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ABSTRACT 

 

MicroRNAs are a class of small non-coding RNAs involved in post-transcriptional 

regulation. Their role in almost all processes of the cell, make microRNAs ubiquitary 

players of cell development, growth, differentiation, cell to cell communication and cell 

death. Thus, cells’ physiological or pathological conditions are reflected by variations in 

the levels of expression of microRNAs, enabling them to be used as biomarkers of such 

states. In the past decade, there has been an exponential increase of studies using 

microRNAs as potential biomarkers for cancer, neurodegenerative diseases, 

inflammation and cardiac diseases, from tissues and liquid biopsies. However, none of 

them has reached the clinics yet, due to inconsistency of results through the literature and 

lack of assay standardization and reproducibility. Technological limitations of 

microRNAs detection have been, to date, the biggest challenge for using these molecules 

in clinical settings. In fact, although microarrays, RT-qPCR and RNA-seq are well-

established technologies, they all require complex procedures and trained personnel, for 

performing RNA extraction, labelling of the target and PCR amplification. All these steps 

introduce variability and, in addition, since no universally standardized protocol – from 

sample extraction to analyte detection - has been produced yet, methodological 

procedures are difficult to reproduce. For this reason, we developed a new platform for 

the rapid detection of microRNAs in biofluids composed of an innovative silicon-

photomultiplier (SiPM) based detector and a new chemistry for nucleic acid testing 

(Chem-NAT). Chem-NAT exploits a dynamic labelling chemistry which allows the 

sensitive detection of nucleic acids till single base level. On the other hand, SiPM-based 

device, compared to normal vacuum photomultipliers, grants miniaturization and higher 

capacity of fitting in a bench-top solution for clinical settings, among other advantages. 
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The new platform – ODG – has been validated for the direct detection – neither RNA 

extraction nor PCR amplification needed - of microRNA-21 in plasma of lung cancer 

patients.  

In this work, we also explored the use of microRNAs as biomarkers in metastatic 

castration resistant prostate cancer (mCRPC). We collected plasma samples from 

mCRPC patients before and after abiraterone acetate treatment – androgen deprivation 

type of drug – and performed a miRnome analysis for discovering microRNAs predicting 

the efficacy of the drug. We chose miR-103a-3p and miR-378a-5p and we validated them 

via TaqMan RT-qPCR. We discovered that the ratio between the two microRNAs is able 

to predict the efficacy of abiraterone acetate and follow the responsiveness in time.  

In liquid biopsies, extracellular vesicles are getting increasing importance for diagnostic 

and prognostic purposes. Therefore, in this work we also explored the expression of some 

microRNAs in extracellular vesicles from plasma, isolated via nickel-based method. We 

discovered that microRNA-21 and microRNA-223 are not enriched in vesicles from 

healthy individuals. 
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INTRODUCTION 

[The basis for part of this section is founded on a literature review redacted during my 

PhD. Detassis, S., Grasso, M., Del Vescovo, V., and Denti, M.A. (2017). microRNAs 

Make the Call in Cancer Personalized Medicine. Front. Cell Dev. Biol. 5, 86. 

doi:10.3389/fcell.2017.00086] 

 

1. microRNAs biology 

microRNAs (miRNAs) are small non-coding RNAs described for the first time in 1993 

(Lee et al., 1993). They are found in plants (Jones-Rhoades et al., 2006), animals and 

viruses (Grundhoff and Sullivan, 2011). They function as post-transcriptional regulators 

of gene expression, having also a role in pathological processes including cancer and 

neurodegenerative diseases (Reddy et al., 2016) (Molasy et al., 2016) (Mohammadi et al., 

2016) (da Silva Oliveira et al., 2016). miRNAs may be present as independent 

transcriptional units and both in introns or exons of other genes (Godnic et al., 2013). 

They are mainly transcribed by RNA Polymerase II, capped and polyadenylated forming 

primary miRNAs (pri-miRNA). A small group is generated by RNA Polymerase III. The 

pri-miRNA is processed in the nucleus with a mechanism of recognition distinguishing 

true pri-miRNA from other hairpin RNAs. The major determinants are a) ~35bp stem 

harboring a GHG (H = A, C or T) motif, b) a basal UG motif, c) an apical UGUG motif 

and d) a CNNC motif. These elements interact with positive or negative regulators of pri-

miRNA processing such as hnRNPA1 and SRSF3 or HUR/MSI2 and ADAR respectively 

(Auyeung et al., 2013) (Fang and Bartel, 2015). The regulators facilitate or abrogate the 

interaction of Drosha and two DGCR8 molecules with the pri-miRNA generating a 

precursor miRNA (pre-miRNA) - about 70 nt - (Lee et al., 2003) (Nguyen et al., 2015). 
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Subsequently, the pre-miRNA is transported out of the nucleus via exportin-GTPase RAN 

system, where is further processed by Dicer producing the double-stranded miRNA of 

19-22nt (Wilson et al., 2015). Dicer, together with Hsp90 chaperone (Miyoshi et al., 

2010) serves as a ruler measuring the cleavage site from the basal end to the apical loop 

which is liberated (MacRae et al., 2006). Of note, Dicer mechanism is not always the 

same, generating different duplex miRNAs from the same pre-miRNA. A complex made 

of AGO proteins binds the duplex and forms the RISC complex in an ATP-dependant 

manner (Iwasaki et al., 2010). AGO2 unwinds the duplex liberating the passenger strand 

and maintaining only one strand: the guide strand (Kobayashi and Tomari, 2016). The 

RISC complex has an important post-transcriptional role in gene expression, regulating 

stability and turnover of mRNAs. The loaded miRNA can target mRNAs, exploiting its 

sequence complementarity. If the match is perfect the system leads to mRNA degradation 

(Yekta et al., 2004), otherwise it impedes its translation (Ipsaro and Joshua-Tor, 2015) 

(Figure 1). Because of their short length, miRNAs, which usually bind the 3’UTR of 

target mRNAs, are able to target several distinct mRNAs and, on the other hand, any 

given mRNA may present many binding sites for different miRNAs (Bartel, 2009). 

Several instances of miRNAs targeting also 5’UTR and coding sequence (CDS) have 

been found (Broughton et al., 2016). 
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Figure 1. [Adapted from (Piva et al., 2013)] miRNA biogenesis and function on target mRNAs. 

 

2. Circulating microRNAs 

The discovery that miRNAs are released from the cells and have a role in cell to cell 

communication and microenvironment shaping, suggests the involvement of miRNAs not 

only in the proximal region of origin but also in distant sites (Fusco et al., 2015). For 

example, miRNAs secreted from adipose tissue are able to reverse variation in hepatic 

gene expression after a transplant with normal adipose tissue in fat-specific DICER 

knockout mice (Thomou et al., 2017). miRNAs enriched in extracellular vesicles (EVs) 

derived from bone marrow mesenchymal stem cells can be absorbed by tubular epithelial 

cells resulting in the inhibition of expression of the known targets (Collino et al., 2010). 

Over the last two decades, it has been demonstrated that a substantial number of miRNAs 

are present in blood and other body fluids, the so-called “circulating miRNAs” (c-

miRNAs). C-miRNAs have been reported to be very stable under harsh conditions such 

as high temperatures, extreme pH, and RNase activity. The reason for this high resistance 
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is their association with EVs and mostly with RNA-binding proteins (Ago2, HDL, etc) 

(Makarova et al., 2016) (Figure 2).  

 

 

Figure 2. [Adapted from (Guay and Regazzi, 2013)] Circulating miRNAs associated with protein complexes, 

lipoproteins, microvesicles and exosomes. 

 

In a study by Tuschl and colleagues, RNA-seq on 12 healthy individuals gave a 

comprehensive view of the RNA status and categorization in serum and plasma, taking 

into account fluctuations in time (12 samples per patient over a 2-month period), gender, 

female menstrual cycle and food intake. In blood of healthy individuals, miRNAs are the 

most represented RNA category, accounting for 53% and 80% of total RNA in serum and 

plasma respectively, while mRNA about 4-5%. rRNA, tRNA and scRNA, together with 

mRNAs, are more represented in serum (32%) than in plasma (12%) while both presented 

about 10-15% of nonannotated reads (Figure 3). The concentration of miRNAs in both 

plasma and serum was calculated about 5-10pM with no significant gender differences, 

which is instead manifested for specific miRNAs such those related to epithelial cell-

type-enriched, muscle-specific and neuroendocrine-specific pathways (Max et al., 2018). 
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Figure 3. [Data from (Max et al., 2018)]. Abundancy of RNA categories in plasma (A) and serum (B) 

 

In urine, miRNAs have been found in both cellular and EVs fraction. miRNAs abundance 

in urine of healthy volunteers is different among urine fractions and gender, while their 

profiling is similar in cellular versus EVs extracts (Ben-Dov et al., 2016). c-miRNAs are 

also detected in saliva (Rapado-González et al., 2018), seminal fluid (Zhang et al., 2019) 

and cerebrospinal fluid (CSF) (Kopkova et al., 2018). It is still debated whether the 

amount of miRNAs in circulation is enough to drive expression changes in recipient cells 

in vivo. Some works show that the average amount of miRNAs in exosomes is about 1 

unit per exosome (Chevillet et al., 2014) (Guzman et al., 2015) raising some skepticism 

around the role of c-miRNAs in cell to cell communication. However, it has also been 

demonstrated that some EVs associated miRNAs are a small percentage of the total pool 

of c-miRNAs (5% - miR-16) (Arroyo et al., 2011), while others may be more represented 

in EVs fraction (40-70% - let7a), revealing the need of a miRNA-dependent reasoning. 

Moreover, the semi-quantitative approach does not take into account the accumulation of 

miRNAs in recipient cells and the content heterogeneity of EVs. 

 

 



15 

 

2.1  Extracellular vesicles 

The EVs are represented by various populations of membranous particles with different 

origins and sizes. They have been observed in several body fluids such as blood (Caby et 

al., 2005), urine (Gonzales et al., 2010), saliva (Palanisamy et al., 2010), breast milk 

(Admyre et al., 2007), seminal fluid (Machtinger et al., 2016) and CSF (Izadpanah et al., 

2018). Historically they were observed for the first time in the 1950s (Sager and Palade, 

1957) and then continuously described in several biological kingdoms (Sotelo and Porter, 

1959) (De, 1959) (Jensen, 1965) always considered non-functional remnants of cells. 

1996 was a turning point when Raposo and colleagues described a possible biological 

meaning for EVs (Raposo et al., 1996). Generally EVs may be divided into three classes: 

microvesicles, exosomes and apoptotic bodies. They can be discriminated by size, 

composition and origin. Exosomes are about 50-150nm, microvesicles 150-1000nm and 

apoptotic bodies 1000-5000nm (Woith et al., 2019). Microvesicles generate by the 

outward budding of the plasma membrane while apoptotic bodies are the result of the 

programmed cell death. Exosomes biogenesis consists mainly of three different stages: 

1) formation of endocytic vesicles by invagination of plasma membranes, 2) formation of 

multivesicular bodies (MVBs) from the inward budding of the endosome and 3) fusion 

of the MVBs with the plasma membrane and release of the exosomal content. The 

exosomes formation is a tightly regulated process generally divided into endosomal 

sorting complex required for transport (ESCRT)-dependent and ESCRT-independent 

mechanisms. ESCRT is composed of four proteins (ESCRT0-I-II-III) associated with 

AAA ATPase Vps4 complex (Henne et al., 2013) (Stuffers et al., 2009). However, other 

molecules, such as lipids, are implicated in exosome biogenesis playing a crucial role. 

Lipids' composition is central in exosomes formation, structure, shape and ultimately 
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function (McMahon and Boucrot, 2015). For instance, it was shown that low production 

of ceramide from sphingomyelin by sphingomyelinase 2, leads to decrease in exosomes 

biogenesis (Trajkovic et al., 2008). Other proteins such as tetraspanins, heat shock 

proteins, lactadherin and platelet-derived growth factor receptors are involved in 

exosomes formation (Conde-Vancells et al., 2008) (Subra et al., 2010) (Figure 4). 

 

 

Figure 4. [Adapted from (Kowal et al., 2014)] Exosome biogenesis and secretion. The origin and release of exosomes 

from intraluminal vesicles, to early endosomes and multivesicular bodies involves several molecules, among which the 

ESCRT machinery. The intracellular transport of the multivesicular bodies is primarily regulated by RAB proteins. 

 

Considering the multitude of cell types, it is reasonable to think of different characteristics 

of EVs depending on the cell origin, creating subclasses which may have different 

biological functions. However, there are no officially and universally recognized EVs 

subtypes. On the contrary, some general analytical markers both localized in the 

membrane and in the vesicular lumen are well described. Exosome main markers are 

phosphatidylserine, tetraspanins CD9, CD63, CD81, LAMP1 and TSG10 (György et al., 

2011). Microvesicles are generally characterized by phosphatidylserine (Connor et al., 

2010) - while apoptotic bodies by phosphatidylserine and fragmented DNA (György et 

al., 2011). The content of EVs spans from DNA, RNA and proteins (Van Niel et al., 

2018). Exchange of RNAs between glioblastoma and endothelial cells, oncogenic DNA 
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sequences and retrotransposon elements from medulloblastoma to endothelial cells, and 

proteins between glioma cells, were reported (Skog et al., 2008) (Balaj et al., 2011) (Al-

Nedawi et al., 2008). Toxic components such as prion PrPsc (Vella et al., 2007) or CCR5 

for transmission and propagation of HIV-1 (Mack et al., 2000), have also been shown to 

be delivered by EVs. The uptake of EVs and cargo delivery is not completely unveiled. 

Several reports show a scenario in which the biological function of EVs is cell-type and 

physiological- and pathological-condition dependent. For instance, EVs from 

oligodendrocytes are preferentially uptaken by microglia compared to neurons (Fitzner et 

al., 2011). Similar behavior was observed for primary neurons whose EVs are internalized 

only by other neurons, while EVs from neuroblastoma cells bind equally well to 

astrocytes (Chivet et al., 2014). Conversely to this specific internalization process, HeLa 

cells seem to take several types of EVs from different cell lines (Costa Verdera et al., 

2017) (Svensson et al., 2013). Even EVs size may have a role in the mechanism of uptake 

(Mulcahy et al., 2014). In general, the mechanism of uptake may be divided in 

endocytosis and fusion. Endocytosis comprehends clathrin-dependent and clathrin-

independent pathways mediated by caveolin, macropinocytosis, micropinocytosis, lipid 

raft-mediated endocytosis and phagocytosis (Mulcahy et al., 2014). The second 

mechanism is based on the direct fusion of the EV membrane with the cell plasma 

membrane. Interestingly, acidic pH conditions enhanced EVs release and uptake in 

melanoma cells (Parolini et al., 2009). Strictly connected to the way of internalization is 

how the content of the EVs is released inside the acceptor cells. The main pathways 

involved would lead to either lysosomal degradation, or recycling of the EVs, or 

functional target release inside the acceptor cell (Mathieu et al., 2019) (Momen-Heravi et 

al., 2014) (Kanada et al., 2015). Moreover, EVs may exert their function without 

internalizing in the acceptor cell, such as EVs transporting histocompatibility complex-
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peptide complexes that can activate T cell receptors on T lymphocytes (Raposo et al., 

1996) (Tkach et al., 2017). However, our knowledge of how EVs operate from biogenesis 

to uptake and release in the acceptor cell, remains limited, leaving space for 

comprehensive studies including molecular, cellular and functional characterization of 

EVs and their subtypes. The need of a better understanding of EVs biology is also 

reflected in the area of RNA therapeutics, where, because of the urgency of developing 

delivering systems for therapeutic oligonucleotides, there is an effort in studying the 

possibility of using EVs as cargoes (Momen-Heravi et al., 2014) (Ohno et al., 2013). 

 

2.2  Extracellular vesicles and microRNAs 

The presence of miRNAs enriched in EVs was first described in a study where among all 

the RNA species detected, some miRNAs were expressed more in exosomes compared 

to mast cells (Valadi et al., 2007). The mechanism by which miRNAs are loaded into EVs 

is not fully understood yet, however it is generally recognized that both passive and active 

mechanisms are involved. Pigati and colleagues found a strong correlation between 

miRNAs in MCF-7 cells and in the supernatant, proposing that the passive release of the 

miRNAs can occur. However, the same group showed that a considerable part of the 

miRNAs detected did not follow this pattern, opening to an active mechanism of EVs 

loading (Pigati et al., 2010). There are several reported guided mechanisms for the loading 

of miRNAs in EVs: a) the affinity between the RNA and raft-like membrane regions of 

the MVBs (Janas et al., 2015), b) changes in expression of the miRNAs targets inside the 

donor cell for which low expression of an mRNA would lead to an increased loading of 

the miRNAs targeting it into EVs (Squadrito et al., 2014) and c) neutral sphingomyelinase 

2-dependent pathway involved in EVs biogenesis and in miRNA upload (Kosaka et al., 
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2010). Interestingly,  KRAS status was reported to have a role in miRNAs sorting in EVs 

(Cha et al., 2015). In 2013, Sànchez-Madrid group showed discordance between 

intracellular and extracellular miRNAs and mRNA pool composition via microarrays 

analyses in the miRNAs and mRNA profiles among T-lymphoblasts and their EVs. They 

also reported a short sequence motif (GGAG) enriched in EVs associated miRNAs and 

that among the many heterogeneous nuclear ribonucleoproteins (hnRNPs) precipitating 

with intracellular and EVs associated miRNAs, only hnRNPA1 and hnRNP2B1 seemed 

to bind exclusively the latter (Villarroya-Beltri et al., 2013). Vps4A, a key regulator of 

exosomes biogenesis, has been discovered to regulate the loading of oncogenic and 

oncosuppressor miRNAs in exosomes, favoring the inclusion of the first ones (Wei et al., 

2015). Post-transcriptional modifications may also have a role in the sorting of miRNAs 

into EVs. In B cells, 3’end adenylated miRNAs appear to be enriched in cells compared 

to 3′end uridylated isoforms which are more present in exosomes (Koppers-Lalic et al., 

2014). If it is known that the sorting into EVs may be passive or active, it is unclear if the 

secretion of these particles follows the same dual fate. Turchinovich and colleagues found 

a positive correlation between the content of c-miRNAs in culture media and the increase 

of cell death (Turchinovich et al., 2011), and Cayota group described individual miRNAs 

expression in intracellular fractions of MCF-7 cells correlated directly with extracellular 

miRNAs (Tosar et al., 2015), both supporting a passive secretion behavior of 

extracellular-associated miRNAs. If for the EVs uptake the mechanism is still to be 

elucidated – as mentioned above – the function of the miRNAs after their release in the 

acceptor cell has been more described and it may occur in two ways: 1) post-

transcriptional regulation or 2) act as ligands. EVs associated miR-105 released from 

MCF10A and MDA-MB-231 cells targets ZO-1 in endothelial cells promoting lung and 
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brain metastasis (Zhou et al., 2014). Alternatively, miR-21 and miR-29a have been shown 

to be bound by toll-like receptors activating the immune system (Fabbri et al., 2012).  

 

3. microRNAs and cancer 

miRNAs are involved in many aspects related to the hallmarks of cancer (Hanahan and 

Weinberg, 2011). Here some examples (Figure 5). 

 

 

Figure 5. [Adapted from (Detassis et al., 2017)] miRNAs are involved in all hallmarks of cancer making them ubiquitary 

players of the disease. 

 

1. Sustaining the proliferative signal and evading tumor suppressors. miRNAs have 

a role in carcinogenesis via cancer cell proliferation and control of dormancy in cancer 

cells. Dysregulation in the epigenetic players of the quiescent state, such as miRNAs, may 

trigger high proliferative rate and high metabolic activity of cancer cells. For instance, 
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patterns of differentially expressed miRNAs in dormant and non-dormant cancer cells 

were found in osteosarcoma, glioblastoma (Almog et al., 2013), breast cancer (Gao et al., 

2014) and liposarcoma in vivo models (Almog et al., 2012), demonstrating the role of 

miRNAs in regulating quiescent and proliferative states. Indeed, miRNAs may target 

several positive and negative proliferative regulators. miR-27a-3p was shown to be 

increased in nasopharyngeal cancer compared to healthy tissues, promoting in vitro 5–8 

F cell proliferation, migration and invasion targeting MAPK10 (Li and Luo, 2017). On 

the contrary, miR-545, through EGFR down-regulation, dampens proliferation and 

colony formation capacity in vitro in colorectal cancer cell lines (Huang and Lu, 2017). 

Tumor suppressor activity is also targeted by miRNAs in cancer dysregulation. PTEN, a 

well-known tumor suppressor, was shown to be regulated by the miR-17-92 cluster in 

lymphomas; up-regulation of c-myc induces over-expression of the miR-17-92 cluster 

dampening the expression of PTEN (Xiao et al., 2008) (O’Donnell et al., 2005). TIA1, 

involved in stress granuli formation and in the apoptotic pathway, is targeted by miR-19a 

promoting cell proliferation and migration in colorectal cancer cells (CRC), boosting also 

tumor growth in xenograft mice (Liu et al., 2017). 

2. Resistance to cell death. Cell death may occur in several ways, mainly apoptosis, 

necrosis and autophagy. Cancer cells modify the normal pathways of cell death in order 

to continue the proliferation. It has been reported that miRNAs may have a role in this 

process. Intrinsic apoptotic pathway factors such as BCL2 and MCL1 are targets of 

miRNAs whose dysregulation may lead to cancer progression and treatment resistance 

(Singh and Saini, 2012) (Ji et al., 2013) (Sacconi et al., 2012) (Taniai et al., 2004). For 

instance, miR-29 is an endogenous regulator of MCL-1 protein expression, and it has 

been found down-regulated in cholangiocarcinoma cell lines (Mott et al., 2007). 

Similarly, miR-15a and miR-16-1, found deleted or down-regulated in the majority of 
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chronic lymphocytic leukemias (CLLs), can directly negatively regulate BCL-2 in CLL. 

Their expression was described as inversely correlated to BCL2 expression in CLL and 

their over-expression may induce apoptosis in a leukemic cell line model through BCL2 

repression (Cimmino et al., 2005). miRNAs may also impact on extrinsic apoptotic 

pathways regulating TRAIL family members (Felli et al., 2005) (Galardi et al., 2007), 

and p53, directly (Feng et al., 2011) or indirectly (Hermeking, 2012). The endoplasmatic 

reticulum (ER) stress-induced apoptosis may also be affected by dysregulation in 

miRNAs expression. For instance, the miR-23a-27a-24-2 cluster stimulates the 

expression of components involved in ER, such as CHOP, TRIB3, ATF3 and ATF4 

inducing apoptosis in HEK293T cells (Chhabra et al., 2011). Avoidance of necrosis may 

also take place via the dysregulation of miRNAs. It has been demonstrated in malignant 

pleural mesothelioma that the expression of miR-193a-3p, an important tumor suppressor 

in this cancer, is lower than in normal pleural cells and that 193a-3p is associated with 

the induction of necrosis (Williams et al., 2015). Cancerous cell behavior includes also 

aberrant autophagy. miR-26 inhibits cell autophagy of non-small cell lung cancer 

(NSCLC), through inhibiting TGF-β expression in a JNK-dependent manner (Guo et al., 

2019). Same for miR-384 which down-regulates Collagen α-1(X) chain inhibiting cell 

proliferation and promoting cell autophagy in NSCLC cells (Song et al., 2017). 

3. Enabling replicative immortality. Aberrant senescence mechanism may induce 

cancer progression and malignant phenotype. miR-130b~301b cluster, a regulator of 

senescence mechanism, is hypermethylated in prostate cancer cells (Ramalho-Carvalho 

et al., 2017) (Chen et al., 2015). Similarly, miR-137 levels are significantly reduced in 

human pancreatic cancer leading to a defective senescence response via the KDM4A 

pathway (Neault et al., 2016). Cancer stemness, a not yet fully understood behavior of 

malignant cells, which involves maintenance, reprogramming, pluripotency and 
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differentiation, is also partially regulated by abnormal changes in miRNAs expression 

(Khan et al., 2019a). For instance, miR-203, miR-375, miR-100, miR-221, miR-222 and 

miR-125b were found deregulated in breast cancer stem cells (Hao et al., 2014). 

4. Inducing angiogenesis. The formation of new vessels from a pre-existing vascular 

network plays a central role in tumor progression, invasion and metastasis. The major 

players involved are regulators of growth factors or modulators of the proliferation of 

endothelial cells, like HIF1-alpha, VEGF, FGF and LPA (Chung et al., 2010) (Bergers 

and Benjamin, 2003). miRNAs normally regulate the expression of those factors for 

development, tissue maintenance and survival, however, aberrant miRNAs expression 

may impact on deviant angiogenesis supporting cancer growth. miR-135a is generally 

decreased in gastric cancer tissues compared to normal samples. Through the inhibition 

of FAK, an important regulator and effector of VEGF in tumor angiogenesis, miR-135a 

controls angiogenesis and thus normal cell growth. It has been described that upon miR-

135a over-expression in gastric cancer cell lines, reduced levels of FAK dampen tumor 

growth, migration, invasion and angiogenesis (Cheng et al., 2017). Conversely, miR-23 

under hypoxic conditions is up-regulated and directly targets prolyl hydroxylase 1 and 2 

in lung cancer cells, enhancing the accumulation of the HIF1-alpha, ultimately increasing 

angiogenesis. In addition, secreted miR-23a also inhibits tight junction protein ZO-1, 

thereby increasing vascular permeability and cancer trans-endothelial migration (Hsu et 

al., 2017). 

5. Activation of invasion and metastasis. Tumor detachment from the primary site 

and migration to distant sites is a crucial step in the malignancy progression, often leading 

to poor prognosis for the patients. miRNAs may regulate the expression of several pro-

metastatic genes or metastatic suppressors. Down-regulation of miR-30a-3p and up-
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regulation of miR-210-3p were significantly associated with the presence of distant 

metastases in RNA-seq analysis of formalin-fixed paraffin-embedded (FFPE) lung 

adenocarcinomas from patients with and without detectable metastasis disease (Daugaard 

et al., 2017) (Kumarswamy et al., 2012). miR-182, through targeting FOXO3 and MITF, 

metastatic suppressors, enhances the invasive and metastatic capacity of melanoma cells 

(Segura et al., 2009). Cancer cell adhesion plays a fundamental role in metastatic 

behavior. miRNAs, such as miR-200c, can target adhesion-related molecules changing 

invasive capabilities of cancer cells (Hurteau et al., 2007). Epithelial to mesenchymal 

transition (EMT) may also be aberrantly controlled by miRNAs acting on the disassembly 

of cellular junctions, reorganization of cytoskeleton, loss of epithelial polarity and 

disequilibrium in epithelial versus mesenchymal marker expression. Members of the 

miR-200 family have been shown to impact on the expression of ZEB transcription factor 

proteins, downstream molecules in the epidermal growth factor receptor (EGFR) 

pathway, inducing E-cadherin expression (Davalos et al., 2012). miR-885-5p targets 

directly the 3’UTR of CPEB2 which negatively regulates TWIST1, a well-known player 

in EMT (Siu-Chi Lam et al., 2017). Microarray analysis and quantitative PCR by the Law 

laboratory identified and validated up-regulated miR-885-5p in liver metastases when 

compared to primary CRCs. Furthermore, over-expression of miR-885-5p in vitro led to 

cell migration, invasion and in vivo development of liver and lung metastases. Alike, miR-

9 may promote ovarian cancer metastasis targeting E-cadherin and upregulating N-

cadherin and Vimentin, mesenchymal markers (Zhou et al., 2017). In this context of 

reorganization of the tumoral mass, the microenvironment is a key player and the 

communication between cells becomes crucial. Indeed, even if the field is still in its 

infancy, we know that miRNAs are used as signals between cancer cells, being released 
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in protein complexes or protected by microvesicles, exosomes or apoptotic bodies (Su et 

al., 2014). For these reasons, they are also found in biofluids (Arroyo et al., 2011).   

6. Reprogramming energy metabolism. Fine regulation of metabolism in cells is 

essential for balanced cell behavior, and if not controlled, it may lead to cancer. In this 

regard, reactive oxygen species (ROS) are required to carry out physiological cellular 

functions and generally are found increased in cancer cells, mainly due to high metabolic 

rate in mitochondria, ER and cell membranes. In fact, high levels of ROS may oxidize 

DNA, leading to lesions in the genome which may contribute to the cancerous progression 

(Van Houten et al., 2018). The same may occur to RNA, impacting on post-transcriptional 

and translational regulation (Fimognari, 2015). miRNAs expression may also be affected 

by ROS unbalance in cells, such as miR-199a and miR-125b in ovarian cancer cells, 

inhibited by an increase of ROS levels (He et al., 2012). Conversely, miRNAs can alter 

ROS homeostasis by regulating ROS producers and antioxidants synthesis. For instance, 

overexpression of miR-34a is found in glioma cells to induce apoptosis through NOX2 

mediated ROS production (Li et al., 2014b). Interestingly, the interplay between miRNAs 

and ROS might be even more complicated with a feedback regulation. For example, ROS 

can regulate the expression of miR-21 and miR-146a, which through targeting NFkB can 

regulate ROS production (Ling et al., 2012) (Zhang et al., 2012).  Many other pathways 

of cell metabolism are hit by miRNAs. Glucose, fatty acid, amino acid and pentose 

phosphate pathways are regulated directly or indirectly by miRNAs (Subramaniam et al., 

2019). Glucose transporter GLUT1 suppressor miR-132 has been reported to be 

downregulated in several cancers enhancing glucose uptake (Qu et al., 2016). miR-26a 

regulates pyruvate dehydrogenase protein X component decreasing its expression in CRC 

and thus inhibiting the conversion of pyruvate to acetyl-CoA (Chen et al., 2014). Even 

the fatty acid pathway is regulated by miRNAs, such as miR-125b which targets SCD-1 
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dampening the conversion of monosaturated fatty acids from saturated fatty acids (Cheng 

et al., 2016). miR-7 via LKB1-AMPK-mTOR signaling has been demonstrated to 

decrease the usually up-regulated metabolic autophagy in pancreatic cancer cells (Gu et 

al., 2017). Another tumor suppressor, miR-1, has been described to be down-regulated in 

CRC cell lines compared to normal colon epithelial cells. miR-1 decreases cancer cell 

proliferation dampening aerobic glycolysis, lactate production and glucose uptake in vitro 

targeting HIF-1α and impacting SMAD3 pathway (Xu et al., 2017). 

7. Evading immune destruction. Bidirectional communication between cancer cells 

and the tumor microenvironment is a key factor in cancer development. Among all cells 

in the microenvironment, immune cells play a central role in cancer destruction or even 

progression. In fact, tumor cells may regulate the tumor microenvironment making it 

favorable for progression, invasion and ultimately metastasis formation. As discussed 

previously, miRNAs released in the tumor microenvironment may regulate its behavior 

transforming it in a tumorigenic site. Macrophages are crucial effectors in wound healing, 

immune response homeostasis and cancer. Their differentiation from lymphoid-myeloid 

progenitors to granulocyte-macrophage progenitors, monocytes and then mature 

macrophages, is, together with polarization states, one of the factors most involved in the 

equilibrium between pro- and anti-tumorigenic cells. miRNAs are involved in 

hematopoietic stem cell differentiation and therefore they can regulate macrophage 

development. Knockdown of miR-128a upregulates Lin28a expression reverting myeloid 

differentiation blockage in acute myeloid leukemia (De Luca et al., 2017), while miR-

223 has been shown to promote granulocyte differentiation (Fazi et al., 2005). 

Polarization and activation of macrophages are also partially regulated by miRNAs (Li et 

al., 2018), as demonstrated by the differential expression of miRNAs in M1 to M2 

macrophage transition in murine models (Lu et al., 2016). Natural killer (NK) cells, 
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involved in the early immune response against pathogens and tumor surveillance (Vivier 

et al., 2011), are regulated by miRNAs during their development and differentiation 

process. miR-155 targets phosphatase SHIP-1 and inhibits T-bet/Tim-3, regulating IFN-

γ production in human and mouse NK cells. It may also decrease the activation of several 

signaling pathways such as those involving PI3K, NF-κB, and calcineurin (Sullivan et al., 

2013). The same miRNA has been found downregulated after Hepatitis C virus infection 

leading to the release of T-bet/Tim-3, which suppresses IFN-γ production thereby helping 

the virus to evade immune clearance (Cheng et al., 2015). miR-183 abrogates the tumor 

cell killing function of NK cells by targeting DAP12 (Donatelli et al., 2014). Other types 

of T-cells are affected by miRNAs dysregulation. Khorrami and colleagues showed that 

over-expression of miR-146 in a CRC cell line co-cultured with peripheral blood 

mononuclear cells extracted from healthy donors, increased Treg frequencies and anti-

inflammatory cytokines like TGF-β and IL-10, leading to an overall immune suppression 

in the tumor microenvironment (Khorrami et al., 2017) (Rusca and Monticelli, 2011). On 

the other hand, miR-152 was shown to be decreased in gastric cancer cell lines as well as 

in human gastric cancer tissues. Restoration of its expression leads to enhanced T cells 

proliferation and effector cytokines production through the inhibition of the B7-H1/PD-

1 pathway (Wang et al., 2017).  

The network between cancer and miRNAs is complicated and far from being completely 

understood. Another level of intricacy is the likelihood of a miRNA to be involved in 

multiple roles in different type of cancers. For instance miR-21 has been found to a) be 

an anti-apoptotic factor in breast cancer (Si et al., 2007), b) increase pro-proliferative 

signal targeting PTEN in cholangiocarcinoma (Wang et al., 2015) (He et al., 2013a) and 

c) sustain EMT signaling and IL-6 levels affecting the tumor immune microenvironment 

(De Mattos-Arruda et al., 2015). This is mainly due to the promiscuity of miRNAs for 
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their target. miR-21 can target AKT and mTOR pathway (Meng et al., 2007), but also 

PTEN (Wang et al., 2015), FOXO1in large B-cell lymphoma (Go et al., 2015) and TPM1 

which normally is considered a tumor suppressor gene, regulating microfilament 

formation and anchorage-independent growth in a breast cancer cell line (Zhu et al., 

2007). Some miRNAs may also have a dual role, pro- and anti-tumorigenic effect, in 

different cancer types. miR-181a when overexpressed, was described in human glioma 

cells to induce apoptosis and dampen cell invasion (Shi et al., 2008) and migration in 

NSCLC (Cao et al., 2017), while in human gastric cancer cells, it has been reported to be 

an onco-miR, promoting cell proliferation, wound healing invasion and EMT targeting 

RASSF6 (Mi et al., 2017). 

 

4. microRNAs as biomarkers in cancer 

The post-transcriptional regulation exerted by miRNAs adds an enormous layer of 

complexity to cell, tissues and organs homeostasis. Their promiscuous binding affinity to 

mRNA targets creates a redundant network that allows finely tuned gene regulation. 

Being a dynamic system, any change to the canonical condition, is reflected in a change 

of cell behavior and vice versa. Thus, variations in miRNAs expression may give insights 

on the molecular events running into the tissues or organs, either physiological or 

pathological, making them good biomarkers (Figure 6). The definition of biomarker 

evolved with time and is not unique, but it could be summarized as “a characteristic that 

is objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or pharmacologic responses to a therapeutic intervention” (Strimbu 

and Tavel, 2010). In this regard, miRNAs possess most of the characteristics of the ideal 

biomarker, considering analytical criteria and clinical utility. They present some 
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advantages over other types of molecules used as biomarkers, such as mRNAs, proteins 

and ctDNA and also over circulating tumor cells. miRNAs, being nucleic acids, allow the 

use of gold-standard RT-qPCR procedures or high-throughput RNA-seq, compared to 

proteins that need lengthy mass spectrometry analysis, ELISA methods or western blots. 

Moreover, miRNAs are usually more abundant in biofluids than other nucleic acids 

categories – as mentioned above – making them better targets for liquid biopsies analysis. 

First discoveries that expression patterns of miRNAs can discriminate groups of patients, 

came in the first decade of 2000, in the general attempt to classify normal and tumor 

tissues. Lu and colleagues implemented a bead-based profiling method in order to assess 

miRNAs expression in normal and tumor tissues. Specific expression fingerprints of some 

miRNAs could, not only distinguish tumor origin, but also the degree of differentiation 

and classify poorly undifferentiated tumor tissues (Lu et al., 2005). Similarly, differential 

miRNAs expression was also seen between adenocarcinoma (AD) and squamous cell 

carcinoma (SCC) tissues and between distinct prognosis (Yanaihara et al., 2006b). A 

wider analysis on 22 different types of tumor tissue, revealed a signature of 48 

microRNAs able to reach a classification accuracy greater than 90% (Rosenfeld et al., 

2008). Because of the above-mentioned complex network in which miRNAs are 

involved, their deregulation may be either part of a direct mechanism resulting from the 

aberrant behavior of tumor cells, or the indirect consequence of the tumor development, 

microenvironment modifications, immune system response and ongoing inflammation. 

As for the use of such fingerprints, researchers focused on the clinical questions arising 

from normal clinical settings. Thus, biomarkers in cancer may be used to 1) diagnose 

cancer early, 2) classify cancer origin and its molecular background, 3) predict short- and 

long-term prognosis, 4) predict treatment efficacy, follow-up patients after treatment and 

discover relapses.  
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Figure 6. [Adapted from (Sundarbose et al., 2013)]. miRNAs, being involved in all cellular processes, are potentially 

optimal biomarkers. They can be extracted from tissues or liquid biopsies and then processed via gold-standard 

techniques such as RT-qPCR, microarrays and sequencing. miRNAs differential expression may have a diagnostic or 

prognostic value, leading clinical decisions and helping moving towards the so-called personalized medicine 

 

1. Early diagnosis. The first study analyzing miRNAs for cancer diagnosis was 

published in 2002, classifying leukemia via miR-15a and miR-16-1 (Calin et al., 2008). 

Since then, considering their ease of use, miRNAs have been studied for several tumor 

classifications. miR-17/92 cluster was shown to diagnose B-cell lymphomas (Calin and 

Croce, 2006) and colorectal adenomas (Diosdado et al., 2009), while miR-21 is over-

expressed in many cancer types (Iorio et al., 2005) (Volinia et al., 2006) (Iorio et al., 

2007) (Markou et al., 2008) (Hezova et al., 2015) (Parafioriti et al., 2016) (Kapodistrias 

et al., 2016) (Cui et al., 2017) (Nakka et al., 2017a) (Calatayud et al., 2017) (Chen et al., 

2017). Several studies pointing out the same miRNAs for different cancers raised an issue 

of the absence of specificity. For this reason, researchers started to investigate signatures 

of a pattern of miRNAs rather than single molecules to deliver a specific diagnosis. A 

nine miRNAs signature was able to discriminate between breast cancer tissues and normal 
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cancer tissues collected from TCGA, with a high accuracy value and AUC of 0.995 

(Xiong et al., 2017). Another example comes from the He group which found five 

miRNAs (miR-424, miR-326, miR-511, miR-125b-2 and miR-451) able to provide high 

diagnostic accuracy of hepatocellular carcinoma starting from miRNAs expression 

profiles of 377 hepatocellular carcinoma patients (Lu et al., 2017). A summary is shown 

in Table 1. 

2. Classification of tumor origin. As finding the pathological condition is relevant, 

the step forward is to understand what is the origin of the tumor to better address the 

therapy. It is well-known that each cancer type is composed of several subtypes coming 

from different cellular origins and each of them has to be treated accordingly. A study on 

muscle-invasive bladder cancer in 2016 revealed a signature of 63 miRNAs able to 

discriminate between basal and luminal tumors and a 15 miRNAs based signature able to 

show basal and luminal tumors with apparent fibroblast infiltration (Ochoa et al., 2016). 

Similarly, Blenkiron and colleagues performed a model-based discriminant analysis for 

basal-like and luminal A breast tumors finding a set of miRNAs able to discriminate 

between those groups (Blenkiron et al., 2007). Another approach by the Jang lab exploited 

the expression of 1733 miRNAs to build an unsupervised clustering in order to distinguish 

subtypes of pancreatic tumors. As result, they found 3 subtypes which could be associated 

with patient prognosis (Namkung et al., 2016). In lung cancer, in the data of the Volante 

lab, 10 miRNAs were able to distinguish between lung neuroendocrine (NE) tumors 

histotypes, 9 of which also discriminated between carcinoids and high-grade NE 

carcinomas (Rapa et al., 2015). In addition, the combination of miR-21 and miR-205 was 

found to be able to distinguish lung AD from SCC (Lebanony et al., 2009) and this can 

be further improved with the analysis of miR-375 (Patnaik et al., 2015). As a matter of 

fact, our lab demonstrated the non-perfect reliability of miR-205 in discriminating AD 
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versus SCC lung cancer histotypes (Del Vescovo et al., 2011). A summary is present in 

Table 2.  

3. Predict short- and long-term prognosis. Understanding the aggressiveness and 

progression of cancer via the prognosis of the patient is of enormous relevance in clinical 

practice. miRNAs have been reported to evince patient prognosis in several types of 

cancer. A cohort of 143 lung cancer tissues was analyzed for the expression of let7 which 

resulted significantly down-regulated compared to normal tissues. Moreover, reduced 

let7 associates with higher disease stages and poor post-surgery survival and prognosis. 

Taking into account only the AD samples, these distinctions are maintained (Takamizawa 

et al., 2004). A wider analysis led to discover a 5 miRNAs signature (miR-221 and let7a 

protective, while miR-137, miR-372 and miR-182-3p risky) able to discriminate between 

NSCLC patients with higher or lower median overall survival (OS) independently from 

stage or histology. Moreover, this signature is also able to predict patient survival within 

histological type AD or SCC (Yu et al., 2008). With a similar strategy, a pattern of unique 

15 miRNAs was able to discriminate between lung SCC and normal tissues, while a 

signature of 20 miRNAs was able to predict the OS (Raponi et al., 2009). Some of these 

miRNAs were more significant, like miR-146b which had the highest prediction score 

within 3 years, and some had already been linked to lung cancer in other studies like let-

7 and miR-155 (Yanaihara et al., 2006a). Interestingly, in all these studies, the different 

isoforms of let-7 found, were down-regulated in patients with poor prognosis. More 

recent data show that low expression of miR-448 associates with lung SCC progression 

and poor patients' overall survival (Shan et al., 2017). Reduced expression of miR-383 

was found in NSCLC tumor tissues compared to adjacent non-tumorous samples and 

moreover, low miR-383 expression associated with poor post-operative prognosis (Shang 

et al., 2016). miR-448 and miR-383 are down-regulated, acting like tumor-suppressors, 
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also in ovarian cancer (Lv et al., 2015), hepatocellular carcinoma (Zhu et al., 2015) (Chen 

et al., 2016a), colorectal cancer (Li et al., 2016), breast cancer (Li et al., 2011), Hodgkin 

lymphoma (Paydas et al., 2016), glioma (He et al., 2013b) (Xu et al., 2014) testicular 

carcinoma (Huang et al., 2014) (Lian et al., 2010) and medulloblastoma (Li et al., 2013). 

Another study revealed that miR-187 expression was significantly increased in NSCLC 

tissue samples compared to adjacent non-lung tumor tissues and that this condition 

associated with TNM classification and shorter OS (Peng et al., 2016). A summary is 

present in Table 3. 

4. Predict treatment efficacy, follow-up patients after treatment and discover 

relapses. As a consequence of the intricacy of underlying driving mechanisms of cancer, 

the therapeutic efficacy of a single treatment can change depending on the patient and its 

type of cancer. miRNAs have been associated with, and also predictive of, therapeutic 

outcome. miR-21 seems to be a general signal for chemotherapy resistance. In 2008, 

Schetter and colleagues found that miR-21 expression, in typical colon AD from patients 

treated with fluorouracil based adjuvant chemotherapy, is higher in patients with a poor 

therapy outcome (Schetter et al., 2008) (Schetter et al., 2009). Similar results were 

obtained for pancreatic cancer (Hwang et al., 2010). Even in lung cancer, high-expression 

of miR-21 was associated with chemotherapy resistance in tissues of patients who had 

undergone platinum-based chemotherapy treatment (Gao et al., 2012). It was shown that 

A549/DDP lung AD cell line has lower expression of eIF3a compared to its parental cell 

line, and it displays chemoresistance to cisplatin. Other miRNAs are also involved. miR-

488 targets the 3’UTR of eIF3a transcript enhancing sensitivity to the treatment and 

inhibiting cell proliferation, migration and invasion (Fang et al., 2017) (Fang et al., 2016). 

Another study reported increased sensitivity of A549/DDP cells to cisplatin after up-

regulation of miR-138. Increased levels of miR-138 correlated with the down-regulation 



34 

 

of ERCC1 in A549/DDP cells (Wang et al., 2011). In another study on pancreatic ductal 

AD, patients with resectable or locally advanced disease showed relative low miR-10b 

expression associated with highly predictive response to gemtabicine based 

multimodality neoadjuvant chemoradiotherapy. Moreover, by logistic regression, low 

miR-10b expression was able to predict surgery efficacy (Preis et al., 2011). In CRC, 

miR-148 expression had the potential for predicting therapeutic efficacy of 5-fluorouracil 

and oxaliplatin in stage IV patients, as low levels of this miRNA associated with a bad 

therapeutic response (Takahashi et al., 2012). Besides chemotherapy, targeted therapy is 

an important standard of care for several tumors. Even in this field, miRNAs may be 

helpful. In a cohort of metastatic CRC patients wild type for KRAS and BRAF, a miR-

31-3p up-regulation and miR-592 down-regulation were found associated with poor 

response to anti-EGFRmAb (Mosakhani et al., 2012). An Italian study reported a 

signature of three miRNAs (miR-let7c, miR-99a and miR-125b) able to predict EGFR 

monoclonal antibody therapy outcome in colorectal cancer patients. Indeed, high-level of 

the signature expression showed a good discrimination capacity for patients which were 

more responsive to cetuximab or panitumumab compared to low responsive patients 

(Cappuzzo et al., 2014). In two independent studies, miR-31 was found to be associated 

with PFS after the administration of anti-EGFRmAb in metastatic colorectal cancer 

patients. Mlchocova and colleagues found both miR-31-5p and -3p, while Shinomura 

group only miR-31-5p, to be higher in patients with lower PFS compared to those with 

low levels of the miRNA (Mlcochova et al., 2015) (Igarashi et al., 2015). miRNAs have 

been discovered to be predictive also of kinase inhibitors efficacy in hepatocellular 

carcinoma, renal cell carcinoma and NSCLC (Li et al., 2014a) (Garcìa-Donas et al., 2016) 

(Nishida et al., 2017). An emerging field in cancer treatment is immunotherapy. Some 

studies describe miRNAs as biomarkers of immunotherapy efficacy. In a report on 82 
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renal cancer patients and 19 healthy individuals, miR-183 has been found up-regulated in 

sera associated to less efficacious cancer cytotoxicity by natural killer cells, which are the 

effectors of the IL-2 immunotherapy (Zhang et al., 2015b). Nagano group described that 

miR-6826 and miR-6875 can be good predictor of vaccine treatment efficacy in 

metastatic CRC, where high expression in plasma of the two miRNAs was associated 

with poorer prognosis (Kijima et al., 2016). A summary is present at Table 4. 

In diagnostics, liquid biopsies possess the high potential to make a difference in clinical 

settings (Lianidou and Pantel, 2019). Minimally invasive approaches are desirable such 

as plasma or urine samplings (Maxim et al., 2014). Because of their stability in body 

fluids c-miRNAs as biomarkers have some advantages increasing the feasibility of their 

use in clinical applications (Mitchell et al., 2008). C-miRNAs from liquid biopsies have 

been reported to be biomarkers for cancer screening, diagnosis, prognosis and to drive 

treatment decisions (Chen et al., 2008) (Giannopoulou et al., 2019). For instance, miR-

15a, miR-15b and miR-27b were identified in serum as potential diagnostic markers of 

NSCLC patients (Hennessey et al., 2012). In plasma a signature of 12 miRNAs 

discriminates NSCLC patients from healthy subjects, and three of them can also 

distinguish between computed tomography (CT)-identified NSCLC and benign 

pulmonary nodules (Shen et al., 2011). 

The redundancy of miRNAs found in the literature with different discriminatory capacity 

for the same cancer type or same miRNAs having contradictory roles in different tumors, 

made evident that the complexity of post-transcriptional regulation exerted by the 

miRNAs is a double-edged sword for biomarker purposes. The limitations come from 

both a biological and a technological side. Biologically speaking, more accurate sources 

from where miRNAs are analyzed, might be a partial answer. Even if plasma and serum 



36 

 

are the most used liquid biopsies in c-miRNAs studies, because of their well-radicated 

uses in clinical settings, an effort to exploit more biologically meaningful biofluids in a 

disease-dependent manner has increased. Urine, has been recently used for prostate 

(Lewis et al., 2014) and renal illnesses. Urinary miR-328-3p shows putative 

discriminatory capacity in renal cell carcinomas against small renal masses (Di Meo et 

al., 2020). Seminal fluid is also studied for similar purposes in prostate cancer detection 

(Selth et al., 2014). Alike, saliva, produced by the salivary glands, has been proposed as 

a source of biomarkers for oral cancers (Ghizoni et al., 2019). For instance salivary miR-

21 and miR-184 were found upregulated in oral squamous cell carcinomas compared to 

healthy individuals (Zahran et al., 2015). For neuro-oncology CSF is likely the most 

relevant biofluid since it passes through the central nervous system collecting a plethora 

of possible tumor-related markers (Sindeeva et al., 2019). miRNAs expression in CSF 

was found to correlate with the miRNAs expression in glioblastoma tumors and a nine 

miRNAs signature discriminated cancer patients from healthy subjects (Akers et al., 

2017). Following the same reasoning, EVs have been recently used more frequently since 

they may be specific of a cell type and reflect this difference for miRNAs expression 

(Ingenito et al., 2019). A four exosomal miRNAs signature was reported to early diagnose 

NSCLC patients (Jin et al., 2017) and miR-182 was found in exosomes from sera of 

prostate cancer patients (Mihelich et al., 2016). Interestingly, CSF EVs showed some 

specific miRNAs not found in the serum of the same healthy donors (Yagi et al., 2017). 

However, even for EVs fraction some miRNAs, such as miR-21, are found similarly 

deregulated in several cancer types (Hannafon et al., 2016) (Shi et al., 2015) (Mousavi et 

al., 2019) (Tanaka et al., 2013) (Au Yeung et al., 2016). Another helping factor may reside 

on exploiting the specific and unique origin of some miRNAs, such as the hepatic miR-

122 (Thakral and Ghoshal, 2015) (Dear, 2018) (Rivoli et al., 2017). 



 

 

Table 1. Summary of analyzed studies for miRNAs as biomarkers in “Early diagnosis”. When -3p or -5p is not specified, it was not clearly reported. “Not specified” refers to incomplete 

information on tissue type. 

miRNA Patients Cancer Tissue type Reference 

22-miRNAs signature 

Pancreatic ductal adenocarcinoma (n=165), ampullary 

cancer (n=59), duodenal cancer (n=6), distal common bile 

duct cancer (n=21), and gastric cancer (n=20); chronic 

pancreatitis (n=39); and normal pancreas (n=35) 

Pancreatic cancer FFPE Catalayud et al. 2017 

miR-486-3p, -486-5p, -21-5p, 139-5p, -204-3p, -

489-3p, -223-3p, -196b-5p, -31-5p, -422a, -328-3p, 

-146b-5p 

Toung squamous cell carcinoma and matched controls 

(n=25) 

Toung squamous 

cell carcinoma 
FFPE Chen et al.2017 

miR-21-5p 
Wilms' tumor and paired homolateral adjacent non-tumorous 

renal tissue (n=41) 
Wilms' tumor Flash-frozen Cui et al. 2017 

miR-17-92 cluster Colorectal tumors (n=55) and controls (n=10) Colorectal cancer Fresh tissue Diosdado et al. 2009 

miR-21-5p, -203-3p 
Esophageal adenocarcinoma (n=23), esophageal squamous 

cell carcinomas (n=22), adjacent esophageal mucosa (n=17) 

Esophageal 

cancer 
Not specified Hezova et al.2015 

miR-21-5p, -155-5p, -10b-5p, -125b, -145-5p 
Breast tumor (n=76), six pools of five normal breast tissue 

each and four additional single breast tissue 
Breast cancer Not specified Iorio et al. 2005 

miR-200a-3p, -141-3p, - 200c-3p, -200b-3p, -199a, 

-140-3p, -145-5p, -125b-1-5p 

Serous ovarian cancer (n=31), endometrioid (n=8), clear cell 

(n=4), poorly differentiated (n=9), mucinous carcinoma 

(n=1), normal ovary (n=15) 

Epithelial ovarian 

cancer 
Flash-frozen Iorio et al. 2007 

miR-155-5p, -21-5p, -145-5p, -143-3p, -451 Liposarcoma (n=62), lipoma (n=21) Liposarcoma FFPE Kapodistrias et al. 2017 

33-miRNAs signature 
Hepatocellular carcinoma (n=377), normal control (n=37), 

tumor and matched non-tumor (n=37) 

Hepatocellular 

carcinoma 

TCGA plus 

tissues 
Lu et al. 2017 

miR-21-5p, -205-5p Non small cell lung cancer and matched controls (n=48) 
Non small cell 

lung cancer 
Flash-frozen Markou et al. 2008 

miR-21-5p, -221-3p, -106a-5p Osteosarcoma (n=61), healthy (n=25) Osteosarcoma Plasma Nakka et al. 2017 

miR-181b, -1915-5p, -1275-5p Ewing's sarcoma (n=20), normal donor (n=4) Ewing's sarcoma FFPE Parafioriti et al. 2016 

Multiple-miRNAs signature 

Lung cancer (n=123), breast cancer (n=79), colon cancer 

(n=46), gastric cancer (n=20), endocrine pancreatic cancer 

(n=39), prostate cancer (n=56), healthy (n=177) 

Multiple cancer Not specified Volinia et al. 2006 

miR-21-5p, -96-5p, -183-5p, -182-5p, -141-3p, -

200a-3p, -429 -3p, -139-5p, -145-5p 
Breast cancer (n=1110), healthy (n=104) Breast cancer 

TCGA 

database 
Xiong et al. 2017 
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Table 2. Summary of analyzed studies for miRNAs as biomarkers in “Classification of tumor origin”. When -3p or -5p is not specified, it was not clearly reported. “Not specified” refers to 

incomplete information on tissue type 

miRNA Patients Cancer Tissue type Reference 

137-miRNAs signature Breast cancer (n=99), normal tissue (n=5) Breast cancer Flash-frozen Blenkiron et al. 2007 

miR-205-5p, -21-5p 

Adenocarcinoma (n=25), Squamos cell 

carcinoma (n=24), adenonosquamous 

carcinoma (n=1) 

Non small cell lung 

cancer 
FFPE 

Del Vescovo et al. 

2011 

miR-205-5p, -21-5p 

Adenocarcinoma (n=60+8+15), squamous cell 

carcinomas (n=62+8+12+27 ), large cell lung 

carcinoma (n=4), nonsquamous (n=52) 

Non small cell lung 

cancer 
FFPE Lebanony et al. 2009 

19-miRNAs signature Pancreatic cancer (n=104) Pancreatic cancer Flash-frozen Namkung et al. 2015 

63-miRNAs signature 
Basal bladder cancer (n=28), luminal bladder 

cancer (n=34) 
Bladder cancer Flash-frozen Ochoa et al. 2016 

miR-205-5p, -375-3p 
Adenocarcinomas (n=57), squamous cell 

carcinoma (n=45) 

Non small cell lung 

cancer 
FFPE Patnaik et al. 2015 

miR-129-5p, -409-3p, -409-5p, -431-5p, -185-5p, -22-

3p, -497-5p, -129-3p, -15a-5p, -141-3p 

Typical carcinoid (n=28), atypical carcinoid 

(n=21), neuroendocrine carcinoma (n=19) 

Non small cell lung 

cancer 
Flash-frozen Rapa et al. 2015 
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Table 3. Summary of analyzed studies for miRNAs as biomarkers in “Predict short- and long-term prognosis”. When -3p or -5p is not specified, it was not clearly reported. “Not specified” refers to 

incomplete information on tissue type. 

miRNA Patients Cancer Tissue type Reference 

miR-383 
Hepatocellular carcinoma and matched 

normal tissue (n=64) 
Hepatocellular carcinoma Flash-frozen Chen et al. 2015 

miR-448 
Colorectal cancer and matched normal 

tissue (n=28) 
Colorectal cancer Flash-frozen Li et al. 2016 

15-miRNAs signature 
Squamous cell lung carcinoma (n=61), 

normal tissue (n=10) 
Non small cell lung cancer Flash-frozen Raponi et al. 2009 

miR-187 
Non small cell lung cancer and adjacent 

non-tumor (n=74) 
Non small cell lung cancer Flash-frozen Peng et al. 2016 

miR-448-5p 
Squamous cell lung carcinoma (n=140), 

normal tissue (n=20) 
Non small cell lung cancer Flash-frozen Shan et al. 2017 

miR-383-5p 
Non small cell lung cancer tissues and 

adjacent non-tumor tissue (n=139) 
Non small cell lung cancer Flash-frozen Shang et al. 2016 

let-7 

Adenocarcinomas (n=105), squamous 

cell carcinomas (n=25), large cell 

carcinomas (n=9) and adenosquamous 

cell carcinoma (n=4) 

Non small cell lung cancer Flash-frozen Takamizawa et al. 2004 

miR-221-3p, -let-a, -137-3p, -372-3p, -182-3p Non small cell lung cancer (n=174) Non small cell lung cancer Flash-frozen Yu et al. 2008 

miR-155-5p, -let7-a-2-5p 
Non small cell lung cancer tissues and 

adjacent non-tumor tissue (n=136) 
Non small cell lung cancer Not specified Yanaihara et al. 2006 

miR-448-5p 
Hepatocellular carcinoma tissues and 

adjacent non-tumor tissue (n=117) 
Hepatocellular carcinoma Not specified Zhu et al. 2015 

miR-383-5p 
Glioma (n=16), normal brain (n=8), 

glioma and matched controls (n=6) 
Glioma Not specified Zhou et al. 2014 
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Table 4. Summary of analyzed studies for miRNAs as biomarkers in “Predict treatment efficacy, follow-up patients after treatment and discover relapses”. When -3p or -5p is not specified, it was not 

clearly reported. “Not specified” refers to incomplete information on tissue type. 

miRNA Patients Cancer Treatment Tissue type Reference 

miR-let7-c-5p, -99a-5p, -125b Colorectal cancer (n=183) Colorectal cancer Anti-EGFR FFPE Cappuzzo et al. 2014 

SNP of miR‐5197, ‐605-5p, ‐

146a-5p, -27a-3p 
Non smal cell lung cancer (n=408) 

Non small cell lung 

cancer 
Platinum-based chemotherapy Whole blood Fang et al. 2016 

miR-21-5p 
Non small cell lung cancer tissues (n=58) 

and matched plasma (n=32) 

Non small cell lung 

cancer 
Platinum-based chemotherapy 

Flash frozen 

and plasma 
Gao et al. 2012 

miR-1307-3p, -221-3p, -155-5p Renal cell carcinoma (n=138) 
Renal cell 

carcinoma 
Tyrosine kinase inhibitor FFPE 

Garcia-Donas et al. 

2016 

miR-21-5p 
Treated pancreatic cancer (n=52), non-

treated pancreatic cancer (n=27) 
Pancreatic cancer 

Adjuvant chemotherapy, 

combined chemoradiotherapy 

or both 

FFPE Hwang et al. 2010 

miR-31-5p Colorectal cancer (n=102) Colorectal cancer Anti-EGFR FFPE Igarashi et al. 2015 

miR-200c-3p Non small cell lung cancer (n=150) 
Non small cell lung 

cancer 
Tyrosine kinase inhibitor FFPE Li et al. 2014b 

miR-31-5p, -31-3p Colorectal cancer (n=93) Colorectal cancer Cetuximab FFPE 
Mlchocova et al. 

2015 

miR-181a-5p, -339-5p 
Hepatocellula carcinoma (n=69), healthy 

control (n=8) 

Hepatocellular 

carcinoma 
Sorafenib Serum Nishida et al. 2017 

miR-6826-5p, -6875-3p Colorectal cancer (n=93) Colorectal cancer Vaccine Plasma Kijima et al. 2016 

miR-10b-5p 

Pancreatic ductal adenocarcinoma 

(n=105), benign pancreatic ductal 

adenocarcinoma (n=14) 

Pancreatic cancer 
Neoadjuvant gemcitabine-

based chemoradiotherapy 
FFPE Presi et al. 2011 

miR-31-3p, 592-5p, -140-5p, -

1224-5p, -let7 family 
Colorectal cancer (n=33) Colorectal cancer Anti-EGFR Not specified 

Mosakhani et al. 

2012 

miR-21-5p 
Colon adenorcinoma and adjacent non 

tumorous tissue (n=197) 
Colon cancer 

Fluorouracil based adjuvant 

chemotherapy 

Flash frozen 

and plasma 
Schetter et al. 2008 

miR-148a-3p 

Colorectal cancer (n=273) and normal 

colonic mucosa of healthy individuals 

(n=20) 

Colorectal cancer 

5-fluorouracil-based adjuvant 

chemotherapy and 5-

fluorouracil and oxaliplatin-

based chemotherapy 

FFPE Takahashi et al. 2012 



 

 

5. Technical limitations of c-miRNAs as tools for personalized 

medicine 

If biological complexity is difficult to fully comprehend and thus, difficult to exploit, the 

current technical limitations in c-miRNAs analysis make these tools impracticable for 

clinical settings. In fact, despite the growing interest of the scientific community, the 

enormous amount of articles published in recent years (entry “circulating microRNAs 

cancer biomarker” on PubMed; 2012  = 123; 2013 = 189; 2014 = 254; 2015 = 335; 2016 

= 329; 2017 = 338; 2018 = 356; 2019 = 310) has been not translated in clinical assays 

yet. The limiting factors may be divided in three categories: 1) pre-analytical, 2) analytical 

and 3) post-analytical (Table 5) which lead to a lack of standardized procedures and 

eventually strong pitfalls in miRNAs quantification (Sourvinou et al., 2013). 

1) Pre-analytical factors. As miRNAs reflect pathological and physiological 

changes, levels of expression may be varied by several factors which ultimately can 

influence the assay results. In fact, it has been suggested that in plasma, smoking status 

(Takahashi et al., 2013), diet (Witwer, 2012), active exercise (Baggish et al., 2011) and 

circadian rhythm - in sera of mice (Shende et al., 2011) - can affect the total levels of c-

miRNAs. Moreover, it is reasonable to add that comorbidities may also be confounding 

factors (Neal et al., 2011). On the other hand, gender, menstrual cycle and food intake do 

not affect total c-miRNAs levels in plasma and serum (Max et al., 2018). In urine, time 

of voids does not seem a variable to consider, while gender and fractionation of the 

sample (EVs vs sediment cells) may be important (Ben-Dov et al., 2016). On top of that, 

inter-individual variability should be taken into account considering that the 

concentration of miRNAs in plasma can be counted as from 9000 to 130.000 copies per 

uL (Mitchell et al., 2008). Thus, patient’s condition and habits are a factor of variability 
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which may be reduced by worldwide standardized clinical protocols for liquid biopsies 

sampling and more rigorous and transparent criteria for scientific publications, helping 

reproducibility. Sample collection techniques may be critical. Blood collection has been 

the most studied protocol for c-miRNAs expression variation. General factors are a) 

venipuncture which may cause haemolysis, b) time from sampling and processing, c) 

choice of plasma or serum and d) if plasma, the choice of the anti-coagulant. Tewari group 

showed that blood cells are the major contributor to c-miRNAs, therefore variations in 

blood cells counts and haemolysis can affect the interpretation of c-miRNAs signatures. 

They studied several oncological biomarkers reported in literature: many of them are 

highly expressed in blood cells. They demonstrated that this kind of c-microRNAs 

correlates with blood cell counts and that miR-122, which is not expressed in blood cells, 

doesn’t follow this trend. Moreover, in haemolyzed plasma samples, red blood cell-

associated miRNAs vary up to 30-fold compared to non-hemolyzed samples, further 

proving that c-miRNAs pool is affected by blood cells composition (Pritchard et al., 

2012). Duttagupta and colleagues tried to discriminate between whole blood miRNAs 

derived from blood cells - “contaminant miRNAs” - and what they called “truly 

circulating microRNAs”. Starting from whole blood samples and collecting different 

fractions from multiple centrifugation steps they found that from the first fraction (cloudy 

supernatant) to the second one, the content of the “contaminant microRNAs” dropped, 

while the true c-miRNAs content stays more or less unchanged. On top of that, they 

showed that the variability of expression of marker c-miRNAs among a cohort of males 

and females decreases after the removal of the cellular contaminants originated from 

cellular miRNAs signatures (Duttagupta et al., 2011). This points out how much the 

processing of the samples may affect the pool of c-miRNAs. Another study (Cheng et al., 

2013) confirmed this variability, reporting that different plasma processing led, for the 
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majority of c-miRNAs, to a variation in their expression levels, mainly due to different 

platelets and microvesicles content. Moreover, the choice of the anti-coagulant for plasma 

separation may have an impact, inhibiting some steps downstream of the sample 

collection (Bottani et al., 2019) (Boeckel et al., 2013). Not only c-miRNAs are affected 

by sample preparation and storage. Tissue samples may be generally prepared and stored 

as FFPE or as flash-frozen. Formalin fixation may introduce some biases in the stability 

of miRNAs depending on their GC content (Kakimoto et al., 2016) and moreover, the 

concordance between the FFPE and flash-frozen samples is lost during time (years) 

creating discrepancies in analysis done with one type of preparation or the other (Meng 

et al., 2013) (Szafranska et al., 2008). 

2) Analytical factors. The analysis of c-miRNAs has to pass through two main steps: 

a) the extraction of RNA (except for some new assays developed (Asaga et al., 2011) 

(Songia et al., 2018)) and b) the detection of the miRNAs. Different extraction kits have 

distinct efficiencies in small RNAs recovery (Monleau et al., 2014) and moreover, the 

guanidium thiocyanate plus phenol-chloroform RNA extraction suffer from several 

limitations. In this context, the use of an exogenous control such as cel-miR-39 may be 

helpful in standardizing sample-to-sample variation after sample collection (Sourvinou et 

al., 2013). However, Kim group in 2012 showed that miRNAs low in GC content are 

extracted via TRIZOL-based protocol in a total RNA concentration-dependent manner, 

posing the basis for a sequence-dependent RNA extraction efficiency. Starting from a 

lower number of cells some miRNAs were retained during RNA extraction misleading 

differential expression results (Kim et al., 2012). Regarding the detection methods, RT-

qPCR, ddPCR, microarrays and NGS are the main technologies used. Despite the fact 

that they are universally accepted for nucleic acid analysis, several pitfalls dampen the 

reliability and the reproducibility of these techniques required for clinical settings. The 
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reverse transcription step has been shown to create high variability depending on the 

target (Ståhlberg et al., 2004). The main source of problems is the nature of amplification-

based technologies, which rely on primer hybridization and enzymatic amplification. 

Primer design for miRNAs is complicated because of their short sequence. Accurate 

single sequence-dependent primer selection can increase the specificity of the 

amplification, whilst decreasing the throughputness of the assay. On the other hand, 

methods relying on universal primers may introduce amplification biases for sequences 

with optimal temperature of melting (Tm) and decrease specificity for very similar 

miRNAs. Moreover, discrimination between pri-, pre- and mature forms becomes 

difficult. Even in PCR-free techniques like microarrays the labelling of the target together 

with probe Tm may constitute a source of variability (Chugh and Dittmer, 2012).  

3) Post-analytical factors. Except for ddPCR, the detection techniques rely on 

relative quantification, thus a normalization method is necessary. For miRNAs the choice 

of a good normalizer is tricky and, if incorrect, it may mislead differential expression 

results (Masè et al., 2017). The most used in literature are miR-16, snRNA U6 and spiked-

in cel-miR-39, but there is no general consensus from the scientific community. For 

instance, among the several transcripts of U6, U6-1 was found to have high variability 

and U6-2 was not detectable, in a study on sera from Hepatitis B infected patients and 

matched controls (Zhu et al., 2012). In two different plasma studies on CRC, miR-16 was 

found to have quite high stability and little variability between control and case-patients 

(Huang et al., 2010) (Ng et al., 2009). In another case, it has been reported, in serum 

samples from lung cancer patients, miR-16 being inconsistent (Chen et al., 2008). Several 

authors have concluded that a universal endogenous control is unlikely to be discovered 

and a suitable reference should be assessed every time considering the different biological 

conditions of the samples. However, cost and sample requirements needed for the choice 
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of several reference RNAs are not always possible, especially in a clinical or diagnostic 

setting. Other strategies involve the use of a set of normalizers instead of a single one or 

normalizations based on mathematics such as quantile normalization, geometric mean 

normalization, cycle loess , rank-invariant normalization and weighted normalization 

(Rao et al., 2008) (Bolstad et al., 2003) (Qureshi and Sacan, 2013). Softwares have been 

implemented for the selection of the best normalizer from a set of genes, such as 

Normfinder, geNorm and BestKeeper, all having similar performances (De Spiegelaere 

et al., 2015). 

Table 5. miRNAs analysis presents several challenges. Pre-analytical, analytical and post-analytical factors may have 

a fundamental impact on the variability and decrease reproducibility 
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6. DestiNA Genomics Chem-NAT 

In the panorama of emerging technologies for nucleic acid detection DestiNA Genomics 

patented an innovative chemical method (Chem-NAT) (Bowler et al., 2010a). In the first 

demonstration they showed, using synthetic DNA resembling cystic fibrosis mutations, 

the ability to discriminate different targets with a single-base resolution. The chemistry is 

based on peptidic nucleic acid (PNA) probes complementary to the target of interest and 

aldehyde-modified nucleobases (SMART-NB). The PNA probes present an abasic site 

that exposes a free secondary amine. The aldehyde of the SMART-NB reacts with the 

secondary amine of the PNA molecule creating an iminium intermediate which can be 

further reduced. For Chem-NAT to happen two main events must occur (Figure 7): 1) the 

hybridization of the target to the PNA probe and 2) selective incorporation of the right 

SMART-NB. The incorporation of the SMART-NB, following the standard Watson-

Crick base pairing rules, is a dynamic event for which potentially all the four possible 

SMART-NB can enter. However, only the right one is favored and eventually sufficiently 

stable to enter the abasic site and be covalently bound by the reduction. This reaction 

serves for 1) allowing the specific recognition of a target with a single-base resolution 

and 2) labeling the PNA probe when the right target hybridizes to it. Once the PNA probe 

is labeled by the SMART-NB, the detection may be done with any methodology, 

depending on the type of second modification the SMART-NB bears (e.g.: biotin, AP).  
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Figure 7. Chem-NAT enables the detection of a nucleic acid target (red helix) via a modified PNA probe (grey helix) 

with an abasic position (-NH). Two steps are required: STEP A) capturing of complementary nucleic acid, forming a 

chemical pocket (indicated by the rectangle); STEP B) selective incorporation of the correct SMART-NB. A reduction 

reaction locks the SMART-NB covalently within the abasic PNA probe (Detassis et al., 2019). 

 

The technology has been validated in several contexts and it followed a development 

during the time this work has been performed. Chem-NAT started detecting a 155 base 

pair segment of the 28S ribosomal RNA gene, within a conserved homology region of 

Trypanosomatidae species (Angélica Luque-González et al., 2018). In this case, after 

PCR amplification of the region of interest, Chem-NAT was applied to distinguish among 

different Trypanosoma species and the SMART-NB was detected via MALDI-ToF. 

Subsequently, Chem-NAT evolved in the need of avoiding nucleic acid extraction and 

PCR amplification for reducing assay steps and possible sources of variability. Following 

this reasoning, miR-21 has been analyzed via Chem-NAT in lung and breast cancer cell 

lines via FACS (Delgado-Gonzalez et al., 2019). Since clinical diagnostics is moving 

towards the use of liquid biopsies, the technology has been tested – starting from this 

work – for the direct detection of miRNAs – no RNA extraction nor PCR amplification -  

in biofluids. Apart from the data produced in this work (Detassis et al., 2019) with miR-

21, miR-122 was directly detected in serum of drug-induced liver injury patients without 
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PCR-amplification (Rissin et al., 2017) and also without RNA extraction (López-

Longarela et al., 2020), as well as miR-451 in whole blood of healthy volunteers (Marín-

Romero et al., 2018). 

 

6.1 PNA chemistry 

Nucleic acid biosensors use, as probes, DNA, RNA or synthetic analogs, generally 

exploiting base-pair hybridization. They are mostly adopted for genotyping and gene 

expression studies. Many of the current applications take advantage of synthetic polymers 

analog which carries several specific characteristics, overcoming limits of natural nucleic 

acid nature and enabling high specificity and sensitivity in biosensing systems. In 

particular, PNA and locked nucleic acid (LNA) have been used frequently because of 

their peculiar features. PNA, has a peptide backbone, which is the result of the 

polymerization of N-(2-aminoethyl) glycine units: each base is connected through a 

methylencarbonyl linkage. The PNA backbone is devoid of electrical charges and thus 

this molecule has a high affinity for its complementary DNA or RNA. Crystal structure 

of PNA binding DNA or RNA has been resolved. The heteroduplex formed by PNA/DNA 

creates double helices in A and B form (Menchise et al., 2003) while the heteroduplex 

PNA/RNA leads to an A double helix (Brown et al., 1994). PNA oligomers have higher 

affinity for their complementary DNA molecules compared to the equivalent ssDNA 

(Kuhn et al., 2002). The thermal stability of a nucleic acid duplex is: DNA/DNA < 

PNA/DNA < PNA/RNA < PNA/PNA (Ratilainen et al., 2000) both in antiparallel 

orientation (N-terminus of PNA corresponding to the 3’end of DNA or RNA) and in 

parallel orientation. This interaction is highly specific and, virtually, for every mismatch 

the loss in terms of thermal stability is higher in PNA/DNA-RNA compared to the 
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corresponding homoduplex. For a 9-12mer PNA molecule, a single mismatch with the 

complementary DNA leads to a drop of the melting curve to 15-20°C (Ratilainen et al., 

2000). PNA is also insensitive to nuclease, peptidase and changes in pH or ionic strength, 

making it a very good candidate for biosensoristic applications (Briones and Moreno, 

2012). In the last two decades, PNA molecules have been used in several different 

platforms for nucleic acid detection. In 1996, Wang and colleagues used a 15-mer PNA 

probe to detect DNA targets via a carbon-paste electrode transducer and redox indicators. 

In their work, there is one of the first attempts to recognize the value of PNA specificity 

in biosensors and single-mismatched DNA oligomers were detected with 3% of the signal 

generated by full complementary targets (Wang et al., 1996). Since then, improvements 

have been made in generating electrochemical systems with PNA-based methodologies 

(Raoof et al., 2011) (Hejazi et al., 2010). PNA molecules have also been used for blocking 

DNA polymerases in PCR reactions. In fact, exploiting the high specificity of such 

molecules, the discriminations between two SNPs with PCR was delivered by “hiding” 

one isoform with the PNA probe which would not allow the priming for DNA 

polymerase, resulting in the amplification of only the desired target (Kerman et al., 2006). 

Even microarrays systems took advantage of the PNA unique hybridization properties. In 

an attempt to avoid the labeling of the target, the peptidomimic nature of PNA molecules 

has been used for creating physicochemical signatures of phosphate and/or sugars upon 

DNA or RNA target hybridization (Brandt and Hoheisel, 2004). Detection of proteins 

was possible indirectly with PNA probes. ssDNA aptamers binding to the protein of 

interest were released from the protein by heating and measured via PNA probes (Le 

Floch et al., 2006). Other PNA-based sensors have been reported for the detection of 

miRNAs, the main focus of this work. For instance, Wu and colleagues reported the 

analysis of miRNAs in a highly sensitive and label-free method via PNA-functionalized 
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silicon nanowires, reaching a limit of detection of femtomoles (Zhang, 2011). Similarly, 

another group studied the detection of miRNAs without PCR amplification or ligations 

steps achieving a limit of detection of 10pM (Gao and Peng, 2011). 

 

7. Optoi Microelectronics SiPM-based reader 

Chem-NAT is an agnostic technology, meaning that it may be analyzed with different 

reading platforms. The choice of the reader has clearly an enormous impact on the 

application of the whole technology. Since our goal was to develop a bench-top solution 

for c-miRNAs analysis, the reader had to be, sensitive, small, compact and cost-effective. 

Optoi Microelectronics (Optoi) has developed an eight micro-wells silicon 

photomultiplier (SiPM)-based reader (Figure 8).  

 

 

Figure 8. Optoi developed a 8-micro-wells strip SiPM-based reader. The signal coming from the SiPMs is registered 

by a software on a laptop connected to the device via a USB connector. Black covers ensure that no external light 

interferes with the detection of the photons generated by the sample. 
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A SiPM is a matrix of avalanche photodiodes operating in the so-called Geiger mode 

(reverse biased beyond the breakdown voltage). Each photodiode of the matrix acts as a 

binary device which is activated by the arrival of light. The single cell of the SiPM is a 

single photon avalanche diode (SPAD). SPAD technology works creating an avalanche 

event triggered by an incoming photon. The electric field generated inside the single cell 

accelerates the electrons hit by the photon triggering a self-sustaining avalanche. The 

SPAD technology, being a single photodiode, is not able to distinguish two concomitant 

incident photons, while the SiPM, which possess more photodiodes connected in parallel 

through a common silicon substrate, is able to discriminate multiple incoming photons 

returning a signal given by the sum of the outputs of all the fired cells proportional to the 

incident light flux. In the area of the low-light photodetectors the photomultiplier tubes 

(PMT) have been the standard technology so far. The SiPMs are becoming competitive 

to PMTs in the field of low-light level detection since, considering a comparable intrinsic 

gain, they are insensitive to magnetic fields, their working bias is rather low (25 - 75V), 

the time response is intrinsically very fast (less than 500ps) and the device itself is rugged 

and compact (few mm2 size) (Dinu et al., 2007). 

 

8. Prostate cancer 

Prostate cancer (PCa) is one of the most common malignancy among men over 50 years. 

There are three main risk factors mostly recognized: age, ethnicity and family history. 

Age is an important risk factor for PCa. The incidence of PCa is 0.02% for men before 

49 years; it becomes 0.4% after 50-59 years and 0.6% after 65 years (US data (USCS 

Data Visualizations - CDC)). Another important risk factor is the ethnicity: black men 

have the highest rate of getting PCa, while American Indian/Alaska Native and 
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Asian/Pacific Islander men the lowest (USCS Data Visualizations - CDC). PCa is also 

highly heritable and the risk linked to this factor has been estimated to be as high as 60% 

(Hjelmborg et al., 2014). It is thought that from 5 to 10% of the PCa cases are primarily 

due to inherited genetic factors or PCa susceptibility genes. There are other potential 

modifiers of PCa cancer risk like the endogenous hormones, both estrogens and 

androgens. For example, it was shown that eunuchs or people with very low levels of 

testosterone before puberty do not develop this type of malignancy (PDQ Cancer Genetics 

Editorial Board, 2002). In several studies, PCa was also associated with genes with 

potential clinical relevance, suggesting an elevated incidence of PCa in men with 

mutations in BRCA1, BRCA2 (Agalliu et al., 2007) and in some genes of the mismatch 

repair system (Soravia et al., 2003) (Haraldsdottir et al., 2014). The androgen receptor 

pathway is probably considered the most important genetic factor involved in prostate 

carcinogenesis. Several SNPs within this pathway have been linked to PCa (Chang et al., 

2002) (Chang et al., 2003) (Sarma et al., 2008). Another important recognized factor in 

prostate cancer development is inflammation: proliferatory inflammatory atrophy is in 

30% of the cases the precursor of prostate intraepithelial neoplasia (PIN) (De Marzo et 

al., 2007). PCa is considered a group of different malignant tumors: 95% are 

adenocarcinomas originating in the glands and duct of the prostate, while the rest are 

neuroendocrine tumors, generally of acinary type. PCa is often multifocal and more than 

75% starts from the peripheral zone. Generally, PCa involves an accumulation of 

epithelial cells even if also non-epithelial cells play an important role. 25% of men below 

50s and 90% below 80s develop a benign prostatic hyperplasia (BPH) but it is not 

considered a precursor of the carcinoma. On the other hand PIN (in situ carcinoma) is the 

precursor of invasive cancer and it begins usually in the peripheral zone of the prostate 

gland. As long as the basal layer of the prostate is not broken, the PCa remains in situ 
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(Knudsen and Vasioukhin, 2010). Several factors are involved in the initiation of PCa 

such as the decrease of Glutathione-S-Transferase P1 (GTSP1) (Lee et al., 1994), 

homeobox protein Nkx-3.1 (Swalwell et al., 2002) and increased lipid metabolism (Sung 

et al., 2007) as well as overexpression of ETS proteins (Tomlins et al., 2005) and serine 

protease inhibitor Kazal-type 1 (SPINK1) (Leinonen et al., 2010). When PCa involves 

high-grade lesions it generally invades the stroma and eventually it becomes a metastatic 

tumor (Knudsen and Vasioukhin, 2010). PTEN loss and c-MYC amplification are the 

most recognized players for high-grade PCa and progression to metastasis (Shen and 

Abate-Shen, 2007) (Jenkins et al., 1997). Depending on the stage of the malignancy, the 

treatment can vary. When patients have an organ localized cancer diagnosis, the curative 

approach can be attempted, and possible treatments are radical prostatectomy, external 

radiation therapy, brachytherapy, combined brachytherapy plus external radiation therapy 

and combined hormone treatment plus radiation therapy. Metastatic prostate cancer is 

generally treated with hormonal regimen, which takes advantage of the dependency of 

PCa to androgen. Hormone deprivation can be performed with surgical castration, 

luteinizing hormone-releasing hormone agonists and androgen antagonists. 

Chemotherapy is used after or in combination with hormonal therapy. Usually, after a 

first phase of response to the treatment, the cancer becomes castration resistant (Litwin 

and Tan, 2017). In this case, other treatments are available, which confer a median overall 

survival advantage of 4-5 months each: sipuleucel-T, enzalutamide, AA (Lorente et al., 

2015). In particular, AA inhibits the enzyme CYP17A, dampening extra-gonadal 

testosterone production. Some metabolites of AA have been shown to target also the 

androgen receptor as agonist or antagonist (Caffo et al., 2018). In order to choose the right 

treatment, diagnostic tools are fundamental. For PCa, several are the standardly used 

tests: prostate specific antigen (PSA), digital rectum exploration, transrectal ultrasound, 
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ultrasound guided transperineal/transrectal prostate biopsies, skeletal scintigraphy, X-ray 

thorax and pelvic node staging (Litwin and Tan, 2017). Imaging techniques are mostly 

used for the staging of the disease: for example, considering that bones are a preferential 

site for the metastasis of prostate cancer, skeletal scintigraphy is often required. Even if 

new signatures of multiple genes are in development for diagnosis and prognosis of 

prostate cancer, and recently FDA-approved biomarkers (proPSA and PCA3) are entering 

the clinics, the most frequently used molecular diagnostic test is still PSA (Litwin and 

Tan, 2017) (Chistiakov et al., 2018). However, PSA can be found elevated for prostate 

benign neoplasia, prostatitis and prostate cancer. It is not a marker of PCa per se, but its 

increase is often associated with the presence of the malignancy (Pezaro et al., 2014). 

Regarding metastatic castration resistant prostate cancer (mCRPC) patients and AA 

treatment, the cost of the drug and the adverse effects call for biomarkers predicting its 

efficacy (Caffo et al., 2018). However, to our knowledge, apart from the work on AR-V7 

(Antonarakis et al., 2014) and CTCs enumeration (Heller et al., 2018), little has been 

achieved on this side. Thus, there is still a need of biomarkers for a reliable diagnosis, 

prediction and prognosis, for making decisions of physicians less challenging. 

In this context, as discussed in previous paragraphs, miRNAs may have an important role 

for PCa diagnosis, prognosis and prediction of treatment efficacy. The functional role of 

miRNAs in prostate cancer has already been extensively reviewed (Kanwal et al., 2017) 

(Khan et al., 2019b) (Aghdam et al., 2019) (Sharma and Baruah, 2019) and points towards 

the use of miRNAs as potentially good biomarkers in clinical settings. Chiorino group, 

recently showed that miR-103a-3p (also evaluated in this work) and let-7a-5p combined 

with PSA levels, could detect clinically significant tumors better than PSA alone (Mello-

Grand et al., 2019). Interestingly, in their approach, they considered individuals with 

plasma levels of PSA higher than 16 ng/mL as patients. Individuals who showed PSA 
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less than 16 ng/mL, were analyzed for miR-103a-3p and let7-p building a score which 

was able to identify clinically equivocable samples as PCa or non-PCa with an AUC of 

0,76. A similar approach has been developed for exosomes enriched cell-free urine 

samples, in which a logistic regression model made of five miRNAs and serum PSA 

indicated recurrence of PCa after radical prostatectomy (Fredsøe et al., 2019). miRNAs 

in urine samples have also been described for reclassification of patients enrolled in active 

surveillance (AS) programs, usually monitored via serological PSA, digital rectal exams 

and periodical invasive biopsies. A 3-marker panel based on miR-24, miR-30c and CRIP3 

methylation in urine samples was able to predict correct reclassification of AS patients 

(Zhao et al., 2019). Therefore, miRNAs have been studied as auxiliary factors in PCa 

diagnosis, prognosis and prediction of treatments (Fredsøe et al., 2020) (Lyu et al., 2019). 

Perhaps, this approach may be the best option to partially overcome the high biological 

complexity of PCa which could present several confounding factors within a cohort of 

patients. Indeed, in the present study, the heterogeneity of the patients, together with the 

relatively low number of samples analyzed, has represented a limitation for driving strong 

conclusions. 
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RESULTS 

 

1. Prediction and follow-up of abiraterone acetate efficacy in 

metastatic castration-resistant prostate cancer patients via 

plasma microRNAs 

Prostate cancer is still one of the leading cause of cancer deaths. The urge for better 

understanding the efficacy of the treatments available calls for biomarkers aiding 

clinicians in choosing the best drug for each patient. Thus, predictive biomarkers may 

help in discriminating patients which will likely benefit from a drug, avoiding useless, 

painful and expensive treatments. In this context, we analyzed the expression of c-

miRNAs in plasma of mCRPC patients before and after the administration of AA. 

 

1.1 Patients’ cohort 

The patients cohort (see Materials and Methods section – “Patients” – paragraph 1.1) was 

composed of a consecutive series of 34 mCRPC patients who were treated with AA after 

docetaxel failure as part of regular clinical practice at Santa Chiara Hospital (Trento, 

Italy): 22 non-respondent (NR) and 12 respondent (R) patient. Daily oral AA (1000 mg) 

plus prednisone 5 mg was administered twice a day. The cohort showed no statistical 

difference in the median age between R and NR patients (All = 75 ± 8; NR = 76 ± 6.83; 

R = 73.5 ± 9.48). 6 out of 22 NR patients and 0 out of 12 R patients received enzalutamide 

prior AA; all patients received docetaxel; 9 out of 22 NR patients and 6 out of 11 R 

patients received cabazitaxel. The median PFS of NR patients was 3.85 months (± 1) and 

13.15 (± 4.6) for R patients (Table 6). 
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Table 6. Patients’ characteristics representing Gleason score, enzalutamide treatment (ENZ), docetaxel treatment (DCX), cabazitaxel treatment (CBX), abiraterone acetate treatment period (AA 

duration), objective response to AA treatment (OR), PSA levels changes after AA treatment (PSA), progression free survival after AA treatment (PFS). AA = abiraterone acetate; MR = mixed response; 

NE = not evaluable; PD = progression of disease; PR = partial response; S = PSA stabilization; SD = stable disease;  UNK = unknown; <50% = PSA reduction less than 50% compared to baseline; 

>50% = PSA reduction more than 50% compared to baseline; Y=yes ; N=no. 

 Patient code 
Gleason 

score 
ENZ DCX CBX 

AA duration 

(months) 
OR PSA PFS (months) 

Non-respondent 

P1 8 Y Y Y 3.93 PD <50% 3.9 

P2 7 Y Y N 2.93 NE <50% 2.7 

P3 8 N Y N 4.03 PD <50% 3.7 

P4 9 N Y Y 6.8 MR <50% 5.4 

P5 8 Y Y Y 3.77 PD <50% 3.7 

P6 8 N Y N 3.73 PD S 3.7 

P7 6 N Y Y 2.83 PD S 2.8 

P8 UNK N Y Y 3.87 PD <50% 3.8 

P9 7 N Y N 1.93 NE <50% 1.9 

P10 8 N Y N 3.97 PD >50% 3.9 

P11 7 Y Y N 2.47 NE <50% 2.4 

P12 9 N Y Y 4.8 PD >50% 4.7 

P13 9 Y Y N 4.63 NE <50% 4.2 

P14 7 N Y N 3.27 PD <50% 3.7 

P15 8 N Y Y 5.57 MR <50% 5.5 

P16 9 N Y Y 4.63 MR >50% 4.6 

P17 9 N Y N 13.1 PD >50% 1.8 

P18 8 N Y N 4.7 PD <50% 4.6 

P19 10 N Y N 3.73 PD >50% 3.7 

P20 6 N Y N 3.93 PD <50% 3.9 

P21 9 Y Y N 2.67 PD <50% 3.9 

P22 10 N Y Y 5.6 PD >50% 5.5 

Respondent 

P23 9 N Y Y 12.17 PR <50% 12 

P24 7 N Y N 4.67 PR >50% 16.6 

P25 UNK N Y Y 14.3 PR >50% 13.1 

P26 7 N Y N 9.13 PR <50% 9 

P27 7 N Y N 13.37 PR <50% 13.2 

P28 9 N Y N 21.33 PR >50% 21.7 

P29 6 N Y Y 15.1 SD/PR >50% 14.9 

P30 9 N Y N 9.33 PR >50% 8.7 

P31 9 N Y Y 7.5 MR S 7.8 

P32 7 N Y Y 20.8 PR >50% 20.8 

P33 7 N Y N 8.87 MR >50% 8.7 

P34 9 N Y Y 4.43 PR >50% 14.8 
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1.2 miRNome analysis reveals deregulation of c-miRNAs in different 

response to abiraterone acetate treatment 

For the purpose of building a classifier to distinguish NR from R patients, we started 

analyzing 5mL of plasma samples (in EDTA tubes) from clinically unequivocable 9 R 

and 9 NR patients – sampled prior AA administration (preTRT) -  assessing 752 miRNAs 

with Human Exiqon miRNome qPCR Panels. We took out from the analysis 319 miRNAs 

that were not detected in at least 20% of the samples. 198 miRNAs were present in all the 

samples; 2 miRNAs were not detected in any samples in the NR group; 332 miRNAs 

were present in at least 5 of the samples in the NR group, while 360 in at least 5 of the 

samples in the R group. The choice of the normalizer for the relative quantification is 

critical for an optimal analysis of the data. In this work, we based this choice on the 

Normfinder software (Andersen et al., 2004) feeding the algorithm with the miRnome 

panel data: miR-425-5p was the best normalizer. Afterward, we built the Volcano plot 

(Figure 9).  

 

Figure 9. Volcano plot from Exiqon panels data. Normalized expression on miR-425-5p. Log(fold change) for NR 

versus R group (x axis) and negative of log(p-value) (y axis). Black lines show log(Fold Change) > 1 and <-1. -log(P-

Value) legend: below red line p-value > 0.05, between red and green line 0.05 > p-value > 0.0001, above green line p-

value < 0.0001. Red circles highlight the chosen miRNAs for further validation via the unbiased approach. 
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Exiqon miRnome panels do not have any technical replicates, thus a validation 

method is needed in choosing candidates for further analysis. We decided to select 

miRNAs for validation following two approaches: 1) target-wise and 2) unbiased. 

 

1.3 miR-103a-3p is able to distinguish non-respondent vs respondent 

mCRPC patients 

One of the main players in prostate cancer development is PTEN, which has also been 

found to be down-regulated in NR patients (Ferraldeschi et al., 2015). Therefore, for the 

target-wise approach we decided to select from the Exiqon panels, miRNAs which target 

PTEN. We retrieved from miRTARbase the miRNAs validated to target PTEN and to 

narrow the choice to a putative candidate we excluded miRNAs which 1) were expressed 

with a Cq value higher than 30 b) were down-regulated in NR patients in the miRNome 

analysis - following the reasoning of a down-regulation of PTEN in NR patients - and c) 

literature review (Mello-Grand et al., 2019) (Fu et al., 2016) (Xue et al., 2016) (Singh et 

al., 2014) (Yu et al., 2018) (Guo et al., 2015). From this analysis we chose miR-103a-3p 

for validation with TaqMan technology. We performed RT-qPCR for miR-103a-3p on 

plasma of the same 9 NR and 9 R patients preTRT. The results depicted in Figure 10, 

show that miR-103a-3p is able to discriminate between NR and R patients (p-value: 

0.003). 
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Figure 10. RT-qPCR for miR-103a-3p normalized with miR-425-5p. miR-103a-3p is able to distinguish non-

respondent versus respondent patients treated with AA. ** = p-value = 0.003 

 

1.4 The miRNome analysis identifies 67 microRNAs deregulated in 

non-respondent vs respondent mCRPC patients 

In order to increase the robustness of the miR-classifier we also explored miRNAs in an 

unbiased approach from the miRNome data. We found 67 miRNAs significantly 

differentially expressed in NR versus R patients (Table 7). Among them we chose 7 

candidates for further validation, taking into consideration a) fold change, b) p-value and 

c) literature review (Xue et al., 2016) (Zheng et al., 2018) (Singh et al., 2014) (Wang et 

al., 2018) (Song et al., 2018) (Fujii et al., 2016) (Epis et al., 2009) (Zhu et al., 2018) (Yang 

et al., 2015) (Guo et al., 2017) (Chen et al., 2016b) (Avgeris et al., 2014) (Chen et al., 

2015) (Karatas et al., 2017) (Li et al., 2017): miR-182-5p, miR-331-5p (up-regulated in 

NR vs R), miR-144-3p, miR-29b-3p, miR-33a-5p, miR-363-3p and miR-378a-5p (down-

regulated in NR vs R). We analyzed the 7 candidates on the same 9 NR and 9 R samples 

preTRT with TaqMan RT-qPCR technology (Figure 11).  
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Figure 11. Validation analysis with TaqMan RT-qPCR. Expression values (2-DCq) of miRNAs candidates normalized 

with miR-425-5p. * = p-value < 0.05. miR-33a-5p did not show signal for four samples in the respondent group. 

 

MiR-144-3p, miR-182-5p, miR-331-5p and miR-378a-5p expression showed a trend 

concordant with the miRnome analysis, however only for miR-144-3p the difference 

between the two groups was statistically significant. miR-33a-5p was discarded from 

further analysis because its expression levels were barely detectable (Cq values > 37). 

The expression levels of the miRNAs concordant with the miRnome analysis were 

coupled with miR-103a-3p analysis to explore a new signature with a higher capacity of 

discrimination. We calculated the ratio of 2-Cq signals of the miRNAs and among all the 

combinations, we identified the miRNA score (miRS) of miR-103a-3p/miR-378a-5p as 

the best performer. miRS was able to discriminate between the groups of NR and R 

patients (p-value = 0.0001) as described in Figure 12A. To confirm this result, we  

increased our data set with 16 patients (13 NR and 3R) for a total of 21 NR and 12 R (1 

NR sample from the discovery phase could not be further processed because of the 

scarcity of starting material). As depicted in Figure 12B, miRS is able to sharply 

discriminate between the two groups (p-value: 0.008). Therefore, miRS is a promising 
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biomarker for AA response in mCRPC patients and being a ratio of the expression values 

of two miRNAs it avoids the use of a normalizer. 

 

 

Figure 12. The ratio of 2-Cq signal of miR-103a-3p and miR-378a-5p creates a score able to significantly distinguish 

non-respondent versus respondent patients (A) also in the expanded cohort (B). *** = p-value < 0.001.  ** = p-value < 

0.01 
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Table 7. List of deregulated genes from the miRNome analysis. The genes were filtered for statistically significant differential expression (p-value < 0.05). In bold, candidate genes chosen for the 

validation with TaqMan RT-qPCR. 

 

miRNA Fold change 

(NR vs R) 

P-Value miRNA Fold change 

(NR vs R) 

P-Value miRNA Fold change 

(NR vs R) 

P-Value miRNA Fold change 

(NR vs R) 

P-Value 

hsa-let-7a-5p 2.1 2E-03 hsa-miR-144-3p -4.1 1E-03 hsa-miR-29b-3p -2.2 2E-04 hsa-miR-502-3p -2.2 2E-02 

hsa-let-7b-5p 1.8 1E-03 hsa-miR-146a-5p 1.4 2E-02 hsa-miR-29c-3p -1.8 4E-02 hsa-miR-548k 5.8 2E-02 

hsa-let-7c-5p 1.7 7E-03 hsa-miR-149-5p 4.3 3E-02 hsa-miR-30c-5p 1.8 8E-04 hsa-miR-574-3p 2.3 3E-03 

hsa-let-7d-3p 1.7 1E-02 hsa-miR-151a-5p 1.5 4E-02 hsa-miR-30e-3p 1.5 1E-02 hsa-miR-579-3p -3.3 4E-02 

hsa-let-7d-5p 1.6 8E-04 hsa-miR-153-3p -3.9 1E-02 hsa-miR-320a 1.4 3E-02 hsa-miR-598-3p 1.7 3E-02 

hsa-let-7e-5p 1.9 2E-02 hsa-miR-155-5p 1.9 3E-02 hsa-miR-32-5p -3.7 2E-02 hsa-miR-610 3.6 4E-02 

hsa-let-7f-5p 2.1 1E-03 hsa-miR-15b-5p 3.5 3E-03 hsa-miR-331-5p 6.9 6E-04 hsa-miR-624-5p -3.5 3E-02 

hsa-let-7i-3p -6.5 4E-02 hsa-miR-181a-5p 1.5 3E-02 hsa-miR-335-3p 1.8 4E-02 hsa-miR-628-3p 2.3 9E-03 

hsa-miR-101-5p -3.1 4E-02 hsa-miR-182-5p 4.9 5E-02 hsa-miR-33a-5p -4.7 2E-02 hsa-miR-660-5p -2.0 4E-03 

hsa-miR-106b-5p -1.5 4E-03 hsa-miR-196b-3p -3.1 4E-02 hsa-miR-342-3p 1.6 3E-02 hsa-miR-663a 3.5 3E-02 

hsa-miR-10b-5p -2.6 5E-02 hsa-miR-197-3p 1.6 3E-02 hsa-miR-363-3p -2.4 1E-03 hsa-miR-664a-
3p 

1.8 4E-02 

hsa-miR-125a-5p 1.7 3E-02 hsa-miR-199a-5p -2.1 2E-02 hsa-miR-378a-5p -4.7 1E-02 hsa-miR-766-3p 1.9 2E-03 

hsa-miR-126-3p 1.5 1E-02 hsa-miR-223-3p 1.6 3E-02 hsa-miR-411-5p 2.2 4E-02 hsa-miR-769-5p -2.5 4E-02 

hsa-miR-126-5p 1.4 1E-02 hsa-miR-23a-3p 1.9 1E-03 hsa-miR-421 1.7 3E-02 hsa-miR-92a-1-
5p 

4.3 3E-02 

hsa-miR-136-5p -3.4 4E-02 hsa-miR-23b-3p 2.0 3E-05 hsa-miR-423-5p 1.6 5E-03 hsa-miR-96-5p -4.1 1E-02 

hsa-miR-140-3p -1.7 4E-02 hsa-miR-24-3p 1.7 4E-02 hsa-miR-450b-5p 4.7 1E-02 hsa-miR-98-5p 1.6 3E-03 

hsa-miR-143-3p -2.1 4E-03 hsa-miR-26a-5p 1.4 4E-02 hsa-miR-451a -2.6 8E-03    
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1.5 The miRS follows efficacy of abiraterone acetate in time 

Since our miRS proved its ability in discriminating NR versus R patients, we tested it for 

its ability to follow-up the efficacy of the treatment. We could analyze - out of 12 R 

patients - the follow-up samples of 11 R at 3 months, 10 R at 6 months, 7 R at 9 months 

and – out of 21 NR patients – 14 NR at 3 months, 4 NR 6 at months and 0 NR at 9 months. 

The missing samples are due either to the death of the patients or the end of treatment. 

Our data indicate that the miRS is able to follow-up in time the responsiveness to AA 

(Figure 13A). We can speculate that the miRS of the R patients, becomes more and more 

similar to the miRS of the NR patients, reflecting the responsiveness of the patients who 

all become progressively resistant to AA. Importantly, to help proving this point we 

calculated the difference between the 3 months miRS and preTRT miRS (delta score) for 

each patient. Following our reasoning, we plotted the positive delta scores (9 samples out 

of 11) against PFS (Figure 13B). Interestingly, the delta score has a negative correlation 

trend with PFS. Thus, greater is the change in signal between the preTRT sample and the 

3 months sample, lower is the PFS. PSA reduction, one of the standard parameter for 

clinical decisions, does not correlate with PFS, and fails in providing a more accurate 

scenario (Figure 13C). Considering the lack of good biomarkers to follow responsiveness 

to AA treatment, miRS may be of critical importance.  
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Figure 13. miRNA score analysis of follow-up samples at 3, 6 and 9 months after AA administration. (A) miRNA score 

follows the efficacy of AA for each patient in time. Average miRNA score for respondent patients becomes 

progressively similar to average miRNA score for non-respondent patients, reflecting the progressive acquisition of 

resistance to AA. (B) Delta score (preTRT miRS – 3months miRS) of R samples correlates negatively with PFS, except 

for two outliers (circle). (C) PSA reduction after three months from the first AA administration is not able to give an 

indication of the efficacy of AA in time. 

 

1.6 Unsupervised clustering analysis confirms miRS ability to predict 

and follow abiraterone acetate efficacy in mCRPC patients 

In order to increase the confidence in the miRS we analyzed our data with an unsupervised 

clustering model, feeding the algorithm with the miRS and without the post-treatment 

clinical evaluation. According to miRS, the clustering was able to classify the patients in 

two groups (p-value < 0.0001) which we named “1” and “2” (Figure 14A). The Kaplan-

Meyer plot (Figure 14B) showed a statistically significant difference (p-value = 0.0003) 

between the median PFS of group 1 compared to the median PFS of group 2. We can 

consider group 1 as R patients and group 2 as NR patients. Compared to the clinicians’ 

evaluation, 5 patients out of 15 of group 1 (R) were re-classified by our unsupervised 

model (clinicians’ evaluation = NR); 2 out of 18 of group 2 (NR) was re-classified 

(clinicians’ evaluation = R). The post-treatment samples showed the same trend observed 

in the previous analysis (Figure 14C-D). The negative correlation trend between the delta 
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score and the PFS is preserved (12 positive delta scores out of 15). Interestingly, the 5 re-

classified patients in the R group had a PFS of 5.5, 5.5, 4.7, 4.6, 3.8 months, equal or 

higher than the average PFS of the NR group (3.8 months). Therefore, our miRS was able 

to classify them as respondent, however, we may subgroup them as “poor respondent”. 

In fact, according to our hypothesis of miRS predicting a poor response in time, 3 of them 

also showed a high delta score during the first 3 months. 

 

Figure 14. Unsupervised clustering for miRNA score data. (A) miRNA score is able to divide, by k-means clustering, 

the patients in two groups (1-2). (B) K-M plot based on the clustered groups by miRNA score shows a significant 

difference in PFS enabling the definition of the group 1 as respondent, while the group 2 as non-respondent. (C) The 

follow-up samples based on the clustered groups shows the same trend as the previous analysis with the pre-classified 

groups. (D) Delta score for the respondent group maintain the negative correlation with PFS (outliers in the solid-line 

circle). The dotted-line circle represents the re-classified patients which are considered as respondent, but with a low 

PFS after AA administration, as reflected by a high delta score. **** = p-value < 0.0001. 

 

1.7 Bioinformatic analysis on miR-378a-5p and miR-103a-3p targets 

miRNAs may be deregulated either as a direct or an indirect effect of the biological 

process under investigation. To have a better understanding of the possible roles of our 
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selected miRNAs, we analysed their predicted and validated targets (see Materials and 

Methods section - “Bioinformatic analyses” - paragraph 1.7). Among all, the most 

relevant genes linked to prostate cancer development, recurrence and resistance to 

therapies were: WNT2B, WNT7A (Ahmad and Sansom, 2018) (predicted) DICER1 

(Bian et al., 2015), AGO (Bian et al., 2014), PTEN (Ferraldeschi et al., 2015) and SP1 

(Hafner et al., 2010) (validated). Moreover, the promoters of miR-103a-3p and miR-

378a-5p were searched for enriched consensus sequences of human transcription factors 

via GeneXplain software. We analysed four different Ensembl annotations: a) miR-

103a1-3p b) miR-103a2-3p c) miR-378a-5p and d) PANK2. miR-103a is present twice in 

our genome (miR-103a1 and miR-103a2) with an identical mature miRNA sequence. 

Therefore, TaqMan RT-qPCR probes could not distinguish the two products, nor the 

target prediction is affected. However, being the two copies in two different genomic 

locations, the transcription factor analysis may yield different results. Since the 

transcription of an intronic miRNA may be regulated by either an internal promoter or by 

the promoter of the gene in which it is inserted, we chose to search for transcription factor 

binding sites in PANK2 promoter because miR-103a2 is in one of its introns. miR-378a-

5p is also intronic but we could reach the promoter of the gene (PPARGC1B) with our 

analysis range (see Materials and Methods section - “Bioinformatic analyses” - paragraph 

1.7); miR-103a1-3p is in the PANK3 gene but transcribed in antisense direction. The 

transcription factors, whose consensus binding sequence was enriched, were: ATF2, 

BRCA1, GMEB2, IRX2, LEF1, MAFA, SOX10, USF2, ZBTB33 and HOXB13 (Figure 

15). HOXB13 is a transcription factor that belongs to the homeobox gene family and 

interestingly it has been already associated to early death after AA treatment (Miyamoto 

et al., 2018). 
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Figure 15. Capture from GeneXplain software of HOXB13 consensus sequence enrichment in the searched genome 

areas. Red arrows represent consensus sequence sense or antisense. HOXB13 is evidently enriched in promoters of 

miR-103a-3p and PANK2, in which intronic region resides miR-103a2. 

 

1.8 Up-regulation of miR-103a-3p and inhibition of miR-378a-5p 

confer resistance to abiraterone acetate in LnCaP cell line 

We explored in a cell line model whether miR-103a-3p and miR-378a-5p may have direct 

involvement in the induction of AA resistance in prostate cancer. We transfected LnCaP 

cell line (androgen-independent) with mimics for miR-103a-3p and inhibitors for miR-

378a-5p alone and in combination: then we treated the cells with EC50 of AA - which we 

here previously experimentally determined (Figure 16). The up-regulation of miR-103a-

3p and the down-regulation of miR-378a-5p reflected the expression levels of the two 

miRNAs in the plasma of a NR patient. In MTT assays (Figure 17) the transfection of 

mimics for miR-103a-3p alone but not of inhibitors for miR-378a-5p conferred resistance 

(resistance increment of  24% - ANOVA p-value = 0,01) to AA treatment. The same 

result was obtained when the synthetic oligos were transfected in combination at the same 
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concentration (resistance increment of 30% - ANOVA p-value: 0.03). Therefore, here we 

provide cell line data that shows the involvement of at least miR-103a-3p in the 

mechanism of resistance to AA in prostate cancer. It is important to highlight that LnCaP 

cell line is PTEN-null, therefore, these analyses are not meant to prove the axis miR-

103a-3p/PTEN, but a general involvment of the two candidate miRNAs in the induction 

of AA resistance in prostate cancer. 

 

Figure 16. EC50 after 72h of AA treatment. LnCaP cells shows a EC50 of 18 uM. Each dot represents the mean of a 

biological triplicate 

 

.  

Figure 17. LnCaP resistance to AA after transfection with mimics of miR-103a-3p and inhibitors of miR-378a-5p. 

100nM of mimics of miR-103a-3p alone (A) confer resistance to AA at 72h of treatment (24%) in LnCaP cells while 

100nM of inhibitors of miR-378a-5p alone (B) do not. The transfection of 100nM of both mimics of miR-103-3p and 

inhibitors of miR-378a-5p in combination (C) confer resistance to AA at 72h of treatment (30%) in LnCaP cells. * = 

ANOVA p-value < 0.05. Solid line refers to non-treated and non-transfected cells used as control (NT); dotted line 

refers to the mean fold change of non-transfected cells treated with AA. CT = scramble oligo. 
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1.9 Abiraterone acetate stops LnCaP cells in G0/G1 phase 

In order to better address the role of the miR-103a-3p and miR-378a-5p in the mechanism 

of resistance of prostate cancer to AA, we decided to explore the behavior of LnCaP cells 

after treatment with AA. We treated LnCaP cells with EC50 of AA and then we 

performed cell death and cell cycle analysis via FACS. Interestingly, after AA treatment, 

while the cell death analysis showed that only the number of necrotic cells increased – 

but it was not statistically significant – there was a statistically significant decrease of 

number of cells in S-phase with a block in G0/G1-phase (G0/G1 p-value = 0.006 – S p-

value = 0.0002) (Figure 18). Thus, AA affects more the cell cycle behavior more than 

provoking cell death.  

 

 

Figure 18. FACS analysis for cell cycle (A) and cell death (B) after 72h of AA treatment (at EC50 of 18 uM). LnCaP 

cells show a stop in G0/G1 after AA treatment while no statistically significant indication of increased necrotic or 

apoptotic cell death. Each bar represents the mean of a biological triplicate. 
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2. A new platform for the direct detection of microRNAs in biofluids  

In the event of a full validation of the two c-miRNAs we discovered in the study on 

predictive biomarkers for AA treatment in mCRPC patients, a technology avoiding the 

limitations of the current techniques must be established. In this work, we present the 

ODG platform which comprises a novel SiPM-based reader in conjunction with Chem-

NAT. Accurate miRNAs profiling without extraction, pre-amplification or pre-labeling 

of the target is now achievable. 

 

[Reprinted (adapted) with permission from New Platform for the Direct Profiling of 

microRNAs in Biofluids. Simone Detassis, Margherita Grasso, Mavys Tabraue-Chávez, 

Antonio Marín-Romero, Bárbara López-Longarela, Hugh Ilyine, Cristina Ress, Silvia 

Ceriani, Mirko Erspan, Alfredo Maglione, Juan J. Díaz-Mochón, Salvatore Pernagallo, 

and Michela A. Denti. Analytical Chemistry 2019 91 (9), 5874-5880. DOI: 

10.1021/acs.analchem.9b00213. Copyright (2019) American Chemical Society] 

 

2.1 Development of a new micro-wells strip SiPM-based reader 

In this study, a new chemiluminescent micro-wells strip reader based on the SiPM 

technology was designed by integrating 8 SiPMs (provided by Advansid, FBK, Trento, 

Italy) into a 12cm x 20cm x 5cm support (Figure 19A). The single detector is 1mm X 

1mm (active area, with single optical cells being a few microns) inserted into a Near 

Ultraviolet (NUV) SiPM capable of single photon resolution, with signal amplification 

(Figure 19B). It consists of an array of avalanche photodiodes reverse biased in Geiger 

mode. The arrival of a single photon generates an avalanche event due to impact 
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ionization, enabling good photon resolution in dark conditions by returning a strongly 

amplified signal. The SiPM brings the advantages of creating a high gain with low bias 

voltage (about 30 V against 1-2kV of a PMT), enabling the detection of low intensity 

light signals. The SiPM-based reader is able to analyze 8 samples simultaneously, using 

8-wells strips in the platform. The read-out is reported live by software connected to the 

reader, via a USB connection. The analytical sensitivity of the reader was determined by 

creating a calibration curve using Horseradish Peroxidase (HRP) enzyme into HRP 

substrate (Figure 20) The curve was obtained by plotting the average of photocurrent 

generated versus different concentrations of HRP added into the device. The limit of 

detection (LOD) was calculated as 0.16 pmol/L in 35 uL of HRP substrate. 

 

 

Figure 19. (A) The SiPM-based reader. A plastic support contains the electronic acquisition system with an array of 8 

SiPM NUV (1). The reader is turned on via a power adapter (2). An USB connector (3) connects the reader to a laptop 

with a dedicated ODG software. The samples are loaded into the sample holder (4) and covered with a plastic case (5). 

(B) SiPM sensor: with the white arrow is indicated the 1mm X 1mm active area. 
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Figure 20. Calibration curve measuring the analytical sensitivity of the SiPM-based reader. The photocurrent signals 

generated by the reader (Y axis) correlate linearly with the concentrations of HRP added to substrates (X axis). Each 

dot represents the average signal of three independent measures (standard deviations in bars). 

 

2.2 ODG platform 

To achieve the merging of Chem-NAT and SiPM-based reader, an abasic PNA probe 

(aPP) complementary to hsa-miR-21-5p is covalently bound to magnetic beads (Figure 

21, STEP 1). The complementary hsa-miR-21-5p is captured by the aPP, templating the 

incorporation into the duplex of a biotinylated aldehyde-modified adenine (SMART-A-

Biotin) (Figure 21, STEP 2). Following this recognition, washing steps are performed to 

eliminate off-targets (Figure 21, STEP 3). Magnetic beads allow an effective phase-

separation and an efficient washing process by using magnetic separation racks. The 

labelling is achieved via HRP-streptavidin (HRP-strep), which specifically recognizes the 

biotin in the duplex (Figure 21, STEP 4). A luminol-peroxidase substrate is added to 

generate a chemiluminescent signal. The oxidation of luminol by the peroxide is catalyzed 

by the HRP producing light. The read-out is performed by the SiPM-based reader (Figure 

21, STEP 5). 
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Figure 21. ODG platform workflow. aPP are bound to magnetic beads (STEP 1 – the arrow shows the abasic position). 

The target hybridizes to the probe and the SMART-nucleobase enters the pocket (STEP 2); off-targets are washed away 

(STEP 3); HRP-strep binds the biotin of the SMART-nucleobase (STEP 4). Chemiluminescent substrate is added and 

the signal generated by the oxidation of the luminol with peroxide via HRP catalysis is analyzed via the SiPM-based 

reader (STEP 5). 

 

2.3 Abasic PNA probe optimization 

aPPs were synthesized with amino-pegylated groups in order to be covalently bound onto 

magnetic beads (aPP-beads). As described by our group elsewhere (Venkateswaran et al., 

2016), aPP under immobilization onto magnetic beads have been found to lack stability, 

and can exhibit a degree of undesirable deformation, affecting performance (e.g., 

specificity and/or sensitivity) of the aPP in this assay, and prevent proper miRNAs 

detection. To overcome risks of poor probe performance, four aPP (aPP1, aPP2, aPP3 and 

aPP4) were synthesized, containing a sequence of nucleobases to allow hybridization to 

the mature hsa-miR-21-5p strand. aPP1, aPP2, aPP3 used sequences of 17-mer, aPP4 of 

19-mer. The aPP1 incorporated two PNA monomers containing propanoic acid 

modifications at gamma positions (Venkateswaran et al., 2016). The abasic site was 

positioned +8 from the C-terminal, so that post-hybridization, the mature hsa-miR-21-5p 

strands presented a guanidine at position +11 (from the 5’), thereby allowing 
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incorporation of a SMART-C-Biotin into the abasic pocket (Table 8). The other three 

aPPs (aPP2, aPP3 and aPP4) carried two PNA monomers containing propanoic acid 

modifications differently distributed (Table 8). The abasic monomer sites were positioned 

respectively at +9, +8 and +12 from the C-terminal, so that post-hybridization the mature 

hsa-miR-21-5p strands presented a uracil respectively at positions +14, +8 and +14 (from 

the 5’), thereby allowing incorporation of a SMART-A-Biotin into the abasic pocket 

(Table 8). Among the four sequences synthesized and tested, the aPP4 was selected, 

showing the best hybridization to the complementary hsa-miR-21-5p, as well as an 

improved SMART-A-Biotin incorporation (data not shown). 

  

Table 8. Abasic PNA probe sequences and complementary targets. For abasic PNA probes: “*” chiral monomers;  “__” 

abasic monomer. For targets: highlighted in red the regions of hsa-miR-21-5p that hybridize with the abasic PNA 

probes; highlighted in green the nucleobases interrogated by SMART nucleobases. 

Code Abasic PNA probes (N-ter --> C-ter) 
Targets hsa-miR-21-5p MIMAT0000076 

(5’ --> 3’) 

aPP1 A A C A T C* A G T __ T G A T* A A G UAGCUUAUCAGACUGAUGUUGA 

aPP2 T C A A C A T* C __ G T* C T G A T A UAGCUUAUCAGACUGAUGUUGA 

aPP3 A T C A G T C T* G __ T A A G C* T A UAGCUUAUCAGACUGAUGUUGA 

aPP4 C A A C A T* C __* G T* C T G A T A A G C UAGCUUAUCAGACUGAUGUUGA 

 

2.4 Analytical sensitivity and limit of detection of the ODG platform 

The analytical sensitivity of the ODG platform was determined by creating a calibration 

curve (performed in triplicate) using known concentrations of synthetic RNA-hsa-miR-

21, respectively 0.029, 0.059, 0.117, 0.469 nmol/L (final concentration) in a total reaction 

volume of 50 uL (water was used as negative control). Chemiluminescent signals were 

detected by the SiPM-based reader. The average output signals show a linear correlation 

(Figure 22) according to the concentrations of RNA-hsa-miR-21.  
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Figure 22. (A) The photocurrent signals generated (Y axis) correlate linearly with the concentration of RNA-hsa-miR-

21-5p (X axis). Standard deviations of the technical triplicates in bars. Positive signals (green bracket) are given by the 

incorporation of the SMART-A-Biotin after hybridization of the target (B), while the negative control (red circle) 

signals are represented by incubation of aPP4 with water, such that no SMART-A-Biotin is able to enter into the pocket 

(C).  

The LOD was calculated as 4.7 pmol/L (see Materials and Methods section – Generation 

of calibration curves with ODG platform and RT-qPCR – paragraph 2.5). In parallel, a 

comparative calibration curve was created using a conventional multi-mode microplate 

reader for the read-out with a LOD of 7.4 pmol/L (Figure 23). 

 

 

Figure 23. (A) The luminescent units generated (Y axis) correlate linearly with the concentration of RNA-hsa-miR-21 

(X axis). Standard deviations of technical triplicates in bars. Positive signals are given by the incorporation of the 

SMART-A-Biotin after hybridization of the target (B), while the negative control signals are represented by incubation 

of aPP4 with water, such that no SMART-A-Biotin is able to enter into the pocket (C). 
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2.5 Hsa-miR-21-5p profiling using ODG platform for plasma of lung 

cancer patients  

Following the generation of calibration curves and determination of LOD, the ODG 

platform was tested for the direct detection of hsa-miR-21-5p in plasma samples from 

eight NSCLC patients (performed in triplicate). 2.5 x 10E+05 aPP4-beads were dispersed 

directly into the plasma samples along with DestiNA’s proprietary lysis buffer. The beads 

were incubated for one hour with the samples to allow the capture of free hsa-miR-21-5p 

by aPP4. The Chem-NAT reaction and protocol was performed as explained in Materials 

and Methods section (Chem-NAT reaction for plasma samples analysis – paragraph 2.7). 

The positive signal corresponds to the SMART-A-Biotin incorporation into the probe’s 

abasic site upon hybridization with the hsa-miR-21-5p (Figure 24A), while the negative 

signal corresponds to an aliquot of the same sample incubated with a SMART-C-Biotin 

that cannot be incorporated (Figure 24B). As shown in Figure 4C, the ODG platform was 

able to directly detect hsa-miR-21-5p in plasma samples. Values of signal to background 

ratio (S/B) varied depending on the concentration of the target in the samples (Figure 

24C).  

 

Figure 24. Direct detection of hsa-miR-21-5p in plasma of NSCLC patients. The positive signal (A) is given by the 

SMART-A-Biotin incorporated into the aPP4 after hybridization of hsa-miR-21-5p, while the SMART-C-Biotin which 

cannot pair with the nucleobase in front of the pocket (U) in aPP4 generates the background (B) of the platform. (C) 

Signal to background ratio generated by the ODG platform for each sample. Standard deviations of technical triplicates 

in bars. 



78 

 

Interpolating the S/B with the LOD curve generated previously with the ODG reader, we 

calculated an approximative range of concentration between 14 pmol/L and 45 pmol/L 

(Table 9), an expected value for highly expressed circulating miRNAs (Max et al., 2018). 

Hsa-miR-21-5p expression of the eight plasma samples was also assessed via RT-qPCR 

gold standard method for miRNA analysis (performed in triplicate). As shown by Figure 

25, ODG platform showed a positive correlation with Cq values generated by RT-qPCR 

(R2=0.75, p=0.005), demonstrating that ODG platform can generate qualitative and 

quantitative data. 

 

Figure 25. Signal to background ratios generated by the ODG platform correlate with TaqMan Cq values of the same 

plasma samples. Each dot represents the average of three independent measures (standard deviations in bars). 

 

Table 9. Concentration of hsa-miR-21-5p in plasma of lung cancer samples calculated interpolating S/B values by the 

ODG reader with the LOD curve 

Sample S/B Concentration (pmol/L) 

LC1 2.32 33 

LC2 2.10 29 

LC3 1.88 25 

LC5 1.76 23 

LC6 3.06 46 

LC7 1.35 15 

LC8 2.07 28 

LC9 1.31 15 
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2.6 Hsa-miR-21-5p quantitative evaluation in plasma of lung cancer 

patients via RT-qPCR 

To translate the Cq values into number of moles, two calibration curves were generated 

(performed in triplicate) using cel-miR-39 spike-ins: 1) nine quantities of synthetic RNA-

cel-miR-39 were reverse transcripted directly in 15 uL of aqueous solution and (2) nine 

quantities of synthetic RNA-cel-miR-39 were spiked into 200 uL of plasma, with 

extraction and reverse transcription (Figure 26A). Calibration curves for hsa-miR-21-5p 

were performed to confirm the equal efficiency of TaqMan probes of the two selected 

miRNAs (Figure 26B). Average RNA extraction efficiency was evaluated studying the 

difference between Cq values of the two curves. Error in slope and in intercept of the 

regression lines were taken into account, to provide approximate absolute concentrations 

(Table 10) spanning the pmol/L range (100 – 800 pmol/L). Importantly, the efficiency of 

RT-qPCR varies greatly from assay to assay, with an inverse proportional trend with the 

concentration of the miRNA under investigation. As a matter of fact, the smaller the 

amount of synthetic RNA spiked-in, the higher the loss in efficiency of RT-qPCR, either 

due to loss of RNA or presence of contaminants after the RNA extraction (Table 11-12). 

Therefore, the whole procedure for performing standard RT-qPCR fails partially in its 

inherent reproducibility and so the calculation of absolute amount of molecules with this 

technique has critical limitations. For this reason, the direct detection performed by the 

ODG platform is desirable.  
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Figure 26. (A) RT-qPCR calibration curves for cel-miR-39 and (B) for hsa-miR-21-5p. Nine quantities of RNA-cel-

miR-39 (or hsa-miR-21-5p) were directly reverse transcripted (left) and nine quantities of RNA-cel-miR-39 (or five 

quantities of hsa-miR-21-5p) were spiked in plasma before RNA extraction (right). Each dot represents the average of 

triplicate measures (standard deviations in bars). 

 

Table 10. Cq values and range of concentration calculated for hsa-miR-21-5p in each of the plasma samples of lung 

cancer patients analyzed  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Cq value Range of concentration (mol/L) 

LC1 22.71 3.94E-10 to 4.67E-10 

LC2 22.42 4.72E-10 to 5.54E-10 

LC3 24.36 1.36E-10 to 1.74E-10 

LC4 23.33 2.63E-10 to 3.21E-10 

LC5 21.71 7.47E-10 to 8.49E-10 

LC6 24.99 9.09E-11 to 1.19E-10 

LC7 23.72 2.05E-10 to 2.54E-10 

LC8 23.38 2.55E-10 to 3.12E-10 
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Table 11. Cq values for calibration curves of cel-miR-39 and RNA extraction efficiencies. First column shows Cq 

values for the calibration curves generated by the spike ins directly reverse transcripted. Second column shows Cq 

values for the calibration curves generated by the spike-ins in plasma and extracted for RNA before reverse 

transcription. Each value represents the average of a technical triplicate. 

 

 

 

Table 12. Cq values for calibration curves of hsa-miR-21-5p and RNA extraction efficiencies. First column shows Cq 

values for the calibration curves generated by the spike ins directly reverse transcripted. Second column shows Cq 

values for the calibration curves generated by the spike-ins in plasma and extracted for RNA before reverse 

transcription. Each value represents the average of a technical triplicate. 

 

Cq values – spike in 

RT 

Cq values – spike in 

plasma 

RNA extraction efficiency 

(%) 

6.77 7.28 80.38 

7.86 8.98 49.69 

9.86 11.45 36.13 

13.48 14.31 37.75 

15.89 18.43 11.52 

 

 

 

 

Cq values – spike in 

RT 

Cq values – spike in 

plasma 

RNA extraction efficiency 

(%) 

7.23 7.47 70.9 

7.71 8.9 55.77 

9.7 11.2 50.28 

13.89 14.17 58.53 

16.39 17.94 40.43 

19.98 21.44 33.14 

23.04 25.16 23.63 

26.18 27.52 40.84 

29.18 30.94 35.57 
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3. microRNAs analysis in extracellular vesicles fraction of plasma 

samples  

As discussed, EVs may be the cargo of several molecules with important features of 

biomarkers, such as miRNAs. The advantage of using EVs in diagnostics is their selective 

and specific origin, decreasing background effects of molecules coming from different 

tissues than the one of interest. Moreover, from a technical point of view, EVs offer the 

possibility of enriching the intended target in a very small volume, facilitating the 

capturing and the detection. In this work, we explored the possibility of using EVs-

enriched samples from plasma samples as a source of miRNAs for further application 

with the ODG platform. 

 

3.1 Isolation and characterization of extracellular vesicles from 

healthy volunteers 

We isolated EVs from 1 ml of plasma of 8 healthy volunteers with nickle-based isolation 

(NBI) technology (Notarangelo et al., 2019). We then measured the number of vesicles 

in suspension by Tunable Resistive Pulse Sensing (TRPS). As shown in Figure 27 the 

number of particles detected with two different nanopores (NP200 and NP400) indicates 

the presence of EV sub-populations. By comparing all the samples analyzed and the total 

particles recovered, the total number is approximately the same for all the samples (mean 

particles/mL = 3.5E+08). The mean particles diameter ranges from 162nm to 331nm for 

NP200 and 197nm to 400nm for NP400 measured samples. 
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Figure 27. Size and mean number of particles per mL calculated with two different nanopores via TRPS: NP200 (red) 

and NP400 (blue) 

 

3.2 microRNAs are detectable in NBI-isolated EVs by RT-qPCR  

EVs have been demonstrated to carry several nucleic acids potentially investigated as 

biomarkers. miRNAs have been recently discovered and studied in EVs cargos bearing 

several functions in cellular communication. Plasma-circulating EVs can represent an 

important source of biologically meaningful information, such as miRNAs, thus 

becoming of potential clinical interest. We analyzed the expression levels of miR-223-3p 

and miR-21-5p in plasma samples, since the miRNAs were extensively described in 

literature as potential biomarkers for several diseases (Fassan et al., 2017) (Oksuz et al., 

2015) (Guo et al., 2018) (Zhang et al., 2017) (Khalighfard et al., 2018) (Nakka et al., 

2017b). To investigate the potential enrichment of these RNA species within EVs, we 

used TaqMan RT-qPCR to compare the EV-enriched sample, plus the corresponding 

depleted (dEVs) fraction of 8 healthy volunteers. In order to calculate an absolute value 

of molecules for each miRNA in the different fraction (Table 13), a calibration curve with 

synthetic cel-miR-39 (Figure 26A) was used as a reference. The ratio between the sum of 
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miR-molecules in EVs (miREV) plus dEVs fractions (miRdEV) and miR-molecules in the 

total plasma fraction (miRtot) should be one. Figure 28 shows that for all the miRNAs 

analyzed the ratio is approximately one, assuring a proper technical analysis for the 

subsequent calculations. The number of miR per sample in the different fractions is 

approximately 107 - 108 per mL. Figure 29 shows that generally the EV fraction is less 

populated by miRNAs compared to the depleted fractions: thus, there are more miR-223-

3p and miR-21-5p out of the EVs associated to proteins or lipoproteic complexes. 

 

Table 13. Number of miR-molecules in EVs (miREV), dEVs fractions (miRdEV) and in the total plasma fraction (miRtot) 

per mL of plasma for miR-223-3p and miR-21-5p 

 
miR-223 miR-21 

 

miRtot / mL miREV / mL miRdEV / mL miRtot / mL miREV / mL miRdEV / mL 

S1 1.00E+08 1.10E+07 1.31E+08 1.99E+07 3.81E+06 4.28E+07 

S2 5.66E+07 4.17E+06 2.82E+08 1.47E+07 1.64E+06 1.67E+07 

S3 8.22E+07 8.46E+06 7.86E+07 2.89E+07 3.43E+06 3.19E+07 

S4 2.65E+08 1.52E+07 2.15E+08 4.51E+07 1.94E+07 3.99E+07 

S5 1.99E+08 1.48E+08 1.49E+08 2.79E+07 2.44E+07 3.48E+07 

S6 4.37E+08 3.46E+07 3.26E+08 6.18E+07 8.70E+06 5.29E+07 

S7 1.91E+08 5.86E+07 1.53E+08 4.20E+07 1.45E+07 3.04E+07 

S8 1.07E+09 2.88E+07 1.05E+09 1.39E+08 1.01E+07 1.31E+08 

 

 

Figure 28. Ratio of miREV plus miRdEV over miRtot for miR-223-3p and miR-21-5p in all samples. 
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Figure 29. Box plot of miR distribution in the different plasma fractions for miR-223-3p (A) and miR-21-5p (B) 
 

Correlating the number of vesicles and the miR molecules in the EV fraction we 

extrapolated an approximative number of miR per EV (Figure 30). The average miR-

molecule number per EV is below 1, meaning that these miRNAs are not enriched in EVs 

of healthy volunteers. This has been previously reported (Andreu et al., 2016) and may 

be used as an advantage in discriminating pathological conditions where EVs number and 

miR-molecules per EV is evidently increased.  

 

 

Figure 30. Number of miR-molecules per single vesicle for miR-223-3p (A) and miR-21-5p (B). 
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DISCUSSION 

In clinical settings, biomarker evaluation is fundamental for an efficient patient’s care. 

Molecular tools with diagnostic, prognostic and predictive capacity are of critical 

relevance in the era of precision medicine where for each subclass of patients a specific 

treatment is needed. In this context, it is important not only to diagnose a disease, but also 

to be able to understand its molecular features and to redirect the clinicians towards the 

best treatment available. This decision-making point in the clinical course is critical for 

the health of the subject involved and of the healthcare system. In fact, the sustainability 

of the medical apparatus is based on the efficiency of the care provided and on the costs 

held. In the last decade the term “financial toxicity” has been brought to the general 

attention because of its burden for nationals health systems and for the people with the 

disease and their families. Financial toxicity (or financial distress) is generally used to 

describe how out-of-pocket costs (not covered by insurance or national health systems) 

can cause financial problems to the patient (PDQ Adult Treatment Editorial Board, 

2002a). These costs may be for outpatient services, medical appointments and drug 

prescriptions. Cancer is one of the major burdens regarding financial toxicity and in fact, 

cancer survivors usually show higher out-of-pocket costs compared to patients with no 

cancer history (PDQ Adult Treatment Editorial Board, 2002b). Financial distress has 

several effects on patients and family members (and/or friends): a) patients may not take 

medicines as directed to save money, b) lower quality of life, c) debt and bankruptcy and 

d) informal caregivers may share financial toxicity. Thus, besides the treatment of the 

disease per se, financial toxicity in cancer treatment is a burden for personal life, 

physically and mentally. Regarding national costs, in the US 165 billions of dollars are 

roughly estimated for cancer cost of care in 2020 (National Costs for Cancer Sites | Cancer 
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Prevalence and Cost of Care Projections): prostate cancer accounts for about 10% of the 

total amount. Cancer biomarkers would improve patient’s health outcomes and 

potentially save costs, even if not this is not always the case (Seo and Cairns, 2018). For 

instance, as pointed out in an English report in 2014, early diagnosis for colorectal and 

ovarian cancer would bring about 50 millions of pounds saved per year in England; even 

in the case of NSCLC where the costs for early diagnosis would be actually higher, the 

use of biomarkers would still be highly cost-effective gaining about four thousands of 

years of life with a cost of about one thousand pounds per year of life. 

(https://www.cancerresearchuk.org/sites/default/files/saving_lives_averting_costs.pdf). 

In our study, apart from AR-V7 (Antonarakis et al., 2014) and CTCs enumeration (Heller 

et al., 2018), very little has been achieved in predicting AA efficacy especially in liquid 

biopsies settings. The changes in the therapeutic landscape of mCRPC which occurred in 

the last decade represent a challenge for the clinicians, who have the possibility of 

choosing among different therapies. However, since all patients show a primary or 

acquired resistance to the active drugs, it is becoming crucial the availability of efficient 

biomarkers able to identify the patients who have a higher probability to achieve a benefit 

from a specific treatment. In this view, in several fields of oncologic diseases, miRNAs 

have drawn attention because of their potential. In particular, c-miRNAs found in 

biofluids such as plasma, serum or urine may be a fundamental tool for the clinicians in 

terms of diagnosis, prognosis and prediction of treatment efficacy. However, the role of 

miRNAs expression as predictive biomarkers of treatment efficacy has been rarely 

evaluated in mCRPC (Lin et al., 2014) (Lin et al., 2017). Moreover, to our knowledge, 

no study evaluated miRNAs’ changes over time during the treatment. In our study, we 

demonstrate that two miRNAs are able to predict the response to AA and to signal the 

progression occurrence during the treatment. In the respondent patients, the difference 

https://www.cancerresearchuk.org/sites/default/files/saving_lives_averting_costs.pdf


88 

 

between the miRS of the preTRT samples and the miRS of the 3 months samples has a 

negative correlation with PFS, thus, greater is the change in miRS after AA 

administration, higher is the likelihood of a treatment failure. This is of great importance 

for a clinician who needs to understand whether the drug has to be suspended or not. In 

fact, PSA, the gold standard serological factor for detecting recurrences of prostate 

tumors, together with instrumental data, fail not only to predict AA efficacy – our primary 

aim – but also in helping the clinicians to take critical decisions after drug administration. 

Interestingly, the unsupervised clustering analysis confirmed our hypothesis and 

retrospectively re-classified in the R group 5 NR patients presenting a PFS higher than 

the average of the NR group. Moreover, 3 of the re-classified patients confirmed the 

negative trend with PFS after 3 months, highlighting how, even if indicated as initially 

responsive by the clinician, a patient with a low delta score may stop the administration 

of AA, because of a high likelihood of soon becoming not responsive anymore. 

Bioinformatic analysis support the two miRNAs as players of the resistance to AA 

treatment. PTEN is a validated target of miR-103a-3p and it has been demonstrated that 

PTEN loss has a negative impact on prognosis after AA treatment (Ferraldeschi et al., 

2015). We may speculate that high levels of miR-103a-3p could impact on PTEN 

expression, increasing the aggressiveness of cancer. SP1, a validated target of miR-378a-

5p, has been shown to positively regulate the expression of CYP17A1, the target of AA 

(Lin et al., 2001). Therefore, we may hypothesize that lower levels of miR-378a-5p – 

trend shown in NR patients – may increase consequently the levels of SP1, contributing 

to an unbalanced presence of CYP17A1. The usual AA administration could be then 

insufficient to dampen efficiently the action of its target. In this context, we analyzed with 

GeneXplain software, the enriched transcription factor binding sites on the promoter 

sequences of the two miRNAs. We found enriched consensus binding sites for 
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developmental genes, such as HOX and SOX family genes (HOXB13 and SOX10), and 

for well-known cancer-related genes, like BRCA. Interestingly, HOXB13 is highly 

expressed in circulating tumor cells predicting early death after treatment with AA 

(Miyamoto et al., 2018). MiR-103a-3p putative promoter is highly covered by consensus 

sequences for HOXB13 and we found it increased in plasma of the NR patients' group. 

HOXB13 high levels may push the expression of miR-103a-3p which subsequently 

dampens PTEN levels. To strengthen miRS significance, we also provide evidence that 

AA resistance is increased in LnCaP cell line upon over-expression of miR-103a-3p and 

inhibition of miR-378a-5p, the condition which reflects the level of expression of the two 

miRNAs in the plasma of NR patients. Clearly the present study is limited by the low 

number of patients involved in the analysis. However, this is the first study on c-miRNAs 

as predictive biomarkers for AA treatment in plasma of mCRPC patients. After a full surf 

into the miRNome expression, we suggest that miR-103a-3p and miR-378a-5p are able 

not only to predict the response to the treatment but also to dynamically reflect the disease 

course under the drug activity. Furthermore, our study shows some concordance with 

recent works on the prediction of AA efficacy from liquid biopsies, and provides cell line 

evidences of a probable direct involvement of miR-103a-3p in the mechanism of drug 

resistance. In conclusion, this study indicates a completely new molecular marker to 

further efficiently predict and follow the response to AA.  

In this work we experienced several technical problems in analyzing the samples, from 

RNA extraction to PCR amplification and data analysis. RNA extraction, even though 

standard, is a multistep and complex procedure which may introduce variability. Our 

laboratory showed that RNA extraction from plasma samples is not efficient and not 

reproducible, conditions that are not acceptable in clinical settings where the biopsies are 

extremely precious and generally scarce. Additionally, the multi-enzimatic steps of RT-
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qPCR increase the variability intra- and inter-samples, requiring the use of internal 

normalizers. Our laboratory, in a study on atrial fibrillation FFPE samples, showed that 

the selection of reference genes is critical for appropriate data analysis. Moreover, 

reporting U6 as the worst reference genes chosen, the work pointed out the well-known 

problem of the reproducibility of the results and the difficulty of comparing those of 

different studies (Masè et al., 2017). In fact, U6 is one of the most used reference genes 

for miRNAs analysis. If we add to these problems, the complexity of the biology of 

miRNAs, it comes to logic how c-miRNAs have not reached the clinics yet, even though 

considered potentially good biomarkers. Inspired by the relevant problems in preparing 

and analyzing clinically valuable miRNA biomarkers, in this work we successfully merge 

two innovative technologies, creating the ODG platform for the direct detection of 

miRNAs in patient plasma samples. The platform and simplified sample preparation 

deliver a specific, sensitive and rapid detection method, free of errors/variability. Being a 

direct detection method enabling read-outs of the absolute number of miRNAs, requiring 

neither pre-amplification nor pre-labeling of the target, ODG platform is a significant 

improvement over many current methods. The assay is faster (~3h) compared to standard 

methods (full-day) of miRNA analysis and combines this rapidity with ease of use. Its 

single-base specificity delivers accurate single mismatch discrimination. Moreover, the 

aPP design can be modified, enabling future biomarker panels of diagnostic and 

prognostic clinical importance. On the other side, the SiPM-based reader brings the 

advantages of being low cost, compact and with a high degree of miniaturization. In the 

future, the technology could be integrated into an automated system, to provide clinicians 

with a rapid assay from blood sampling to diagnostic information in few hours. Moreover, 

the ODG platform may be tailored for profiling miRNAs in different sources like urine, 

CSF and saliva. Indeed, the choice of the type of biopsy must be accurate and it may 
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change depending on the type of the disease. The use of CSF may be important in 

neurological diseases while saliva might represent better the changes occurring in the oral 

cavity; urine may be used for urogenital diseases and sperm specifically for prostate 

pathologies. Nevertheless, considering what is best from an analytical and biological 

point of view, it is critical to take into account also the patients’ compliance. For instance, 

CSF sampling is not an easy and without-risk procedure. Blood, urine and saliva are, in 

this sense, the best liquid biopsies being minimally invasive. Therefore, studies using 

these samples even for diseases which may not have a logical direct connection to them 

may be fundamental. Another source may be the EVs coming from these biofluids. The 

ODG platform may be tailored for the measurements of analytes into carrier vessels, such 

as exosomes, whose interest in the diagnostic field is expanding (Zhang et al., 2015a). 

The use of the NBI technology for isolating EVs from liquid biopsies such as plasma, 

serum and urine represents a double opportunity for the ODG platform: 1) address 

biological information specific of the tissue of origin and 2) concentrate the analyte from 

a big volume. NBI technology cannot select for specific EVs, however, given the rapidity 

and simplicity of the protocol, and the wide spectrum of EVs collected, it can be coupled 

with other technologies, such as FACS, able to isolate sub-populations according to 

specific tissue markers. EVs subgroups divided for origin is another way to dissect the 

complexity of biological responses to pathological conditions and retrieve specific 

information (Pulliam et al., 2019) (Collino et al., 2017). MiRNAs might be enriched or 

selectively depleted in a specific sub-population of EVs (Guescini et al., 2015) (Haller et 

al., 2019). Additionally, because of the NBI protocol, it is possible to concentrate, for 

instance, 50-100mL of urine into 100-200uL (about a 500 concentration factor). This is 

an enormous advantage for the ODG technology which may suffer of high LOD levels 

when working with c-miRNAs.  
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FUTURE PERSPECTIVES 

We showed preliminary evidence that at least miR-103a-3p is directly involved in the 

mechanism of resistance to AA in prostate cancer. More studies are needed to confirm 

this hypothesis and to better dissect the possible mechanism. First, the direct connection 

of miR-103a-3p to HOXB13 must be established. Confirming the putative axis HOXB13-

miR-103a-3p-PTEN and miR-378a-5p-SP1 would corroborate and give strength to the 

role of the miRNAs as biomarkers for the resistance of AA in mCRPC. Second, the cell 

cycle will be investigated with FACS analysis of prostate cancer cell lines after the up-

regulation of miR-103a-3p and inhibition of miR-378a-5p. In fact, in our laboratory we 

showed that AA impacts the cell cycle activity of LnCaP cells. This may unravel the role 

of these two miRNAs in the halt in S-phase mediated by AA.  

Interestingly, detection of miR-103a-3p and miR-378a-5p as valid biomarkers or the 

prediction of AA resistance in mCRPC patients, may be performed via ODG platform. 

However, even if the focus of this work is on c-miRNAs, it is intended that the ODG 

platform may be used for other circulating nucleic acids such as ctDNA, lncRNA and 

mRNA. Therefore, the clinical utility of the platform may be expanded and it could bring 

more biomarkers together in the same assay, even of different nature (e.g. miRNAs plus 

mRNAs detection). The use of the ODG platform in clinical settings comes with two 

important future implementations: 1) throughputness and 2) multiplexity. Integration of 

the ODG platform into an automatized system such as a robot will not only improve the 

assay reproducibility, but also increase the samples processed per run and decrease user’s 

hands-on steps, which could introduce variability. The detection of more than one analyte 

in the same assay, is also very important when working with biomarkers. In fact, if it is 

true that a low number of biomarkers is desirable for costs and feasibility issues, it is also 
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generally accepted that the more the molecules are detected, the higher is the specificity 

of the information retrieved. The ODG, as it is now, cannot perform multiplexing assays, 

however two are the developments we are currently working on: 1) use of a very low 

amount of sample and 2) fluorescent SMART-NBs. The optimization of the protocol is 

currently a major goal in our pipeline. We achieved a proof-of-concept of the technology, 

nevertheless an optimal protocol, tailored for each tissue type and analyte (miRNAs, 

mRNAs, lncRNAs) has to be assessed. The first improvement is the reduction of the 

sample used: currently we are working on the use of 10uL. Such an amount of samples 

would allow running the same sample several times in the same plate for different 

analytes. However, the best scenario would be the multiplexing in the same well. For this 

reason, we are working on fluorescent SMART-NBs which would allow the detection of 

four analytes in the same assay, exploiting different fluorescent signals, one for each 

SMART-NB.  

Another important future improvement will be the coupling of the ODG platform with 

the NBI technology. In fact, the analysis of EVs, not only would address some specificity 

issues of miRNAs as biomarkers, but also, concentrating a high volume sample into a 

very small amount, it would tackle the limit of LOD of the ODG platform. EVs fraction 

from plasma and urine samples from healthy individuals and prostate cancer patients will 

be analyzed via ODG platform. 

In conclusion, miRNAs may be an important tool in clinical settings helping physicians 

in diagnosis, prognosis and prediction of treatments’ efficacy. In our work, we discovered 

miR-103a-3p and miR-378a-5p as biomarkers for the prediction and follow-up of AA 

efficacy in mCRPC patients. However, the problems of the current technologies for the 

detection of miRNAs, such as RNA extraction and PCR amplification, pose several 
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limitations to the use of miRNAs in clinics. For these reasons, we developed the ODG 

platform, which is able to detect miRNAs without RNA extraction, PCR amplification 

and pre-labeling of the target. The ODG promises to provide a reliable, rapid, cost-

effective and straightforward method for screening of miRNAs, not only those associated 

with cancer, but also with genetic and cardiac diseases, as well as drug safety / toxicology 

testing. The ODG may be used to detect miRNAs in other sources than plasma and to be 

coupled with other technologies, like NBI method for the isolation of EVs. 
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MATERIALS AND METHODS 

 

1. Prostate cancer study 

 

1.1 Patients 

We evaluated a consecutive series of 34 mCRPC patients who were treated with AA after 

docetaxel failure as part of regular clinical practice at Santa Chiara Hospital (Trento, 

Italy) from 2013 to 2015. All subjects participating in the study were informed and written 

consent was obtained after approval by the Santa Chiara Hospital Ethical Committee and 

following the principles of the Declaration of Helsinki. Daily oral AA (1000 mg) plus 

prednisone 5 mg was administered twice a day. Clinical examination with regular 

assesment of liver, renal and bone marrow functions and PSA levels was performed 

monthly. Radiological assessment of tumour was regularly performed every three months 

or whenever clinically indicated. The treatment was stopped when clinical (performance 

status deterioration) or radiological progression [according to PCWG2 (Prostate Cancer 

Working Group 2) guidelines] (Scher et al., 2008) were indicating disease progression. 

The increase of PSA alone was not sufficient to stop AA administration. The patients 

were considered respondent to AA if they showed a) radiological response without PSA 

progression and performance status deterioration, or b) PSA reduction ≥ 50% compared 

to the baseline values. 12 patients were classified as respondent while the remaining 22 

patients were considered non-respondent to AA. Patients’ characteristics are showed in 

Table 6.  
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1.2 Plasma samples processing 

5-mL blood sample was obtained from each patient at the baseline (before starting AA 

administration), and every three months until treatment discontinuation. Another blood 

sample was obtained at the time of treatment suspension. Blood collection was done in 

EDTA-treated tubes and immediately centrifuged for 15 minutes at 2500 rpm at 4°C. 

Plasma layer was collected and stored at -80°C in 250-500 µL aliquots at the Trentino 

Biobank (Santa Chiara Hospital, Trento, Italy).  

 

1.3 RNA extraction and quantification 

miRNeasy® Mini Kit (Qiagen) was used for total RNA extraction from 250 uL of plasma 

samples, according to the manufacturer's instructions. RNA was collected in 40 uL of 

DNase- and RNase-free water. In brief, the plasma was mixed with QIAzol Lysis Reagent 

and MS2 RNA (1 ug). After chloroform addition, the aqueous phase was loaded onto 

RNeasy Mini Spin Columns performing several washing steps. Qubit RNA HS Assay Kit 

(catalog #Q32852) was used with the Qubit Fluorometer, for the quantification of the 18 

samples used for Exiqon miRNome RT-qPCR panels (Qiagen). 

 

1.4 Exiqon miRNome RT-qPCR 

Universal cDNA Synthesis kit (catalog #339340) was used for retro-transcribing 80 ng 

of extracted RNA together with 4 uL 5X Reaction buffer, 2 uL enzyme and DNase and 

RNase free water up to 20 uL of total reaction volume. The reaction was performed in a 

T100 Thermal Cycler (BioRad) as follows: 42°C for 60 minutes and 95°C for 5 minutes. 

miRNA profiling was performed via Exiqon microRNA Ready-to-Use PCR (miRCURY 
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LNA Universal RT microRNA PCR Human panel I+II, V4.M – #203600-21 Qiagen). 

First, cDNA template was diluted 1:50 in nuclease-free water, then mixed 1:1 with 2X 

SYBR Green Universal PCR Master Mix (Exiqon – Qiagen) for 10 uL of total reaction 

volume. The reaction was performed on a CFX384 Real-Time PCR Detection System 

(BioRad) as follows: 95°C for 10 minutes, 40 amplification cycles at 95°C for 10 seconds 

and 60°C for 1 minute.  

 

1.5 TaqMan RT-qPCR validation 

Validation of individual miRNA expression was performed via TaqMan RT-qPCR 

technology. A single reverse transcription step was performed with 2 uL of extracted 

RNA, 0.15 uL dNTPs mix, 1.5 uL of 10X reaction buffer, 0.19 uL RNase inhibitor, 1 uL 

enzyme – from TaqMan® microRNA Reverse Transcription Kit (Thermo Fisher) - 3 uL 

of TaqMan® microRNA assay hsa-miR-182-5p (#002334), hsa-miR-29b-3p (#000413), 

hsa-miRNA-331-5p (#002233), hsa-miR-144-3p (#197375), hsa-miR-378a-5p 

(#000567), hsa-miR-363-3p (#001271), hsa-miR-33a-5p (#002135), hsa-miR-103a-3p 

(#000439), hsa-miR-425-3p (#001516) and DNase and RNase free water up to 15 uL of 

total reaction volume. TaqMan qPCR step was performed in triplicate with 1,33 uL of 

cDNA product, 5 uL of Buffer - Faststart TaqMan® probe master (Sigma Aldrich) -1 uL 

of TaqMan® microRNA assay (listed above) and DNase and RNase free water up to 10 

uL total reaction volume. RT-qPCR steps were performed with a Biorad CFX 384 system 

at the following conditions: reverse transcription at 16°C for 30 minutes, 42°C for 30 

minutes, 85°C for 5 minutes; qPCR at 95°C for 10 minutes followed by 40 amplification 

cycles at 95°C for 15 seconds and 60°C for 1 minute. 
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1.6 RT-qPCR data analyses 

GenEX software was used for the analysis of the data from Exiqon microRNA Ready-to-

Use PCR panels. Cq values of Exiqon panels were normalised on miR-425-5p, chosen by 

NormFinder software feeding the algorithm with the panels data. The volcano plot was 

produced dividing the samples in two groups [9 non-respondent to AA (NR) + 9 

respondent to AA (R)]. Fold change was then evaluated with respect to the average of Cq 

values of NR group [2 EXP- (ΔCq NR – ΔCq R)]. TaqMan RT-qPCR Cq values were 

normalised on miR-425-5p. Statistical analysis for differential expression on Exiqon RT-

qPCR panel data and TaqMan RT-qPCR were performed via Student’s t-test (with 

Bonferroni correction for Exiqon panels’ data). Unsupervised clustering was performed 

via RStudio (V 1.0.143) with “rpart” package (V 4.1-11).  

 

1.7 Bioinformatic analyses 

miR-103a-3p and miR-378a-5p predicted targets were retrieved via TargetScan (Agarwal 

et al., 2015), Pita (Kertesz et al., 2007) and MiRanda softwares (Betel et al., 2010) and 

the results were filtered for binding energy of -18kcal/mol or lower. Further analysis was 

performed on the targets coming from all the predicting softwares. Validated targets 

where retrieved from miRTarBase database (V7.0) (Vlachos et al., 2015). Promoter 

analysis on the two miRNAs was performed via GeneXplain software: the promoters of 

miR-103a1-3p, miR-103a2-3p, miR-378a-5p, and PANK2 for transcription factor 

analysis, were calculated considering different ranges from -4900 / -3900 / -2900 / -1900 

/ -900  to +100, where 0 was the transcription starting site (TSS). The TSS was 

automatically retrieved by GeneXplain software from miRBase (V21) (Koschmann et al., 

2015). The ENSEMBL annotations used for transcription factor analysis were 1) 

https://cran.r-project.org/src/contrib/Archive/rpart/rpart_4.1-11.tar.gz
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ENSG00000199035 (hsa-miR-103a1) 2) ENSG00000199047 (hsa-miR-378a) 3) 

ENSG00000125779 (PANK2) 4) ENSG00000199024 (hsa-miR-103a2).  

 

1.8 Cell line analyses 

LnCaP cell line was grown in RPMI medium supplemented with 10% fetal bovine serum 

and 1% Penicillin and Streptavidin.  

a) EC50 assay: 20X10E+03 cells were seeded in a 96-well plate. After 24 hours, 

different concentration of AA (Sigma Aldrich) were administered to the cells. 

After 72 hours, the cells were incubated 1 hour with 100 uL Thiazolyl Blue 

Tetrazolium Bromide salt (Sigma Aldrich) 0,5 mg/mL diluted in RPMI 

supplemented (10% fetal bovine serum and 1% Penicillin and Streptavidin) 

medium. After incubation, Thiazolyl Blue Tetrazolium Bromide salt was 

discarded and 100 uL of DMSO was added to the cells for absorbance 

measurement (514 nm) via EL800 microplate reader (Biotek). 

b) FACS analysis: 26X10E+04 cells were seeded in a 12-well plate. After 24 hours, 

18uM of AA were administered to the cells and 5uM of paclitaxel were 

administered to the cells for apoptotic control. After 48 hours: 

a. cell cycle analysis: cells were detached and washed with PBS. Ethanol 

70% was added and the cells were incubated for 20 minutes at -20°C. The 

cells were then washed via PBS + BSA 2%. 200 uL of RNAse 100ug/mL 

+ 0-1% Triton-X was added and the cells transferred in FACS tubes. 

Propidium iodide was used as marker. 
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b. cell death analysis: 5uM paclitaxel has been used as apoptotic control and 

flash-frozen (liquid nitrogen) as necrotic control. The cells were detached 

and washed with PBS. 200 uL of ligation buffer was added and the cells 

were transferred in FACS tubes. Annexin and propidium iodide were used 

as markers. 

c) AA resistance analysis: 12X10E+03 cells were seeded in a 96-well plate. After 24 

hours, 50nM or 100 nM of miR-103a-3p mimic (Qiagen – YM00470828) and of 

miR-378a-5p inhibitor (Qiagen – YI04101420) were transfected via 

Lipofectamine 3000 (Thermo Fisher) and incubated for 48 hours. Subsequently, 

18uM of AA (Sigma Aldrich) solved in DMSO was added to the cells. DMSO 

(Sigma Aldrich) was used as control. After 72 hours, the cells were incubated 1 

hour with 100 uL Thiazolyl Blue Tetrazolium Bromide salt (Sigma Aldrich) 0,5 

mg/mL diluted in RPMI supplemented (10% fetal bovine serum and 1% Penicillin 

and Streptavidin) medium. After incubation, Thiazolyl Blue Tetrazolium Bromide 

salt  was discarded and 100 uL of DMSO was added to the cells for absorbance 

measurement (514 nm) via EL800 microplate reader (Biotek). 

 

 

2. ODG 

 

2.1 Materials and instrumentation 

RNA oligomer mimic miRNAs were purchased HPLC-purified from Exiqon. Unless 

specified differently, all chemicals and solvents were obtained from Sigma Aldrich and 

used as received. Dynabeads® M-270 2.8-μm diameter superparamagnetic beads 

presenting carboxylic acid groups (30 mg/mL: 2X10E+09 beads catalog# 14305D), 
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Pierce™ High Sensitivity Streptavidin-HRP (catalog#21132), and SuperSignal™ ELISA 

Femto Substrate (catalog# 37075) were obtained from Thermo Fisher Scientific. HRP 

enzyme was diluted in HRP-StabilPLUS from Kementec (catalog# 4530L). Reaction 

buffer was prepared from 2X Saline Sodium Citrate (SSC) and 0.1% Sodium Dodecyl 

Sulphate (SDS) with the pH adjusted to 6.0 using HCl. Concentrations of RNA oligomers 

and abasic PNA probes solutions were determined using a Thermo Fisher NanoDrop 1000 

spectrophotometer. Chem-NAT was conducted in a Techne Thermal cycler (TC-5000). 

A TECAN multi-mode microplate reader was used as final readout together with SiPM-

based reader provided by OPTOELETTRONICA ITALIA S.R.L (Italy). RT-qPCR 

reaction was detected with CFX96™ Real-Time PCR Detection System (BIO-RAD).  

 

2.2 DestiNA Genomics abasic PNA probes synthesis 

Four abasic PNA probes terminated with an amino-PEG linker were synthesized (Table 

8) by DestiNA Genomica S.L (Spain), using standard solid phase chemistry on a MultiPep 

Synthesiser (Intavis AG GmbH, Germany). All the sequences were designed to allow 

anti-parallel hybridization with hsa-miR-21-5p. Aldehyde-modified cytosine and 

adenine, tagged with biotin via a 12 ethylene glycol units spacer, were prepared using a 

synthetic route described elsewhere (Bowler et al., 2010). 

 

2.3 Coupling of magnetic beads with abasic PNA probes 

The abasic PNA probes were coupled to 2.8 μm in diameter carboxylated beads. Briefly, 

100 uL of beads (containing 2 x 10E+06 beads) were washed by adding 100 μL 0.01 

mol/L NaOH and mixing. The beads were pelleted, supernatant removed, washed once in 
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100 μL 0.01 mol/L NaOH, and three times in 100 μL distilled water. The beads were re-

suspended in 150 μL of freshly-prepared 50 mg/mL 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC) in water and incubated with slow tilt rotation at 23°C for 30 min. 

After activation, the beads were washed once with 100 μL cold water and once with 100 

μL cold MES buffer (50 mmol/L, pH 5.0). 100 μL of a solution containing 2100 pmol 

abasic PNA probe in MES buffer 50 mmol/L (pH 5) was added to the activated beads. 

The mixture of probes and beads was incubated at 4°C for 4 h with slow tilt rotation, 

followed by washing with 50 mmol/L MES buffer (pH 5). The remaining activated 

carboxyl groups were quenched by incubating the beads with 100 μL of 50 mmol/L 

ethanolamine in PBS (pH 8) for 1 h, followed by three washes with 100 μL of 10% 

PEG10K and 0.1% Tween-20 in PBS. The capture beads were stored at 4°C in 100 μL 

0.1% Tween-20 in PBS. 

 

2.4 Patients 

Plasma samples from eight different NSCLC patients were retrieved from the archives of 

the Trentino Biobank, at the Unit of Surgical Pathology of the S. Chiara Hospital, Trento, 

Italy. All cases were fully anonymized, and the use of the samples had been approved by 

the Ethical Committee of the Santa Chiara Hospital, Trento. After the informed consent 

was signed, 8 mL of blood was collected in EDTA tubes, and plasma was obtained by 

centrifugation at 1200g for 15 minutes then 3000g for 10 minutes. Each plasma sample 

was stored at -80°C until testing.  
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2.5 Generation of calibration curves with ODG platform and RT-

qPCR 

Synthetic RNA oligos (cel-miR-39: 5’ AGC UGA UUU CGU CUU GGU AAU A 3’; 

hsa-miR-21-5p: 5’ UAG CUU AUC AGA CUG AUG UUG A 3’) were stored at -80°C. 

All experiments were run in triplicates and negative controls were included in each assay. 

a) Calibration curve with ODG platform. The calibration curve 

was performed with RNA oligos dilutions: 0.029, 0.059, 0.117, 

0.469 nmol/L (final concentration) in DNase and RNase free 

water. Briefly, a Master Mix (Vf = 50 uL) was first added to 

perform Chem-NAT reaction for 1 hour at 41°C and 1200 

r.p.m: 2X SSC + 0.1% SDS buffer, SMART-A-Biotin (2 

umol/L), sodium cyanoborohydride (reducing agent - 4,5 

mmol/L), 2.5 x 10E+05 of functionalized-beads with abasic 

PNA probe aPP4 and synthetic RNA mimic hsa-miR-21-5p. 

Negative control signal (NCS) was performed adding DNase 

and RNase free water to generate the assay background signal. 

Subsequently, the beads were washed three times with PBS + 

0.1% Tween20 (200 uL) and once with HRP-StabilPLUS using 

a magnet to separate the beads from the supernatant. 100 uL 

HRP-streptavidin (1:8000) was added and incubated for 5 min 

at room temperature. Three washings with PBS + 0.1% 

Tween20 (200 uL) were performed. Detection was entrusted by 

a chemiluminescent reaction using 100 uL of SuperSignal™ 

ELISA Femto Substrate according to the manufacturer's 
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instructions. Output signal was measured using a multi-mode 

microplate reader and the SiPM-based reader. Linear fit was 

generated considering five points: the four positive signals and 

the NCS. The limit of detection (LOD) was calculated 

interpolating the background signal (NCS + 3*SDNCS) into the 

linear fit. 

b) Calibration curves with RT-qPCR: The calibration curves were 

generated using RNA oligos spiked into both a) 15 uL of 

aqueous solutions used for the reverse transcription and b) into 

200 uL of plasma samples undergoing RNA extraction before 

being reverse transcripted. For (a), 2 uL of RNA oligos (6.4E-

13; 3.20E-13; 8.00E-14; 1.00E-14; 1.25E-15; 1.56E-16; 1.95E-

17; 2.44E-18; 3.05E-19 moles/uL) diluted in DNase and RNase 

free water were spiked in TaqMan® reverse transcription step 

together with 0.15 uL dNTPs mix, 1.5 uL of 10X reaction 

buffer, 0.19 uL RNase inhibitor, 1 uL enzyme – from 

TaqMan® microRNA Reverse Transcription Kit (catalog# 

4366596 - Thermo Fisher), 3 uL of either TaqMan® 

microRNA assay cel-miR-39 (catalog# 464312_mat) or 

TaqMan® microRNA assay hsa-miR-21-5p (catalog# 

4427975) and DNase and RNase free water up to 15 uL total 

reaction volume. TaqMan® qPCR step was performed with 

1,33 uL of cDNA product, 5 uL of Buffer - Faststart TaqMan® 

probe master (catalog# 4673409001 – Sigma Aldrich) - and 1 

uL of TaqMan® microRNA assay cel-miR-39 or TaqMan® 
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microRNA assay hsa-miR-21-5p and DNase and RNase free 

water up to 10 uL total reaction volume. For (b), 750uL of 

Qiazol plus 1,25 uL of 800 ng/uL MS2 were added to 200 uL 

of plasma; subsequently 40 uL of RNA oligos (6.4E-13; 3.20E-

13; 8.00E-14; 1.00E-14; 1.25E-15; 1.56E-16; 1.95E-17; 2.44E-

18; 3.05E-19 moles/uL) diluted in DNase and RNase free water 

were spiked in plasma-QIAzol mix. RNA was recovered in 40 

uL of DNase and RNase free water. 2 uL of extracted RNA was 

used for TaqMan® reverse transcription step as previously 

described. TaqMan® qPCR step was performed as previously 

described. RT-qPCR steps were performed with a Biorad CFX 

96 system with the following conditions: reverse transcription 

at 16°C for 30 minutes, 42°C for 30 minutes, 85°C for 5 

minutes; qPCR at 95°C for 10 minutes followed by 40 cycles 

of 95°C for 15 seconds and 60°C for 1 minute. 

 

2.6 RNA extraction and RT-qPCR for lung cancer patients 

RNA from the plasma samples (200 uL) was extracted using miRNeasy Mini Kit (Qiagen) 

according to the manufacturer's instructions and collected in 40 uL of DNase- and RNase-

free water. In brief, the plasma was lysed with a mix of QIAzol Lysis Reagent and MS2 

RNA (1ug). After chloroform addition, the aqueous phase was loaded onto RNeasy Mini 

Spin Columns where several washing steps were performed according to the 

manufacturer’s protocol. RNA was eventually eluted in 40 uL of DNase and RNase free 
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water. TaqMan® RT-qPCR for hsa-miR-21-5p was performed using 2 uL of extracted 

RNA as explained above.  

 

2.7 Chem-NAT reaction for plasma samples analysis 

In order to detect hsa-miR-21-5p from plasma samples of NSCLC patients, 100 uL of 

plasma was analyzed in technical triplicates. DestiNA’s proprietary lysis buffer was 

added to the plasma aliquots in a 2:1 ratio. 2.5 x 10E+05 functionalized-beads with abasic 

PNA probe 4 were added to the crude lysate. The solutions were incubated by rotating on 

a mixer for 1 h at room temperature. The vials were placed on a magnet and washing steps 

were performed as follows: a) removing the supernatant b) washing the beads three times 

using the magnet to separate the beads from the supernatant (lysate debris) with Buffer 

2X SSC + 0.1% SDS (200 uL). The Master Mix was added and Chem-NAT reaction was 

performed as explained above. Negative control was generated adding a wrong SMART-

base [SMART-C-Biotin (5 umol/L) instead of SMART-A-Biotin (2 umol/L)] which 

cannot be incorporated by the abasic PNA probe, but which would still generate a signal 

in case of inappropriate binding. 

 

 

3. Extracellular vesicles and microRNAs 

3.1 Isolation of extracellular vesicles 

9 mL of blood were sampled from 8 volunteers in EDTA-tubes. Whole blood was 

centrifuged at 1700g for 15 minutes. Plasma was collected and further centrifuged at 

3000g for ten minutes to remove platelets. 1.5 mL of plasma was used for the isolation of 
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extracellular vesicles NBI technology as explained elsewhere (Notarangelo et al., 2019). 

Briefly, the plasma was diluted in PBS and NBI-beads were added. The mixture was 

incubated at room temperature for 30 minutes in slow tilt rotation and then centrifuged at 

500g for 3 minutes to pellet the beads. The supernatant (plasma EV-depleted – dEV) was 

collected. The beads were resuspended in 1.5 mL of elution buffer, incubated at 28°C for 

10 minutes at 600rpm and then centrifuged at 500g for 3 minutes to pellet the beads . The 

supernatant containing EVs was collected and kept at 4°C for experiments run within 24 

hours or at -80°C for long storage. 

 

 3.2 EVs characterization 

Size and concentration of EVs isolated by NBI were analyzed by TRPS using qNano 

(IZON). The measurements were done using two nanopores: NP200 (size range: 85 - 500 

nm) and NP400 (size range: 185 – 1100 nm) and the instrument was calibrated with 

CPC200 and CPC400 calibration particles (IZON). 10 uL of isolated EVs were used for 

size and number characterization via TRPS.  

 

3.3 RNA extraction and RT-qPCR 

RNA from isolated EVs, plasma depleted from EVs and total plasma, for each individual 

(100 uL) was extracted using miRNeasy Mini Kit (Qiagen) according to the 

manufacturer's instructions and collected in 40 uL of DNase- and RNase-free water. In 

brief, the plasma was lysed with a mix of QIAzol Lysis Reagent and MS2 RNA (1ug). 

After chloroform addition, the aqueous phase was loaded onto RNeasy Mini Spin 

Columns where several washing steps were performed according to manufacturer’s 

protocol. RNA was eventually eluted in 40 uL of DNase and RNase free water. TaqMan® 

RT-qPCR for hsa-miR-21-5p (catalog #4427975) and hsa-miR-223-3p (catalog 
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#4427975) was performed using 2 uL of extracted RNA for reverse transcription and 1,33 

uL of cDNA for qPCR as explained in Materials and Methods, paragraph 1.5 “TaqMan 

RT-qPCR validation”.  
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