
LICCI BINOMIAL EDGE IDEALS

VIVIANA ENE, GIANCARLO RINALDO, NAOKI TERAI

Abstract. We give a complete characterization of graphs whose binomial edge
ideal is licci. An important tool is a new general upper bound for the regularity
of binomial edge ideals.

Introduction

Binomial edge ideals associated to simple graphs have been intensively studied in
the last decade. Their algebraic and homological properties are intimately related
to the combinatorics of the underlying graph. A lot of effort has been dedicated
to study the Cohen-Macaulay property of these ideals. As in the case of classical
edge ideals, an exhaustive classification of graphs whose binomial edge ideals are
Cohen-Macaulay seems to be a hopeless task. There are successful attempts to
characterize graphs with specific properties which have Cohen-Macaulay binomial
edge ideals. For example, the Cohen-Macaulay property of binomial edge ideals is
known for block graphs which include the trees [3] and for bipartite graphs [1]. We
refer also to the papers [13, 21, 22, 23] for other classes of Cohen-Macaulay binomial
edge ideals.

Let G be a simple graph (that is, undirected, with no loops, and no multiple edges)
on the vertex set [n] := {1, 2, . . . , n} and S = K[x1, . . . , xn, y1, . . . yn] the polynomial
ring in 2n variables. The binomial edge ideal JG ⊂ S of G is generated by all the
binomials of the form fij = xiyj − xjyi where {i, j} is an edge of G. In other words,

JG is generated by the 2-minors of the generic matrix X =

(

x1 x2 . . . xn

y1 y2 . . . yn

)

which correspond to the edges of G.
In this paper, we study binomial edge ideals which are in the linkage class of

a complete intersection. We call such ideals licci, in brief. Besides the Cohen-
Macaulay property, they satisfy some extra conditions which make possible a full
characterization of graphs whose binomial edge ideals are licci. Linkage theory has a
rich history in commutative algebra and algebraic geometry. Peskine and Szpiro [20]
in 1974 reduced general linkage to questions on ideals over commutative algebras
and after then, a lot of work has been done to develop this theory in commutative
algebra and algebraic geometry. If I, J are proper ideals in a local regular ring R,
they are called directly linked and we write I ∼ J if there exists a regular sequence
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z = z1, . . . , zg in I ∩ J such that J = (z) : I and I = (z) : J. One says that I and J
belong to the same linkage class if there exists a sequence of direct links

I = I0 ∼ I1 ∼ · · · ∼ Im = J.

If J is a complete intersection ideal, then I is said to be licci. The ideals in the same
linkage class share several properties. For example, if I and J are linked, then I is
Cohen-Macaulay if and only if J is Cohen-Macaulay. In particular, it follows that a
licci ideal is Cohen-Macaulay.

The following natural question arises. May we give a full characterization of the
graphs G with the property that the associated binomial edge ideal is licci?

In this paper, we give a complete answer to this question. In [10] a necessary
condition for a Cohen-Macaulay homogeneous ideal in a polynomial ring to be licci
is given. In the case of binomial edge ideals, this condition implies that if (JG)m ⊂ Sm

(here m is the maximal graded ideal of the ring S) is licci, then reg(S/JG) ≥ n − 2.
This condition turns to be also sufficient for Cohen-Macaulay binomial edge ideals
as we are going to show in this paper.

The regularity of binomial edge ideals have been intensively studied in the last
years. In [16] it was proved that the regularity of S/JG is upper bounded by n − 1
and it was conjectured that this upper bound is attained if and only if G is a path
graph. This conjecture was later proved in [14]. Inspired by the paper [14], we
prove a new upper bound for reg(S/JG) which is stronger than n − 1 and it plays
an essential role in the characterization of the graphs G whose binomial edge ideal
is licci.

The structure of the paper is as follows. In Section 1, we recall the basic results
on licci and binomial edge ideals needed in the next sections. In Section 2, we prove
that if G is a connected graph, then reg(S/JG) ≤ n − dim ∆(G), where ∆(G) is the
clique complex of G (Theorem 2.1). We believe that this new general upper bound
for the regularity of binomial edge ideals will inspire new results on their resolution.
In brief, in Theorem 2.1, we prove that for every clique W ⊂ [n] of the connected
graph G, we have reg(S/JG) ≤ n−|W |+1. The proof is based on a double induction.
First we make induction on n − |W | and, secondly, on a combinatorial invariant of
G.

The characterization of graphs whose binomial edge ideal is licci is given in Sec-
tion 3. In Theorem 3.5 we show that, for a connected graph G on n vertices, the
following statements are equivalent:

(i) (JG)m ⊂ Sm is licci.
(ii) JG is Cohen-Macaulay and n − 2 ≤ reg(S/JG) ≤ n − 1.
(iii) G is a path graph or it is a triangle with possibly some paths attached to

some of its vertices.

The most technical part in the proof is to show that there is no indecomposable
graph G with n ≥ 4 vertices with reg(S/JG) = n − 2 and JG Cohen-Macaulay. In
order to make this part easier to understand, we proved some preparatory lemmas.
We can reformulate the above statement by saying that the only indecomposable
graphs G with JG a Cohen-Macaulay ideal and reg(S/JG) = n−2 are the path with
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one edge and the triangle. Next we combine this fact with Lemma 3.2 which shows
that for any decomposable graph G with reg(S/JG) = n − 2, one of the components
must be a path. In this way we derive the combinatorial characterization from
Theorem 3.5 (iii).

A straightforward consequence of Theorem 3.5 is Corollary 3.7 which says that
for a connected bipartite graph G, the ideal (JG)m ⊂ Sm is licci if and only if G is a
path graph. The case when G is a disconnected graph is treated in Proposition 3.8.

In the last section of the paper, we show that for chordal graphs, in the equivalent
statements of Theorem 3.5, we may replace the Cohen-Macaulay property with the
unmixedness of the ideal JG (Theorem 4.2). For the proof we use a theorem of Dirac
which characterizes the chordal graphs in terms of their clique complex.

1. Preliminaries

We recall some notions and fundamental results needed in the later sections.

1.1. Licci ideals. Let R be a regular local ring and I, J proper ideals of R. Then I
and J are called directly linked and we write I ∼ J if there exists a regular sequence
z = z1, . . . , zg in I ∩J such that J = (z) : I and I = (z) : J. One says that I is linked

to J or that I and J belong to the same linkage class if there exists a sequence of
direct links

I = I0 ∼ I1 ∼ · · · ∼ Im = J.

If J is a complete intersection ideal, that is, it is generated by a regular sequence,
then I is said to be in the linkage class of a complete intersection (licci in brief).

Several properties are preserved in the same linkage class. For example, if I is
linked to J , then R/I is Cohen-Macaulay if and only if R/J is Cohen-Macaulay
[20]. In particular, any licci ideal is Cohen-Macaulay. A necessary condition for a
homogeneous ideal in a polynomial ring to be licci is given in [10].

Theorem 1.1. [10, Corollary 5.13] Let I be a Cohen-Macaulay homogeneous ideal

in a standard graded polynomial ring S = K[x1, . . . , xn] with the graded maximal

ideal m. If Im ⊂ R = Sm is licci, then

(1) reg(S/I) ≥ (height I − 1)(indeg I − 1)

where indeg I is the initial degree of the ideal I, that is, indeg I = min{i : Ii 6= 0}.

Although, in general, inequality (1) is not a sufficient condition, if I is the edge
ideal of a graph, then Im ⊂ R = Sm is licci if and only if inequality (1) holds [15].
We will see a similar behavior in Section 3 for binomial edge ideals.

1.2. Graphs and binomial edge ideals. Let G be a simple graph on the vertex set
V (G) := [n] with the edge set E(G) and S = K[x1, . . . , xn, y1, . . . yn] the polynomial
ring in 2n variables over a field K. The binomial edge ideal of the graph G is
generated by the binomials fe := xiyj − xjyi with e = {i, j} ∈ E(G). In other

words, JG is generated by the 2-minors of the matrix X =

(

x1 x2 . . . xn

y1 y2 . . . yn

)

which correspond to the edges of G. For example, if G is the complete graph Kn
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on n vertices, then JG is the ideal I2(X) generated by all the 2-minors of X. Note
that JKn

has a linear resolution by [7, Theorem 7.27]. On the other hand, if G is
the path graph Pn on n vertices with edge set {{i, i + 1} : 1 ≤ i ≤ n − 1}, then
JG is the ideal of all adjacent maximal minors of X. By [22, Theorem 2.2], if G is a
connected graph, JG is a complete intersection, that is, it is generated by a regular
sequence if and only if G is a path graph.

The binomial edge ideals were introduced independently in the papers [6] and
[18]. In the last decade, these ideals have been studied by many authors. The
interested reader may find a thorough introduction to this topic in the monograph
[7]. Fundamental results regarding the minimal free resolutions of binomial edge
ideals are surveyed in [25].

In this paper, we need to recall the primary decomposition of binomial edge ideals
and some fundamental results on their regularity.

The minimal primary decomposition of a binomial edge ideal is strongly related
to the combinatorics of the underlying graph; see [6] or [7, Chapter 7]. Let S be a
(possibly empty) subset of [n] and let GS be the restriction of G to the vertex subset
[n] \ S. Let G1, . . . , Gc(S) be the connected components of this restriction and, for

every 1 ≤ i ≤ c(S), let G̃i be the complete graph on V (Gi). Then, the ideal

PS(G) = ({xi, yi : i ∈ S}) + JG̃1
+ · · · + JG̃c(S)

is a prime ideal in S which contains JG, and by [6, Lemma 3.1] we have

(2) height(PS(G)) = n − c(S) + |S|.

Theorem 1.2. [6] In the above notation, we have

JG =
⋂

S⊂[n]

PS(G).

In particular, JG is a radical ideal and its minimal prime ideals are among PS(G)
with S ⊂ [n]. The following proposition characterizes the sets S for which the prime
ideal PS(G) is minimal.

Proposition 1.3. [6, Corollary 3.9] PS(G) is a minimal prime ideal of JG if and

only if either S = ∅ or S is non-empty and for each i ∈ S, c(S \ {i}) < c(S).

In graph theoretical terminology, for a connected graph G, PS(G) is a minimal
prime ideal of JG if and only if S is empty or S is non-empty and is a cut set of G,
that is, i is a cut vertex of the restriction G([n]\S)∪{i} for every i ∈ S. We recall that
a vertex v of the graph H is a cut vertex of H if its removing breaks H into more
connected components than H has. Let C(G) be the set of all sets S ⊂ [n] such that
PS(G) is a minimal prime ideal of JG. Equality (2) implies then the following.

Corollary 1.4. Let G be a connected graph on the vertex set [n]. Then JG is

unmixed if and only if for every S ∈ C(G), c(S) = |S| + 1. In this case, we have

height JG = height P∅(G) = |V (G)| − 1.

Proof. The ideal JG is unmixed if and only if all its minimal prime ideals have the
same height. This is the case if and only if, for every S ∈ C(G), height(PS(G)) =
height(P∅(G)) = n − 1. By (2), this is equivalent to c(S) = |S| + 1. �
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A general upper bound for the regularity of binomial edge ideals was first given
in [16], namely, reg(S/JG) ≤ n − 1, and in the same paper it was conjectured that
reg(S/JG) = n − 1 if and only if G is a path graph. This conjecture was proved in
[14].

Theorem 1.5. [14] Let G be a graph on n vertices which is not a path. Then

reg(S/JG) ≤ n − 2.

For a chordal graph G, in [24, Theorem 3.5] it was shown that the number c(G)
of maximal cliques of G is an upper bound for reg(S/JG).

Recall that a subset C ⊂ [n] is a clique of G if the induced subgraph of G on the
vertex set C is a complete graph. The set of cliques of G forms a simplicial complex
∆(G) called the clique complex of G. Its facets are the maximal cliques of G. By a
famous theorem of Dirac ([2] or [5, Section 9.2]), a connected graph G is chordal if
and only if either G is a complete graph or the facets of ∆(G) can be ordered as
F1, . . . , Fc such that, for all i > 1, Fi is a leaf of the simplicial complex generated by
F1, . . . , Fi. A leaf of a simplicial complex ∆ is a facet of ∆ which has a branch, that
is, a facet G such that for all facets F ′ of ∆ with F ′ 6= F, we have F ′ ∩ F ⊆ G ∩ F.

2. A new upper bound for the regularity of binomial edge ideals

In this section, we give a new general upper bound for the regularity of S/JG.

Theorem 2.1. Let G be a connected graph on [n]. Then reg(S/JG) ≤ n−dim ∆(G).

When G is not connected, we derive the following upper bound for the regularity
of S/JG.

Corollary 2.2. Let G be a graph on n vertices with the connected components

G1, . . . , Gc. Then

reg(S/JG) ≤ n − (dim ∆(G1) + · · · + dim ∆(Gc)).

Let us make some short remarks before proving the above theorem. This new
bound will be an essential tool in proving Theorem 3.5. Moreover, it is a substantial
improvement of the upper bound given by Matsuda and Murai [16].

In what follows, we will need some notation and known results. If H is a graph
and e ∈ E(H), we denote by H \e the subgraph of H obtained by removing the edge
e from E(H) and if e1, . . . , em ∈ E(H), we write H \ {e1, . . . , em} for the subgraph
of H which is obtained by removing the edges e1, . . . , em. If e = {i, j} where i, j
are vertices of H and e 6∈ E(G), then H ∪ e is the graph with the same vertex
set as H and edge set E(H) ∪ {e}, and He is the graph with V (He) = V (H) and
E(He) = E(H) ∪ {{k, ℓ} : k, ℓ ∈ N(i) or k, ℓ ∈ N(j)} where N(i) denotes the set of
all neighbors of i in H.

The next proposition is a direct consequence of the behavior of the regularity with
respect to short exact sequences; see [19, Corollary 18.7].

Proposition 2.3. [14, Proposition 2.1] Let H be a graph on n vertices and JH ⊂ S
its binomial edge ideal. Let e = {i, j} be an edge of H and fe = xiyj − xjyi. Then,

the following inequalities hold:
5



(a) reg(JH) ≤ max{reg(JH\e), reg(JH\e : fe) + 1};
(b) reg(JH\e) ≤ max{reg(JH), reg(JH\e : fe) + 2};
(c) reg(JH\e : fe) + 2 ≤ max{reg(JH\e), reg(JH) + 1}.

In the settings of the above proposition, we have the following.

Theorem 2.4. [17, Theorem 3.7]

JH\e : fe = J(H\e)e
+ IH,e

where IH,e is the monomial ideal generated by the set

{gπ,t|π : i, i1, . . . , is, j is a path between i and j and 0 ≤ t ≤ s}

and

gπ,0 = xi1 · · · xis
, gπ,t = yi1 · · · yit

xit+1 · · · xis
for 1 ≤ t ≤ s.

Proof of Theorem 2.1. Clearly, the statement of the theorem follows if we show that
for any clique W ⊂ [n], we have

(3) reg(S/JG) ≤ n − |W | + 1 or, equivalently, reg(JG) ≤ n − |W | + 2.

We prove this by induction on n − |W |. If n = |W |, then G is the complete graph
on n vertices and, as we have mentioned in Section 1, we have reg(S/JG) = 1.

Let n − |W | > 0. We proceed with the inductive step. For the remaining part
of the proof, we need to define the following. For a vertex v ∈ V (G), we set

αG(v) :=
(

deg v

2

)

−|E(GN(v))|. Here, we used the usual notation GU for the restriction

of G to the subset U of V (G). Obviously, αG(v) = 0 if and only if v is a simplicial
vertex in G. Recall that a vertex of a graph is called simplicial if it belongs to exactly
one maximal clique. In addition, for a subset W ⊂ V (G), we define αG(W ) :=
min{αG(v) : v ∈ V (G) \ W}. Further on, we proceed by induction on αG(W ).
Step 1. Let αG(W ) = 0. Thus, there exists a simplicial vertex v ∈ V (G) \ W. Now
we consider two cases, namely deg v = 1 and deg v ≥ 2.
Case 1. Let deg(v) = 1 and e = {v, w} ∈ E(G). By Proposition 2.3 (a), we have

reg(JG) ≤ max{reg(JG\e), reg(JG\e : fe) + 1}.

Therefore, it is enough to show that

(4) reg(JG\e) ≤ n − |W | + 2

and

(5) reg(JG\e : fe) ≤ n − |W | + 1.

Since deg(v) = 1, the vertex v becomes isolated in the graph G \ e, thus reg(JG\e) =
reg(J(G\e)\v). So, for showing inequality (4), we simply apply the inductive hypo-
thesis to the graph (G\e)\v. For showing inequality (5), we first apply Theorem 2.4
and get

reg(JG\e : fe) = reg(J(G\e)e
),

since, IG,e = (0) because the only path connecting v and w in G is the edge {v, w}.
In the graph (G \ e)e, v is an isolated vertex, thus,

reg(J(G\e)e
) = reg(J((G\e)e)\v).
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Now we can apply again the inductive hypothesis for (G \ e)e \ v and obtain

reg(J(G\e)e\v) ≤ (n − 1) − |W | + 2 = n − |W | + 1.

Therefore, Case 1 is completed.
Case 2. Let v be a simplicial vertex of deg(v) = t ≥ 2. Before discussing this case,
we prove the following.
Claim. Assume that there exists v ∈ V (G)\W a simplicial vertex with deg(v) ≥ 2.
Let e be an edge of G which contains v. Then

reg(JG\e : fe) ≤ n − |W | + 1.

Proof of the Claim. Let deg(v) = t, let NG(v) = {v1, . . . , vt} be the set of neighbors
of v in G, and set ei = {v, vi} for 1 ≤ i ≤ t. We may assume that e = et and
let us consider the monomial ideal IG,e from Theorem 2.4. Since v is a simplicial
vertex, for any 1 ≤ i ≤ t − 1, vt, vi, v is a path in G, thus xvi

, yvi
∈ IG,e for all

1 ≤ i ≤ t − 1. Moreover, every path from v to vt must pass through some neighbor
vi with 1 ≤ i ≤ t − 1. This implies that

IG,e = (xvi
, yvi

: 1 ≤ i ≤ t − 1).

By Theorem 2.4, we get

JG\e : fe = J(G\e)e
+ (xvi

, yvi
: 1 ≤ i ≤ t − 1).

Set H := (G \ e)e. Then

JG\e : fe = JH[n]\{v1,...,vt−1}
+ (xvi

, yvi
: 1 ≤ i ≤ t − 1),

because the binomial generators of H = J(G\e)e
corresponding to the edges which

contain some vi with 1 ≤ i ≤ t−1 are contained in IG,e. Since v becomes an isolated
vertex in H[n]\{v1,...,vt−1}, we get

JG\e : fe = JH[n]\{v,v1,...,vt−1}
+ (xvi

, yvi
: 1 ≤ i ≤ t − 1),

which implies that
reg(JG\e : fe) = reg(JH[n]\{v,v1,...,vt−1}

).

The graph H[n]\{v,v1,...,vt−1} has n − t vertices and the clique W \ {v, v1, . . . , vt−1},
thus we may apply the inductive hypothesis because

(n − t) − |W \ {v, v1, . . . , vt−1}| ≤ n − t − |W | + t − 1 = n − |W | − 1.

Therefore, we get

reg(JG\e : fe) = reg(JH[n]\{v,v1,...,vt−1}
) ≤ (n−t)−|W\{v, v1, . . . , vt−1}|+2 ≤ n−|W |+1,

and the claim is proved. �

We now go back to the discussion of Case 2. Let NG(v) = {v1, . . . , vt} be the set
of the neighbors of v in G and ei = {v, vi} for 1 ≤ i ≤ t. By Proposition 2.3 and the
Claim, we have

reg(JG) ≤ max{reg(JG\e1), reg(JG\e1 : fe1) + 1} ≤ max{reg(JG\e1), n − |W | + 2}.

Applying the same argument to G \ e1, we obtain

reg(JG) ≤ max{reg(JG\{e1,e2}), n − |W | + 2}.
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After t − 1 steps, we get

reg(JG) ≤ max{reg(JG\{e1,e2,...,et−1}), n − |W | + 2}.

In the graph G \ {e1, e2, . . . , et−1}, we have deg(v) = 1. Consequently, by Case 1, we
derive that reg(JG) ≤ n − |W | + 2 which completes the proof of Step 1.

Now we proceed to prove the inductive step on αG(W ).
Step 2. Let αG(W ) > 0. This implies that there exists a non-simplicial vertex
v ∈ V (G) \ W such that αG(W ) = αG(v). Moreover, since v is not simplicial, there
exist v1, v2 ∈ NG(v) such that e = {v1, v2} 6∈ E(G). By Proposition 2.3 (b) where
H = G ∪ e, it follows

(6) reg(JG) ≤ max{reg(JG∪e), reg(JG : fe) + 2}.

By the definition of αG(v), we have αG∪e(v) = αG(v) − 1, therefore αG∪e(W ) ≤
αG(W ) − 1. By induction on αG(W ), we then derive that

reg(JG∪e) ≤ n − |W | + 2.

In order to complete this last step, by using (6), it is enough to show that

(7) reg(JG : fe) + 2 ≤ n − |W | + 2.

By Theorem 2.4, we have

(8) JG : fe = JGe
+ IG∪e,e.

Since v1, v, v2 is a path, the variables xv, yv belong to IG∪e,e. This implies that

IG∪e,e = (xv, yv) + I(G\v)∪e,e.

By replacing IG∪e,e in equality (8), we can rewrite it as

JG : fe = J(G\v)e
+ I(G\v)∪e,e + (xv, yv).

This implies that

reg(JG : fe) = reg(J(G\v)e
+ I(G\v)∪e,e).

On the other hand, by Theorem 2.4 applied for G \ v, we get

reg(J(G\v)e
+ I(G\v)∪e,e) = reg(JG\v : fe),

thus,

reg(JG : fe) = reg(JG\v : fe).

Next, by Proposition 2.3, (c) we have

reg(JG\v : fe) + 2 ≤ max{reg(JG\v), reg(J(G\v)∪e) + 1}.

By the inductive hypothesis on n − |W |, we have

reg(JG\v) ≤ (n − 1) − |W | + 2 = n − |W | + 1,

and

reg(J(G\v)∪e) + 1 ≤ (n − 1) − |W | + 3 = n − |W | + 2.

Consequently, we proved inequality (7) and this completes Step 2 and the whole
proof of the theorem. �
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3. Licci binomial edge ideals

As in the previous section, let G be a simple graph on the vertex set [n] and S =
K[x1, . . . , xn, y1, . . . , yn] the polynomial ring over a field K. Let m be the maximal
graded ideal of S and set R = Sm.

We recall the notion of decomposable graphs from [8].

Definition 3.1. A connected graph G is called decomposable if there exists two

subgraphs G1 and G2 of G such that G = G1 ∪ G2 with V (G1) ∩ V (G2) = {v} where

v is a simplicial vertex in G1 and G2. In this case we say that G is decomposable in

the vertex v. Otherwise, the graph G is called indecomposable.

As it was proved in [8], if G is decomposable, then reg(S/JG) = reg S1/JG1 +
reg S2/JG2 where Si = K[{xj, yj : j ∈ V (Gi)}] for i = 1, 2. Moreover, by [21,
Theorem 2.7], JG is Cohen-Macaulay if and only if JG1 and JG2 are Cohen-Macaulay.

Before proving the main theorem of this section, we state some lemmas which are
useful in what follows.

Lemma 3.2. Let G be a decomposable graph as G = G1 ∪ G2 with |V (Gi)| = ni for

i = 1, 2 and let Si = K[{xj, yj} : j ∈ V (Gi)] for i = 1, 2. If reg(S/JG) = n − 2, then

reg(S1/JG1) = n1 − 2 and G2 is a path or reg(S2/JG2) = n2 − 2 and G1 is a path.

Proof. We have

n − 2 = reg(S/JG) = reg(S1/JG1) + reg(S2/JG2) ≤ (n1 − 1) + (n2 − 1) = n − 1.

This implies that either reg(S1/JG1) = n1 − 2 and reg(S2/JG2) = n2 − 1, or
reg(S2/JG2) = n2 − 2 and reg(S1/JG1) = n1 − 1. By Theorem 1.5, in the first
case it follows that G2 is a path, while in the second case, G1 is a path graph. �

Lemma 3.3. Let G be a connected graph on the vertex set [n]. Suppose that G has

a cut vertex v with degG(v) ≥ 4. Then reg(S/JG) ≤ n − 3.

Proof. Since v is a cut vertex of G, by [18, Lemma 4.8], we get

JG = JGv
∩ (JG\v + (xv, yv))

where Gv is the graph on V (Gv) = V (G) with the edge set

E(Gv) = E(G) ∪ {{u, w} : u, w ∈ NG(v)}.

Consequently, we have the following exact sequence

0 →
S

JG

→
S

JGv

⊕ S

JG\v + (xv, yv)
→

S

JGv\v + (xv, yv)
→ 0,

since JGv
+ (JG\v + (xv, yv)) = JGv\v + (xv, yv). From this exact sequence we obtain

(9) reg
S

JG

≤ max{reg
S

JGv

, reg
S

JG\v + (xv, yv)
, reg

S

JGv\v + (xv, yv)
+ 1}.

By our assumption, v has at least 4 neighbors in G. Therefore, in Gv we have a
maximal clique with at least 5 vertices. By Theorem 2.1, we have reg(S/JGv

) ≤ n−4.
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The graph G \ v has n − 1 vertices and at least two connected components, say
G1, . . . , Gc with c ≥ 2, because v is a cut vertex of G. Let S ′ = K[{xj, yj} : j ∈
[n] \ {v}]. Then

S ′

JG\v

∼=
S1

JG1

⊗

K

· · ·
⊗

K

Sc

JGc

where Si = K[{xj, yj} : j ∈ V (Gi)] for i = 1 . . . , c. This implies that

reg(S/JG\v + (xv, yv)) = reg(S ′/JG\v) =
c
∑

i=1

reg(Si/JGi
)

≤
c
∑

i=1

(|V (Gi)| − 1) = (n − 1) − c ≤ n − 3.

If v has at least 4 neighbors in G, then the graph Gv \ v has a maximal clique with
at least 4 vertices, thus, by Theorem 2.1, we get

reg(S/JGv\v + (xv, yv))) = reg(S ′/JGv\v) ≤ (n − 1) − 3 = n − 4.

Therefore, from inequality (9), we get reg(S/JG) ≤ n − 3. �

Lemma 3.4. Let G be a connected indecomposable graph on n ≥ 4 vertices with the

following properties:

(a) JG is unmixed;

(b) G has a vertex v with exactly two neighbors u1, u2 and {u1, u2} ∈ E(G).

Then reg(S/JG) ≤ n − 3.

Proof. If n = 4, then there are only two graphs which satisfy the condition (b),
namely two triangles which share an edge and a triangle with an edge attached to
one of its vertices; see Figure 1.

• •

•

••

•

•

•

Figure 1. 4 vertices

The first graph does not satisfy the condition (a), while the second graph is
decomposable. Thus, we may consider n ≥ 5.

Let us consider an indecomposable graph G with n ≥ 5 vertices satisfying the
conditions (a) and (b). We claim that deg u1 ≥ 4 or deg u2 ≥ 4. Let us assume that
this is not the case, thus deg u1 ≤ 3 and deg u2 ≤ 3. Since G is indecomposable,
it follows that deg u1 = 3, deg u2 = 3, and there exists a path connecting u1 and
u2 different from the edge {u1, u2} and the path u1, v, u2. But, in this case, the set

10



S = {u1, u2} is a cut set of G with c(S) = |S|, which is impossible since JG is an
unmixed ideal.

Without loss of generality, we may assume that deg u2 ≥ 4.
We set e = {u1, v}. By Proposition 2.3 (a), we have

(10) reg
S

JG

≤ max

{

reg
S

JG\e

, reg
S

JG\e : fe

+ 1

}

.

In the graph G\e, u2 is a cut vertex with at least 4 neighbors. Thus, by Lemma 3.3,
it follows that

reg
S

JG\e

≤ n − 3.

Now we look at JG\e : fe. By applying Theorem 2.4, we obtain

JG\e : fe = J(G\e)e
+ (xu2 , yu2)

since all the paths connecting u1 and v pass trough u2. Therefore, since v becomes
an isolated vertex in the graph (G \ e)e \ u2, we get

reg
S

JG\e : fe

= reg
S

J(G\e)e
+ (xu2 , yu2)

= reg
S ′

J(G\e)e\{u2,v}

where S ′ = K[{xj, yj} : j ∈ [n] \ {u2, v}]. If the graph (G \ e)e \ {u2, v} is a path,
as deg u2 ≥ 4, the graph G looks like in Figure 2, that is, there are some edges
connecting u2 to some vertices of the the path (G \ e)e \ {u2, v} different from u1.
But then JG is not unmixed since S = {u1, u2} is a cut set of G with c(S) = |S|,
a contradiction. Therefore, the graph (G \ e)e \ {u2, v} is not a path. Thus, by
Theorem 1.5, we obtain

reg
S

JG\e : fe

= reg
S ′

J(G\e)e\{u2,v}
≤ (n − 2) − 2 = n − 4,

which implies that

reg
S

JG\e : fe

+ 1 ≤ n − 3.

and the proof of the lemma is completed.

•

•

•

•

•

•

v

u2u1

e

Figure 2. The graph G when (G \ e)e \ {u2, v} is a path

�
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We can now state the main result of this section.

Theorem 3.5. Let G be a connected graph on the vertex set [n]. Then the following

statements are equivalent:

(i) (JG)m ⊂ R is licci.

(ii) JG is Cohen-Macaulay and n − 2 ≤ reg(S/JG) ≤ n − 1.
(iii) G is a path graph or it is isomorphic to one of the graphs depicted in Figure 3

where r, s, t are non-negative integers. In other words, G is a triangle with

possibly some paths connected to some of its vertices.

• • • • • • • •

•

•

•

•

e1 · · · ere′
1· · ·e′

s

e′′
1

...

e′′
t

Figure 3. Licci graphs

Proof. (i) ⇒ (ii). Let (JG)m ⊂ R be licci. By Theorem 1.1, it follows that
reg(S/JG) ≥ height(JG) − 1. Since JG is Cohen-Macaulay, thus unmixed, we have
height(JG) = height P∅(G) = n − 1, by (2). Therefore, if G is connected and (JG)m
is licci, then JG is Cohen-Macaulay and reg(S/JG) ≥ n − 2. But we know from [16]
that reg(S/JG) ≤ n − 1.

Let us prove that (ii) ⇒ (iii). Since, by Theorem 1.5, we have reg(S/JG) = n − 1
if and only if G is a path graph, it remains to consider reg(S/JG) = n − 2. By using
Lemma 3.2, we may reduce the problem to considering only the case when G is
indecomposable. Therefore, in order to get (iii), by taking into account Lemma 3.2,
it is enough to show that there is no indecomposable graph G with |V (G)| ≥ 4 such
that JG is Cohen-Macaulay and reg(S/JG) = n − 2. There is no such graph among
those with 4 vertices. Thus, we may consider n = |V (G)| ≥ 5.

Let us assume that such a graph does exist. By [1, Remark 5.3], since JG is Cohen-
Macaulay, the graph G must have a cut vertex, say v. Since G is indecomposable,
v has at least 3 neighbors in G. If v has at least 4 neighbors, by Lemma 3.3, it
follows that reg(S/JG) ≤ n − 3, a contradiction. Thus, v has exactly 3 neighbors,
say w, u1, u2. Since G is indecomposable and v is a cut vertex in G, it follows that
none of the edges {u1, u2}, {u1, w}, {u2, w} belongs to E(G). On the other hand, as
JG is unmixed, the graph G \ v has exactly two connected components, say G1 and
G2. We may assume that u1, u2 are vertices in G1 and w is a vertex in G2. Let

12



e = {v, w}. By Proposition 2.3 (a), we have

(11) n − 2 = reg
S

JG

≤ max

{

reg
S

JG\e

, reg
S

JG\e : fe

+ 1

}

.

We observe that G \ e has two connected components, namely G′ with V (G′) =
V (G1) ∪ {v} and E(G′) = E(G1) ∪ {{u1, v}, {u2, v}} and G′′ = G2. Obviously, G′ is
not a path graph since G1 is connected, thus there exists at least one path connecting
u1 and u2 in G1 which does not contain v and is not the edge {u1, u2}. On the other
hand, if G2 does not consist only of the isolated vertex w, then G2 cannot be a
path since the graph G is indecomposable. Let S ′ = K[{xj, yj} : j ∈ V (G′)] and
S ′′ = K[{xj, yj} : j ∈ V (G′′)]. Then, by Theorem 1.5, we have

reg
S ′

JG′

+ reg
S ′′

JG′′

≤ (|V (G′)| − 2) + (|V (G′′)| − 2) = n − 4.

Therefore,

reg
S

JG\e

= reg
S ′

JG′

+ reg
S ′′

JG′′

< n − 3.

If G2 consist only of the isolated vertex w, then we get

reg
S

JG\e

= reg
S ′

JG′

≤ |V (G′)| − 2 = n − 3.

Thus, in any case we have

(12) reg
S

JG\e

≤ n − 3.

Now we look at the term reg(S/JG\e : fe) of inequality (11). By Theorem 2.4, it
follows that JG\e : fe = J(G\e)e

since there is no path in G connecting v and w
except the edge e = {v, w}. This is due to the fact that when we remove the cut
vertex v from G, we get two connected components by the unmixedness of JG. The
graph (G \ e)e consists as well of two connected components, say H1 which contains
v and H2 which contains w. If H2 contains some other vertices together with w,
then H2 cannot be a path since G is indecomposable. The component H1 is not
a path since it contains at least the triangle with vertices u1, u2, v. Therefore, if
Si = K[{xj, yj} : j ∈ V (Hi)] for i = 1, 2, by Theorem 1.5, we obtain

reg
S

JG\e : fe

= reg
S

J(G\e)e

= reg
S1

JH1

+reg
S2

JH2

≤ (|V (H1)|−2)+(|V (H2)|−2) = n−4.

This inequality and (12) contradicts inequality (11).
It remains to analyze the case when H2 consists of the isolated vertex w. In this

case we have

(13) reg
S

J(G\e)e

= reg
S1

JH1

.

We claim that H1 satisfies the conditions of Lemma 3.4. Clearly, H1 satisfies the
condition (b). It remains to prove that JH1 is an unmixed ideal because if H1 is
decomposable in u1 or u2, then G is decomposable, and this is impossible by our
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hypotheses on G. We first observe that any non-empty cut set of H1 does not
contain the vertex v which is a simplicial vertex in H1. Let us assume that there
exists a non-empty cut set S ⊂ V (H1) such that cH1(S) 6= |S| + 1. The set S is
obviously a cut set for the graph G as well. Moreover, if H1, . . . , HcH1

(S) are the
connected components of the restriction of H1 to the vertex set V (H1) \ S, with
v ∈ V (H1), then the connected components of the restriction of G to V (G) \ S are
H1 ∪ {v, w}, H2, . . . , HcH1

(S). Hence cG(S) = cH1(S) 6= |S| + 1, a contradiction to
the unmixedness of JG. Since H1 is a graph on n − 1 vertices which satisfies the
conditions of Lemma 3.4, we get reg(S1/JH1) ≤ (n − 1) − 3 = n − 4. Thus, we have
proved that

reg
S

JG\e : fe

= reg
S

J(G\e)e

= reg
S1

JH1

≤ n − 4.

This inequality together with (12) contradicts inequality (11) and the proof of (ii)
⇒ (iii) is completed.

Finally, we prove the implication (iii) ⇒ (i).
As it was observed in the proof of [8, Proposition 3], if G = G1 ∪ G2 is a decom-

posable graph, then we have Tori(S/JG1 , S/JG2) = 0 for all i > 0. In particular, it
follows that JG1 and JG2 are transversal ideals in the sense of [11, Section 2]. Now,
let G1 be a triangle with the vertices v1, v2, v3. Then JG1 is a Cohen-Macaulay ideal
of height 2, thus it is licci by [20]. If we attach a path G2 to G1 in one of its vertices,
say v1, the resulting graph G is decomposable in v1 and JG2 is a complete inter-
section ideal. According to [11, Theorem 2.6] or [12, Theorem 4.4], it follows that
(JG)m is a licci ideal. We repeat this argument by attaching a path in the vertex v2

to G and, next another path in the vertex v3. In each step, we get a licci ideal. �

Remark 3.6. One may prove the implication (iii)⇒(i) by finding an explicit link
of JG to a complete intersection for a graph G as in Figure 3. However the proof
involves repetitive and technical calculations which we do not include here. Instead,
we indicate the main ingredient to derive the constructive proof. Set

ei = {vi, vi+1}, fi = fei
= xiyi+1 − yixi+1 (i = 1, 2, . . . , r),

e′
i = {v′

i, v′
i+1}, f ′

i = fe′
i

= x′
iy

′
i+1 − y′

ix
′
i+1 (i = 1, 2, . . . , s),

e′′
i = {v′′

i , v′′
i+1}, f ′′

i = fe′′
i

= x′′
i y′′

i+1 − y′′
i x′′

i+1 (i = 1, 2, . . . , t),

where

xi = xvi
, yi = yvi

(i = 1, 2, . . . , r + 1),

x′
i = xv′

i
, y′

i = yv′
i

(i = 1, 2, . . . , s + 1),

x′′
i = xv′′

i
, y′′

i = yv′′
i

(i = 1, 2, . . . , t + 1).

We also set

f = f{v1,v′
1} = x1y

′
1 − y1x

′
1,

f ′ = f{v′
1,v′′

1 } = x′
1y

′′
1 − y′

1x
′′
1,

f ′′ = f{v′′
1 ,v1} = x′′

1y1 − y′′
1x1.
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We put

S = K[x1, . . . , xr+1, y1, . . . , yr+1, x′
1, . . . , x′

s+1, y′
1, . . . , y′

s+1, x′′
1, . . . , x′′

t+1, y′′
1 , . . . , y′′

t+1].

Then JG = (f, f ′, f ′′, f1, . . . , fr, f ′
1, . . . , f ′

s, f ′′
1 , . . . , f ′′

t ).
Set

I := (f + f ′, f ′′, f1, . . . , fr, f ′
1, . . . , f ′

s, f ′′
1 , . . . , f ′′

t ),

and

L := (x1 − x′′
1, y1 − y′′

1 , f1, . . . , fr, f ′
1, . . . , f ′

s, f ′′
1 , . . . , f ′′

t ).

Then one can show that I, L are complete intersections with height r + s + t + 2,
and, moreover, the equality L = I : JG holds.

An immediate consequence of Theorem 3.5 is the following.

Corollary 3.7. Let G be a connected bipartite graph. Then the ideal (JG)m ⊂
R = Sm is licci if and only if G is a path graph, or equivalently, JG is a complete

intersection.

We now turn to the disconnected graphs.

Proposition 3.8. Let G be a graph with the connected components G1, . . . , Gc where

c ≥ 2. Then (JG)m ⊂ R = Sm is licci if and only if either all the connected compo-

nents of G are paths or one component of G is isomorphic to a graph of Figure 3

and all the other components are paths.

Proof. We first remark that, by [11, Theorem 2.6] or [12, Theorem 4.4], if the com-
ponents of G satisfy the conditions of the proposition, then (JG)m is licci since the
ideals JGi

are pairwise transversal by [4, Lemma 3.1].
For the converse, let (JG)m be a licci ideal. Then JG is Cohen-Macaulay which

implies that all the ideals JGi
are Cohen-Macaulay and

reg(S/JG) ≥ height(JG) − 1 = height(JG1) + · · · + height(JGc
) − 1 = n − c − 1.

On the other hand, we have

reg(S/JG) =
c
∑

i=1

reg(Si/JGi
) ≤

c
∑

i=1

(|V (Gi)| − 1) = n − c.

Here Si = K[{xj, yj} : j ∈ V (Gi)] for 1 ≤ i ≤ c. The above inequalities imply
that reg(S/JG) = n − c or reg(S/JG) = n − c − 1. In the first case, it follows that
reg(Si/JGi

) = |V (Gi)| − 1 for all i, which implies that all the connected components
of G are path graphs.

Let reg(S/JG) = n − c − 1. This means that for one of the connected components,
say G1, we have reg(S1/JG1) = |V (G1)| − 2 and all the other components of G are
path graphs. Then, by Theorem 3.5, it follows that G1 is isomorphic to one of the
graphs displayed in Figure 3. �
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4. Licci binomial edge ideals of chordal graphs

In this section we show that if we restrict to chordal graphs, we may relax the
condition (ii) in Theorem 3.5, namely, we may ask that JG is only unmixed instead
of being Cohen-Macaulay. Before proving the main theorem of this section, we need
a preparatory result. We first recall that for a graph G, c(G) denotes the number
of maximal cliques of G, that is, the number of facets of the clique complex ∆(G).

Lemma 4.1. Let G be a connected chordal graph with n vertices. Then c(G) = n−2
if and only if the following conditions hold:

(i) the maximal cliques of G have at most 3 vertices;

(ii) G has at least one maximal clique with 3 vertices;

(iii) G has exactly one maximal clique with 3 vertices or, for any two triangles

F1, F2 of ∆(G), there is a sequence of triangles F1 = Fi1 , . . . , Fir
= F2 such

that for any 1 ≤ j ≤ r − 1, Fij
and Fij+1

share an edge.

Proof. Let c(G) = n − 2. Then (i) follows by [24, Proposition 3.1]. If G has no
maximal clique with 3 vertices, then G is a tree, thus c(G) = n − 1, contradiction.
Therefore, condition (ii) holds.

We prove (iii) by induction on n. Since G is chordal, by Dirac’s theorem, we may
order the facets of ∆(G) as F1, . . . , Fc where c = c(G) such that Fi is a leaf of
〈F1, . . . , Fi〉 for all i. If Fc is an edge, say Fc = {v, w} with deg w = 1, then the
graph G \ w has n − 1 vertices and n − 3 cliques, thus, by induction, it satisfies (iii),
and, consequently, G satisfies (iii) as well.

Let Fc be a triangle with the vertices u, v, w and assume that Fj with j < c is
a branch of Fc. If Fj ∩ Fc consists of just one vertex, say Fj ∩ Fc = {v}, then the
subgraph G′ = G\{u, w} has n−2 vertices and n−3 maximal cliques, therefore G′ is
a tree. This implies that ∆(G) has exactly one facet with 3 elements, and condition
(iii) is automatically fulfilled. Let us now assume that the branch Fj intersects Fc

in the edge {v, w}. We consider the graph G \ u. This is a graph on n − 1 vertices
with n − 3 maximal cliques, thus, by the inductive hypothesis, it satisfies (iii). Let
us choose two triangles F, F ′ in ∆(G). If they are facets in ∆(G \ u), then they
satisfy (iii). Otherwise, we may assume that F ′ = Fc. But then, by the inductive
hypothesis on G \ u there is a sequence of triangles F = Fi1 , . . . , Fir

= Fj such
that for any 1 ≤ s ≤ r − 1, Fis

and Fis+1 share an edge. Then the sequence
F = Fi1 , . . . , Fir

= Fj, Fir+1 = Fc satisfies the required condition for G.
For the converse, let us assume that G is a connected chordal graph with n

vertices. which satisfies the three conditions of the statement. By condition (ii) and
[24, Proposition 3.1], it follows that c(G) ≤ n − 2.

Let us assume that there exists a connected chordal graph G satisfying conditions
(i)–(iii) and such that c(G) < n − 2 and choose one with the minimal number of
vertices. We consider again the leaf order F1, . . . , Fc on the facets of ∆(G) and
take Fj with j < c a branch of Fc. If Fc is an edge, Fc = {v, w} with deg w = 1,
then the graph G \ w has n − 1 vertices and satisfies conditions (i)–(iii), thus, by
our assumption on G we have c(G \ w) = n − 3, which implies that c(G) = n − 2,
contradiction.
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If Fc is a triangle, Fc = {u, v, w}, and Fj intersects Fc in just one vertex, say v,
then we have the following cases.

Case 1. The facet Fc is the only triangle in ∆(G). Then, the subgraph G\{u, w}
is a tree on n − 2 vertices, thus ∆(G \ {u, w}) has n − 3 maximal cliques, which
implies that c(G) = n − 2, contradiction.

Case 2. There exists a triangle F ∈ ∆(G \ {u, w}). Then, as G satisfies condition
(iii), there exists a triangle F ′ 6= Fc which intersects Fc along an edge. But this is
impossible since the branch Fj intersects Fc in one vertex.

Finally, we have to consider that Fj shares an edge with Fc, say Fj ∩ Fj = {v, w}.
Since Fj is a branch of Fc, there is no other facet F of ∆(G) with F ∩ Fc = {u, w}
or F ∩ Fc = {u, v}. Then the graph G \ u obviously satisfies conditions (i)–(iii) and
has n − 1 vertices. By the choice of G, we have c(G \ u) = n − 3, thus c(G) = n − 2,
contradiction. �

Theorem 4.2. Let G be a connected chordal graph on the vertex set [n]. Then the

following statements are equivalent:

(i) (JG)m ⊂ R is licci.

(ii) JG is Cohen-Macaulay and n − 2 ≤ reg(S/JG) ≤ n − 1.
(iii) JG is unmixed and n − 2 ≤ reg(S/JG) ≤ n − 1.
(iv) G is a path graph or it is isomorphic to a graph depicted in Figure 3.

Proof. We have to prove only the implication (iii) ⇒ (iv). Let JG be unmixed and
let reg(S/JG) = n−1. Then, by Theorem 1.5, G is a path graph. Let us now discuss
the case when reg(S/JG) = n − 2. By [24, Theorem 3.5], we have reg(S/JG) ≤ c(G).
Thus, we get c(G) ≥ n−2. If c(G) = n−1, then G is a tree, but since JG is unmixed,
by [3, Corollary 1.2], it follows that G is a path graph.

As in the proof of Theorem 3.5, it is enough to show that there is no indecompos-
able chordal graph with n ≥ 4 vertices which satisfies the conditions JG unmixed
and reg(S/JG) = c(G) = n − 2. Let us assume that such a graph G does exists.

By Theorem 2.1, it follows that the maximal cliques of G have at most three
vertices. As G is a chordal graph, by Dirac’s theorem, it follows that the facets of
the clique complex ∆(G) of G have a leaf order, say F1, . . . , Fn−2. In particular, this
means that Fn−2 has a branch. Let Fj with j ≤ n − 3 be a branch of Fn−2.

Case 1. Assume that the intersection Fj ∩ Fn−2 consists of only one vertex of G,
say Fj ∩ Fn−2 = {v}. If Fn−2 has only the branch Fj, then G is decomposable which
contradicts our assumption on G. Thus Fn−2 has q ≥ 2 branches, say Fj1 , . . . , Fjq

.
Then, as JG is unmixed, it follows that the induced subgraph of G \ v on the vertex
set

⋃q
i=1 Fji

\v is connected. This implies that all the facets Fj1 , . . . , Fjq
are triangles.

If Fn−2 is also a triangle, we get a contradiction to Lemma 4.1. Thus, Fn−2 must be
an edge and then v is a cut vertex of G with degG(v) ≥ 4. By Lemma 3.3, it follows
that reg(S/JG) ≤ n − 3, a contradiction.
Case 2. Assume that the intersection Fj ∩ Fn−2 consists of two vertices of G, say
Fj ∩ Fn−2 = {v, w}. In this case, Fn−2 is a triangle with the vertices u, v, w. Since
JG is unmixed, there must be other facets of ∆(G) whose intersection with Fn−2 is
contained in {v, w} or equal to {v, w}. Let Fj1 , . . . , Fjq

with q ≥ 2 and jq = j be
the facets of ∆(G) with Fjs

∩ Fn−2 ⊆ {v, w} for 1 ≤ s ≤ q. As v is not a simplicial
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vertex in G, we may apply again [18, Lemma 4.8] and get

JG = JGv
∩ (JG\v + (xv, yv)).

We use the following exact sequence of S–modules:

0 →
S

JG

→
S

JGv

⊕ S

JG\v + (xv, yv)
→

S

JGv\v + (xv, yv)
→ 0.

to derive that

(14) reg
S

JG

≤ max{reg
S

JGv

, reg
S

JG\v + (xv, yv)
, reg

S

JGv\v + (xv, yv)
+ 1}.

By [24, Lemma 3.4], it follows that c(Gv) ≤ c(G) − q, hence, by our assumption
on q, we get c(Gv) ≤ n − 4. On the other hand, by [24, Lemma 3.3], we have
c(Gv \ v) ≤ c(Gv), thus c(Gv \ v) ≤ n − 4. In particular, it follows that

(15) reg(S/JGv
) ≤ n − 4 and reg(S/JGv\v + (xv, yv)) ≤ n − 4.

Therefore, by (14), we must have

reg
S

JG\v + (xv, yv)
= reg

S ′

JG\v

≥ n − 2.

where S ′ = K[{xj, yj} : j ∈ [n] \ {v}]. As G \ v has n − 1 vertices, it follows by
Theorem 1.5 that G \ v is a path graph. But in this case, S = {v, w} is a cut
set of G because G is indecomposable. In addition, the restriction of G to the
vertex set [n] \ {v, w} has two connected components, which is a contradiction to
the unmixedness of JG. �
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