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ABSTRACT:

A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in
3D models of complex architectures.
As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded
height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a
piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to
simultaneously produce both the smooth approximation and its discontinuities.
In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then
processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This
second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves
and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in
two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the
refinement of the description of the edges.
The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is
performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative.
The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application
of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade
boundaries or windows contours.
The procedure is applied to a height model of the building of the Engineering Faculty of the University of Trento and to other data.
The obtained results show the effectiveness of the variational methods in handling geometric data describing complex objects.
The most original and innovative contributions of this work are:
- the consecutive and coordinated use of the proper variational models (of first and second order respectively) at first in two dimension
and subsequently on the one dimensional sets arising in the first segmentation,
- the application to geometrical data that represent a quite complex architecture.

1. INTRODUCTION

The detection of polygonal shapes as, for example, building foot-
prints, facade boundaries and window contours, can serve for the
construction of vector models of architectures, in particular for
essential polyhedral volumes with polygonal faces. Polygonal
shapes can be selected from a set of shapes of various type de-
tected by the processing of geometric data. A set of shapes can
be produced by finding edges in the geometric data.

In this work a procedure for the detection of edges and the subse-
quent identification of polygonal shapes is presented. Two global
models are exploited to accomplish the main goals of the proce-
dure.

The procedure starts with the application of the Mumford-Shah
variational model (Mumford and Shah, 1989) to height data for
the detection of sharp changes (edges, discontinuities) of a piece-
wise smooth approximation of the data. The edges of such ap-
proximation of height data are then processed using the Blake-
Zisserman variational model (Blake and Zisserman, 1987). The
output of the Blake-Zisserman model is finally treated to identify
those edges that can be approximates as piecewise almost-linear
curves connected by corners, i.e., polygonal shapes.
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The key idea behind the proposed procedure is deeply related to
the characteristics of the same variational models involved. A
concise description of the main characteristics of the models is
given hereafter so to outline the basic elements that driven the
definition of the procedure. Details about the models and their
application will be given in the next two sections.

The Mumford-Shah model is an energy functional built up of
three terms depending on two unknown quantities of very dif-
ferent kind. One unknown is a piecewise continuous function
that must smoothly approximate the data almost everywhere in
the data domain. The second unknown is the set of the curves of
the data domain where the requirements on the continuity and on
the smoothness of the approximating functions are not imposed,
i.e. a set of discontinuities. The smoothness of the approximating
function is controlled my a specific term of the first order involv-
ing the gradient of such function. The other two terms measure
the proximity of the unknown approximation to the data and the
length of the discontinuity set. The length of the discontinuity set
needs to be controlled to avoid over-segmented approximations.
The relative strength of the three terms is governed by specific
weight parameters. To find the two unknowns one has to mini-
mize the energy functional, globally over the entire data domain.

The Mumford-Shah model is applied to height data to obtain a
smooth approximation of the data and a set of homogeneous re-
gions, those bordered by the curves of the discontinuity set repre-
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senting jumps in the height data. Since buildings have, in general,
a polygonal footprint, the idea is to select those regions that can
be described as polygonal shapes, i.e., a set of linear segments
jointed by corners.

The Mumford-Shah model can not be directly used for the re-
covery of corners or junctions in the curves of the discontinuity
set because only the length of the discontinuity set is controlled
and because the presence of corners and junctions does not af-
fect the measure of the length of the set. A further process of the
Mumford-Shah output is hence needed to explicitly detect cor-
ners and edges that can be approximated by a piecewise almost-
linear curve, i.e,. a polygonal shapes. A variational model of the
second order proposed by Blake and Zisserman (1987) has been
involved to accomplish this second step of the procedure. The
Blake-Zisserman model is an energy functional depending on a
piecewise continuous function that smoothly approximates the
data and on two discontinuity sets. In the model not only the ap-
proximating function but also its first derivative is requested to be
piecewise continuous. Moreover, the smoothness of the function
is controlled by a term of the second order involving the second
derivative of the approximating function. These two facts leave
as unknown the two discontinuity set, one for the discontinuity
of the approximating function and one for the discontinuities of
its first derivative. Also for the Blake-Zisserman model, the un-
knowns can be found minimizing the energy functional, globally
over the entire data domain.

The Blake-Zisserman model is applied to the boundaries of the
homogeneous regions detected by the application of the Mumford-
Shah model to height data. The presence of a corner in a bound-
ary will be detectable by observing the discontinuity set of the
first derivative of the function that smoothly approximates the
boundary.

For technical reasons, the computation of the solution of both
variational models requires the discontinuity sets to be described
by means of some specific auxiliary functions. The functions that
represents the discontinuity sets have been mainly intended as
down-weighting functions of the smoothing terms, but in fact in
many applications they are a quite useful outcome of the models.

The described procedure has been implemented into a series of
original computer programs that have been extensively tested on
a variety of both simulated and real data, including optical images
and geometric data (Vitti, 2012a,b; Zanetti and Vitti, 2013). Af-
ter many application with land images and laboratory images this
work extends the application range of the Mumford-Shah model
and of the Blake-Zisserman model to data of a complex architec-
ture.

The metric quality of the result is obviously related to the res-
olution and to the overall accuracy of the data. The method is
anyway quite claver in filtering out the unavoidable noise.

2. TWO GLOBAL MODELS

The Mumford-Shah model and the Blake-Zisserman model will
be described to highlights their main characteristics. Deeper treat-
ments on the subject are available in the literature and will be
pointed out at the need.

2.1 The Mumford-Shah model

The Mumford-Shah model in dimension two is:

MS(u,K) =

∫
Ω

|u− g|2 dx+ λ

∫
Ω\K
|∇u|2 dx+ αH1(K) ,

(1)

where g : Ω → R is the data, Ω ⊂ R2 is the data domain,
u ∈ C1(Ω \ K) is the piecewise smooth approximating func-
tion of the data, K is the discontinuity set and H1(K) is the
1-dimensional Hausdorff measure of the set. The first term in (1)
is a global measure of the proximity of the solution u to the data,
the smoothness of the function u is induced by the second term,
the last term is the so called geometric term measuring the length
of the unknown set K. The parameters λ and α controls the rel-
ative strength of the three terms. The problem here is to find the
pair (u,K) that minimizes the Mumford-Shah energy functional.

To solve the problem in practice it is necessary to work on a func-
tional different from (1). Ambrosio and Tortorelli (1992) pro-
posed to solve the Mumford-Shah variational problem by means
of the following functional:

Fε(u, s) =

∫
Ω

(
|u− g|2 + λs2|∇u|2

)
dx+

+ α

∫
Ω

(
ε|∇s|2 +

(1− s)2

4ε

)
dx . (2)

The explanation of the need for a new functional and of its defini-
tion requires mathematical tools and developments that are well
outside the scope of this work. We just highlight here the main
characteristics of (2) that make it treatable in practice and that dis-
tinguish it from (1). All the terms of the functional Fε(u, s) are
defined over the entire domain Ω, the smooth term is now scaled
by a new auxiliary function s and the third term of (1) has been
replaced by a functional of s. This last quadratic functional ap-
proximates theH1 measure of the discontinuity set K exploiting
the auxiliary function s which is defined on the bi-dimensional
domain Ω. The function s has another specific role: to down-
weight the gradient of the approximating function u by going to
0 right were the gradient of u takes big values and remaining
close to 1 almost everywhere on Ω. The parameter ε that ap-
pears in (2) is a convergence parameter. In fact it is a sequence of
functionals likeFε(u, s) that is proved to approximate, according
to a particular type of convergence criterion (Braides, 2002), the
Mumford-Shah functional (when ε goes to zero, the minimizers
of (2) converge to the minimizers of (1)).

To better understand the output of the Mumford-Shah model we
highlight that the auxiliary function s has values close to 0 either
where the approximating function u has very big gradient, i.e.,
where it is discontinuous, or where the approximating function
u is not homogeneous with respect to the smoothness measure
expressed by the second term of the functional (scaled by the
parameter λ). In this work the function s will be used to identify
parts of Ω with homogeneous values of u whose boundaries will
be further processed to select those having a polygonal structure.

2.2 The Blake-Zisserman model

The Blake-Zisserman functional in dimension one is:

BZ(u,K0,K1) =

∫
I

|u− g|2 dx+ γ

∫
I\(K0∪K1)

|u′′|2 dx+

+ α#(K0) + β#(K1 \K0) , (3)

where g : I → R is the data, I ⊂ R is the data domain,
u ∈ C2(I\K1) and piecewise continuous in I\K0 is the approx-
imating function of the data,K0 andK1 are the discontinuity sets
and #(·) is the counting measure of a set. The first term in (3) is
a global measures of the proximity of the solution u to the data,
the smoothness of the function u is induced by the second term,
the last two terms measure the size of the unknown sets K0 and
K1. In dimension one the elements of the sets K0 and K1 are
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points. The parameters λ, α and β control the relative strength of
the four terms. The problem here is to find the triplet (u,K0,K1)
that minimizes the Blake-Zisserman energy functional.

For reasons similar to those requiring a sequence of approximat-
ing functionals to find the minimizers of the Mumford-Shah func-
tional, also the Blake-Zisserman functional needs to be properly
approximated in order to be used in practice. Ambrosio et al.
(2001) proposed to solve the Blake-Zisserman variational prob-
lem by means of the following functional:

Gε(u, s, z) =

∫
I

(
|u− g|2 + γz2|u′′|2 + µεs

2|u′|2
)
dx+

+ (α− β)

∫
I

(
ε|s′|2 +

(1− s)2

4ε

)
dx+

+ β

∫
I

(
ε|z′|2 +

(1− z)2

4ε

)
dx . (4)

In (4) the new auxiliary function z is introduced to approximate
the discontinuity set K1 following the reasoning that lead the in-
troduction of the approximating function s in (2). The function
z is close to 0 on the discontinuities of the first derivative of the
approximating function u and close to 1 almost everywhere on I .

In this work the function z will be used to identify sharp changes
in the coordinates of the points lying on the boundary of the ho-
mogeneous regions detected using the Mumford-Shah model and
to identify where the variation of point coordinates is almost-
linear. Sharp changes in the point coordinates, where z values
shrink to 0, are expected to correspond to corners. The function
z remains close to 1 on the parts of I corresponding to straight
segments.

3. APPLICATIONS

The applications presented hereafter have been realized using orig-
inal software implementing the Mumford-Shah model in dimen-
sion two and the Blake-Zisserman model in dimension one. The
source code is available at www.ing.unitn.it/~vittia/sw and
licensed as Free Software.

3.1 Example 1

A first example illustrates the use of the Blake-Zisserman model
for the detection of corners and straight segments on a line. A
wall plan of small Church is processed. The plan has been ob-
tained by slicing the 3D point clouds of the Church acquired us-
ing a terrestrial laser-scanner.

To apply the 1D BZ model to a plane curve (the boundary of a
2D flat object) we make use of the curvilinear coordinate on the
curve. When dealing with discrete data, we work with the set
of Cartesian coordinates of points on the plane (assumed to lie
on a unknown continuous curve) and with a discrete implementa-
tion of the Blake-Zisserman model. The curvilinear coordinate of
the points is approximated by the chordal coordinate c computed
as the summation of the euclidean distances between successive
points. The discrete Blake-Zisserman model is the applied twice:
once to the coordinate pair (c, x) and once the the coordinate pair
(c, y).

Figures (1) and (2) show a view of the point cloud and the wall
plan of the Church respectively. The plot of the auxiliary func-
tion z produced by applying the Blake-Zisserman model to the
red element of the wall plan of Figure (2) is given in Figure (3).
The cyan dots of figure (2) have been placed on the wall plan

using the coordinates of the points where the auxiliary function
z equals 0 in the plots of Figure (3). The green dot locates the
point with coordinate c = 0 and the green arrow indicates the
verse of increasing of the coordinate. It is possible to note how
the auxiliary function z in the plots of Figure (3) remains close
to 1 between the points where it shrinks to 0. This fact can be
exploited to identify the straight segments that compose the red
curve of (2).

Figure 1: View of the point cloud of a small Church

Figure 2: Wall plan of the small Church of Figure (1), with pro-
cessed element in red, detected corners represented with cyan
dots

3.2 Example 2

This example illustrates the plot of the auxiliary function s ob-
tained by applying the Mumford-Shah model to a gridded point
cloud of a facade of an industrial building. The boundaries of the
homogeneous parts of the facade have been further treated using
the Blake-Zisserman model to identify the contours of the facade
windows.

Figure (4) shows the geometric data processed using the Mumford-
Shah model. Figure (5) shows a detail of the same area of the ge-
ometric data (top) and of its smooth approximation (bottom). It
is possible to note how the approximating function u is smoother
that the data everywhere but along the borders of the window
openings. The plot of the auxiliary function s of the facade pro-
duced by the Mumford-Shah model is given in Figure (6). Figure
(7) shows in green and orange the polygonal shapes identified us-
ing the auxiliary function z obtained by the application of Blake-
Zisserman model to the boundaries of the homogeneous regions
detected after the application of the Mumford-Shah model.
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Figure 3: Plot of the auxiliary function z produced by the Blake-
Zisserman model applied to the red element of the wall plan of
Figure (2)

3.3 Example 3

In this example the Mumford-Shah model is applied to a high-
resolution (0.5mx0.5m) Digital Surface Model (DSM) of an area
including a polygonal building of complex architecture. Again
the boundaries of the homogeneous parts of the DSM detected
using the plot of the Mumford-Shah auxiliary function s have
been processed using the Blake-Zisserman model to identify the
polygonal elements of the building.

Figure (8) shows an aerial view of the building. Figures (9) and
(10) give the plot of the Mumford-Shah auxiliary function u for
the entire study area and a detail of the close surrounding of the
building. It is possible to observe how the auxiliary function de-
scribes not only the discontinuities of the approximating func-
tion u but also the domain parts where the function u is not ho-
mogeneous (in light gray). In figure (10) there are some lines

Figure 4: Geometry model of the facade of an industrial building

Figure 5: Details of the original model of the facade of Figure (4)
(top) and of its smooth approximation (bottom)

with a dead vertex. Those lines describes discontinuities of the
function u that gently disappear and that can not be identified as
boundaries. This fact is deeply related to the characteristics of the
Mumford-Shah model that, right for this reason, is also known as
a model for the detection of free discontinuity rather than of free
boundaries. The word free refers to the fact that the set K is one
of the unknowns involved in the model (De Giorgi, 1991; Am-
brosio et al., 2000). Figure (11) shows in color the polygonal
shapes identified using the Blake-Zisserman auxiliary function
z obtained by the processing of the boundaries of the homoge-
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Figure 6: Plot of the auxiliary function s produced by the
Mumford-Shah model applied to the facade of Figure (4)

Figure 7: Polygonal shapes (in green and orange) identified from
the analysis of the Blake-Zisserman model applied to the bound-
aries of the homogeneous regions detected after the application
of the Mumford-Shah model to the facade of Figure (4)

neous regions detected after the application of the Mumford-Shah
model.

4. DISCUSSIONS AND OUTLOOKS

The Mumford-Shah and Blake-Zisserman models produce an op-
timal segmentation of the data by means of the minimization of
specific energy functionals. In practice, the main difference be-
tween the two models is in the feature of the smoothing term that
is of the first order in (1) and of the second order in (3). Beside
this difference the Blake-Zisserman model also permits the de-
tection of discontinuities of the first derivative of the function that
approximates the data. In treating geometric data the Mumford-
Shah model can manifest an important limitation related to the
feature of the smoothing term. In presence of strong variation
of the data the smoothing therm, being of the first order, may
lead to a over-segmented approximation of the data, i.e., to the
appearance of spurious discontinuities. A proper choice of the

Figure 8: Aerial view of a complex building

Figure 9: Plot of the auxiliary function s given by the Mumford-
Shah model applied to the DSM

weigh parameters of (2) can however allow to process geometric
data without the appearance of this kind of defects. The use of
the Blake-Zisserman model with bi-dimensional geometric data
is however feasible and may be more appropriate than the use of
the Mumford-Shah model (Zanetti and Vitti, 2013).

The variational models used in this work were originally devel-
oped in the computer vision field and devoted to the processing
of classical images. Nevertheless, the models have been proved
to be very well suited for the treatment of geometric data. The 1D
Blake-Zisserman the model has also been successfully applied to
geodetic data of different kinds (A. Borghi, n.d.; B. Benciolini,
2009).
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Figure 10: Detail of the plot of the auxiliary function s in the
close surrounding of the building of Figure (8)

Figure 11: Polygonal shapes (in colors) identified from the anal-
ysis of the Blake-Zisserman model applied to the boundaries of
the homogeneous regions detected after the application of the
Mumford-Shah model to the DSM

In this work the Mumford-Shah model has been applied to grid-
ded data. Changing the numerical scheme would make possible
the application of the model to unstructured data (Bourdin and
Chambolle, 2000; Zanetti and Bruzzone, n.d.).

An interesting extension of the procedure presented in this work
may exploit a variational model proposed by Braides and March
(2006) that extends the features of the Mumford-Shah to permit
a direct detection of corners along the discontinuity set of the
smoothing approximating function.
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