A fuzzy approach for segmentation of touching characters

Giuseppe Aird Farulla!, Nadir Murru?, Rosaria Rossini®

giuseppe.airofarulla@polito.it, nadir.murru@unito.it, rossini@ismb.it

!Department of Control and Computer Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129, Torino, Italy
2Department of Mathematics, University of Turin,

Via Carlo Alberto 10, 10121 Torino, Italy
3Istituto Superiore Mario Boella, Center for Applied Research on ICT,
Via Pier Carlo Boggio 61, 10138, Torino, Italy

Abstract

The problem of correctly segmenting touching characters is an hard task to solve
and it is of major relevance in pattern recognition. In the recent years, many methods
and algorithms have been proposed; still, a definitive solution is far from being found.
In this paper, we propose a novel method based on fuzzy logic. The proposed method
combines in a novel way three features for segmenting touching characters that have
been already proposed in other studies but have been exploited only singularly so far.
The proposed strategy is based on a 3—-input/l-output fuzzy inference system with
fuzzy rules specifically optimized for segmenting touching characters in the case of
Latin printed and handwritten characters. The system performances are illustrated
and supported by numerical examples showing that our approach can achieve a rea-
sonable good overall accuracy in segmenting characters even on tricky conditions of
touching characters. Moreover, numerical results suggest that the method can be ap-
plied to many different datasets of characters by means of a convenient tuning of the
fuzzy sets and rules.

1 Introduction

Automatic recognition of both printed and handwritten characters remains a challeng-
ing problem in pattern recognition. Most existing Optical Character Recognition soft-
ware (OCR) deal with it by exploiting simultaneously two highly correlated techniques:
character segmentation and pattern recognition. As part of the OCR, process, character
segmentation techniques are applied to patterns representing individual characters to be
recognized. The simplest way to perform character segmentation would be to exploit the
space between characters. This strategy unfortunately fails when considering mathemat-
ical formulae, handwritten and printed words with touching characters, representing well
known issues that often occur in degraded (e.g., photocopies) or compressed text images
[39]. In these situations, two or more adjacent characters touch together and share com-
mon pixels. To identify the touching regions and provide a correct segmentation is crucial
to recognition, since incorrectly segmented characters are unlikely to be correctly recog-
nized even from high-performance pattern recognition algorithms [52]. In facts, many
researchers state that errors in characters segmentation affect overall pattern recognition
performance more than a degradation in the starting image [14]. Segmentation of touching
components is crucial to get higher recognition rates by OCR systems [6].

Common techniques for character segmentation exploit several aspects characterizing
letters and their shapes, such as vertical projection, pitch estimation or character size,

contour analysis, or segmentation—recognition coupled techniques [24], [27]. One of the
most difficult problem an image segmentation algorithm has to address is the segmenta-
tion of touching characters [38], [41]. Very often, adjacent characters are touching, and
may overlap, making hard the task of segmenting a given expression or word correctly
into its character components [4, 22]. Given the relevance of such challenging task, several
methods have been developed in last years for performing optimal segmentation of touch-
ing characters. Kurniawan et al. [I8] identify touching positions in Latin handwritten
characters by means of self organizing feature maps and a region—based approach. In [20]
and [21], the authors also deal with segmentation of Latin handwritten texts. Different
approaches involving thinning algorithms can be found in [26] and [36]. Among the earlier
pieces of work on touching character segmentation, some approaches rely on contour anal-
ysis of the connected components for segmentation [I7, [7]. In [45], Sharma et al. study
the problem of detecting arbitrarily—oriented text from video frames. Cut positions in
touching characters are evaluated using the top distance profile. Roy et al. [40] addressed
the problem of segmenting touching characters with different orientations. In [50] and
[42], authors developed segmenting approaches leveraging on genetic algorithms. Rehman
et al. [37] identify character boundaries by using a set of heuristic rules. Louloudis et al.
[23] performed text line and word segmentation of handwritten documents by applying the
Hough transform. In [29], the authors addressed the problem of automatically segmenting
words from historical handwritten documents. The water reservoir algorithm has been
exploited in some researches, e.g., [35] and [19]. In [2] and [47], the authors presented
methods derived by combining different segmentation techniques. Further methods can
be found in [I], [5], [8], [11] and [51]. It is worth mentioning that works [33] and [9] also
deal with segmenting characters and symbols within mathematical expressions.

Generally, these strategies need a preprocessing step where the input RGB image is
converted to grayscale by eliminating the hue and saturation values while retaining the
illumination, then converting the grayscale image to binary, obtaining a matrix whose
entries are 0 for foreground pixels (black) and 1 for background pixels (white) for all other
pixels. Since different thresholds are used for detection it is possible that some feature of
characters is lost in the process. In our experiments we resort on the Otsu thresholding
method [34], which has proven to be very robust to noise and to changes in scenes and
input images, providing thresholds for image binarization ensuring that information loss
is minimized.

A function is used to evaluate each column of the matrix leveraging on features that
characterize typical character positions within the text, giving a value to each column.
Finally, cut positions (i.e., columns) are chosen depending on these values. Common
functions implied are the ratio of the second difference of the vertical projection (e.g.,
[15]) and the peak-to—valley (e.g., [25]). Other functions are, e.g., based on number of
black pixels, number of white pixels counted from the top of the column to the first black
pixel, crossing count (i.e., number of black to white transitions), number of identical black
(white) pixels with left (right) column, width to height ratio for the remaining left (right)
pattern after cutting (e.g., [3]). Another approach can be found in [I0], where the authors
used the inverse crossing count, measure of blob thickness and degree of "middleness”
for defining a function that identifies when a column, a row, or a diagonal is a cutting
position.

However, we argue that all the methods and approaches above mentioned do not
provide a comprehensive answer to the problem of segmenting touching characters. Indeed,
their performances are not always optimal, radically depending on the specific set of
characters involved in the segmentation. At the moment, there does not exist a standard
approach for the segmentation of touching characters. Thus, this is currently an active
research field.

There has always been a dilemma whether it is more convenient to segment first and

then recognize the patterns, or instead classify while segmenting. Authors in [4] review
Casey and Lecolinet work [6] stating that that the strategies for segmentation can be
classified into three main strategies as follows:

1. the classical approach already described;

2. recognition-based segmentation, in which a search is made for image components
that match with the character classes in a valid alphabet;

3. holistic approach that attempts to recognize the word as a whole.

In this classification, our work lies near to the first class, still presenting some important
advances: in fact, we aim at combining some of the previously cited features, usually
exploited one at a time, by means of an original fuzzy logic approach in order to improve
performances in separating touching characters. Indeed, the selection of the features
that characterize touching positions is an art rather than a technique. In other words,
the selection of the features mainly depends on the experience of the authors. Thus,
in this context, fuzzy logic can be very useful, since it is congenial to capture and to
code expert—based knowledge in view of performing targeted simulations. Taking this
into strong consideration, we also leverage on optimization techniques to increase overall
performances of our approach.

Fuzzy logic has been already exploited to perform image segmentation. For instance,
Garain and Chaudhuri [10] used fuzzy multifactorial analysis to combine some of the fea-
tures previously described. In [32], a survey on image segmentation techniques using fuzzy
clustering is presented. Fuzzy logic has been also exploited for developing segmentation—
recognition coupled techniques [12]. A non-linear fuzzy approach can be found in [44].
In [31], authors used edge corners and fuzzy logic to develop segmentation techniques
exploited to break down Captcha. Further approaches can be found in [13], [46], [48].

In this paper, we propose a novel fuzzy approach that differs from the state of the art in
several aspects. Firstly, we combine by means of a fuzzy strategy some features that have
never been exploited together in previous works. Secondly, we develop an original strategy
based on an inference system composed by 3-input/l-output with fuzzy rules specifically
optimized for the purpose of separating touching characters in the case of Latin printed
and handwritten characters. The strength of our fuzzy strategy relies on the possibility to
adjust its parameters in such a way that they can fit the characteristics of the data set. In
other words, the parameters of the method are extracted a priori considering the different
characters in the data set.

The inference engine is based on the Mamdani model with if-then rules, minimax
set—operations, sum for composition of activated rules and defuzzification based on the
centroid method. We have chosen the Mamdani model since it is congenial to capture and
to code expert-based knowledge [28].

The paper is organized as follows. In Section [2] we present the fuzzy strategy conve-
niently developed for performing segmentation of touching characters. In section |3 we
present the numerical results that show the effectiveness of the proposed method. Specif-
ically, in Section [3.1] we describe the datasets used for simulations. Sections and
are devoted to test the method on datasets of Latin printed and handwritten characters,
respectively. Finally, in Section [4] we draw some conclusion and present future works.

2 Fuzzy strategy

In the following, we only focus on binarized images, for homogeneity with the solutions
already presented. In a binarized image, a pattern can be represented by a matrix whose
entries are 0 (black pixels) and 1 (withe pixels). Generally, methods for segmenting touch-
ing characters define a function based on some features that characterize cut positions.

Then, such a function is evaluated for each column of the matrix and the cut position is
chosen depending on these values. Classical functions of this kind are the peak—to—valley
function g and the function A defined as

N V(l;) =2V (i) + V(r;) B(d) — Vi—1)=2V(@)+V(E+1)
9i) = V(i) + 1 » hlo) = 40) ’

where V(i) denotes the vertical projection function for the i-th column, /; and r; are the
peak positions on the left side and right side of 4, respectively. The column with the
highest value of g (or h) is identified as the cutting column. A further feature, that can
suggests if the i—th column can be a cut position, is the distance f(i) between ¢ and the
center of the pattern. Indeed, generally, cutting columns are located near to the center
of the pattern. Clearly, this feature should be only considered as an indication of the
neighborhood where the cutting column is probably located. Indeed, we will exploit such
a feature in combination with the previous functions with the aim of use it in order to
correct the results provided by the other functions. In this section, we combine functions
f, g, and h by means of a fuzzy strategy that conveniently balances these functions.

Let us introduce the notion of a “fuzzy degree” qualifying a column i to be a cut
position: in short, p = p(i) € [0,1]. In our model, the lower the value of p, the more
probable is that we have located a good cutting position. The strategy can be detailed by
means of the fuzzification of the functions f, g, h.

Given a pattern in a binarized image, let A, m, n, and ¢ be the matrix of pixels of
the binarized image, the number of row of A, the number of column of A, and the central
column of A, respectively. In the following, when we refer to a column ¢ of A, we refer to
the i—th column of A, i.e., we are considering the vector of length m whose elements are
the entries of the i—th column or we are only considering its position. This will be clear
from the context.

The central column c is evaluated by means of ¢ = . When n is odd, cis clearly the
central column of A; when n is even, we consider as the central column the mean between
5-th column and § + 1, even if in this case c is not an integer number. In this way, for
each column i of A, we define its distance from the center of the pattern as f(i) = |c —i|.
In our fuzzy strategy, we take into account the normalized distance between each column
i and the central column ¢, i.e., we consider f(i) = @

Similarly, for each column 7 of A, instead of directly using the functions g and h, we
consider the normalized functions

. 9(i) — minjec g(j) - h(i) — minjec h(j)
(i) = , (i) =

max;ec ¢(j) — minjec g(J) maxjec h(j) — minjec h(j)’

n+1
2

where C = {1,2,...,n} is the set of the columns of A. Note that functions g and h are well-
defined since we consider matrices A where at least two columns are different. Finally, in
the following we will use the functions

g=1-§, h=1-—h
so that low values of g and h identify cutting columns.

Functions f, g, h are fuzzified by defining convenient fuzzy sets and related membership
functions. The fuzzy degree p will be evaluated combining these functions by means of
some fuzzy rules. Fuzzy sets, membership functions, fuzzy rules will be specified in sections
and

The inference engine will be the basic Mamdani model [2§], with if-then rules, mini-
max set—operations, sum for composition of activated rules, and defuzzification based on
the centroid method. The Mamdani model is congenial to capture and to code expert—
based knowledge in view of performing targeted simulations; accordingly the system’s
performance is tuned by means of expert—based choices, heuristic criteria and non-linear
optimization methods.

A/

(a) (b) (c)

Figure 1: Samples of, respectively, two @, three @, and four H handwritten cursive
touching character patterns.

3 Experimental tests

Although creating a specific dataset of touching character is not our main contribution,
in our research we faced the lacking of good and standardized datasets on which testing
our algorithms. This reason forced us to build a dataset of touching characters. This need
is shared with many other researchers and works, including recent ones as [43] (although
this last paper refers to Persian handwriting recognition algorithms rather than to Latin
characters-based ones). In particular, we created two different datasets for Latin charac-
ters, one containing handwritten cursive characters, the other containing sided machine
printed characters. In the following, we discuss our choices and methodology.

Due to the different characteristics of the two datasets, in the remaining parts of the
section we discuss the process to select the best parameters for running our method on the
two datasets. Our fuzzy strategy has specific parameters meant to capture the differences
between one dataset to another. Such parameters are tailored on the specific dataset
characteristic by using an heuristic way and non—linear optimization methods. Moreover,
we would like to point out that the three features combined in our fuzzy routine seem to
be sufficient for obtaining optimal results in the segmentation. In facts, adding further
features appear to be useless. For instance, we have verified that the use of the crossing
count as a fourth fuzzy input did not lead to improvements. The experimental results are
presented in the following.

3.1 Construction of the datasets

The ultimate purpose of getting good segmentation results, especially when touching char-
acter are considered, is to boost the the performances for what concerns overall recognition
accuracy. Despite the fact thus that, to be fair, different approaches should be evaluated
on the basis of their recognition performances, there are not many authors publishing their
results on a benchmark database [49]. Also, as stated in many state-of-the-art work, e.g.,
[18], unfortunately at the present a comprehensive dataset specific on touching characters
is still missing. Given that, for researches it is difficult to conduct experiments and to
analyze any proposed method; in addition, it is hard to fair compare performances and
results obtained from different authors. We try to overtake such an obstacle by proposing
two datasets.

The first one, called dataset A, contains images of handwritten cursive characters we
have built relying on samples from a standard dataset, in fashion of [I8]. In particular
we started from the CCC database [5]. The CCC database contains 57’293 samples of
cursive characters that were manually extracted from images coming from different input
sources, mainly related to American Post Services. They include both upper and lower case

ax hxy dxwt

(a) (b) ()

Figure 2: Samples of, respectively, two @), three (]EI), and four (/c/) machine printed touching
character patterns.

letters. Each sample is stored as a binary matrix within the database, and accompanied
with information about the size of the matrix itself and the character that is represented.
Starting from the whole database, we developed a MATLAB script to randomly extract
1’000 of its samples, taking care of maintaining a uniform distribution for all the characters
chosen, both in their upper and lower version. These samples were later combined and
merged together to form two, three, and four touching character patterns, each of whom
is accompanied by a textual descriptor indicating the index of the proper cut column (or
columns, in the case of three and four multiple touching character patterns). One sample
of each category of patterns is shown in Figure For instance, the descriptor of the
sample represented in Figure[la)states that the proper column to cut to properly separate
the “¢” and the “h” characters is the 52t

This merging is however unsupervised, and so improper combinations happen during
the process. So, we had to filter out the most unrealistic ones. Firstly, we discarded all
the samples with significant difference in their heights. Secondly, we manually removed
combinations without touching patterns (i.e., the characters were well separated) or with
touching patterns that seemed impossible to happen in real world. At the end, we kept
153 combinations, of which 139 represent two touching character patterns, and the other
are equally divided into three and four touching character patterns. The disproportion
because the common touching characters consist of two characters, while three or more
touching characters are rare [50]. Moreover, note that the quantity of combinations of
touching characters contained in our dataset is in compliance with other similar datasets
constructed using the CCC database (e.g., in [I§] a dataset of 123 touching characters is
used).

The second one, called dataset B, contains images of sided machine printed characters
we have built resorting on a second MATLAB script. We have identified a list of font
types (namely Cambria, Candara, Georgia, Lucida Sans Regular, Times New Roman and
Verdana Bold) and sizes (namely 10, 20 and 25); for each type and size a MATLAB script
combines into images the lower characters from the alphabet to form two, three, and four
touching character patterns. Each image is accompanied by a textual descriptor, which
in this case indicates directly the characters represented. One sample of each category of
patterns is shown in Figure 2| For instance, the descriptor of the sample represented in
Figure [2a] states that the images represent the string “ax”. Also in this case, we preferred
to revise manually the dataset to remove missing, or unrealistic, touching patterns. At
the end, we kept the most promising 189 combinations (where 168 are composed by two
touching characters), in order to define a challenging dataset to test our approach.

3.2 Tests on Latin printed characters

In the following, we discuss the results of segmentation of touching characters from the
dataset B described in the previous section, accordingly to the fuzzy strategy described
in section Fuzzy sets and membership functions related to f, § and h are defined
accordingly to expert based choices. Moreover, their construction has been optimized by

using the Particle Swarm Optimization (PSO) algorithm [I6] in order to improve overall
performances of our fuzzy strategy. Similarly, the fuzzy rules (described in the following)
have been tuned using both heuristic criteria and the PSO algorithm.

Given a matrix A as defined in section for each column i of A, f(i), g(i) and h(i) are
evaluated and the degree p(i) is provided by the following inference scheme that includes
three inputs (fuzzification of f, g, h) and one output (cutting degree p). The column i
with the lowest value of p is considered as the cut column.

The function f is fuzzified by defining the following fuzzy sets:

e if f(i) < 0.35, then distance from the center of the pattern is Low;
e if 0.15 < f(i) < 0.75, then distance from the center of the pattern is Medium;
e if f(i) > 0.5, then distance from the center of the pattern is High.
For the function g, we define the following fuzzy sets:

e if g(i) < 0.4, then g(i) is Low;

e if 0.2 < g(i) < 0.5, then g(i) is Medium;

o if g(i) > 0.45, then g(i) is High.

The function h is fuzzified by means of the following fuzzy sets:

e if h(i) < 0.4, then h(i) is Low;

e if 0.1 < h(i) < 0.75, then h(i) is Medium;

e if h(i) > 0.5, then h(i) is High;

Figures 3] [4 and [5] show the membership functions of the previous fuzzy sets.
Finally, for the fuzzy output p we define the following fuzzy sets, whose membership
functions are depicted in Figure [6}

o if p(i) < 0.5, then p(i) is Low;
e if 0.4 < p(i) < 0.6, then p(i) is Medium;
o if p(i) > 0.5, then p(7) is High;

_ The inference system is based on the following rules, that combine the three inputs
f(@),g(3), (i) in order to produce the fuzzy output p(i), for each column ¢ of A:

1. if f(4) is Low and h(i) is Low, then p(i) is Low;

2. if f(4) is Low and g(i) is not High and h(i) is not Low, then p(i) is Low;
3. if f(i) is Low and g(i) is High and h(i) is Medium, then p(i) is Medium;
4. if f(i) is Medium and h(7) is not High, then p(i) is Medium;

5. if f

h|

i) is High and g(4) is not High and k(i) is Low, then p(i) is Medium;

i) is High and g(i) is Low and h(i) is Medium, then p(4) is Medium;

|

(4)
(4)
(4)
(4)
(i) is Medium and g(i) is Low and h(i) is High, then p(i) is Medium;
(1)
(4)
(i) is Low and g(i) is High and k(i) is High, then p(i) is High;

(4)

if
if
if
6. if
if
if
if

f
if (i) and g(i) and k(i) are not Low, then p(i) is High;

Low Medium High

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.5 1

Figure 3: Membership functions of the fuzzy sets related to f (for dataset B)

Medmm ngh

1
E.E w |
0

0.8 0.5 1

Figure 4: Membership functions of the fuzzy sets related to g (for dataset B)

Medmm ngh

1
05 W—
0

Figure 5: Membership functions of the fuzzy sets related to h (for dataset B)

Medlum H|gh

1
0.5 —w
0

Figure 6: Membership functions of the fuzzy sets related to p (for dataset B)

Figure 7: Touching characters “vu” for font Times New Roman and font size of 20

£(12) = 0.0909 g(12) = 0.2273 h(12) = 0.8889 p(12) = 0.1924

wa
J
TN TN

Figure 8: Application of the fuzzy inference system to the column 12 of the pattern “vu”

10. if f(i) and g(i) are High, then p(i) is High.

The touching characters in dataset B are correctly segmented in the 96.1% of the cases.
For evaluating the correctness of the segmentation, we used a pattern recognition algorithm
constructed by a neural network trained on the characters that compose the dataset B, in
fashion of what done by other works reviewed in [53], and obtaining comparable results.
We consider that touching character are correctly segmented when the pattern recognition
algorithm correctly recognizes the characters after the segmentation.

Simulations show that the fuzzy combination of the functions f,g, h improves the
correct identification of the cutting column with respect to their separated use.

To assess the performances of the fuzzy strategy compared to the usage on only the
functions g and h, a numerical example is reported below. Let us consider the touching
characters “vu” (font Times New Roman) depicted in Figure[7] Our fuzzy routine correctly
identifies the cutting column as the column 12 which is assigned the minimum value of p
among all the columns of the pattern. Specifically, we obtain p(12) = 0.1924. The fuzzy
procedure performance is shown in Figure [§ with application to the column 12. On the
other hand, both g and h separately locate the column 16 as the cutting column. Indeed,
we can observe that, e.g., h(16) = 8 that is greater than h(i), for ¢ = 1,...,21, ¢ # 16,
for example h(12) = 0. In Table [I| we report the values of f,g,h,p for each column of
the previous pattern (except for the first and the last column that are not surely cutting
columns).

3.3 Tests on Latin handwritten characters

In the following, we perform segmentation of touching characters from the dataset. Sim-
ilarly to what described in the previous section, fuzzy sets, membership functions, and

Table 1: Values of f, g, h, p for the columns of the touching characters “vu” (excluded
first and last column)

‘ Column H f ‘ g ‘ h ‘ P ‘
2 0.8182 | 0.4545 | 0.7778 | 0.7849
0.7273 | 0.6818 | 0.8333 | 0.8123
0.6364 | 0.8409 | 0.9167 | 0.7908
0.5455 | 0.8523 | 0.9111 | 0.8073
0.4545 | 0.8333 | 0.9333 | 0.8102
0.3636 | 0.6818 | 0.8148 | 0.7949
0.2727 | 0.6818 | 0.8889 | 0.8047
9 0.1818 | 0.6818 | 0.9259 | 0.8169
10 0.0909 | 0.5303 | 0.8889 | 0.8169
11 0 0.2273 1 0.7778 | 0.1984
12 0.0909 | 0.2273 | 0.8889 | 0.1924
13 0.1818 | 0.2273 | 0.1111 | 0.2078
14 0.2727 | 0.9343 | 0.9722 | 0.8047
15 0.3636 | 0.9205 1 0.7949
16 0.4545 0 0 0.5000
17 0.5455 0 0.7778 | 0.6305
18 0.6364 | 0.3788 | 0.9556 | 0.7302
19 0.7273 1 0.9091 | 0.9753 | 0.8123
20 0.8182 1 0.9877 | 0.8169

Q0| ~J| O| U | W

fuzzy rules have been defined accordingly to expert based choices and further optimized
leveraging the PSO algorithm. Patterns in the dataset A are greatly different from the
ones in dataset B. For instance, touching positions in dataset B are often near to the cen-
ter of the pattern. In the case of dataset A, cutting columns may occur more frequently
at high distance from the center. On the other hand, the peak to valley function seems
to have better performances in the case of the dataset A. Taking this into account, the
optimization conducted by using the PSO algorithm has been strategic as it allowed us to
highlight properties and connections among functions f, g, h which are not noticeable at a
glance. All these features are reflected in the following definition of fuzzy sets, membership
functions, and fuzzy rules.
The fuzzy sets related to f are defined by

e if f(i) < 0.45, then distance from the center of the pattern is Low;
e if 0.25 < f(i) < 0.55, then distance from the center of the pattern is Medium;
e if f(i) > 0.5, then distance from the center of the pattern is High.
For the function g, we define the following fuzzy sets:

e if g(7) < 0.2, then g(i) is Low;

e if 0.15 < g(i) < 0.55, then g(7) is Medium;

o if §(i) > 0.25, then g(i) is High.

The fuzzy sets related to h are defined by

e if h(i) < 0.3, then h(i) is Low;

e if 0.15 < h(i) < 0.65, then h(i) is Medium;

o if h(i) > 0.5, then h(i) is High;

Figures [0} [10} and [T show the membership functions of the previous fuzzy sets.
Finally, for the fuzzy output p we define the following fuzzy sets, whose membership
functions are depicted in Figure

10

Figure 10: Membership functions of the fuzzy sets related to g (for dataset A)

Low

Medium

High

=1
w

Low
W 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0a 0.9 1

Low

Medium

: High
0.5 —N
E 1 1 1 1 1 1 1 1 1
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 11: Membership functions of the fuzzy sets related to h (for dataset A)

Low Medium High

05

[=]
[==]
(=]
=]

Figure 12: Membership functions of the fuzzy sets related to p (for dataset A)

11

o if p(i) < 0.4, then p(i) is Low;
o if 0.2 < p(i) < 0.65, then p(i) is Medium;
e if p(i) > 0.4, then p(i) is High;

~ The ir{ference system is based on the following rules, that combine the three inputs
f(i),g(i),h(i) in order to produce the fuzzy output p(i), for each column i of the matrix
of pixels:

1. if

2. if f(i

9. if f(i) is High and g(¢) is High, then p(i) is High;
10. if f

The touching characters in dataset A are correctly segmented in the 81.1% of the cases.
Let us remember that in dataset A we have stored the textual descriptor indicating the
index of the proper cut column. We consider a correct segmentation when the routine
locates such a column. Let us note that CCC database provides a challenging set of
characters for segmentation purposes. The only reference where segmentation of touching
characters obtained from CCC database is performed similarly to this section is [I8] whose
authors obtained correct segmentation in the 76.2% of the cases. Let us observe that
these results are not directly comparable and are reported just to give a reference of the
goodness of our approach, since our dataset A and dataset used in [I§] are different, even
if they are obtained starting from the same CCC database. Also, authors in [18] took into
account percentage of inaccurate segmentation, evaluating when a cutting column is found
around the correct position; in this case they report a success percentage of 91.9%, without
giving further details. We replicated such an experiment by considering proper, even if
inaccurate, segmentation when the cut position identified is distant at most 5 columns
from the exact position. In this case, our success percentage is 88.9%. As stated in [49],
even though research in handwriting recognition has been an active research area for more
than a half century, the maturity of the segmentation techniques is still very low. Our
proposed approach focused to improve the segmentation accuracy, achieving comparable,
when not better, results.

Some numerical results showing the behavior of our method are reported below, where
segmentation is performed on touching characters “eh”, “rt”, “’xm”, and “ao” depicted
in Figures [Ta] [135] and respectively.

For the touching characters “eh”, our fuzzy routine identifies the correct cutting column
as the column 52, whereas function f assumes the lowest value in correspondence of the
column 56, function g in correspondence of columns 34, 35, 36, and 37, and function A in
correspondence of the column 15.

12

L Vom

(a) (b) (c)

Figure 13: Touching characters “rt”, “xm”, and “ao” extracted from dataset A.

(a) (b) (c)

Figure 14: Cutting positions located by p @), g @, and h .

(a) (b) (c)

Figure 15: Cutting positions located by p @), f @), and h .

For the touching characters “rt”, our fuzzy routine identifies the correct cutting col-
umn as the column 61, whereas function f, g, and h identify the cutting position in
correspondence of the columns 51, 61, and 70, respectively.

For the touching characters “xm”, our fuzzy routine identifies the correct cutting
column as the column 75, whereas function f, g, and h identify the cutting position
in correspondence of the columns 79, 72, and 137, respectively.

Finally, for the touching characters “ao”, our fuzzy routine identifies the correct cutting
column as the column 43, whereas function f assumes the lowest value in correspondence
of columns 48 and 49, function g in correspondence of the column 38, and function A in
correspondence of the column 43.

In Figures and we show the cutting columns found by p, g, and h related
to touching characters “eh” and cutting columns found by p, f, h related to touching
characters “rt”, respectively.

For the sake of readability, we do not report values of p, f, g, h for each column since
these patterns have usually more than 100 columns.

4 Conclusion

A fuzzy approach for segmentation of touching characters has been presented. The pro-
posed method combines three classical features of touching characters usually exploited

13

one at a time. Experiments have been conducted on two very different datasets composed
by Latin printed and handwritten characters, respectively. Fuzzy sets, membership func-
tions, and fuzzy rules, which characterize the fuzzy inference scheme, have been properly
constructed by means of expert—based choices, heuristic criteria, and the PSO algorithm
for each dataset. Numerical results are encouraging and show that the proposed method
has an optimal capability of correctly separating touching characters and may be ad-
justed for very different varieties of characters (not only for the types considered in our
experiments).

Our research activity have shown that even by using alone the functions f, g, h it is
sometime possible to correctly segmenting touching characters. In fact, some experiments
(not presented here) have shown that adding other inputs to the fuzzy routine does not
provide significant improvements. This is surely a perspective that should be further
investigated and motivated. Indeed, looking at perspective advancements, the following
issues could be addressed in future works:

e study of characterization of performance improvements when adding further features
as inputs in the fuzzy inference system;

e experiments on further datasets not involving Latin characters;

e experiments on segmentation of formulae, taking also into account possibility of
segmenting touching characters vertically, horizontally and diagonally;

e use of fuzzy models different form the Mamdani one (as, e.g., the Sugeno model).

Acknowledgments

This work has been developed in the framework of an agreement between IRIFOR/UICI
(Institute for Research, Education and Rehabilitation/Italian Union for the Blind and
Partially Sighted) and Turin University.

This research has been partly supported from the National Thematic Laboratory
“AsTech” of CINI.

Special thanks go to Dr. Tiziana Armano and Prof. Anna Capietto for their support
to this work.

References

[1] V. Alexandrov, Using critical points in contours for segmentation of touching char-
acters, Proc. of the 5th Int. Conference on Computer Systems and Technologies, 1-5,
New York, 2014.

[2] V.Bansal, R. M. K. Sinha, Segmentation of touching and fused Devanagari characters,
Pattern Recognition, Vol. 35, 875-893, 2002.

[3] T. A. Bayer, U. H. G. Krebel, Cut classification for segmentation, IEEE Proc. of 2th
International Conference on Document Analysis and Recognition (ICDAR), 565-568,
1993.

[4] V. Bansal, R. M. K. Sinha, Segmentation of touching and fused devanagari characters,
Pattern recognition, Vol. 35, No. 4, 875-893, 2002.

[5] F. Camastra, M. Spinetti, A. Vinciarelli, Offline cursive character challange: a new
benchmark for machine learning and pattern recognition algorithms, Proc. of the 18th
Int. Conference on Pattern Recognition, Vol. 2, 913-916, 2006.

14

[6]

[10]

[11]

[12]

[13]

[14]

[19]

[20]

R. G. Casey, E. Lecolinet, A survey of methods and strategies in character segmen-
tation, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 7,
690-706, 1996.

L. A. Fletcher, R. Kasturi, A robust algorithm for text string separation from mized
text-graphics images, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.
20, No. 6, 910-918, 2002.

V. Frinken, A. Fischer, R. Mammatha, H. Brunke, A novel word spotting method
based on recurrent neural networks, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 34, No. 2, 211-224, 2011.

U. Garain, B. B. Chaudhuri, Segmentation of touching symbols for OCR of printed
mathematical expressions: an approach based on multifactorial analysis, IEEE Proc.

of 8th International Conference on Document Analysis and Recognition (ICDAR),
Vol. 1, 177-181, 2005.

U. Garain, B. B. Chaudhuri, Segmentation of touching characters in printed Devna-
gari and Bangla scripts using fuzzy multifactorial analysis, IEEE Trans. on Systems,
Man and Cybernetics, Vol. 32, No. 4, 449-459, 2002.

S. He, M. Wiering, L. Schomaker, Junction detection in handwritten documents and
its application to writer identification, Pattern Recognition, Vol. 48, 40364048, 2015.

J. F. Hebert, M. Parizeau, N. Ghazzali, Learning to segment cursive words using
isolated characters, Proc. of Conference on Vision Interface, 33—40, 1999.

M. K. Jasim, A. H. Al-Saleh, A- Aijanaby, A fuzzy based feature extraction approach
for handwritten characters, International Journal of Computer Science, Vol. 10, No.
4, 208-215, 2013

M. C. Jung, Y. C. Shin, S. N. Srihari, Machine printed character segmentation method
using side profiles, Proceedings of IEEE International Conference onSystems, Man
and Cybernetics, New York, 863-867, 1999.

S. Kahan, On the recognition of printed characters of any font and size, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 2, 274-288, 1987.

J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE Int. Conference on
Neural Networks, Perth, Australia, Vol. IV, 1942-1948, 2012.

K. K. Kim, J. H. Kim, C. Y. Suen, Recognition of unconstrained handwritten numeral
strings by composite segmentation method In Pattern Recognition, 2000. Proceedings.
15th International Conference on, Vol. 2, 594-597. IEEE, 2000.

F. Kurniawan, M. S. M. Rahim, D. Daman, A. Rehman, D. Mohamad, S. M. Sham-
suddin, Region—based touched character segmentation in handwritten words, Inter-

national Journal of Innovative Computing, Information and Control, Vol. 7, No. 6,
3107-3120, 2011.

M. Kumar, M. K. Jindal, R. K. Sharma, Segmentation of isolatedtouching characters
in offline handwritten Grumukhi script recognition, Int. J. of Information Technology
and Computer Science, Vol. 2, 5863, 2014.

H. Lee, B. Verma, Binary segmentation algorithm for English cursive handwriting
recognition, Pattern Recognition, Vol. 45, 1306-1317, 2012.

15

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

J. Liang, I. T. Phillips, R. M. Haralick, An optimization methodology for document
structure extraction on Latin character documents, IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol. 23, No. 7, 719-734, 2002.

S. Liang, M. Shridhar, M. Ahmadi, Segmentation of touching characters in printed
document recognition, Pattern Recognition, Vol. 27, No. 6, 825-840, 1994.

G. Louloudis, B. Gatos, 1. Pratikakis, C. Halatsis, Text line and word segmentation
of handwritten documents, Pattern Recognition, Vol. 42, 3169-3183, 2009.

Y. Lu, Machine printed character segmentation — an overview, Pattern Recognition,
Vol. 28, No. 1, 67-80, 1995.

Y. Lu, On the segmentation of touching characters, IEEE Proc. of 2th International
Conference on Document Analysis and Recognition (ICDAR), 440-443, 1993.

Z.Lu, Z. Chi, W. C. Siu, P. Shi, A background—thinning—based approach for separating
and recognizing connected handwritten digit strings, Pattern Recognition, Vol. 32,
921-933, 1999.

Y. Lu, M. Shridhar, Character segmentation in handwritten words — an overview,
Pattern Recognition, Vol. 29, No. 1, 77-96, 1996.

E. H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic
controller, International Journal of Man—Machine Studies, Vol. 7, No. 1, 1-13, 1975.

R. Manmatha, J. L. Rothfeder, A scale space approach for automatically segmenting
words from historical handwritten documents IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 27, No. 8, 1212-1225, 2005.

T. Mondal, N. Ragot, J. Y. Ramel, U. Pal, Flexible sequence matching technique:
an effective learning—free approach for word spotting, Pattern Recognition, Vol. 60,
596612, 2016.

R. Nachar, E. Inaty, P. J. Bonnin, Y. Alayli, Breaking down Captcha using edge cor-
ners and fuzzy logic segmentation/recognition technique, Security and Communication
Networks, Vol. 8, 3995-4012, 2015.

S. Naz, H. Majeed, H. Irshad, Image segmentation using fuzzy clustering: a survey,
Proc. of 6th International Conference on Emerging Technologies (ICET), 181-186,
2010.

A. Nomura, K. Michishita, S. Uchida, M. Suzuki, Detection and segmentation of
touching characters in mathematical expressions, IEEE Proc. of 7th International
Conference on Document Analysis and Recognition (ICDAR), Vol. 1, 126-130, 2003.

N. Otsu, A treshold selection method from gray—level histograms, IEEE Trans. Sys.,
Man., Cyber., Vol. 9, No. 1, 62-66, 1979.

U. Pal, A. Belad, C. Choisy, Touching numeral segmentation using water reservoir
concept, Pattern Recognition Letters, Vol. 24, 261-272, 2003.

S. Pravesjit, A. Thammano, Touching character segmentation method of archaic
Lanna script, Chapter E-business and Telecommunication, Vol. 314, Series Com-
munications in Computer and Information Science, 400—408, 2012.

A. Rehman, F. Kurniawan, D. Mohamad, Off-line cursive handwriting segmentation:
a heuristic rule—based approach, Journal of Institute of Mathematics and Computer
Science, Vol. 19, No. 2, 135-140, 2008.

16

[38]

[47]

[48]

[49]

[51]

[52]

P. P. Roy, U. Pal, J. Llados, Proccedings of the IEEE SiRecognition of multi-oriented
touching characters in graphical documents, Proceedings of the IEEE Sixth Indian
Conference on Computer Vision, Graphics and Image Processing, 297-304, 2008.

P. P. Roy, U. Pal, J. Lladés, M. Delalandre, Multi-oriented touching text character
segmentation in graphical documents using dynamic programming, Pattern Recogni-
tion, Vol. 45, No. 5, 1972-1983, 2012.

P. P. Roy, U. Pal, J. Llados, M. Delandre, Multi-oriented touching character segmen-
tation in graphical documents using dynamic programming, Pattern Recognition, Vol.
45, 1972-1983, 2012.

T. Saba, G. Sulong, A. Rehman, A survey on methods and strategies on touched
characters segmentation, International Journal of Research and Reviews in Computer
Science, Vol. 2, No. 1, 103-114, 2010.

T. Saba, G. Sulong, A. Rehman, Non-linear segmentation of touched Roman char-
acters based on genetic algorithm, Int. J. on Computer Science and Engineering, Vol.
2, No. 6, 2167-2172, 2010.

J. Sadri, M. R. Yeganehzad, J. Saghi, A novel comprehensive database for offline
persian handwriting recognition, Pattern Recognition, Vol. 60, 378-393, 2016.

R. Sarkar, B. Sen, N. Das, S. Basu, Handwritten Devanagari script segmentation: a
non—linear fuzzy approach, Proc. of IEEE Conference on Al Tools and Engineering
(ICAITE), 2008.

N. Sharma, P. Shvakumara, U. Pal, M. Blumenstein, C. L. Tan, A new method for
character segmentation from multi—oriented video words, IEEE Proc. of 12th Interna-
tional Conference on Document Analysis and Recognition (ICDAR), Vol. 1, 413-417,
2013.

7. Shi, V. Govindaraju, Line separation for complex document images using fuzzy
runlength, IEEE Proc. of the 1st International Workshop on Document Image Anal-
ysis for Libraries, 306-312, 2004.

N. Stamatopoulos, B. Gatos, S. J. Perantonis, A method for combining complementary
techniques for document image segmentation, Pattern Recognition, Vol. 42, 3158
3168, 20009.

O. J. Tobias, R. Seara, Image segmentation by histogram thresholding using fuzzy sets,
IEEE Trans. on Image Processing, Vol. 11, No. 12, 2002.

H. Lee, B. Verma, Binary segmentation algorithm for english cursive handwriting
recognition, Pattern Recognition, Vol. 45, No. 4, 1306-1317, 2012.

X. Wei, S. Ma, Y. Jin, Segmentation of connected Chinese characters based on genetic
algorithm, IEEE Proc. of 8th International Conference on Document Analysis and
Recognition (ICDAR), Vol. 2, 645-649, 2005.

J. J. Weinman, E. L. Miller, A. R. Hanson, Text recognition using similarity and lex-
icon with sparse belief propagation, IEEE Pattern Analysis and Machine Intelligence,
Vol. 31, 1733-1746, 2009.

S. Zhao, Z. Chi, P. Shi, H. Yan, Two-stage segmentation of unconstrained handwritten
chinese characters, Pattern Recognition, Vol. 36, No. 1, 145-156, 2003.

17

[53] J. Zhou, A. Krzyzak, C. Y. Suen, Verification—a method of enhancing the recognizers
of isolated and touching handwritten numerals, Pattern Recognition, Vol. 35, No. 5,
1179-1189, 2002.

18

	Introduction
	Fuzzy strategy
	Experimental tests
	Construction of the datasets
	Tests on Latin printed characters
	Tests on Latin handwritten characters

	Conclusion

