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Abstract
In this paper we generalize the study of Matiyasevich on integer points over conics,
introducing the more general concept of radical points. With this generalization
we are able to solve in positive integers some Diophantine equations, relating these
solutions by means of particular linear recurrence sequences. We point out interest-
ing relationships between these sequences and known sequences in OEIS. We finally
show connections between these sequences and Chebyshev and Morgan-Voyce poly-
nomials, finding new identities.

1. Introduction

Finding sequences of points that lie over conics is an interesting and well-studied
topic in mathematics. An important example is the search for approximations of
irrational numbers by sequences of rationals, which can be viewed as sequences of
points over conics; see, e.g., [4] and [3].

Many such investigations involve quadratic curves having points whose coordi-
nates are terms of linear recurrence sequences. Matiyasevich [14] showed that the
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points (x, y) belonging to the conic

C(k) = {(x, y) 2 R2 : x2 � kxy + y2 = 1, k 2 N, k � 2} (1)

are integer points if and only if (x, y) = (sn, sn+1), where (sn)+1n=0 is the linear recur-
rence sequence with characteristic polynomial t2 � kt + 1, starting with s0 = 0 and
s1 = 1. Similar results have been proved by W. L. McDaniel [15] for a class of conics
related to Lucas sequences. Melham [16] and Kilic et al. [12] studied conics whose
integer points are precisely the points of coordinates (sn, sn+m), (skn, sk(n+m)) and
provided similar results for di↵erent linear recurrence sequences of order 2. Horadam
[11] showed that all consecutive terms of the linear recurrence sequence (wn)1n=0,
with characteristic polynomial t2�pt+q and initial conditions w0 = a,w1 = b, where
p, q, a, b 2 Z, satisfy qw2

n + w2
n+1 � pwnwn+1 + eqn = 0, where e = pab� qa2 � b2.

Clearly, these studies are strictly related to the solutions of some Diophantine
equations of the second degree with two variables. For example, in [17] and [1],
linear recurrence sequences have been used in order to solve Diophantine equations
x2 � ↵xy + y2 + ax + ay + 1 = 0 and x2 ± kxy � y2 ± x = 0, with ↵, a, k 2 Z, or
equivalently to determine all the integer points over the conics described by these
equations. In [2], the authors used linear recurrence sequences in order to evaluate
powers of points over the Pell hyperbola and to determine the solutions of the Pell
equation in an original way.

Some other interesting results, concerning the characterization of integer points
over conics with integer coe�cients by means of linear recurrence sequences, can
be found, e.g., in [9], [13],[8], and [10]. In this paper, we will consider the curve of
equation

x2 �
p

wxy + y2 = 1, w 2 N, w � 4, (2)

which generalizes the Matiyasevich one. We extend the characterization of integer
points over this conic, when w is not a perfect square, introducing ”algebraic” points
of the kind (u

p
w, v) or (u, v

p
w) for u, v 2 N. We show that these points are related

to particular linear recurrence sequences. The characterization is harder than the
integer case, as we will point out in Section 2. Moreover, in Section 3, we will solve
some Diophantine equations connected to the quadratic curve (2), providing new
results about the integer sequences involved. Finally, in Section 4, we will highlight
connections with Chebyshev and Morgan-Voyce polynomials, finding new identities.

2. Linear Recurrence Sequences on Generalized Matiyasevich Curves

In this section we study the quadratic curve

C(w) = {(x, y) 2 R : x2 �
p

wxy + y2 = 1}, w 2 N, w � 4 (3)



INTEGERS: 15 (2015) 3

that we call generalized Matiyasevich conic. For a given value of w, we define the
set E(w) = L(w) [R(w) of radical points, where

L(w) = {(u
p

w, v) 2 C(w) : u, v 2 N, u
p

w > v}

and
R(w) = {(u, v

p
w) 2 C(w) : u, v 2 N, u > v

p
w}.

In the following, we will characterize all radical points of the generalized Matiya-
sevich conics by means of consecutive terms of the linear recurrence sequence with
characteristic polynomial t2 �pwt + 1 and initial conditions 0, 1.

Definition 1. Let w be a real number, with w � 4. We consider

(an(w))+1n=0 =
�
0, 1,

p
w,w � 1, (w � 2)

p
w,w2 � 3w + 1, . . .

�
(bn(w))+1n=0 =

�
0, 1, w � 2, w2 � 4w + 3, w3 � 6w2 + 10w � 4, . . .

�
(cn(w))+1n=0 =

�
1, w � 1, w2 � 3w + 1, w3 � 5w2 + 6w � 1, . . .

�
linear recurrence sequences that have characteristic polynomials and initial condi-
tions respectively given by

f(t) = t2 �
p

wt + 1, a0(w) = 0, a1(w) = 1,
g(t) = t2 � (w � 2)t + 1, b0(w) = 0, b1(w) = 1,
g(t) = t2 � (w � 2)t + 1, c0(w) = 1, c1(w) = w � 1.

In the following, we will omit the dependence on w when there is no possibility
of misunderstanding.

Proposition 1. The sequence (an)+1n=0 is strictly increasing.

Proof. If w = 4, it is straightforward to observe that (an)+1n=0 = (n)+1n=0. Now, let
us consider w > 4 and consequently

p
w� 1 > 1. We prove the thesis by induction.

For the first terms we have a2 =
p

w > a1 = 1 > a0 = 0. Given any k  n, we
suppose ak > ak�1 and using the recurrence relation an+1 =

p
wan � an�1, we

obtain
an+1 � an = (

p
w � 1)an � an�1 > an � an�1 > 0

and the proof is complete.

Now, let us introduce the matrix

M =
✓

0 1
�1

p
w

◆
,
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with characteristic polynomial t2 � pwt + 1. The entries of Mn recur with this
polynomial (see [5]) and checking M and M2, we can find that

Mn =
✓
�an�1 an

�an an+1

◆
.

This equality allows us to prove the following proposition.

Proposition 2. If we consider w 2 N and points Pn = (an, an�1), for all integers
n � 1, we have

(1) Pn 2 C(w),
(2) P2n = (bn

p
w, cn�1),

(3) P2n+1 = (cn, bn
p

w).

Proof. We give the proofs of each part separately:

(1) Since a2
n � an�1an+1 = det(Mn) = [det(M)]n = 1, we obtain Pn 2 C(w)

because 1 = a2
n � an�1(

p
wan � an�1) = a2

n �
p

wanan�1 + a2
n�1.

(2) It is immediate to prove that the even terms of (an)+1n=0 are multiples of
p

w.
Moreover, even and odd terms of (an)+1n=0 recur with the characteristic poly-
nomial g(t) = t2� (w�2)t+1 of the matrix M2 (see [5]). Thus the sequences
(a2n)+1n=0, (a2n+1)+1n=0, (bn)+1n=0, and (cn)+1n=0 have characteristic polynomial
g(t). Furthermore, observing that

a0 = 0, a1 = 1, a2 =
p

w, a3 = w � 1,
b0 = 0, b1 = 1, c0 = 1, c1 = w � 1,

we get a2n = bn
p

w, a2n+1 = cn, n � 0, and clearly

P2n = (a2n, a2n�1) = (bn
p

w, cn�1), n � 1.

(3) From the previous considerations, we immediately find P2n+1 = (a2n+1, a2n) =
(cn, bn

p
w), n � 0.

As a consequence of Propositions 1 and 2 we have the following inclusions.

Corollary 1. Using the above notation, we have

(1) {P2n+1 2 C(w) : n � 0} ✓ R(w),
(2) {P2n 2 C(w) : n � 1} ✓ L(w),
(3) {Pn 2 C(w) : n � 1} ✓ E(w).
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Corollary 2. The terms of (bn)+1n=0 and (cn)+1n=0 satisfy

bn+1 = cn � bn, cn+1 = wbn+1 � cn, n � 0.

Proof. Let us observe that the sequences (bn)+1n=0 and (cn)+1n=0 recur with charac-
teristic polynomial g(t) and

b1 = c0 � b0 = 1, b2 = c1 � b1 = w � 2,
c1 = wb1 � c0 = w � 1, c2 = wb2 � c1 = w2 � 3w + 1.

Thus, we have

bn+1 = cn � bn, cn+1 = wbn+1 � cn, n � 0.

Remark 1. If w = k2 for some k � 2, then (2) is the equation of the conic (1)
studied by Matiyasevich. Moreover, in this case the set of the radical points is

E(w) = E(k2) = {(an+1(k2), an(k2)) : n 2 N},

which corresponds to the set of all integer points over this curve.

In the next theorem we show that this result can be generalized when w is a
non-square positive integer.

Theorem 1. For every non-square integer w � 4, the set of radical points belonging
to the conic (2) is

E(w) = {(an+1(w), an(w)) 2 C(w) : n 2 N}.

Proof. We will write {Pn} instead of {Pn = (an, an�1) 2 C(w) : n � 1}. We want
to show that E(w) ✓ {Pn}. We give the following order to the elements of E(w):
given any (x1, y1), (x2, y2) 2 E(w) we have (x1, y1) < (x2, y2) if and only if x1 < x2.
In this way this set is well-ordered, with minimum element (1, 0) and we can prove
the theorem by induction. Since (1, 0) = (a1, a0) = P1, the induction basis is true.
Moreover, let us suppose that if (r, s) 2 E(w), for (r, s) < (x̄, ȳ), then (r, s) 2 {Pn}.
We will prove that if (x̄, ȳ) 2 E(w) then (x̄, ȳ) 2 {Pn}. There are two possible
cases: (x̄, ȳ) 2 L(w) and (x̄, ȳ) 2 R(w).

Let us suppose (x̄, ȳ) 2 L(w), i.e., (x̄, ȳ) = (u
p

w, v) and u
p

w > v. We know
that

u2w + v2 � uvw = 1. (4)

If v = 1, then u2 = u and consequently we have u = 1, i.e., (x̄, ȳ) = (
p

w, 1) =
(a2, a1) = P2. If v > 1, we have u = 1�v2

uw + v and v > u, since 1 � v2 < 0. From
u
p

w > v, it follows that uv
p

w > v2 and

v2

u
p

w
< v. (5)
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Dividing (4) by u
p

w we obtain

u
p

w = v
p

w +
1

u
p

w
�

v2

u
p

w

and using (5) we have

u
p

w > v
p

w +
1

u
p

w
� v

and
v > v

p
w � u

p
w +

1
u
p

w
> (v � u)

p
w.

Now, we consider the point Q = (v, (v � u)
p

w). We have that Q 2 C(w); indeed,

v2 + w(v � u)2 � wv(v � u) = v2 + wu2 � uvw = 1.

Since v > (v � u)
p

w we obtain Q 2 R(w) ✓ E(w). Moreover, we are considering
v < u

p
w, i.e., Q < (x̄, ȳ). By Proposition 2 and the inductive hypothesis, we

conclude that Q = (v, (v � u)
p

w) = (cn, bn
p

w), for some index n. Thus, we have
v = cn, v�u = bn and by Corollary 2 it follows that v = cn, u = cn�bn = bn+1.
Finally, (x̄, ȳ) = (u

p
w, v) = (bn+1

p
w, cn) = P2(n+1) 2 {Pn}. Similar arguments

hold in the case (x̄, ȳ) 2 R(w).

3. Diophantine Equations and Integer Sequences

Let us consider the quadratic curve

C2(w) = {(x, y) 2 R : (x + y � 1)2 = wxy,w 2 N, w � 4}.

In the next theorem we determine all the positive integer points of C2(w), i.e., we
solve the Diophantine equation

(x + y � 1)2 = wxy, w 2 N, w � 4. (6)

Definition 2. Let w be a real number with w � 4. We define (un(w))+1n=0 as the
sequence satisfying the recurrence relation(

u0(w) = 0, u1(w) = 1,
un+1(w) = (w � 2)un(w)� un�1(w) + 2, n � 2.

(7)

In the following we will omit the dependence on w, when there is no possibility
of misunderstanding.

Theorem 2. The point (x, y) 2 C2(w) has positive integer coordinates if and only
if (x, y) = (un+1, un) or (x, y) = (un, un+1), for some natural number n.
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Proof. Since equation (6) is symmetric with respect to x and y, we may consider
only the case (x, y) = (un+1, un). It is straightforward to prove that

u2
n � un�1un+1 � 2un + 1 = 0, n � 1, (8)

and consequently if (x, y) = (un+1, un), using the recurrence relation (7) and the
equality (8), we have

(x + y � 1)2 � wxy = u2
n + u2

n+1 � wun+1un + 2un+1un � 2un+1 � 2un + 1
= u2

n + un+1(un+1 � (w � 2)un � 2)� 2un + 1
= u2

n � un�1un+1 � 2un + 1 = 0,

i.e., (x, y) 2 C2(w) with positive integer coordinates.
Conversely, let (x, y) 2 C2(w) be a point with positive integer coordinates. First

of all, we observe that x and y must be coprime in order to satisfy the equation
defining C2(w). Furthermore, it follows that

x|y2 � 2y + 1, y|x2 � 2x + 1,

and
xz = y2 � 2y + 1,

where z is an integer number. Since xz ⌘ 1 (mod y), we have

x2(z2 � 2z + 1) ⌘ 1� 2x + x2 ⌘ 0 (mod y)

and
y|z2 � 2z + 1, z|y2 � 2y + 1,

i.e, (y, z) 2 C2(w) is an integer point. Thus, starting with x and y we can determine
a sequence where three consecutive elements satisfy

y2 � xz � 2y + 1 = 0.

This equation corresponds to the relation (8). Thus, it follows that x, y, z are three
consecutive elements of (un)+1n=0, i.e., (x, y, z) = (un+1, un, un�1) for a given index
n. Using the results proved in [17], it is easy to show that this sequence must satisfy
the recurrence relation (7).

In the following theorem, we highlight the relationships among the quadratic
curves C(w), C2(w) and C3(w), defined as

C3(w) = {(x, y) 2 R : (x + y)2 = w(x + 1)(y + 1), w 2 N, w � 4}.

In this way, we obtain the positive integer solutions of the Diophantine equation

(x + y)2 = w(x + 1)(y + 1), w 2 N, w � 4. (9)
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Theorem 3. Considering the positive real numbers, we have

(1) (x, y) 2 C(w) if and only if (x2, y2) 2 C2(w),
(2) (x, y) 2 C(w) if and only if (2x2 � 1, 2y2 � 1) 2 C3(w),
(3) (x, y) 2 C2(w) if and only if (2x� 1, 2y � 1) 2 C3(w).

Proof. We present the proofs of each part separately:

(1) If (x, y) 2 C(w), then x2 + y2 � 1 =
p

wxy, and squaring both members we
have (x2 + y2 � 1)2 = wx2y2, i.e., (x2, y2) 2 C2(w). The converse is obvious.

(2) If (2x2�1, 2y2�1) 2 C3(w), then substituting in (9) a little calculation shows
that (x2 +y2�1)2 = wx2y2. Taking the square root of both members we find
x2 + y2 � 1 =

p
wxy, i.e., (x, y) 2 C(w). The converse is obvious.

(3) If (2x� 1, 2y � 1) 2 C3(w), then substituting in (9) we obtain (x + y � 1)2 =
wxy,, i.e., (x, y) 2 C2(w). The converse is obvious.

Now, we need some results about operations between linear recurrence sequences.
Specifically, we use the product between linear recurrence sequences; see, e.g., [23],
[6], and [7]. We mention the main theorem that we will use.

Theorem 4. Let (pn)+1n=0 and (qn)+1n=0 be linear recurrence sequences with char-
acteristic polynomials f(t) and g(t), whose companion matrices are A and B, re-
spectively. The product sequence (pnqn)+1n=0, is a linear recurrence sequence with
the same characteristic polynomial of the matrix A�B, where � is the Kronecker
product [6].

Remark 2. Let us consider a linear recurrence sequence (pn)+1n=0 of order m,
with characteristic polynomial f(t) = tm �

Pm
h=1 fhtm�h and initial conditions

p0, ..., pm�1. As a consequence of the previous theorem, the sequence (qn)+1n=0, sat-
isfying the recurrence

qm =
mX

h=1

fhqm�h + k, k 2 R,

is a linear recurrence sequence with order m+1, characteristic polynomial (t�1)f(t)
and initial conditions p0, ..., pm�1, pm + k.

From the last remark, we find that sequence (un)+1n=0, introduced in Definition 2,
is a linear recurrence sequence of degree 3 with characteristic polynomial

t3 � (w � 1)t2 + (w � 1)t� 1 = (t� 1)(t2 � (w � 2)t + 1)
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and initial conditions 0, 1, w. Moreover, we can observe that the sequence (a2
n)+1n=0,

where (an)+1n=0 is the sequence introduced in Definition 1, has characteristic poly-
nomial

t3 � (w � 1)t2 + (w � 1)t� 1

and initial conditions 0, 1, w, i.e.,

(un)+1n=0 = (a2
n)+1n=0. (10)

Remark 3. Considering two positive integers ↵ and �, if the point (
p

↵,
p

�) 2
C(w) is a radical point, then ↵ or � are perfect squares. Indeed, if (

p
↵,
p

�) 2 C(w)
then (↵,�) 2 C2(w). Thus, by Theorem 2, there exists an index n such that
(↵,�) = (un+1, un) = (a2

n+1, a
2
n) and (

p
↵,
p

�) = (an+1, an) 2 E(w).

The sequence (un(w))+1n=0 is related to the Chebyshev polynomials of the first
kind and we will highlight this connection in the next theorem. We recall that the
Chebyshev polynomials of the first kind Tn(x) can be defined in various ways (see,
e.g., [19] and [20]). Here we define Tn(x) as the n-th element of a linear recurrence
sequence.

Definition 3. The Chebyshev polynomials of the first kind are the terms of the
linear recurrence sequence of polynomials (Tn(x))+1n=0 with characteristic polynomial
t2 � 2xt + 1 and initial conditions T0(x) = 1, T1(x) = x.

Theorem 5. For all real numbers w � 5 we have

un(w) = a2
n(w) =

2
�
Tn(w�2

2 )� 1
�

w � 4
, n � 0.

Proof. The sequence ((x � 1)un(2x + 2) + 1)+1n=0 has the same characteristic poly-
nomial of (un(2x + 2))+1n=0, i.e.,

t3 � (2x + 1)t2 + (2x + 1)t� 1 = (t� 1)(t2 � 2xt + 1).

Thus, (Tn(x))+1n=0 can be considered as a linear recurrence sequence of degree 3 with
the same characteristic polynomial of ((x� 1)un(2x + 2) + 1)+1n=0. Checking that

Tn(x) = (x� 1)un(2x + 2) + 1, for n = 0, 1, 2

we have
(Tn(x))+1n=0 = ((x� 1)un(2x + 2) + 1)+1n=0.

Finally, posing x = w�2
2 and using (10), we obtain

un(w) = a2
n(w) =

2
�
Tn(w�2

2 )� 1
�

w � 4
, n � 0.
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From the previous theorem, we know that two consecutive terms of

(un(w))+1n=0 =

 
2
�
Tn(w�2

2 )� 1
�

w � 4

!+1

n=0

, w 2 N, w � 5,

are solutions of the Diophantine equations (6) and (9). In Proposition 1 we have
studied the case w = 4, which leads to the sequence (un(4))+1n=0 = (a2

n(4))+1n=0 =
(n2)+1n=0. Furthermore, di↵erent values of w give rise to many known integer se-
quences. For all the integer values of w ranging from 4 to 20, the sequences are
listed in OEIS [21]. For example, when w = 5, we get the sequence of alternate
Lucas numbers minus 2 and, when w = 9, we get the sequence of the squared
Fibonacci numbers with even index

2
�
Tn(7

2 )� 1
�

5
= F 2

2n, n � 0,

(see sequences A004146 and A049684 in OEIS [21], respectively). We point out
that all these sequences satisfy the recurrence relation (7). The odd terms of the
sequences (un(w))+1n=0 are squares and the even terms are squares multiplied by w.
Indeed, by (10) and Proposition 2 we have that

u2n = a2
2n = wb2

n, u2n+1 = a2
2n+1 = c2

n.

These equalities clearly show interesting relations between the sequence (un(w))+1n=0

and the sequences (bn(w))+1n=0, (cn(w))+1n=0, which are known sequences in OEIS for
various values of w. We give a little list of these relationships between sequences
in Table 3, leaving to the reader the pleasure to investigate what happens for other
values of w.

w (un(w))+1n=0 = (a2
n(w))+1n=0 (bn(w))+1n=0 (cn(w))+1n=0

4 A000290=(n2) A001477=(n) A005408=(2n + 1)
5 A004146=Alternate Lucas numbers - 2 A001906=(F2n) A002878=(L2n+1)
6 A092184 A001353 A001834
7 A054493 (shifted by one) A004254 A030221
8 A001108 A001109 A002315
9 A049684=F 2

2n A004187 A033890=F4n+2

10 A095004 (shifted by one) A001090 A057080
11 A098296 A018913 A057081

Table 1: Relationship between some integer sequences.

In the next section, we will highlight further properties connecting previous se-
quences with Chebyshev polynomials of the second kind and Morgan-Voyce poly-
nomials.
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4. Connections with Chebyshev Polynomials of the Second Kind, Morgan-
Voyce Polynomials, and New Identities

In the previous section, we proved that the sequence (un(w))+1n=0 can be expressed
in terms of the Chebyshev polynomials of the first kind. We showed that these poly-
nomials can be used in order to solve the Diophantine equation (6) and determine
positive integer points over the conics C(w), C2(w) and C3(w). Now, we find new
interesting relations among the previous sequences and some classes of well-known
polynomials: the Chebyshev polynomials of the second kind and the Morgan-Voyce
polynomials. These polynomials can be defined in various ways. We recall their
definitions by using linear recurrence sequences.

Definition 4. The Chebyshev polynomials of the second kind are the terms of the
linear recurrence sequence of polynomials (Un(x))+1n=0 with characteristic polynomial
t2 � 2xt + 1 and initial conditions U0(x) = 1, U1(x) = 2x.

Definition 5. The Chebyshev polynomials Sn(x) = Un

�
x
2

�
, for all n � 0, are the

terms of the linear recurrence sequence of polynomials (Sn(x))+1n=0 with character-
istic polynomial t2 � xt + 1 and initial conditions S0(x) = 1, S1(x) = x.

Definition 6. The Morgan-Voyce polynomials are the terms of the linear recurrence
sequences of polynomials (fn(x))+1n=0 and (gn(x))+1n=0 with characteristic polynomial
t2� (x+2)t+1 and initial conditions f0(x) = g0(x) = 1, f1(x) = 1+x, g1(x) =
2 + x. For properties of these polynomials see, e.g., [22] and [18].

We summarize our results in the next propositions.

Proposition 3. Considering the sequences (an(w))+1n=0, (bn(w))+1n=0, (cn(w))+1n=0

introduced in Definition 1 and the Chebyshev polynomials of the second kind intro-
duced in Definition 5, for n � 1, we have

(1) an(w) = Sn�1(
p

w),
(2) bn(w) = Sn�1(w � 2),
(3) cn(w) = Sn(w � 2) + Sn�1(w � 2).

Proof. We give the proof for each part separately:

(1) Since the sequences (Sn(
p

w))+1n=0 and (an(w))+1n=0 have the same characteristic
polynomial t2�pwt+1, a0(w) = 0, a1(w) = 1 = S0(

p
w), and a2(w) =

p
w =

S1(
p

w), for all n � 1 the sequence (an(w))+1n=0 corresponds to the left shift
of the sequence (Sn(

p
w))+1n=0.

(2) A similar argument shows that for n � 1 the sequence (bn(w))+1n=0 is the left
shift of the sequence (Sn(w�2))+1n=0 because they have the same characteristic
polynomial t2 � (w � 2)t + 1 and shifted initial conditions.
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(3) Considering the sequence (cn(w))+1n=0, we have from Corollary 2 the relation
cn(w) = bn(w) + bn+1(w) = Sn(w � 2) + Sn�1(w � 2).

Proposition 4. Considering the sequences (an(w))+1n=0, (bn(w))+1n=0, (cn(w))+1n=0

introduced in Definition 1 and the Morgan-Voyce polynomials of the second kind
introduced in Definition 6, we have

(1) bn(w) = �gn�1(�w), cn(w) = fn(�w), n even,

(2) bn(w) = gn�1(�w), cn(w) = �fn(�w), n odd,

for n � 1.

Proof. We prove the proposition by induction. We have

b2(w) = w � 2 = �(2� w) = �g1(�w) c2(w) = w2 � 3w + 1 = f2(�w)

and
b1(w) = 1 = g0(�w) c1(w) = w � 1 = �(1� w) = �f1(�w).

Thus, the inductive basis is true. Now let us suppose that the relations hold for all
indexes k  n. If n is even, we have that

bn+1(w) = (w � 2)bn(w)� bn�1(w), cn+1(w) = (w � 2)cn(w)� cn�1(w).

Observing that n� 1 is odd, using the inductive hypothesis we obtain

bn+1(w) = (w � 2)(�gn�1(�w))� gn�2(�w) = (2� w)gn�1(�w)� gn�2(�w) = gn(�w)

and

cn+1(w) = (w � 2)fn(�w) + fn�1(�w) = �[(2� w)fn(�w)� fn�1(�w)] = �fn+1(�w)

by means of the recurrence relations for the Morgan-Voyce polynomials. Since
analogous considerations are valid when n is odd, the proof is complete.

The previous results give a straightforward way to obtain a new proof of some
known relations involving Chebyshev and Morgan-Voyce polynomials (see, e.g.,
[24]).

Proposition 5. Given any n � 1 and x � 2, we have

(1) S2n(x) = (�1)nfn�1(�x2),
(2) S2n�1(x) = (�1)n�1xgn�1(�x2),
(3) S2

n(x)� xSn(x)Sn�1(x) + S2
n�1(x) = 1.



INTEGERS: 15 (2015) 13

Proof. By Proposition 2, Proposition 3 and Proposition 4 we have

S2n(
p

w) = a2n+1(w) = cn(w) = (�1)nfn�1(�w),

S2n�1(
p

w) = a2n(w) =
p

wbn(w) = (�1)npwgn�1(�w).

Thus, with the substitution x =
p

w the proofs of (1) and (2) are straightforward.
Finally, from Proposition 2 we obtain

a2
n+1(w)�

p
wan+1(w)an(w) + a2

n(w) = 1

and by Proposition 3 we have

S2
n(
p

w)�
p

wSn(
p

w)Sn�1(
p

w) + S2
n�1(

p
w) = 1.

If we pose x =
p

w the proof of (3) easily follows.
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