If the primes are finite, then all of them divide the number one

We propose a novel proof of the infinitude of the primes based on elementary considerations of Legendre's function ϕ, defined in [1, p. 153] as

$$
\phi(x, y)=\mid\{1 \leq n \leq x: \text { integer } n \text { has no prime factors } \leq y\} \mid
$$

where x and y are positive integers. The reader can see that

$$
\pi(x)=\pi(\sqrt{x})+\phi(x, \sqrt{x})-1
$$

where $\pi(\cdot)$ is the prime-counting function. Let p_{1}, \ldots, p_{s} be the prime numbers less than or equal to y. Using the inclusion-exclusion principle, it can be proved that

$$
\phi(x, y)=x-\sum_{1 \leq i \leq s}\left[\frac{x}{p_{i}}\right]+\sum_{1 \leq i, j \leq s}\left[\frac{x}{p_{i} p_{j}}\right]+\ldots+(-1)^{s}\left[\frac{x}{p_{1} \cdots p_{s}}\right]
$$

where [•] is the floor function. Pinasco [2] also used this principle for proving the infinitude of the primes, but his proof is remarkably different from ours.

Suppose that $\left\{p_{1}, \ldots, p_{s}\right\}$ is the set of all prime numbers. Consider $N=$ $p_{1} \cdots p_{s}$. Then $\phi\left(N^{2}, N\right)=1$. On the other hand, we have

$$
\phi\left(N^{2}, N\right)=N^{2}-\sum_{1 \leq i \leq s}\left[\frac{N^{2}}{p_{i}}\right]+\sum_{1 \leq i, j \leq s}\left[\frac{N^{2}}{p_{i} p_{j}}\right]+\ldots+(-1)^{s} N
$$

Hence, $\phi\left(N^{2}, N\right)=m N$ for some integer m, i.e., every prime number divides 1 . This means that all primes, and, consequently, all non-zero natural numbers, are invertible in \mathbb{N}, i.e., we find that \mathbb{N} is a field. This completes the proof.

References

[1] R. Crandall, C. Pomerance, Prime numbers. A computational perspective, Springer-Verlag, New York, 2nd Edition, 2005.
[2] J. P. Pinasco, New proofs of Euclid's and Euler's theorems, Amer. Math. Monthly 116 (2009) 172-174.
-Submitted by Umberto Cerruti and Nadir Murru

