs that takes

as input the right image Ir and predicts the right-to-left disparity dl. Following [5], we adopt a

U-Net architecture for Gs. We employ a warping function fw(·) that synthesizes the left view

image by sampling from Ir according to dl:

Îl = fw(dl, Ir). (6.1)

Importantly, fw(·) is implemented using the bilinear sampler from the spatial transformer net-

work [67] resulting in a fully differentiable model. Consequently, the network can be trained

via gradient descent by minimizing the discrepancy between Îl and Il (see Sec. 6.1.2.4 for

details about network training).

Inspired by [65], we employ a second network Gb in order to re-synthesize the right image

according to:

Îr = fw(dr, Îl). (6.2)

where:

dr = Gb(Îl) (6.3)

The Gb and Gs networks share their encoder parameters. Note that, differently from the stereo

depth model proposed in [65], our second half-cycle network takes only the synthesized left

image as input. This crucial difference allows the use of this cycle in the monocular setting

at testing time. Concerning the decoder networks, we adopt an architecture composed of a

sequence of up-convolution layers in which the disparity is estimated and gradually refined
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from low to full resolutions similarly to [5]. We obtain the estimated left and the right disparity

maps at each scale d
n
l and d

n
r , n ∈ {0, 1, 2, 3}, with sizes [H/2n,W/2n]. More precisely, dn

r

is computed from the decoder feature map ξr
n of size [H/2n,W/2n] via a convolutional layer.

Then, dn
r is concatenated with ξr

n obtaining a tensor that is input to an up-convolution layer in

order to estimate the disparity at the next resolution d
n−1
r .

6.1.2.3 Inconsistency-Aware Network

We define the inconsistency tensor as the difference between the input image Ir and the image

Îr predicted by the backward network Gb:

Ir = Ir − Îr (6.4)

The proposed inconsistency-aware network Gi takes as input the concatenation of Ir, Ir and

dl. We employ a network architecture similar to the half-cycle monocular network described

in Sec. 6.1.2.2. However, we propose to provide to the encoder network the disparity maps

d
n
l , n ∈ {1, 2, 3} estimated by Gs at each scale. More precisely, we concatenate along the

channel axis each disparity d
n
l with network features of corresponding dimensionality.

The inconsistency-aware network Gi estimates the right-to-left disparity d
′
l = Gi(Ir, Ir,dl,d

{1,2,3}
l )

and we reconstruct the left view image Îl
′

by applying the warping function fw:

Î
′
l = fw(d

′
l, Ir) (6.5)

Similarly to Gs and Gb, Gi estimates low resolution disparity maps d′
l

n, n ∈ {1, 2, 3} that are

gradually refined from low to full resolutions.

6.1.2.4 Network Training and Knowledge Self-Distillation

In this section, we detail the losses employed to train the proposed network in an end-to-end

fashion.

Reconstruction. First, we employ a reconstruction and stucture similarity loss for each net-

work. Following [5], we adopt the L1 loss to measure the discrepancy between the synthesized

and the real images and the structure similarity loss LSSIM to measure the discrepancy between

the synthesized and the real images structure. By summing the losses of the three networks Gs,

76



6.1 Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for

Unsupervised Monocular Depth Estimation 4

Gb and Gi, we obtain:

L
(0)
rec = λs[αLSSIM (̂Il, Il) + (1− α)||̂Il − Il||1]

+λb[αLSSIM (̂Ir, Ir) + (1− α)||̂Ir − Ir||1]

+λt[αLSSIM (̂I′l, Il) + (1− α)||̂I′l − Il||1]

(6.6)

where λs, λb and λt are adjustment parameters and α = 0.85. Similarly, we also compute a

reconstruction loss L
(n)
rec for the low resolution disparity maps. Following [38], we upsample

the low resolution d
n
l , dn

r and d
′
l

n
to H ×W and use the warping operator fw to re-synthesize

full resolution images that are compared with the real images according to the L1 loss. The

total reconstruction loss is:

Lrec =
4

∑

n=0

L
(n)
rec (6.7)

Self-Distillation. Finally, we propose to introduce a knowledge distillation loss. As detailed

in the experimental section (Sec 6.1.3), the inconsistency-aware network outperforms by a

significant margin the simple half-cycle network Gs. This boost is at the cost of a higher

computation complexity. The idea of the proposed self-distillation loss consists in distilling

knowledge from inconsistency-aware network to the half-cycle network Gs. Thus, we improve

the performance of Gs without adding any computation complexity at testing time. To do so,

we evaluate disparity and feature distillation. For the first, we impose that the network Gd

predicts disparity maps similar to the output of inconsistency-aware network. It can be seen as

a distillation approach where Gs plays the role of the student and the whole network (composed

of Gs, Gb and Gi) is the teacher. However, in our particular case, the student network is a sub-

network of the teacher. From this perspective, we name this approach self-distillation. The

self-distillation loss is given by:

Ldist = ||dl − S(d′
l)||1 (6.8)

where S denotes the stop-gradient operation. In particular, the stop-gradient operation equals

the identity function when computing the forward pass of the back-propagation algorithm but

it has a null gradient when computing the backward pass. The purpose of the stop-gradient is

to avoid that d′
l converges to dl. On the contrary, the goal is to help dl to become as accurate

as d′
l.
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For the second, we impose that the decoder features ξnr′ , n ∈ 0, 1, 2 of the teacher are

similar to the features ξnr of the student. The self-distillation loss is given by:

Ldist = ||ξnr − S(ξnr′)||2 (6.9)

The total training loss is given by:

Ltot = Lrec + λdistLdist (6.10)

6.1.3 Experimental Results

We evaluate our proposed approach on two publicly available datasets and compare its perfor-

mance with state of the art methods.

6.1.3.1 Experimental Setup

Datasets. We perform experiments on two large stereo images datasets, i.e. KITTI [17] and

Cityscapes [18].

6.1.3.2 Baselines for Ablation.

To perform the ablation study presented in Sec.6.1.3.3, we consider the following baselines:

• half-cycle: our basic building block, uses the forward branch that takes Ir as input and

generates dl to reconstruct the other stereo view Îl. Neither cycle-consistency nor self-

distillation are used in this model.

• cycle: a backward network is added to the half-cycle model in order to reconstruct Îr

from the estimated Îl. Note that the backward network is used only at training time. At

test time, the output is the same as for the half-cycle model.

• teacher, we stack the inconsistency-aware network after the cycle as described in Sec

6.1.2.3.

• student: the output of the inconsistency-aware network is distilled in order to refine the

first half-cycle. At test time, the output and the computation complexity are the same as

in the half-cycle model.
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RGB Image Eigen et al. [3] Garg et al. [4] Godard et al. [5] Ours Section 4.1 Ours GT Depth Map

Figure 6.3: Qualitative comparison of different state-of-the-art models with our teacher network

on the KITTI testing split proposed by [3]. The sparse KITTI ground truth depth maps are interpo-

lated with bilinear interpolation for better visualization.

In Tables 6.1, 6.2 and 6.3 we indicate with HC, C, T and S, the half-cycle, cycle, teacher and

student respectively; feat and disp denote self-distillations of features and disparities.

Training Procedure. The whole network is trained following an iterative procedure. First,

we start by training the forward half-cycle network for 10 epochs. In a second step, we train

the backward network decoder for 5 epochs without updating the first half-cycle network. The

whole cycle is then jointly trained for further 10 epochs. Then, the inconsistency-aware module

is pretrained for 5 epochs. Finally, the whole network is jointly fine-tuned for 10 epochs.

Parameters. The model is implemented with the deep learning library TensorFlow. Similarly

to [5], the input images are down-sampled to a resolution of 512× 256 from the original sizes

which are 1226 × 370 for the KITTI dataset and for CityScapes. In all our experiments we

use a batch size equal to 8 stereo image pairs and the Adam optimizer with learning rate set to

10−5 following the recommendations of [86].

The half-cycle and cycle networks are trained with the following loss parameters λs = 1,

λb = 0.1 and λt = 0. When training the teacher network we use λs = 0, λb = 0 and λt = 1.

We weight the distillation loss Ldist with λdist = 0.005 and λdist = 0.1 respectively, if feature

distillation or disparity distillation is applied. The joint training of the full network is done with

learning rate lr = 10−5, loss parameters λs = 1, λb = 0.1, λt = 1 and λdist equal to 0.005 in

the case feature distillation and 0.1 in the case of disparity distillation, respectively.
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Method
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

HC 0.1487 1.2942 5.800 0.246 0.805 0.925 0.965

C 0.1451 1.2943 5.850 0.242 0.796 0.924 0.967

T feat 0.1220 1.0433 5.321 0.229 0.834 0.933 0.968

T disp 0.1234 1.0509 5.283 0.228 0.834 0.934 0.968

S feat 0.1438 1.2806 5.834 0.241 0.797 0.926 0.968

S disp 0.1438 1.2551 5.771 0.238 0.797 0.927 0.969

[38] L1 loss

T feat 0.1017 0.8930 4.768 0.206 0.878 0.946 0.972

T disp 0.0983 0.8306 4.656 0.202 0.882 0.948 0.973

S feat 0.1474 1.2416 5.849 0.241 0.788 0.923 0.968

S disp 0.1424 1.2306 5.785 0.239 0.795 0.924 0.968

Table 6.1: Ablation study on KITTI dataset using the training and testing split proposed by Eigen et

al. [3]. The upper part shows the results with the multiscale reconstruction L1 loss in [5], the

bottom part with the L1 loss proposed in [38].

RGB Image half-cycle cycle student teacher GT Depth Map

Figure 6.4: Qualitative comparison of different baseline models of the proposed approach on the

Cityscapes testing dataset.

80



6.1 Refine and Distill: Exploiting Cycle-Inconsistency and Knowledge Distillation for

Unsupervised Monocular Depth Estimation 4

Method
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

1-CN C 0.1533 1.3326 5.837 0.240 0.785 0.919 0.967

1-CN S disp 0.1503 1.2622 5.868 0.243 0.783 0.918 0.967

Ours S disp 0.1438 1.2551 5.771 0.238 0.797 0.927 0.969

1-CN T disp 0.1478 1.3609 5.952 0.243 0.793 0.921 0.966

Ours T disp 0.1234 1.0509 5.283 0.228 0.834 0.934 0.968

Table 6.2: Ablation study where our two-network cycle is replaced by the single-network cycle

from Yang et al. [75] (referred as to 1-CN).

6.1.3.3 Results

Ablation Study. To demonstrate the validity of the proposed contributions we first conduct an

ablation study on the KITTI dataset [17] and the CityScapes dataset [18]. Results are shown in

Table 6.1 and Table 6.3, respectively.

We split the ablation in two parts where we employ two different reconstruction loss vari-

ants. For the first part, as in [5], we use a multi-scale reconstruction loss where the smaller

scale reconstruction is compared with a downsampled version of the stereo image. In contrast

with that, for the second part, we employ a more effective reconstruction loss, upsampling to

input scale all the disparities before warping as described in Sec. 6.1.2.4.

In Table 6.1 it is interesting to note that our intuition of self-constraining the monocular

student network with cycled design improves, without requiring additional losses, in several

of the metrics compared to the simple forward branch. This comes at the cost of doubling

the forward propagation time at training but not at testing time. Moreover, the monocular

cycled structure has the big advantage of automatically computing the inconsistency of the

reconstruction both at training and testing time. Therefore, stacking a network aware of the

inconsistencies and previous estimations, the teacher network, improves the performance. We

observe that our proposed inconsistency-aware network brings an important improvement con-

sistent over all the metrics, e.g. 14% and 18% in Abs Rel and Sq Rel, respectively, comparing

cycle and teacher.

Student-teacher distillation leads to a consistent improvement over all metrics, demon-

strating that self-distillation improves the student, while keeping the performance of teacher

constant. Regarding the two distillation strategies, we found that network with disparity distil-
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Method
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

HC 0.4676 7.3992 5.741 0.493 0.735 0.890 0.945

C 0.4523 6.2604 5.381 0.557 0.736 0.888 0.946

T feat 0.4087 5.8777 4.394 0.334 0.846 0.940 0.967

T disp 0.3988 5.8752 4.293 0.316 0.848 0.941 0.968

S feat 0.4494 6.2599 5.343 0.421 0.739 0.891 0.947

S disp 0.4467 5.9012 5.297 0.473 0.736 0.890 0.946

[38] L1 loss

T feat 0.3878 5.8190 4.123 0.397 0.861 0.945 0.969

T disp 0.3846 6.2007 4.476 0.318 0.864 0.945 0.969

S feat 0.4455 6.2748 5.366 0.468 0.739 0.891 0.946

S disp 0.4305 5.9552 5.281 0.519 0.740 0.891 0.946

Table 6.3: Ablation study on the Cityscapes dataset. The upper part shows the results with the

multiscale reconstruction L1 loss in [5], the bottom part with the L1 loss proposed in [38].

lation converges faster than that with the feature distillation. This is not unexpected, given the

much more compact size of the disparity compared to the several channels of the features.

For demonstrating the validity of the design of our cycle network, we perform an ablation

study where our two-network cycle structure is replaced by the single-network cycle proposed

by Yang et al. [75]. In this experiment, we use our proposed inconsistency-aware module to

exploit the inconsistency estimated by the single network cycle in [75]. Contrary to [75], we

trained the models without supervision in order to compare the two different approaches in the

unsupervised setting. We use the L1 loss from [5] for fair comparison. Results are reported in

Table 6.2. We observe that the inconsistency estimates obtained with the single-network cycle

of [75] are associated with worse performance with respect to those of our method.

We also performed an ablation study on the Cityscapes dataset in Table 6.3, following

the evaluation procedure proposed in 4.1. The results confirm the trends observed on KITTI.

The cycle network improves over the half-cycle in five metrics out of seven. The teacher,

effectively exploiting inconsistencies, is associated with an improvement on all error metrics

(ranging from 7% to 20%). Distillation further provides a boost in performance of about 1.5%

to 5%. In the second part of the ablation study, the teacher further improves its estimations

gaining over 20% over the initial cycle setting. More interesting is the gain in performance of

the student that improves from 2% to 5%.
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Method Sup Video
Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.252 δ < 1.253

lower is better higher is better

Eigen et al. [3] Y N 0.190 1.515 7.156 0.270 0.692 0.899 0.967

Xu et al. [10] Y N 0.132 0.911 - 0.162 0.804 0.945 0.981

Jiang et al. [71] Y N 0.131 0.937 5.032 0.203 0.827 0.946 0.981

Gan et al. [72] Y N 0.098 0.666 3.933 0.173 0.890 0.964 0.985

Guo et al. [73] Y N 0.097 0.653 4.170 0.170 0.889 0.967 0.986

Yang et al. [75] Y Y 0.097 0.734 4.442 0.187 0.888 0.958 0.980

Zou et al. [74] N Y 0.150 1.124 5.507 0.223 0.806 0.933 0.973

Godard et al. [38] N Y 0.115 1.010 5.164 0.212 0.858 0.946 0.97

Zhou et al. [35] N N 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Garg et al. [4] N N 0.169 1.08 5.104 0.273 0.740 0.904 0.962

Kundu et al. [40], 50m N N 0.203 1.734 6.251 0.284 0.687 0.899 0.958

Godard et al. [5] N N 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Ours Section 4.1 N N 0.152 1.388 6.016 0.247 0.789 0.918 0.965

Ours Student N N 0.1424 1.2306 5.785 0.239 0.795 0.924 0.968

Ours Teacher N N 0.0983 0.8306 4.656 0.202 0.882 0.948 0.973

Table 6.4: Comparison with the state of the art. Training and testing are performed on the KITTI

[17] dataset. Supervised and semi-supervised methods are marked with Y in the supervision (Sup.)

column, unsupervised methods with N. Methods using a frame sequence in input and, thus, exploit-

ing temporal information either at training or testing time, are marked with Y in the Video column.

Numbers are obtained on Eigen [3] test split with Garg [4] image cropping. Depth predictions are

capped at the common threshold of 80 meters, if capped at 50 meters we specify it. Best scores

among static unsupervised methods are in bold. Best scores among other method categories are in

italic.

In Fig. 6.4, we present qualitative results for Cityscapes. half-cycle and cycle images are

smooth and do not present artifacts. The teacher provides more accurate depth maps with

sharper edges for small objects and better background estimations (e.g. third row, people in

the back). After distillation also the student inherits this ability and we observe more detailed

predictions compared to the original cycle.

6.1.3.4 Comparison with State-of-the-Art

In Table 6.4 we compare with several state-of-the-art works, considering both supervised

learning-based ( Eigen et al. [3], Xu et al. [10], Jiang et al. [71], Gan et al. [72], Guo et

al. [73], Yang et al. [75]) and unsupervised learning-based (Zhou et al. [35], Garg et al. [4],

Kundu et al. [40], Godard et al. [5], Ours Section 4.1, Godard et al. [38] and Zou et al. [74])
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methods.

The teacher network reaches state-of-the-art performance for the frame-level unsupervised

setting, even improving over the state-of-the-art method that use depth supervision as [10], and

is competitive with those using depth and video clues [72, 73, 75]. Note that Yang et al. [75]

consider a similar setting to ours proposing to use errors to refine the depth estimation with a

stacked network. Our method has several advantages though: it is unsupervised, it does not

consider multiple video frames and it avoids the use of several losses whose hyper-parameters

are hard to tune. Furthermore, as demonstrated by our experiments in Table 6.2, our approach

adopts a more effective network structure for computing cycle inconsistencies. The student

network, after distillation, improves on unsupervised approaches with similar network capacity

like [4, 5] and it is only outperformed by previous unsupervised methods that exploit additional

information during training like [38].

Qualitative results in Figure 6.3 show that our model predicts more accurately challenging

areas, i.e. sky, trees in background and shadowed areas difficult to interpret, compared to

competitive unsupervised models [4, 5]. Note that small details are better reconstructed by [5]

but, overall, our estimations look smoother and have fewer large errors, as the train windshield

in row seven.

6.1.4 Conclusions

We proposed a monocular depth estimation network which computes the inconsistencies be-

tween input and cycle-reconstructed images and exploit them to generate state-of-the-art depth

predictions through a refinement network. We proved that distillation is an effective paradigm

for depth estimation and improve the student network performance by transferring information

from the refinement network.
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Final Remarks

In this thesis, we studied unsupervised depth estimation from binocular stereo images. As al-

ready explained in the Introduction, depth estimation is a task of growing importance in com-

puter vision, given the multiple application that could benefit from it. We mentioned robotics

and autonomous driving previously, but substantially depth estimation could be applied to any

system as an additional form of sensing the real world, for example, virtual reality and 3D

reconstruction. Another example, and very active research topic, is depth completion which, in

other words, infers a dense prediction from a very sparse LiDaR ground truth.

Unsupervised binocular stereo depth estimation, is based on a image reconstruction opti-

mization objective. Obtaining higher quality of reconstruction, corresponds to better accuracy

in depth predictions. In this framework, our proposal to use adversarial learning proved to be

beneficial for model training. Furthermore, we made the best use of the reconstructed images

during training for data augmentation. Our model was trained not only on the real images but

also on the resynthesized ones. Tackling the stereo scenario allowed us to have both stereo

images feature representations. Thus, we propose PFN (Progressive Fusion Network) to make

the best use of the two stereo views complementary information.

Next, we focused on improving adversarial depth estimation. For this reason, we couple

the loss of discriminator and generator, with a structured approach as CRFs, to guide the opti-

mization process where it is more needed. In this way we exploit more efficiently the wrong

reconstructions highlighted by the reconstruction loss as well as the critic opinion of the dis-

criminator. A secondary contribution, is the hallucination subnetwork that allows inference

with monocular images.
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Finally, we revisited data augmentation cycle for monocular depth estimation. This sce-

nario is more challenging but allows for inference with monocular images. The peculiarity of

our approach is the ability to estimate the reconstruction error at the end of the cycle from the

image without any supervision. We were then able to exploit this very precious information

as best as possible. First, with a refinement block that, having access to images, predictions

and errors of the cycle block, could achieve much higher performance. Second, we applied the

knowledge distillation principle. Considering the cycle block as a student model, and the refine-

ment block as a teacher model, we could improve the student accuracy in a self-improvement

fashion.

7.1 Future Research Directions

This final section includes a short overview of the main challenges for depth estimation and

then depicts future research directions that could come out from this thesis.

Computer vision is very fortunate to see growing interest from the academic and industrial

worlds. However, deployment of deep learning models for real applications is still not straight

forward, and future studies will require a great effort. In the last couple of years, for depth

estimation, researchers started to tackle this problem by developing more efficient models.

Moreover, domain adaptation methods have been applied to depth estimation model in order to

obtain better performing model on different data. Another exciting trend, strongly encouraged

by recent monocular dataset, is research towards fully monocular methods that exploit temporal

consistency for training. All these research treds, in the long run, will allow the practical use

of deep learning models.

Finally, we detail a few research ideas for future works. For the sake of clarity, we list them

by chapter.

• Chapter 4: The proposed adversarial learning and data augmentation have been evaluated

for depth estimation. Other dense regression tasks could potentially benefit from these

findings. One example is optical flow, where a model can be trained by image reconstruc-

tion between consecutive frames similarly to self-supervised depth estimation. There are

more challenges due to the increased pixel occlusions in consecutive time frames, but

with the proper adjustments, it is a feasible application scenario. Another area of in-

terest, is to transform the discriminator decision from a global image perspective to a

pixel-wise decision. In other words, our discriminator outputs an global score for the
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image. A natural extension would be to have a fine-grained decision for each pixel of

the image. By doing this, we could more pointedly address reconstruction errors at the

generator level.

• Chapter 5: While our experiments show that a structured coupling as CRF is very ef-

fective for depth estimation, we also noticed that our model is very time and resource

consuming for training. This finding motivates us to research other, more efficient solu-

tions in the future: from more efficient network architecture than the used ResNet50, to

reformulating the CRF coupling for a more streamlined approach.

• Chapter 6: The monocular setting is the most interesting for our future works. Indeed,

the research community is going to pay growing attention to monocular applications as

they require fewer sensors to be deployed. A binocular stereo setting has to be calibrated

and synchronized, instead, a single camera is easier to deploy. We plan to further improve

the distillation process by accounting for teacher and student confidence in the estimates.

In this way, we expect to guide the learning process better and correct more effectively

prediction inconsistencies. A second possibility is to detach student and teacher network.

In our work, they have a single flow of the gradient in backpropagation, therefore, to

obtain a more straightforward optimization procedure it could be interesting to redraw

the network as a classic student and teacher networks for knowledge distillation. Third,

we would like to improve the model training to a fully monocular setting. Conversely to

the rectified stereo image pairs used in these works, can be achieved by using temporal

reconstruction self-supervision in a video stream.
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