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ABSTRACT Decision trees are an extremely popular machine learning technique. Unfortunately, overfitting

in decision trees still remains an open issue that sometimes prevents achieving good performance. In this

paper, we present a novel approach for the construction of decision trees that avoids the overfitting by design,

without losing accuracy. A distinctive feature of our algorithm is that it requires neither the optimization

of any hyperparameters, nor the use of regularization techniques, thus significantly reducing the decision

tree training time. Moreover, our algorithm produces much smaller and shallower trees than traditional

algorithms, facilitating the interpretability of the resulting models. For reproducibility, we provide an open

source version of the algorithm.

INDEX TERMS Decision trees, regularization, interpretability, Kolmogorov complexity.

I. INTRODUCTION

Decision trees are a highly popular machine learning tech-

nique that has been successfully applied to solve a num-

ber of practical problems in areas such as natural language

processing, information extraction, data mining, and pattern

recognition [1]. Decision trees are also the foundation of

more advanced machine learning methods, such as random

forests or boosted trees [2].

One of the most challenging tasks for decision tree-

building algorithms is to decide when to stop the tree growing

process. Most of the tree building methods produce very

complex models that overfit training data. Overfitted trees

not only have poor predictive capabilities on new, previously

unseen data, but can also be exceedingly difficult to interpret,

which is a key barrier against the adoption of these models

in practical applications [3]. A common approach to avoid

overfitting in decision trees is early stopping, which forces

the construction algorithm to stop before the tree becomes

too complex. Popular stopping criteria include limiting the

maximum depth of the tree, requiring a minimum number

of sample points at leaf nodes, or computing the accuracy
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gain yielded by new nodes [1]. However, these heuristics

require the optimization of (possibly multiple) hyperparam-

eters, which makes the training process computationally

expensive.

An alternative approach to avoid overfitting in decision

trees is to apply a post-processing pruning algorithm. Pruning

removes those branches that contribute the least to the accu-

racy of the final model [4]. Cost-complexity [2] is a common

pruning technique, based on applying a cost function that

takes into account how well the tree fits the training data

and a regularization factor based on how complex the tree

is. If we denote by E(T ) the fitness of a tree T , and by L(T )

its complexity, the cost function C(T ) could be given by

C(T ) = E(T )+ λL(T ), (1)

where λ is a configurable parameter that controls the trade-off

between fitness and complexity. In practice, the accuracy

of the model is typically used as a fitness metric, and the

number of leaf nodes in the tree as a complexity metric.

Although, on average, cost complexity pruning produces

better results than limiting the growth of the tree via early

stopping [5], this technique requires the optimization of the

hyperparameter λ.
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In this paper we propose a decision tree construction algo-

rithm with early stopping properties, that does not require

hyperparameter tuning or pruning in order to get good accu-

racy and trees of small size. We provide an open source ver-

sion of the algorithm in order to facilitate the reproducibility

of our results.

A. RELATED WORK

Earlier algorithms for the construction of decision trees were

based on an exhaustive search of the space of possible trees

(see [6] for a historical review of the discipline). However,

due to the computational complexity of those algorithms,

alternative approaches were investigated. Most of the mod-

ern algorithms used in practice are based on greedy search

techniques (see for example [7]), that significantly reduce the

training time at the cost of producing sub-optimal trees.

Among the algorithms to build decision trees, the Iter-

ative Dichotomiser 3 algorithm, ID3 [8], is based on an

information gain splitting criteria, which stops when all the

training samples belong to a single target value, or when

no possible split has a positive information gain. Classi-

fication And Regression Trees, CART [9], builds binary

trees based on a growing splitting criteria and applying a

cost-complexity pruning. CHi-squared Automatic Interaction

Detector, CHAID [10], relies on an adjusted significance

tests to find the least significant values with respect to the

target attribute, and the process is repeated until no signif-

icant pairs are found. C4.5 [11] is an evolution of ID3 that

uses gain ratio as a splitting criteria, and ceases to grow

the tree when the number of instances to split is below a

given threshold. It includes an accuracy based post-pruning.

The Quick Unbiased Efficient Statistical Tree algorithm,

QUEST [12], uses quadratic discriminant analysis for splits,

the stopping is based on statistical tests, and the resulting trees

are pruned based on cross-validation. Multivariate Adaptive

Regression Splines, MARS [13], is based on a two-phase

(forward and backward pass) algorithm that uses regression

functions approximated using linear splines and their tensor

products. This two-phase approach is the same as that used

by recursive partitioning trees. PUBLIC [14] is based on

minimizing the sum of the length of the shortest computer

program that can print the data given as input to the tree,

and the length of the shortest program that can print the

tree. Recent trends in tree building algorithms include deep

trees [15] of hundreds of levels, and oblique trees [16] with

more advanced if-else conditions. A detailed comparison of

decision trees algorithms can be found in [17], and an up-to-

date review including other classification methods in [18].

The above approaches rely on the right setting of

one or more hyper-parameters, or require to run post-pruning

processes in order to provide good performance while pre-

venting the overfitting of the training data. Hyperparameter

optimization can be achieved through an exhaustive search

when a single tree is being trained, but would be prohibitively

complex when training large ensembles of models, as in the

case of random forests. Another critical element of decision

tree building algorithms is their ability to take those local

decisions that yield the best global forecast performance.

In this work, we apply string complexity concepts in order

to achieve a global performance given local information,

as explained in the following sections.

B. CONTRIBUTIONS

The main contribution of this work is a novel algorithm

to construct decision trees that, by design, do not overfit

the training data. The algorithm is based on a novel cost

function that is used to decide when to stop the building

process, rather than to indicate how to prune the generated

tree. Our algorithm does not depend on the optimization

of hyperparameters, thus considerably reducing the training

time. Moreover, the absence of hyperparameters means that

we can process a very significant amount of data with reduced

complexity, e.g., by using the full dataset for training, with no

need to enact a training / validation split.

The models generated with our algorithm are significantly

smaller in terms of number of nodes, and shallower than the

models generated by other decision tree building algorithms;

at the same time, the obtained models present similar, and

sometimes better accuracy. Shallower models allow us to

make faster predictions when they are used as part of large

ensembles of trees, and largely improve interpretability, e.g.,

when examined by domain experts. Additional advantages of

our new algorithm include lower sensitivity to the presence

of errors in the training dataset and to the non-linearity of the

hyper-boundaries between different classes.

II. NOTATION AND BACKGROUND

A. NOTATION

Let X be a dataset composed of n training input vectors

xi ∈ R
m, were 1 ≤ i ≤ n, and let y ∈ Gn be a category vector,

where G is the set of classification labels (G = {0, 1, . . . ,G}).

The problem at hand is to find the best model f , from a

given family of models F , such that f (xi) = yi for many

xi ∈ X . That is, we are interested in solving a supervised

classification problem. We are also interested in the capabil-

ity of the model f to generalize to previously unseen data,

that is, to correctly classify input vectors extracted from a

universe U of input vectors, not necessarily included in the

training datasetX . For this reason, the best solution is usually

not the overfitted model f that guarantees f (xi) = yi for

all xi ∈ X .

B. KOLMOGOROV COMPLEXITY

The novel cost function introduced in this paper to con-

struct decision trees is based on the concept of Kolmogorov

complexity [19]–[21], also known as Algorithmic Informa-

tion Theory. The application of Kolmogorov complexity

to the search of optimal statistical models is implemented by

the Minimum Description Length (MDL) principle [22] and

the Minimum Message Length (MML) [23]. In particular,

minimum length techniques have been applied to the prob-

lem of inferring decision trees in [24], later on clarified and
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extended in [25], as well as in [26] as a technique for pruning;

the PUBLIC algorithm is based on the MML concept and is

described in [14]. Although the underlining concepts behind

our own cost function are the same (namely, that learning is

equivalent to the capability to compress), our approach is very

different from the ones described above.

According to the Kolmogorov complexity, the amount of

information of an object, encoded as a finite string, is given

by the length of the shortest computer program that is able to

print (output) that string. Kolmogorov complexity does not

require to know the set of valid strings in advance, or to make

assumptions about their probability distribution. Therefore,

it provides a universal definition for the amount of infor-

mation contained in an object. However, the Kolmogorov

complexity is a non-computable quantity [27], hence it must

be approximated in practice.

The Kolmogorov complexity K (s) of a string s composed

of symbols from a fixed alphabet 6 is defined as1

K (s) = min
p,v

{

|p| + |v| : U (p, v) = s
}

, (2)

where U is a universal computer, p is a program in a

prefix-free language interpreted by U , 2 and v is the input to

the program. It can be shown that the Kolmogorov complexity

K (s) of a string s does not depend on the programming lan-

guage used [27], i.e., any reasonable and sufficiently power-

ful computer language provides the same description length,

up to a fixed additive constant that depends on the selected

language, but not on the string itself.

Sometimes, the description of a string can be greatly

reduced if we assume the knowledge of another string. The

conditional Kolmogorov complexity of a string s given the

string s′, denoted by K (s|s′), is defined as3

K (s|s′) = min
p,v

{

|p| + |v| : U (p, 〈v, s′〉) = s
}

. (3)

III. DECISION TREE CONSTRUCTION ALGORITHM

A. KEY IDEA

In this paper, we provide an algorithm to construct decision

trees that, by design, does not overfit training data, and that

has no hyperparameters to be optimized. To achieve this,

the algorithm must automatically understand when growing

the decision tree adds needless complexity, and must measure

such complexity in a way that is commensurate to some

prediction quality aspect, e.g., inaccuracy. We argue that

a natural way to achieve the above objectives is to define

both the inaccuracy and the complexity (conveyed by the

so-called surfeit, introduced later on) using the concept of

Kolmogorov complexity [19].

The key insight behind the application of Kolmogorov

complexity to machine learning is that the more patterns we

can find in a dataset, the more we have learned about the

1|x| denotes the number of symbols, or length, of a string x.
2A programming language is prefix-free if no program can be a prefix of

another program.
3〈v, s′〉 denotes the concatenation of the strings v and s′.

data. This means both identifying the dataset attributes that

best explain the outcome, and devising a model that provides

this explanation without exceeding complexity. Moreover,

data compression is about finding and exploiting patterns and

regularities in the data. A practical implementation that puts

together the key features of Kolmogorov complexity and data

compression follows the lines of the Minimum Description

Length principle [22], that proposes to minimize the length

of the modelM plus the length of the dataD given the model,

namely L(M ) + L(D | M ), where L(·) returns the length of

its argument. Unfortunately, such an approach tends to favor

simple models, and is not widely used in practice due to this

limitation.

In this work, we propose to replace the minimization

of L(M ) + L(D | M ) by a multi-objective optimization

problem [28] that reconciles two conflicting goals: to min-

imize the complexity of the model, and to minimize the

inaccuracy of the model’s predictions. Moreover, instead of

working directly with the length of models L(M ) we propose

to work with their surfeit, which evaluates the unnecessary

complexity of a model used to represent a given dataset.

The surfeit can be computed as the length of the model

minus the length of the minimum computer program that

can print the dataset, i.e., the Kolmogorov complexity of the

data. Namely, this is L(M ) − K (D). Using the surfeit avoids

the rejection of correct but complex models. Our approach is

validated in practice by means of its application to a family

of decision tree models.

B. OVERVIEW OF THE ALGORITHM

We describe now the algorithm (called Minimum Surfeit and

Inaccuracy, or MSI for short) to build a decision tree given a

training datasetX with the help of the pseudocode reported in

Algorithm 1 (an open source implementation of the algorithm

is available at https://gitlab.com/rleiva/mnpdt). The algorithm

is based on a breadth-first tree traversal, see for example [7].

The algorithm requires a function called bestSplit(), that

returns the best way to split a given subset of the training data

into two subsets, and a second function called costFunc(),

that provides a quantitative evaluation of the cost of a tree

in terms of complexity and accuracy. The details of these two

functions are given in Sections III-C and III-D, respectively.

A third function forecast() computes the most likely class of a

given subset of the training data. Algorithm 1 is based on two

nested loops: the external while loop keeps a set Candidates

of the candidate tree nodes (leaves) to grow, whereas the

internal for each loop finds the best such node from which

the tree should be grown further. The latter operation requires

to check all possible options and select the one that minimizes

the cost of the resulting tree. The exit point in the algorithm

is at the end of the while loop, where the current tree T

is returned if there are no more candidate nodes to further

grow the tree, or the nodes in the set Candidates generate

trees that do not reduce the cost. The nodes of the tree are

represented with the TreeNode data structure composed of

the elements (1) LChild, that points to the left child node
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Algorithm 1Minimum Surfeit and Inaccuracy (MSI)

1: procedure buildTree(data)

2: Create TreeNode r ; r .LChild, r .RChild, r .Split ← none; r .Data← data; r .Class← forecast(data)

3: Create Tree T ; T .Root ← r ;

4: bestCost ← costFunc(T )

5: Candidates← {r}

6: while Candidates 6= ∅ do

7: bestSol ← none

8: for each ℓ ∈ Candidates do

9: 2← bestSplit(ℓ.Data)

10: if 2 = ∅ then Candidates← Candidates \ {ℓ} ⊲ Discard ℓ as candidate to grow the tree.

11: else

12: Create TreeNode ℓL, ℓR ⊲ Tree nodes ℓL, ℓR will be the children of ℓ.

13: ℓL.LChild, ℓL.RChild, ℓL.Split, ℓR.LChild, ℓR.RChild, ℓR.Split ← none

14: (dataL, dataR)← split(2, ℓ.Data)

15: ℓL.Data← dataL

16: ℓR.Data← dataR

17: ℓL.Class← forecast(dataL)

18: ℓR.Class← forecast(dataR)

19: 〈ℓ.LChild, ℓ.RChild, ℓ.Split〉 ← 〈ℓL, ℓR, 2〉 ⊲ Grow the tree at node ℓ.

20: C ← costFunct(T ); ⊲ C is the cost of the tree if grown at ℓ.

21: 〈ℓ.LChild, ℓ.RChild, ℓ.Split〉 ← 〈none, none, none〉 ⊲ Leave the tree as it was.

22: if C < bestCost then

23: bestCost ← C

24: bestSol ← (ℓ, 2, ℓL, ℓR)

25: if bestSol 6= none then

26: (ℓ, 2, ℓL, ℓR)← bestSol

27: 〈ℓ.LChild, ℓ.RChild, ℓ.Split〉 ← 〈ℓL, ℓR, 2〉

28: Candidates← Candidates \ {ℓ} ∪ {ℓL, ℓR}

29: else return T ⊲ No candidate reduces the cost of the tree.

30: return T ⊲ No more candidates.

in the tree, (2) RChild, that points to the right child node,

(3)Data, that contains the subset of training data of the node,

(4) Split, which is a pair composed by the attribute and a

threshold used for the data splitting, and (5) Class, which is

the most likely class for this node (based on its Data). A tree

node could be either an internal node having a split criterion

and two children, or a leaf node with a predicted class and no

child.

The main difference between our algorithm and other deci-

sion tree algorithms is in the for each loop. In traditional

algorithms, the order in which the branches are evaluated

is irrelevant. However, since our algorithm could stop the

growing process at any point, at each iteration we explicitly

select the best candidate node to grow the tree.

C. SPLITTING CRITERION

A decision tree is an algorithm that recursively partitions the

training vectors of X in such a way that the same values yi
are grouped together. Given a subset Q ⊆ X we have to find

the optimal split for Q. A split is a pair θ = (j,w) where

1 ≤ j ≤ m is an index, m is the number of attributes, and

w ∈ R a threshold. A split partitions the setQ into two disjoint

subsets Qℓ = {xi ∈ Q : xi ≤ w}, and Qr = Q\Qℓ. We use

the minimal weighted entropy as the splitting criterion. 4 The

weighted entropy of a split, denoted by H̃ , is defined as:

H̃ (Q, θ) =
d(Qℓ)

d(Q)
H (Qℓ)+

d(Qr )

d(Q)
H (Qr ) (4)

where d(S) is the number of elements (or diameter) of set S,

and H (S) is the entropy of S, i.e.,

H (S) = −
∑

x∈S

p(x) log p(x) , (5)

being p(x) the probability of getting x if we select a ran-

dom element from S. The function bestSplit(Q) returns

the best split θ⋆ of a given subset of data Q, defined as

θ⋆ = argmin θ H̃ (Q, θ). If θ⋆ does not split Q, bestSplit (Q)

returns ∅.

D. COST FUNCTION

For every possible branch to grow, we have to compute how

good the resulting tree would be if we add the new nodes,

compared to the same tree without them. In this section

we introduce a novel cost function to evaluate and compare

4Other metrics, like Gini impurity or information gain could be used for
the same purpose.
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candidate trees. A problem with traditional cost functions for

tree evaluation is that they are based on incommensurable

quantities, such as the accuracy of the model and the number

of nodes. Our goal here is to introduce two new metrics that

are conceptually equivalent to the traditional ones while still

being commensurable, i.e., based on the same units. We have

also designed them to have the same scale, in order to enable a

direct comparison. These two metrics will convey how badly

the tree fits the data (inaccuracy), and how unnecessarily

complex the model is (what we call surfeit).

Our measure of the inaccuracy of a model M for a dataset

X is the length of the shortest computer program that, given

as input themodelM , is able to print the datasetX .We seek to

measure how difficult (in terms of the size of a program, not of

its running time) it is to fix the errors introduced by themodel.

Intuitively, in this sense, it is more difficult to fix a model

that makes several different mistakes than a model that makes

the same mistake several times. Formally, the inaccuracy of

a dataset X and a candidate modelM is

I(X ,M ) =
K (X |M )

K (X )
, (6)

where K (X |M ) is the conditional Kolmogorov complexity

of the dataset X given the model M . The normalization

factor K (X ), the Kolmogorov complexity of the dataset X ,

is introduced to guarantee that both the inaccuracy and the

surfeit have the same scale. We recall that Kolmogorov com-

plexity is a non-computable quantity. Therefore, we approx-

imate I(X ,M ) by the ratio |Comp(E)|/|Comp(X )|, where

|Comp(E)| is the length of the compressed version of the

subset E ⊂ X composed by those points that have been

misclassified by the tree, and |Comp(X )| is the length of the

compressed version of the full dataset. 5

To assess the model’s complexity, we seek to measure

the amount of surfeit introduced by our current model with

respect to the shortest possible model. Formally, the surfeit

of a dataset X and a candidate modelM is

S(X ,M ) = 1−
K (X )

|M |
. (7)

The length of the shortest possible model for the dataset X

is given by its Kolmogorov complexity K (X ). The normal-

ization factor is given by the length of the current model

being evaluated, |M |. Formally, exceedingly short models

M such that |M | < K (X ), are not considered candidate

models. Again, because K (X ) is a non-computable quantity,

in practice we approximate the surfeit of a model by its

redundancy, that is, by computing 1−|Comp(M )|/|M |, where

|Comp(M )| is the length of a compressed version of a string

describing the tree M . We remark that the shortest possible

model M for a dataset X must be incompressible, but an

incompressible model for X is not necessarily the shortest

possible one. That is, it might happen that a model is not

redundant but still presents some surfeit.

5In our implementation the dataset X is stored in a numpy array. The
subset E is the numpy array composed of those rows of X for which the
model provides a wrong prediction.

Both quantities, inaccuracy and surfeit, have to be com-

bined into a single value by applying a function

N (X ,M ) = g(I(X ,M ),S(X ,M )). (8)

Since both the inaccuracy and the surfeit are relative

quantities, a natural way to combine them is via their

harmonic mean. Other candidate functions (arithmetic mean,

geometric mean, Euclidean distance, product, and addition)

will be evaluated in the following.

IV. PRACTICAL IMPLEMENTATION

The abstract concept of Kolmogov complexity is usually

approximated in practice with compression algorithms [27].

In this work we have tested three different algorithms: the

Lempel-Ziv-Markov chain algorithm, LZMA [29] that uses

dictionaries for compression, zlib [30] that combines dictio-

naries with Huffman encodings, and bz2 a compressor based

on the Burrows-Wheeler transform [31]. All compressors

have been configured to use the maximum compression level

allowed, in order to avoid problems due to small window size

buffers [32].

For the representation of a tree as a string we use the

following template:

def tree{[attrs]}:

if [attr] <= [thresh]:

return [label] || [subtree]

else:

return [label] || [subtree]

where [attrs] is the list of the only attributes used in

the model, 6 [attr] is a single attribute represented by

the letter X followed by a number (e.g. X1), [thresh]

is the threshold used for the split, [label] is one of the

valid labels from the set G, and || [subtree] means

that the return statement can be replaced by another level

of [if - else] conditions. We could have used a much

shorter description of trees by replacing word tokens with

symbols, e.g., via the ternary conditional operators ? and

: used in modern programming languages, or by dropping

the return statement. This would produce shorter trees,

but the complexity of the models would remain the same,

up to an additive constant that does not depend on the models

themselves. Since, e.g., the harmonic mean compares relative

values instead of absolute ones, this additive constant can be

safely ignored.

V. RESULTS

In this section we evaluate our new algorithm, and compare

its performance against the well-known algorithms CART,

C4.5, CHAID, and PUBLIC. In order to measure the pre-

diction performance of the tree classifiers, we used the mean

accuracy, defined as one minus the mean error. Other perfor-

mance parameters taken into account include the total size of

the tree, and the maximum depth.

6If the dataset contains many attributes, listing all of them when dealing
with very short models would make the length of the model’s header greater
than the length of the body.
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FIGURE 1. Synthetic dataset with splits computed by CART.

FIGURE 2. Decision tree obtained by our algorithm.

Figure 1 shows a synthetic dataset consisting of 100 ran-

dom points lying on a two-dimensional plane, where all the

points with an X1 attribute smaller than 50 are colored blue,

and the rest as red. We artificially introduce a red point,

simulating a measurement error, in the blue area. The gray

lines correspond to the classification performed by the CART

algorithm, as implemented by the scikit-learn toolkit [33].

CART will not stop until all the points have been correctly

classified, so we require to have at least five points in order to

make a node split, a de facto standard suggested, for example,

in Section 9.2.2 of [2] (for a more theoretical justification

of this minimum value see the expected count condition

in [34]).

The tree obtained by applying our algorithm to Figure 1 can

be seen in Figure 2. Our algorithm does not try to model the

error point, since the gain due to an increment in the accuracy

does not compensate the redundancy introduced in the model.

Recall that our algorithm stops growing the tree when the cost

function, based on the measures of inaccuracy and surfeit,

does not decrease when adding new nodes to the tree. Our

algorithm presents a lower sensitivity to the errors found in

datasets, at least if the number of errors is small compared to

the number of valid points.

A second experiment with synthetic datasets is depicted

in Figure 3. There, we create two isotropic Gaussian blobs

that partially overlap.We start with a standard deviation of 2.5

for each cluster, so they are easy to separate, and increase the

standard deviation in increments of 0.01, until we reach 4.5,

which leads to significant overlap. For each value of the

standard deviation, we run the experiment 100 times and we

compute the average accuracy for the two algorithms using

different datasets for training and testing. For this experiment,

the hyperparameter ‘‘minimum number of samples per leaf

FIGURE 3. Example of isotropic Gaussian blobs (std. dev. = 3).

FIGURE 4. Accuracy for isotropic Gaussian blobs.

node’’ of the CART algorithm has been optimized in order

to achieve the maximum accuracy (in this case, the best

value was obtained with a minimum size of 26 samples).

The results of this experiment are shown in Figure 4. On

average, our algorithm provides the same accuracy (0.872)

as the optimized version of the CART algorithm.

For each iteration of the experiment, we have also com-

puted the average number of nodes, including internal and

leaf nodes, required by the models to properly classify the

clouds in the dataset. The results of this measurement are

show in Figure 5. Our algorithm requires an average of 5.7

nodes compared to 23 nodes for the CART algorithm. More-

over, our algorithm is more stable than CART, in the sense

that it produces models of similar complexity when it gets

similar input datasets (a standard deviation of 0.3 compared

to 3.9 for CART).

In Figure 6 we show the maximum depth of the tree,

defined as the longest path from the root of the tree to

any of its leaves. The maximum depth of the tree is a

good measure of the maximum time it will require for

the model to provide a classification. Our algorithm has

an average depth of 2.2 nodes, whereas the average depth

yielded by the CART algorithm is 4.8 nodes. We emphasize

that the CART algorithm requires to optimize a hyperpa-

rameter in order to obtain these optimal results, whereas
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FIGURE 5. Number of tree nodes for isotropic Gaussian blobs.

FIGURE 6. Maximum tree depth for isotropic Gaussian blobs.

the algorithm we propose, by design, does not require this

optimization.

Before proceeding, we would like to stress that neither

the cost function nor the compressor are hyperparameters.

We demonstrate this by showing that the choice of dif-

ferent cost functions and compressors leads to substan-

tially similar results. In Figure 7, we apply our algorithm

to the discussed partially overlapping isotropic Gaussian

blobs described above (and illustrated with Figure 3), and

evaluate different alternatives for the definition of the cost

function N (X ,M ) in (8): arithmetic mean (I(X ,M ) +

S(X ,M ))/2, geometric mean (I(X ,M )×S(X ,M ))1/2, har-

monic mean 2/(I(X ,M )−1 + S(X ,M ))−1), Euclidean dis-

tance (I(X ,M )2+S(X ,M )2)1/2, sum I(X ,M )+S(X ,M ),

and product I(X ,M ) × S(X ,M ). The figure shows the

extremely limited difference between the different func-

tions (for an easier interpretability of the results, the mean

has been subtracted from the values). Similarly, Figure 8

shows the performance of our algorithm when using the

LZMA, zlib, and bz2 compressors. We observe that all

of them yield similar performance. The above results sug-

gest that the performance our algorithm is independent

of the specific choice made for either implementation

aspect.

In the following, we employ the bz2 as the compressor to

approximate the computation of the Kolmogorov complex-

FIGURE 7. Evaluation of cost functions.

FIGURE 8. Evaluation of different compressors.

ity, and the harmonic mean as the cost function. The latter

has the additional advantage of comparing relative values

instead of absolute ones, and therefore makes it possible to

get rid of additive constants related to the choice of a specific

template for the representation of the tree, as discussed in

Section IV.

Finally, we have compared the performance of our algo-

rithm with the performance of four popular decision trees

algorithms, CART, C4.5, CHAID, and PUBLIC, with a col-

lection of real datasets. More specifically, we have selected

12 well known datasets from the UCI Machine Learning

Repository [35], among those with the largest amount of data.

The selected ones are: diagnosis of breast cancer (cancer),

optical recognition of handwritten digits (digits), pre-

dicting protein localization sites in gram-negative bacte-

ria (yeast), classification of NASA space shuttle data

(shuttle), classification of blocks in web pages (page),

segmentation of outdoor images (image), predicting the

age of abalones from physical measurements (abalone),

predicting the quality of red and white variants of Portuguese

wine (wine) [36], filter spam emails (spam), wall-following

robot navigation (wall), classification of land use based

on Landsat satellite images (landsat), and distinguishing

signals from background noise in the MAGIC gamma tele-

scope images (magic). For each dataset, we have repeated
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FIGURE 9. Accuracy over example datasets.

FIGURE 10. Depth of models over example datasets.

the experiment 100 times,7 by randomly selecting the training

(70%) and testing (30%) subsets at each iteration.

In Figure 9 we compare the accuracy of the resulting

models obtained by applying CART, C4.5, CHAID, as well

as our own new algorithm to the above real datasets. In 3 of

the 12 datasets, our algorithm provides better accuracy than

CART. In the remaining 9 cases, the accuracy is fully com-

parable, and less than 2% smaller than the best of the other

algorithms, on average. In Figure 11 we provide a compar-

ison of the depth of the resulting models. Our algorithm

yields a shallower tree than all other algorithms, except for

datasets Cancer, Digits, and Image, confirming the

non-overfitting properties of our tree construction process. In

Figure 10, we show a comparison of the number of nodes of

the resulting models. Only for one of the datasets (Digits),

7In order to limit the computational complexity, the number of repeated
experiments was limited to less than 100 for the CHAID algorithm when
applied to some particularly heavy datasets.

does our model produce a slightly larger tree that those

generated by CART, C4.5, CHAID and PUBLIC. In most

of the cases, the trees generated by our algorithm have one

half (worst case) up to about two orders of magnitude fewer

nodes (best case) than the other algorithms considered in our

evaluation.

Finally, we have compared our algorithm with a post-

processing pruning algorithm applied to the tree obtained

by CART. In particular, we have applied a cost-complexity

pruning guided by a cross-validation to theShuttle dataset,

as implemented by the rpart library in R. The optimal value of

the cost-complexity metric is achieved for a tree of 59 nodes,

whereas our algorithm, without requiring the optimization of

any hyperparameters, obtains a tree of 28 nodes. Both trees

achieve the same accuracy.

VI. LESSONS LEARNED

The algorithm proposed in this paper has been designed

to find a compact model that describes well a dataset

VOLUME 7, 2019 99985



R. García Leiva et al.: Novel Hyperparameter-Free Approach to Decision Tree Construction

FIGURE 11. Number of nodes over example datasets.

(high accuracy) without over-fitting the data. The experiment

described in Figure 1 suggests that our algorithm has lower

sensitivity than CART to the errors found in datasets, at least

if the number of errors is small compared with the number

of valid points. The experiment of Figure 3 shows that the

algorithm tends to produce simpler models when the classes

that compose the dataset are not linearly separable. These

two situations, errors and non-linearity, are common causes

of model overfitting when using decision trees. In general,

the CART algorithm produces much more complex models

than our algorithm in those situations, even when configured

to avoid overfitting as much as possible.

As we can see in Figures 9, 10 and 11, our new algo-

rithm produces trees with a significantly smaller number

of nodes (and depth) than those produced with standard

algorithms used in practice, namely CART, C4, CHAID

and PUBLIC, without significantly decreasing the accuracy.

The experiments have been performed with a collection of

datasets resulting from real experiments in order to test the

applicability of the new algorithm to practical problems.

Given the size of the trees produced, our algorithm is the ideal

method to apply in those cases where the interpretability of

the results is critical, or where there is a large risk of model

overfitting.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new algorithm to build

decision trees based on the compressibility of candidate mod-

els and the compressibility of the errors generated by those

models. The main advantage of the new algorithm is that it

does not overfit the training data by design, and additionally

it does not require external or ad-hoc procedures to control the

overoptimization of the produced model. Moreover, our algo-

rithm does not require the optimization of any hyperparame-

ters. Experimental validation with synthetic and real datasets

demonstrates that the accuracy of the new algorithm is sim-

ilar to the accuracy of well-known decision tree algorithms,

like CART, C4.5, CHAID and PUBLIC. Our results show that

the proposed algorithm produces models with a considerably

smaller number of nodes, without any substantial accuracy

decrease.

Future work includes extending the cost function to include

a goodness measure for the attributes used at the nodes of

the trees, e.g., based on how correlated the values of these

attributes are with the target values. The early stopping prop-

erties of our algorithm can also be applied to other machine

learning techniques, e.g., to find optimal deep neural network

architectures.
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