
MINIMAL DEGREE EQUATIONS FOR CURVES AND SURFACES

(VARIATIONS ON A THEME OF HALPHEN)
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Abstract. Many classical results in algebraic geometry arise from investigating some
extremal behaviors that appear among projective varieties not lying on any hypersur-
face of fixed degree. We study two numerical invariants attached to such collections
of varieties: their minimal degree and their maximal number of linearly independent
smallest degree hypersurfaces passing through them. We show results for curves and
surfaces, and pose several questions.

1. Introduction

In this note, we study two numerical invariants attached to projective varieties, focusing
on the low-dimensional cases of curves and surfaces. To introduce the problem, let X
be an m-dimensional integral projective variety in Pn. Let s be an integer with the
property that X is not contained in any hypersurface of degree strictly smaller than s,
i.e., h0(IX(s− 1)) = 0. Perhaps, the first basic question one might ask is as follows:

Question 1.1. What is the minimal degree that such an X may have?

Moreover, one might wonder what is the largest number of linearly independent
hypersurfaces of degree s passing through such an X, or more formally:

Question 1.2. For such a projective variety X, how big h0(IX(s)) may be?

Both Question 1.1 and Question 1.2 concern extremal behaviors, which are often
fundamental phenomena in algebraic geometry. When X is a curve, a variant to the
questions above is about the maximal genus of a curve given a prescribed linear series on
it, or the maximal genus of a curve not lying on a surface of fixed degree: these are the
subjects of the famous Castelnuovo’s and Halphen’s theories respectively, which have
been of crucial importance in the theory of curves and much beyond; see, e.g., the works
of Chiantini and Ciliberto [12], Di Gennaro and Franco [13], for results on Castelnuovo-
Halphen’s theory in higher dimensional projective spaces. In the same vein, another line
of research investigates the k-normality of a projective variety, i.e., the objective is to
find out the least integer k such that the system of degree k hypersurfaces of the ambient
projective space cut out a complete linear system on X; see, e.g., the works of Gruson,
Lazarsfeld, and Peskine [19], Lazarsfeld [26], Alzati and Russo [1] for developments in
this direction.

Question 1.1 may be regarded as the very first step towards classifying non-degenerate
minimal degree varieties not lying on any hypersurface of degree < s. Therefore the
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classification of the usual non-degenerate minimal degree varieties may be viewed as the
case when s = 2 [25, 30].

Park [31, Problem A] posed the problem of determining the maximal possible values
of h0(IX(s)), for every s without further assumptions; thus our Question 1.2 is more
restrictive but different, inasmuch as we require the integer s to be the minimal such
that h0(IX(s)) 6= 0. Park’s problem is in fact classical and had previously led, for
instance, to significant results such as a characterization of minimal degree varieties by
Castelnuovo in terms of the number of linearly independent quadrics passing through
them. The answer to this problem in the case of curves is now well-known: an upper
bound was first obtained by Harris [20], and later improved with different methods
by L’vovsky [27]. Furthermore, Park’s extremal cases are related to the study of vari-
eties X ⊂ Pn of almost-minimal degree, i.e., deg(X) = codim(X)+2; see [11, 17, 30, 25].

Contributions and structure of the paper. In §2, we define the collection of pro-
jective varieties A(n, s,m) we are concerned with, and two basic numerical invariants:
the minimal degree dn,s,m appearing among all the varieties in A(n, s,m), and the max-
imal number α(n, s,m) of linearly independent hypersurfaces of degree s vanishing on a
given element of A(n, s,m). The study of these invariants has classical roots, as pointed
out in §1, and yet is new, to the best of our knowledge.

In §3, we focus on the case of curves. Proposition 3.1 establishes the value of the
minimal degree dn,s,1, whereas Lemma 3.2 gives the possible values of arithmetic genera
of curves in A(n, s, 1) with minimal degree.

In Lemma 3.6, we record the value of h0(IX(s)). We conjecture a bound on its
maximum value, α(n, s, 1). Question 3.5 asks whether this is the maximum possible. In
Remark 3.7, we observe instances where the bound proposed in Question 3.5 does hold.
The proof of Proposition 3.1 shows that the minimal degree is reached by some smooth
rational curves: Question 3.8 asks whether this is possible for any other degree d > dn,s,1.
Remark 3.15 points out a numerical range where the latter question has an affirmative
answer. In Remark 3.9, we collect our current knowledge around Question 3.8 in the
case of n = 3. Here we generalize range A of curves in P3 to curves embedded in higher
projective spaces and pose several questions about them (Question 3.13). Finally, in
Proposition 3.17, using curves in A(n, s, 1), we produce a non-degenerate irreducible
projective variety (that is not a cone) of arbitrarily high degree in A(n,m, s), for every
m ≥ 1, with n ≥ m+ 3.

In §4, we deal with the case of surfaces. In Theorem 4.1, we show useful upper bounds
for the dimension of linear systems on a smooth surface, using one of the building blocks
of Mori theory (the Kawamata Rationality Theorem). Remark 4.2 and Proposition 4.3
(proven in [4]) point out some circumstances where we can derive some information on
dn,s,2 and dn,3,2, respectively. The findings in Theorem 4.1, along with Proposition 4.3,
are summarized in Theorem 4.6. Finally, Remark 4.8 collects some cohomological facts
about almost-minimal degree surfaces.
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2. Two numerical invariants

Our varieties are over the complex numbers. We introduce the collections of projective
varieties we are concerned with:

Definition 2.1. Let m ≥ 1, s ≥ 3 and n ≥ m+ 2. Define

A(n, s,m) =
{

integral m-dimensional X ⊂ Pn | h0(IX(s− 1)) = 0
}
.

Since s > 1, any X ∈ A(n, s,m) is non-degenerate, i.e., it spans the ambient projec-
tive space, as one clearly has h0(IX(1)) = 0.

Definition 2.2. We introduce two numerical invariants:

dn,s,m = min {deg(X) | X ∈ A(n, s,m)} , and

α(n, s,m) = max
{
h0(IX(s)) | X ∈ A(n, s,m)

}
.

Hence α(n, s,m) is the maximal number, over the set A(n, s,m), of the linearly
independent hypersurfaces of degree s vanishing on some X ∈ A(n, s,m).

We conclude this preliminary section with an observation about minimal degrees:

Remark 2.3. For m ≥ 2, we have dn,s,m ≤ dn−1,s,m−1. To see this, take X ⊂ Pn−1
of dimension m − 1 with minimal degree deg(X) = dn−1,s,m−1. Let C(X) be the cone
over X with a single point as vertex: this sits in Pn, it has dimension m and degree
dn−1,s,m−1. Moreover, it is clear that C(X) ∈ A(n, s,m).

3. Curves

In this section, we focus on the case of curves, i.e., m = 1. For a curve X, pa(X)
denotes its arithmetic genus. For the ease of notation, we set

A(n, s) := A(n, s, 1), dn,s := dn,s,1, and α(n, s) := α(n, s, 1).

We introduce another piece of notation:

H(d, g;n) = {smooth, connected, non-deg. X ⊂ Pn,deg(X) = d, pa(X) = g} .

In the range of degree d ≥ g + 1, define

H(d, g;n)′ =
{
X ∈ H(d, g;n) | h1(OX(1)) = 0

}
.

Note that H(d, g;n)′ = H(d, g;n) whenever d > 2g − 2, as OX(1) is non-special.

Proposition 3.1. The numerical invariant dn,s satisfies

dn,s =

⌈((
n+ s− 1

n

)
− 1

)
/(s− 1)

⌉
.
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Proof. Let

δ =

⌈((
n+ s− 1

n

)
− 1

)
/(s− 1)

⌉
.

We show that dn,s = δ.
For any integer d ≥ n, the set H(d, 0;n) of all smooth and non-degenerate degree d

rational curves X ⊂ Pn has the structure of a smooth and integral algebraic variety,
whose general point X has maximal rank: hence h0(IX(t)) = 0 for some t ∈ N if and
only if dt+ 1 ≥ h0(OPn(t)), i.e., whenever it is possible for the restriction morphism to
be injective; see [24, Théorème 0.1] or [6, Theorem, p. 541] for n = 3, [5, Theorem 1]
for n = 4, and [8, Theorem, p. 355] for n > 4. Thus a general X ∈ H(d, 0;n) satisfies

h0(IX(s− 1)) = 0 if and only if (s− 1)d+ 1 ≥
(
n+ s− 1

n

)
.

This implies that dn,s ≤ δ, as we have a (rational) integral curve of degree δ.
For the converse inequality, consider any integral curve Y ⊂ Pn such that h0(IY (s−

1)) = 0, and let k = deg(Y ). Since h0(IY (s−1)) = 0, we have h0(OY (s−1)) ≥
(
n+s−1
n

)
.

Since Y is an integral curve (of arbitrary arithmetic genus), elementary considerations
give

h0(L) ≤ deg(L) + 1,

for an arbitrary line bundle L on Y . Thus

deg(OY (s− 1)) + 1 = (s− 1)k + 1 ≥ h0(OY (s− 1)) ≥
(
n+ s− 1

n

)
.

Taking the minimum, the latter inequality implies dn,s ≥ δ, which completes the proof.
�

Lemma 3.2. Let X ⊂ Pn be an integral curve X ∈ A(n, s) such that deg(X) = dn,s.
Then its arithmetic genus satisfies

pa(X) ≤ (s− 1)dn,s + 1−
(
n+ s− 1

n

)
.

Proof. Since h0(IX(s − 1)) = 0, Riemann-Roch shows that the statement is true if
h1(OX(s − 1)) = 0. Otherwise, assume h1(OX(s − 1)) > 0. Since h0(OX(s − 1)) ≥(
n+s−1
n

)
, Clifford’s theorem gives (s − 1)dn,s ≥ 2

(
n+s−1
n

)
− 2. By Proposition 3.1, we

have

(s− 1)(dn,s − 1) + 2 ≤
(
n+ s− 1

n

)
.

Altogether, they give
(
n+s−1
n

)
≤ s− 1, contradicting the assumption s ≥ 3. �

Remark 3.3. Fix an integer g such that 0 ≤ g ≤ (s− 1)dn,s + 1−
(
n+s−1
n

)
. Again, as

in the proof of Lemma 3.2, Proposition 3.1 yields

(s− 1)(dn,s − 1) + 2 ≤
(
n+ s− 1

n

)
,

and so g ≤ s− 2.
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Claim. We have s− 2 ≤ dn,s − n.
Proof of the Claim. By contradiction, assume dn,s ≤ n + s − 3. By
Proposition 3.1, in order to obtain a contradiction, it is enough to show

(s− 1)(n+ s− 3) + 2 ≤
(
n+ s− 1

n

)
.

Let ϕ(n, s) =
(
n+s−1
n

)
−(s−1)(n+s−3)−2. This function is non-negative

in the desired range. Indeed, consider

ϕ(3, s) = (s+ 2)(s+ 1)s/6− s(s− 1)− 2.

It is clear this is non-negative for all s ≥ 3. Moreover:

ϕ(n+ 1, s)− ϕ(n, s) =

(
n+ s− 2

n

)
− s+ 1 ≥ 0, for all s ≥ 3,

which leads to a contradiction.

By the Claim, [6, Theorem, p. 541] for n = 3, [5, Theorem 1] for n = 4, [8, Theorem,
p. 355], a general curve X ∈ H(dn,s, g;n)′ has maximal rank. Moreover, for each integer

g with 0 ≤ g ≤ (s−1)dn,s+1−
(
n+s−1
n

)
, there exists a curve X ∈ H(dn,s, g;n) such that

h0(IX(s−1)) = 0. Since h1(OX(1)) = 0, we have h0(ωX(−1)) = 0. The latter condition
is equivalent to h0(ωX(−t)) = 0 for all t ≥ 1. Hence h1(OX(t)) = 0 for t = s − 1, s.
Moreover, we have:

h1(IX(s− 1)) = (s− 1)dn,s + 1− g −
(
n+ s− 1

n

)
,

h0(IX(s)) = h1(IX(s)) +

(
n+ s

n

)
− sdn,s − 1 + g.

Now, choose g0 = (s− 1)dn,s + 1−
(
n+s−1
n

)
, so that h1(IX(s− 1)) = 0. Furthermore

h2(IX(s− 2)) = h1(OX(s− 2)) = 0,

where the right-most equality holds because s ≥ 3. By the well-known Castelnuovo-
Mumford’s Lemma, we derive

h1(IX(t)) = 0 for all t ≥ s.
Finally,

h0(IX(s)) =

(
n+ s

n

)
− sdn,s − 1 + g0 =

(
n+ s− 1

n− 1

)
− dn,s.

To summarize, in Remark 3.3, we have shown the following:

Remark 3.4. Setting g0 = (s− 1)dn,s + 1−
(
n+s−1
n

)
, we have:

dn,s ≥ n+ g0;

additionally, a general curve X ∈ H(dn,s, g0;n)′ satisfies

h0(IX(s− 1)) = 0 and h0(IX(s)) =

(
n+ s− 1

n− 1

)
− dn,s.

We point out that such curves have an s-linear resolution and were studied in P3
by Eisenbud and Goto [14, §5]. Whence such curves exist in every Pn for n ≥ 3. [14,
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Corollary 5.1] relates the s-linear resolution of a space curve with the maximal rank
property. The latter was established for curves in P3 in [7, Theorem 1].

Question 3.5. Is it true that

α(n, s) =

(
n+ s− 1

n− 1

)
− dn,s?

Keep the definition of g0 from Remark 3.4. Does equality hold if and only if X is a
general curve in H(dn,s, g0;n)′?

Lemma 3.6. Let n ≥ 3 and s ≥ 3. Let X ⊂ Pn be an integral and non-degenerate
curve such that h0(IX(s− 1)) = 0. Fix a general hyperplane H ⊂ Pn. Then

h0(IX(s)) =

(
n+ s− 1

n− 1

)
− deg(X)− h1(IX(s− 1)) + h1(IX(s))+(1)

+ h1(OX(s− 1))− h1(OX(s)).

Proof. Fix a general hyperplane H ⊂ Pn. Note that h0(H, IX∩H(s)) =
(
n+s−1
n−1

)
−

deg(X) + h1(H, IX∩H(s)). Since h1(OX(t)) = h2(IX(t)) for all t ∈ Z, in order to
conclude it is sufficient to use the long exact sequence in cohomology of the exact
sequence

(2) 0 −→ IX(s− 1) −→ IX(s) −→ IX∩H,H(s) −→ 0,

along with the assumption h0(IX(s− 1)) = 0. �

Now we discuss the term appearing on the right-hand side of equality (1).

Remark 3.7. In the setting of Lemma 3.6, as usual let d = deg(X) and g = pa(X).
Since h0(IX(s− 1)) = 0, by Riemann-Roch, we have

h1(IX(s− 1)) = (s− 1)d+ 1− g −
(
n+ s− 1

n

)
.

Define the numerical function ψ(t) := h1(OX(t− 1))− h1(OX(t)). For fixed integers g,
h1(IX(s)) and ψ(s), the right-hand side of (1) is a strictly decreasing function in d.

Since deg(OX(t)) = d+ deg(OX(t− 1)), Serre duality and Riemann-Roch give

0 ≤ ψ(t) ≤ d.

Therefore a class of curves for which the term h1(OX(s − 1)) − h1(OX(s)) is zero is
realized when h1(OX(s− 1)) = 0.

Moreover, note that the long exact sequence in cohomology of (2) yields

h0(IX(s)) ≤
(
n+ s− 1

n− 1

)
− d,

whenever h1(H, IX∩H,H(s)) = 0. As in [32, Chapter 3], let χ denote the minimal
non-negative integer such that h1(H, IX∩H,H(χ + 1)) = 0. As classically shown by
Castelnuovo, using (2) one obtains h1(OX(t)) = 0 for all t ≥ χ [32, Theorem 1, p.
52]. Furthermore, h1(IX(t)) ≥ h1(IX(t + 1)) for all t ≥ χ [32, Lemma 2, p. 53], and
h1(IX(t)) > h1(IX(t+ 1)) whenever t > χ and h1(IX(t)) 6= 0.
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Note that the proof of Proposition 3.1 shows that a curve in A(n, s) of minimal
degree dn,s can be chosen to be smooth (and rational). More generally, we wonder the
following:

Question 3.8. Let n ≥ 3, s ≥ 3 and d > dn,s.

(i) Is there an integral and non-degenerate curve X ⊂ Pn such that deg(X) = d,
h0(IX(s− 1)) = 0 and h0(IX(s)) 6= 0?

(ii) Can we choose such an X to be smooth?

In the next two remarks we recall our knowledge around Question 3.8 for n = 3.

Remark 3.9. Recall that, by Proposition 3.1,

d3,s =

⌈((
s+ 2

3

)
− 1

)
/(s− 1)

⌉
.

For d, s ≥ 3, to each pair (d, s), we attach the set of degree d curves in P3 not contained
in any surface of degree < s. Given (d, s), Halphen’s question asks in particular to
determine the maximum genus of a curve associated to this pair. It is customary to
divide the set of pairs (d, s) into four regions; see [23, §5].

Range ∅: d < (s2 + 4s+ 6)/6. In this range, there is no integral and non-degenerate
curve X ⊂ P3 such that deg(X) = d and h0(IX(s− 1)) = 0 [22, Theorem 3.3].

Range A: (s2 + 4s + 6)/6 ≤ d < (s2 + 4s + 6)/3. In this range, one finds curves
with h1(OX(s − 1)) = 0 and hence h1(OX(s)) = 0. Thus if h0(IX(s − 1)) = 0 and

h0(IX(s)) 6= 0, by Riemann-Roch one has (s−1)d+1−g ≥
(
s+2
3

)
and sd+1−g ≤

(
s+3
3

)
.

Moreover, if ds(s+ 2)/4e ≤ d < (s2 + 4s+ 6)/3, it is known such a curve exists for any
such choice of (d, s), along with curves reaching the maximal genera allowed; see, e.g.,
[3, 15, 16]. To fill in all (d, s) such that (s2 + 4s + 6)/6 ≤ d < ds(s + 2)/4e the same

result (the existence of curves with (d, s) and g = (s − 1)d + 1 −
(
s+2
3

)
) is only known

for s large enough, i.e., s ≥ 10.5× 105, by the recent [9, Theorem 1].

Range B: (s2 + 4s+ 6)/3 ≤ d < s(s− 1). Hartshorne and Hirschowitz constructed,
for any (d, s) in this range, smooth space curves with very high genera and conjectured
that they have the maximal genus for all curves associated to (d, s) [23, Théorème 4.1].

Range C: d > s(s − 1). One finds a smooth degree d space curve X such that
deg(X) = d and h0(IX(s − 1)) = 0; Gruson and Peskine classified all such curves X
of maximal genus ([18, Theorem 3.2], [22, Theorem 3.1], [28, Theorem 1.1]): if d ≡ 0
(mod s), these curves are complete intersections of a surface of degree s and a surface of
degree d/s; in all other casesX is linked to a plane curve C of degree deg(C) = sdd/se−d,
by the complete intersection of a surface of degree s and a surface of degree dd/se. For
d ≥ s2, we have h0(IX(s)) ≤ 2 with equality if and only if d = s2 and X is the complete
intersection of two surfaces of degree s.

Remark 3.10. Assume (d, s) is in Range A. Let X ⊂ P3 be any integral curve
with deg(X) = d, h1(OX(s − 1)) = 0, h0(IX(s − 1)) = 0, and h0(IX(s)) 6= 0, i.e.,
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by Riemann-Roch one has (s − 1)d + 1 − g ≥
(
s+2
3

)
, and sd + 1 − g ≤

(
s+3
3

)
, where

g = pa(X) is the arithmetic genus of X. All curves constructed in [3, 9, 10, 15, 16]

have h1(IX(s− 1)) = h2(IX(s− 1)) = 0 and hence h0(IX(s)) =
(
s+2
2

)
− d. The ones in

the main results of [3, 9] have g = d(s − 1) + 1 −
(
s+2
3

)
, whereas the ones given in [3,

Proposition 4.3] and in [10, Theorem 1.2 and Corollary 1.3] have many different genera
for the fixed pair (d, s).

We generalize Range A to curves embedded in Pn for any n ≥ 3. For all integers
n ≥ 3, s ≥ 2 and d ≥ dn,s, let B(n, s, d) (resp. B(n, s, d)′) denote the set of all smooth
and connected (resp. integral)X ∈ A(n, s) such that deg(X) = d and h1(OX(s−1)) = 0.

Definition 3.11. Curves in B(n, s, d) are said to be in the generalized Range A.

Remark 3.12. Let X ∈ B(n, s, d)′. Since h1(OX(s − 1)) = 0, Riemann-Roch gives
h0(OX(s− 1)) = d(s− 1) + 1− pa(X). Since h0(IX(s− 1)) = 0, one obtains h0(OX(s−
1)) ≥ h0(OPn(s− 1)) =

(
n+s−1
n

)
, and so:

pa(X) ≤ d(s− 1) + 1−
(
n+ s− 1

n

)
.

Question 3.13. We pose the following questions:

(i) For which choices of d, s, n, does there exist X ∈ B(n, s, d) (or even X ∈
B(n, s, d)′) such that pa(X) = d(s− 1) + 1−

(
n+s−1
n

)
?

(ii) What is the maximal arithmetic genus of curves in B(n, s, d) (or in B(n, s, d)′)?
(iii) For which g0 and every 0 ≤ g ≤ g0, does there exist X ∈ B(n, s, d) (or X ∈

B(n, s, d)′) with such arithmetic genus?

Remark 3.14. For any X ∈ B(n, s, d)′, one has h2(IX(s − 1)) = 0. Suppose there

exists X ∈ B(n, s, d)′ such that pa(X) = d(s− 1) + 1−
(
n+s−1
n

)
. Thus h0(IX(s− 1)) =

h2(IX(s−1)) = 0. By Riemann-Roch, h0(OX(s−1)) = 0, and hence h1(IX(s−1)) = 0.
Therefore, these curves are exactly the integral and non-degenerate degree d curves
X ⊂ Pn such that hi(IX(s− 1)) = 0 for all i ≥ 0; this is because for any curve Y ⊂ Pn,
one has hi(IY (t)) = hi+1(OPn(t)) = 0 for all i ≥ 3, i 6= n and all t ∈ Z, and for all
t > −n when i = n.

Take any hyperplane H ⊂ Pn. By the exact sequence (2), we have h1(IX(s)) =
h1(H, IX∩H,H(s)). Assume h1(OX(s−2)) = 0, i.e., h1(IX(s−2)) = 0. Since hi(IX(t)) =
0 for all i ≥ 3 and t > −n, we have hi(IX(s − 1 − i)) = 0 for all i ≥ 0. In this case,
Castelnuovo-Mumford’s lemma gives h1(IX(t)) = 0 for all t ≥ s: this implies that the
homogeneous ideal of X is generated by H0(IX(s)).

Now we drop the assumption h1(OX(s−2)) = 0, and instead suppose h1(IX(s)) = 0,

i.e., h1(H, IX∩H,H(s)) = 0. This implies d ≤
(
n+s−1
n−1

)
. In this case, the Castelnuovo-

Mumford’s lemma gives h1(IX(t)) = 0 for all t > s, which implies that the homogeneous
ideal of X is generated by H0(IX(s)) and H0(IX(s+ 1)).

Remark 3.15. Fix integers n, d, g, s such that n ≥ 3, s ≥ 3, with

(i) 0 ≤ g ≤ d− n,
(ii) (n+ 1)d ≥ ng + n(n+ 1),

(iii) (s− 1)d ≥
(
n+s−1
n

)
+ g − 1, and



MINIMAL DEGREE EQUATIONS FOR CURVES AND SURFACES 9

(iv) sd ≤
(
n+s−1
n

)
+ g − 2.

By [6, Theorem, p. 541] for n = 3, [5, Theorem 1] for n = 4 and [8, Theorem, p. 355]
there exists a smooth, connected, and non-degenerate maximal rank curve X ⊂ Pn with
deg(X) = d, arithmetic genus pa(X) = g, and h0(IX(s)) =

(
n+s
n

)
− sd+ g − 1. Hence,

setting the arithmetic genus to be the maximal in this range, i.e., g = d−n, (i) and (ii)
in Question 3.8 have a positive answer, whenever

h0(IX(s)) > 0⇐⇒ (s− 1)d <

(
n+ s

n

)
− n− 1.

Note that inequality (iii) implies h0(IX(s− 1)) = 0, because X has maximal rank.

Using curves of minimal degree in A(n, s), for every m ≥ 1 (with n ≥ m + 3),
we construct an non-degenerate, irreducible variety (that is not a cone) of arbitrarily
high degree in A(n, s,m); this is accomplished in Proposition 3.17, based on the vector
bundle construction featured in the next remark.

Remark 3.16. Let m ≥ 1 and e ≥ 2. Consider the rank m + 1 vector bundle E =
OP1 ⊕OP1(−e)⊕m on P1. Define the corresponding projective bundle T = P(E) and let
π : T −→ P1 be the vector bundle projection on P1. The map π makes T a Pm-bundle
and hence Pic(T ) ∼= Z2, with basis given by a fiber f of π and any line bundle on T
whose restriction to any fiber of π has degree one; see, e.g., [21, Ex. II.7.9]. Among
these generators we take the only one, say h, such that |h| = {h} (this corresponds to
the unique surjection OP1 ⊕ OP1(−e)⊕m −→ OP1 , [21, Ch. II]). As an abstract variety,
h is the trivial Pm−1-bundle over P1 and hence h ∼= P1 × Pm−1.

Similarly to the case of surfaces [21, Ch. V], for any a, b ∈ Z we have |ah + bf | 6= ∅
if and only if either a = 0 and b ≥ 0 or a > 0 and b ≥ ae. The line bundle OT (ah+ bf)
is globally generated (resp. ample) if and only if a ≥ 0 and b ≥ ae (resp. a > 0 and
b > ae).

The complete linear system h+ef induces a morphism u : T −→ Pn, where n = e+m,
as h0(OP1(e) ⊕ O⊕mP1 ) = e + 1 + m. Let W = u(T ) be the image of T . The morphism
u contracts h to an (m − 1)-dimensional linear space in E ⊂ Pn, whereas u|T\h is an
embedding. Thus u is a morphism birational onto its image, as the support of h is
codimension-one.

Claim 1. The variety W has degree e.
Proof of Claim 1. Since u is a morphism birational onto its image,
deg(W ) = (h+ef)m+1, where the latter integer is the intersection prod-
uct in the Chow ring of T of m+ 1 copies of the divisor h+ ef defining
the morphism. Since any two different fibers of π are disjoint, the class
f2 in the Chow ring is zero. Thus (h+ ef)m+1 = hm+1 + (m+ 1)ehmf .
Fix a fiber F ∈ |f | of π. Since h|F is the degree one line bundle on F
and F ∼= Pm, we have hmf = 1 and hence (m+ 1)ehmf = (m+ 1)e.
If m = 1, T is a rational ruled surface. The normal bundle of h has
degree h2 = −e. Hence the conclusion follows for m = 1.
Assume m ≥ 2. Since h ∼= P1 × Pm−1, we have Pic(h) ∼= Z2. As gener-
ators of the lattice Pic(h), we take the pullbacks of hyperplane classes
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of the factors through the projections π1 : h −→ P1 and π2 : h −→ Pm−1,
i.e., Oh(1, 0) = π∗1(OP1(1)) and Oh(0, 1) = π∗2(OPm−1(1)).
By definition, the restriction h|h is the normal bundle of h in T and hence
h|h ∼= Oh(−e, 1), by induction on m and using standard exact sequences

on normal bundles. Thus hm+1 = hm|h = −me, concluding the proof.

By Claim 1, W is a minimal degree (m + 1)-dimensional subvariety of Pn, where
n = e+m. It is a cone whose vertex is the (m− 1)-dimensional linear space E = u(h),
and the base of the cone is a degree e rational normal curve Ce in a linear space
M ⊂ Pn such that dimM = n − m = e and M ∩ E = ∅. Thus W is arithmetically
Cohen-Macaulay. In particular, for any integer s > 0, a Weil divisor D ⊂W is contained
in a degree s hypersurface of Pn not containing W if and only if its pullback D′ to T
is a part of the linear system |sh + sef |, i.e., there exists a divisor D′′ ≥ 0 such that
D′ + D′′ ∈ |sh + sef |. Thus h0(ID(s)) = h0(IW (s)) if D′ ∈ |h + bf | for some integer
b ≥ se+ 1. In the Chow ring, we have:

deg(D) = D′ · (h+ ef)m = (h+ bf) · (h+ ef)m =

= hm+1 +mehmf + b = b.

Moreover, we record the following claims which will be useful in Proposition 3.17:

Claim 2. Every line L ⊂W meets the (m− 1)-dimensional linear space
E = u(h). Moreover, either L ⊂ E (and hence it is contained in every
u(F ), where F is any fiber of the ruling π) or L is contained in a unique
m-dimensional linear space U = u(F ) ⊂W with F a fiber of π.
Proof of Claim 2. Assume the existence of a line L ⊂ W such that
L ∩ E = ∅. Let `E : Pn \ E −→ Pn−m denote the linear projection from
E. Note that `E(W \E) = Ce. The algebraic set `E(L) would be a line,
whereas `E(L) ⊆ `E(W \E) = Ce is an irreducible curve of degree e ≥ 2,
a contradiction. Thus L ∩ E 6= ∅.

Assume L * E. Thus L∩E is a single point. Let `E : Pn\E −→ Pn−m
denote the linear projection from E. Again, Ce = `E(W \ E), which is
the degree e rational normal curve in Pn−m = Pe. For each q ∈ Ce,
the set `−1E (q) ∩ (W \ E) is of the form Uq \ Uq ∩ E, where Uq is an
m-dimensional linear space, which is the image of a unique fiber Fq of
π. Since L∩E is a single point and L is a line, `E(L \L∩E) is a point
p ∈ Ce. Set U := Up and F := Fp.

Claim 3. For a general D′ ∈ |h+ bf | with b ≥ m+e+1, the Weil divisor
D = u(D′) of W is not a cone.
Proof of Claim 3. Recall u(T ) = W and u(h) = E. Up to the identifica-
tion between h and P1 × Pm−1 and between E and Pm−1 the morphism
u|h : P1 × Pm−1 is the projection onto the second factor. Suppose by
contradiction that D is a cone and suppose v is a point in its vertex.

First assume v ∈ E. Before taking a general D′ ∈ |h + bf |, we fix m
different fibers Fi of π, for 1 ≤ i ≤ m. Thus Fi∩Fj = ∅ for all i 6= j. Up
to the identification of h with P1 × Pm−1, one has Fi ∩ h = {pi} × Pm−1
for some pi ∈ P1. Set F = ∪mi=1Fi ⊂ T . Since b ≥ m + e + 1, we have
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h1(OT (h+ (b−m)f)) = 0. Thus the exact sequence of sheaves

0 −→ OT (h+ (b−m)f) −→ OT (h+ bf) −→ OF (h+ bf) −→ 0

shows that for a general C ′ ∈ |OF (h + bf)| there exists some D′ ∈
|OT (h + bf)| with C ′ = D′ ∩ F . Note that OFi(h + bf) is the degree
one line bundle on Fi. For a general C ′ ∈ |OF (h+ bf)|, the divisor C ′|Fi

of {pi} × Pm−1 is of the form {pi} × Hi with Hi hyperplane of Pm−1
and such that ∩mi=1Hi = ∅. For a general D′ ∈ |h+ bf |, we may assume
that D′ ∩ F is as C ′. Recall we are identifying E with Pm−1, h with
P1 × Pm−1 and u|h with the projection onto the second factor. Thus
there is an index i ∈ {1, . . . ,m} such that v /∈ Hi, as the intersection of
all of them is empty. Then v /∈ u(Fi ∩D′) ∩ E and so v /∈ u(Fi ∩D′).

Since D = u(D′) is not an m-dimensional projective space (it has
degree b), and the (m − 1)-dimensional projective space u(Fi ∩ D′) is
contained in D and v /∈ u(Fi∩D′), it follows that v is not a vertex of D.

Suppose now v /∈ E. In this case, by Claim 2 and the first part of this
proof, the vertex of D can only consist of the single point v. Therefore,
there is a unique fiber G of π such that v ∈ u(G). Every line through v
contained in W is contained in u(G). Since u(D′) * u(G), v cannot be
the vertex of D.

Finally, observe that in the proof of Proposition 3.17 we utilize the claims above
taking a general D′ ∈ |h + bf | with b ≥ max{m + e + 1, se + 1}, so that both the
observation after Claim 1 and Claim 3 are satisfied.

We are now ready to prove the following

Proposition 3.17. Let m ≥ 1, n ≥ m + 3, s ≥ 3 and d ≥ max{m + dn−m,s +
1, (s−1)dn−m,s+1}. There exists an integral and non-degenerate m-dimensional variety
X ⊂ Pn, with deg(X) = d and h0(IX(s− 1)) = 0. Moreover, X is not a cone.

Proof. Set δ := dn−m,s. Let H ⊂ Pn be a linear subspace with dimH = n −m. Then
there exists a smooth rational curve Y ⊂ H such that

deg(Y ) = δ, h0(H, IY,H(s− 1)) = 0, and h0(H, IY,H(s)) =

(
n+ s−m
n−m

)
− δ;

see [24, Théorème 0.1] or [6, Theorem, p. 541] for n − m = 3, [5, Theorem 1] for
n−m = 4, and [8, Theorem, p. 355] for n−m > 4.

The curve Y is an isomorphic linear projection of Cδ ⊂ Pδ. We view H as a linear
subspace of Pδ. Let V ⊂ Pδ be a linear subspace such that dimV = δ − n + m − 1,
V ∩ Cδ = ∅ and Y = `V (Cδ), where `V is the projection from V . Therefore, with these
conventions, V ∩H = ∅.

Before we proceed, we introduce another piece of notation: for two varieties X and
Y , the variety J(X,Y ) denotes their join; when X = Y , denote J(X,X) = σ2(X), the
secant variety of X.

Regard the linear space Pδ as a linear subvariety of Pδ+m. Fix an (m−1)-dimensional
linear space E ⊂ Pδ+m such that E ∩H = ∅ and J(H,E) ∩ V = ∅; this is possible by
dimension count.
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Let W ⊂ Pδ+m be the cone whose vertex is E and whose base is the rational normal
curve Cδ. Such a cone W is a minimal degree (m + 1)-dimensional cone as the one
described in Remark 3.16 (where δ = e). Therefore σ2(W ) ∩ V = ∅.

Now, let `V : Pδ+m \ V −→ Pn be the linear projection from V , and let W ′ = `V (W ).
Since σ2(W ) ∩ V = ∅, the linear projection `V induces an injective map between the
two cones W and W ′ which is an isomorphism outside their vertices. By construction,
W ′ is a cone with the smooth rational curve Y as its base. Note that h0(IW ′(s− 1)) =
h0(IY (s− 1)) = 0.

Let D ⊂ W be general as discussed in Remark 3.16: D is such that deg(D) = d,
dimD = m and h0(Pδ+m, ID(s− 1)) = h0(Pδ+m, IW (s− 1)). (Here we use s− 1 instead
of s and the inequality d ≥ max{m+ δ + 1, (s− 1)δ + 1} in the statement.)

Set X = `V (D). Since `V |W is injective, X is an m-dimensional integral variety and

deg(X) = d. Recall h0(Pδ+m, ID(s− 1)) = h0(Pδ+m, IW (s− 1)).
Now we show h0(Pn, IX(s− 1)) = 0. On the contrary, suppose h0(Pn, IX(s− 1)) 6= 0

and take a hypersurface N ∈ |IX(s − 1)|. Taking the cone NV over N with vertex V
we obtain a hypersurface in Pδ+m containing D, i.e., NV ∈ |ID(s − 1)|. However, N
cannot contain W ′ because h0(IW ′(s − 1)) = 0, and so NV cannot contain W either.
This contradicts the equality h0(Pδ+m, ID(s− 1)) = h0(Pδ+m, IW (s− 1)).

Recall that the map `V |W is a bijection of the cones W and W ′, which is an isomor-
phism outside their vertices and induces an isomorphism between the m-dimensional
linear subspaces of W and the ones of W ′. Thus each line contained in W ′ is the image
of a unique line of W ′. If J ⊂ W is a curve such that `V (J) a line, then J is a line.
Since D is not a cone by Claim 3 of Remark 3.16, X is not a cone. �

4. Surfaces

In this section, we shift gears to surfaces, i.e., m = 2. We start by recording an
upper bound on the dimension of a linear system on a smooth surface, derived from the
Kawamata Rationality Theorem. (For a given projective surface X, denote by κ(X) its
Kodaira dimension.)

Theorem 4.1. Let n ≥ 4, s ≥ 2 and d ≥ n − 1. Let X ⊂ Pn be a smooth, connected
and non-degenerate degree d surface. Then:

(i) If κ(X) 6= −∞, then h0(OX(s)) ≤ 2 + s2d/2.
(ii) If κ(X) = −∞, X � P2 and X is P1-bundle over a smooth curve π : X → D

such that the rational fibers have degree one (i.e., X is a scroll), then h0(OX(s)) ≤
1 + (s2 + 2s)d/2.

(iii) We have h0(OX(s)) ≤ 1 + (s2 + 3s)d/2 and equality holds if and only if d = k2

for some k such that
(
k+2
2

)
≥ n+ 1, X ∼= P2 and X is isomorphic to either the

degree k Veronese embedding of P2 or to an isomorphic linear projection of it.
(iv) Otherwise, if ω⊗2X (3) is nef, then h0(OX(s)) ≤ 1 + (s2 + 3

2s)d/2.

Proof. Fix a general C ∈ |OX(s)|. By Bertini’s theorem, C is a smooth and connected
curve of degree sd. By the genus formula, C has genus

g = 1 + (s2d+ ωX · OX(s))/2.
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Multiplying by the section C yields the exact sequence

(3) 0 −→ OX −→ OX(s) −→ OC(s) −→ 0.

Thus h0(OX(s)) ≤ h0(OC(s)) + 1, where equality holds if h1(OX) = 0.
If s2d = deg(OC(s)) ≤ 2g − 2, then this divisor on C is special and Clifford’s theorem
[2, pp. 107–108] gives

h0(OC(s)) ≤ 1 + s2d/2.

Whence h0(OX(s)) ≤ 2 + s2d/2.
From now on, assume s2d ≥ 2g− 1 (or equivalently, OC(s) is non-special). Again, by

the genus formula, one has
ωX · OX(1) < 0.

Note that Riemann-Roch gives h0(OC(s)) = s2d+ 1− g = 1
2(s2d− sωX · OX(1)).

Before we proceed, recall that a line bundle L on a projective variety X of dimension
≥ 2 is said to be nef if L · C ≥ 0, for every algebraic curve C ⊂ X.

Claim. If ωX · OX(1) < 0, then κ(X) = −∞.
Proof of the Claim. Assume on the contrary that κ(X) ≥ 0. Let X ′

be the minimal model of X and ϕ : X −→ X ′ be the corresponding
morphism. Since κ(X ′) = κ(X) ≥ 0, ωX′ is nef. We have ωX ∼= ϕ∗ωX′+
E, where E is an effective divisor and E = 0 if and only if X is minimal.
Since ϕ∗ωX′ is nef and OX(1) is effective, we derive

(ϕ∗ωX′ + E) · OX(1) ≥ 0,

which is a contradiction.

The Claim shows that the Kodaira dimension of X is κ(X) = −∞, and statement (i)
is proven.

We recall the Kawamata Rationality Theorem in the case of smooth surfaces. Let X
be a smooth projective surface such that ωX is not nef. For each ample line bundle L
on X, the nef-value τ of L with respect to ωX is defined as

τ(L) = sup{t > 0 | L+ tωX is nef},
where L+ tωX is viewed as a functional on the cone of curves depending on a parameter
t. The aforementioned theorem states that the real number τ is rational, τ = u/v, where
u is a positive integer and v ∈ {1, 2, 3}; see, e.g., [11, Theorem 1.5.2], [29, Corollary
1-2-15]. Moreover, L + τωX is nef [11, Lemma 1.5.5], [29, Theorem 1-2-14]. Thus we
have the following cases:

• u = 1 and v = 3. The cone of curves of X has an extremal ray of length
3 = dimX+ 1; see [29] for these notions. This implies X ∼= P2 and OX(1) is the
generator of Pic(X). Since n ≥ 4, X is embedded as described in the statement.

• u = 1 and v = 2. Since L + 1
2ωX is nef, so is the line bundle 2L + ωX . In

this case, there exists a curve C ⊂ X such that C · (2L + ωX) = 0. By [29,
Theorem 1-4-8], X is a P1-bundle over a smooth curve D, π : X −→ D, and
L ∼= OX(1) has degree 1 on each fiber C of π. In such a case, ωX(2) is nef and
hence ωX · OX(1) ≥ −2. This proves statement (ii).
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• u ≥ 2 or v = 1. Then ω⊗2X (3) is nef and therefore ωX · OX(1) ≥ −3/2. In this
case, we obtain (iv).

In conclusion, the discussion above yields ωX · OX(1) ≥ −3 for all X, with equality if
and only if X ∼= P2. This proves statement (iii). �

Remark 4.2. Let n, s be integers as in the assumptions of Theorem 4.1, and let k be
an integer. Assume

(
n+s
n

)
≤ 1 + (s2 + 3s)k2/2. From the ideal sheaf exact sequence and

Theorem 4.1 (iii), one has

h1(IX(s)) ≥ 1 + (s2 + 3s)k2/2−
(
n+ s

n

)
,

for any isomorphic projection X ⊂ Pn of the degree k Veronese embedding of P2. As-
suming the existence of such an X with the additional property that the latter inequality
is an equality, one obtains h0(IX(s)) = 0. Thus dn,s+1,2 ≤ deg(X) = k2.

When s = 2, one has the following result that was shown in [4]:

Proposition 4.3 ([4, Theorem 2]). Let d ≥ 2 and n ≥ 5. Let X ⊂ Pn be a general
isomorphic linear projection of a degree k Veronese embedding Y ⊂ PN of P2, where
N = (k2 + 3k)/2. Then

h0(IX(2)) = max

{
0,

(
n+ 2

2

)
−
(

2k + 2

2

)}
,

and h1(IX(2)) = max

{
0,

(
2k + 2

2

)
−
(
n+ 2

2

)}
.

An immediate consequence of Proposition 4.3 and Remark 4.2 is

Corollary 4.4. Let n ≥ 5 be an odd integer. Then dn,3,2 ≤ (n+ 1)2/4.

Proof. Let X ⊂ Pn be a general linear projection of the degree (n + 1)/2 Veronese
embedding of P2. By Proposition 4.3, we have

h0(IX(2)) = max

{
0,

(
n+ 2

2

)
−
(
n+ 3

2

)}
= 0.

�

Question 4.5. Fix integers d ≥ 2, s ≥ 3, and n ≥ 5. Let X ⊂ Pn be a general
isomorphic linear projection of a degree k Veronese embedding Y ⊂ PN of P2, where
N = (k2 + 3k)/2. Is it true that

h0(IX(s)) = max

{
0,

(
n+ s

n

)
−
(
sk + 2

2

)}
,

and h1(IX(s)) = max

{
0,

(
sk + 2

2

)
−
(
n+ s

n

)}
?

Theorem 4.6. Let n ≥ 6 be even. Then h0(IX(2)) ≥
(
n+2
2

)
− 1 − 5d for all smooth

connected and non-degenerate surfaces of degree d. Moreover, there exists a smooth and
connected surface X ⊂ Pn such that deg(X) = n2/4, h0(IX(2)) = 0, and X ∼= P2.
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Proof. The first part is statement (iii) of Theorem 4.1. By Proposition 4.3, the general
isomorphic linear projection of the degree k Veronese surface has

h0(IX(2)) = max

{
0,

(
n+ 2

2

)
−
(

2k + 2

2

)}
.

Thus the choice k = n/2 establishes the second statement. �

Remark 4.7. Let X ⊂ Pn be an integral and non-degenerate surface of sectional genus
g and degree d. Then h0(IX(2)) ≤

(
n+1
2

)
− 2d− 1 + g.

Proof. Let H ⊂ Pn be a general hyperplane. Consider the exact sequence

(4) 0 −→ IX(s− 1) −→ IX(s) −→ IX∩H,H(s) −→ 0.

Since H is general, C = X ∩H is a smooth curve of degree d and genus g. Hence, by
Riemann-Roch, h0(OC(2)) ≥ 2d+ 1− g. Thus

h0(H, IX∩H,H(2)) ≤
(
n+ 1

2

)
− 2d− 1 + g.

By (4) and h0(IX(1)) = 0, the conclusion follows. �

Remark 4.8. A complete classification of surfaces of almost-minimal degree, i.e., all
integral and non-degenerate surfaces X ⊂ Pn such that deg(X) = n is known; see,
e.g., [25, 30]. Let H ⊂ Pn be a general hyperplane. Since C = X ∩ H is a degree n
integral curve spanning H, there are two possibilities: either C is arithmetically Cohen-
Macaulay with pa(C) = 1 or C is a smooth rational curve. In the latter case, X may
have only finitely many singular points.

(i) C is arithmetically Cohen-Macaulay with pa(C) = 1. The surface X is linearly
normal of degree deg(X) ≥ 2pa(C) + 1. Note that this case may occur for all n:
take a cone over a linearly normal elliptic curve C ⊂ Pn−1.

(ii) C is a smooth rational curve. Thus h1(H, IX∩H,H(1)) = 1, h1(H, IX∩H,H(2)) =

0, and so h0(H, IX∩H,H(2)) =
(
n+1
2

)
− 2n− 1. It is clear that

h1(IX(1)) ≤ h1(H, IX∩H,H(1)) = 1.

From (4), we derive
(
n+1
2

)
− 2n− 2 ≤ h0(IX(2)) ≤

(
n+1
2

)
− 2n− 1. Now, if X is

smooth and X ∩ H is rational, then the classification of surfaces gives that X
is rational. Thus h1(OX) = 0. A standard exact sequence gives h0(OX(1)) =
h0(OX∩H(1))+1 = n+2 and h0(OX(2)) = h0(OX∩H(2))+h0(OX(1)) = 3n+3.
Thus h1(IX(1)) = 1 and so X is not linearly normal. Let X ′ ⊂ Pn+1 be a
smooth surface such that X is an isomorphic linear projection of X ′ from some
p ∈ Pn+1 with p not contained in the secant variety of X ′. Thus deg(X ′) = n and
since X ′ ⊂ Pn+1, it is either a minimal degree surface scroll or (when n = 4) the
Veronese surface. In any case, one knows the minimal free resolution of X ′, and
it follows that X ′ has property K2, following Alzati and Russo [1, Definition
3.1]. By [1, Theorem 3.2 or Corollary 3.3], we have h1(IX(2)) = 0. Hence

h0(IX(2)) =
(
n+2
2

)
− 3n− 3.
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