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Abstract—The in situ detection, recognition and tracking of
marine animal species is a very important step of field research
in the domains of, among others, biology and ecology. Still,
the direct observation of marine wildlife through equipment
operating in the visible light spectrum is often impaired by
the challenging conditions offered by ocean waters, where light
can be subject to scattering and attenuation phenomena due to
the water turbidity. As the use of powerful lighting may prove
ineffective and even induce behavioral changes in marine animals,
the design of minimally or non-invasive observation instruments
becomes particularly important.

In this paper, we consider the serial Light Detection And
Ranging (LiDAR) system under development at the Florida
Atlantic University (FAU). This LiDAR design is based on
inexpensive components and on low average power red lasers
which are subject to significant attenuation in water, but are
both eye-safe and invisible to marine life. Considering the
challenge of detecting and evaluating the presence of marine
wildlife, we present a full processing pipeline for LiDAR data,
that includes water turbidity detection, non-gated backscattering
compensation, contrast enhancement, and the construction of a
three-dimensional model of the detected target. The pipeline is
applied to a number of tank test data, under different turbidity
conditions.

I. INTRODUCTION AND RELATED WORK

Detecting and tracking marine wildlife in its natural habitat
is of interest for many fields of science, including behav-
ioral ecology and sociobiology, and can help explain their
social dynamics as well as measure the impact of human
interference [1]. A specific, important application is the pre-
vention of harmful interactions with various types of human-
made underwater equipment, such as marine hydro-kinetic
devices [2]. However due to the challenging characteristics of
the underwater environment, such as insufficient illumination,
attenuation and scattering, it may be arduous to observe marine
wildlife using conventional surface approaches, such as optical
surveillance in the visible light spectrum. Extra lighting does
not solve the issue, as it creates flares, and may also induce
behavioral changes in the animals (e.g., many species are
attracted by visible light sources [3]).

Available active acoustics technologies for fisheries mon-
itoring can be categorized as either acoustic cameras or
sounders. Active acoustic cameras, such as Dual Frequency
Identification Sonar (DIDSON) use an acoustic lens tech-
nology which forms images with greater detail than found
in conventional sonars. While reasonably good estimates of
feature dimensions can be extracted from DIDSON images,
that level of detail is only available at relatively short ranges

and with an angular field of view where image resolution is
highest. Consequently, data bandwidth and storage become
problematic. 2D imaging sonars (e.g., Teledyne BlueView
products), likewise provide a video-rate output, but with a
limited angular field of view and range. Acoustic profilers such
as echosounders, on the other hand, are a standard instrument
of fisheries hydro-acoustics. These instruments can reach a
long distance (hundreds of meters) but lack the resolution and
evaluation intuitiveness of traditional optical imagery [4].

Therefore, the design of non-invasive systems for marine
life observation remains an interesting research problem. A
possible solution is provided by marine Light Detection And
Ranging (LiDARs): using a portion of the light spectrum
which is invisible to most underwater species, LiDARs can
image via serial laser scanning based on the received intensity
of reflected light, with an additional layer of time of flight
(ToF) data, which reflects the distance to the object (depth
map). Therefore such systems may work without additional
light sources, and due to the low average power of the emitted
light, they do not affect underwater fauna [5]. In contrast to
conventional optical systems, LiDARs can count on the depth
map to improve the image quality, to perform accurate ranging
and scaling, as well as to separate objects from one another and
from the background. Beyond the single pulse per pixel type of
LiDAR system that is described in this paper, modulated-pulse
versions of the serial-scanning underwater LiDAR imager have
been tank-tested to study the improved ranging and intensity
imaging performance in turbid environments by using radar
waveforms and decoding techniques [6], [7].

The low average power system thatis being developed at
the Florida Atlantic University (FAU) Harbor Branch Oceano-
graphic institution (HBOI) is called Unobtrusive Multistatic
Serial LiDAR imager (UMSLI). The configuration of UMSLI
described in this paper consists of one laser transmitter, and
one to three receivers. It has two working modes: the detection
mode, when the laser does a sparse spatial scan, and the dense
mode, when the scan area is reduced to the point of detection,
so that the LiDAR can produce a detailed image of the scanned
underwater object. The data collected by this system is further
used for fish detection, localization and identification that has
to be performed on the go. For the complete description of this
project, we refer the interested reader to [8]. This particular
LiDAR system uses relatively inexpensive components, and its
overall price is foreseen to be about one order of magnitude
lower than other systems available on the market. It uses



low average power red laser diodes with a wavelength of
638 nm, which suffer from higher attenuation in water, but
are unobtrusive for fish vision. Together with a relatively low
sampling frequency, these and other aspects of UMSLI require
a targeted approach to the processing of the obtained data.

The UMSLI prototype was developed and validated at the
optical test facility at HBOI. The serial scanning technique on
which the LiDAR design hinges has been employed in near-
monostatic [9], [10] and bi-static [11] configurations. Serial
scanning can be instrumental to help detect individuals within
a cluster of animals better than by using a regular camera
system. Furthermore, it can enable the formation of images
even when the line-of sight between the target and the detector
is occluded [12].

In the following sections we provide further details about
the UMSLI design and experimental setup (Section II), we
describe our data processing pipeline (Section III), and provide
concluding remarks in Section IV.

II. SYSTEM DESCRIPTION AND EXPERIMENT SETUP

A. Description of the LiDAR system

The integrated system adopts a multi-tiered design that
consists of the sensing hardware, of image enhancement,
detection, and classification, as well as of data archiving.

The UMSLI sensing front end consists of six receivers
(Rx), six transmitters (Tx), and a digital signal processor [8].
The transmitters scan a water volume in a bi-directional
raster pattern. The scan field can be configured to be either
sparse (with fewer pulses over a wider angle, used mainly for
detection purposes), or dense (concentrating a higher pulse
density through a narrower range of angles, typically after
the detection of an object has been confirmed). On the one
hand, the depth of field for each channel depends on the
depth of the overlapping region between the laser beam and
the receiver’s field of view. On the other hand, the image
resolution depends on the diameter of the pulsed laser beam as
it intersects a hard target. The receivers consist of a high-speed
photomultiplier relying on focusing optics and on a spectral
bandpass filter, designed to efficiently collect time-resolved
back-irradiated light from the emitted laser pulses. Depending
on the conditions of the water, such light may consist of either
reflections from objects or from backscattering. The signals
received by the photomultipliers are digitized at a rate of
one sample every 0.5 ns, before they are conveyed to digital
processing elements that reconstruct the areas of interest in
the water volume.

Given its unobtrusiveness with respect to marine fauna
vision and behavior, the UMSLI system can be used in the
proximity of marine installations to ensure the monitoring
of endangered/threatened species, and to assess the impact
of the installation on marine wildlife. The image formation
approach has been demonstrated to be especially suitable
for turbid or low-light applications. This makes the UMSLI
more convenient than traditional camera solutions, potentially
achieving persistent surveillance through day and night, while
still providing the operational advantages of optical solutions.

Fig. 1. Photo of the test tank environment, showing the location of the laser
transmitter and of the three receivers, as well as the model fish target (in this
case, an amberjack model).

B. Test scenario and data sets

In this paper, we consider two data sets from previous
experiments taken in a controlled test tank environment at
HBOI. One data set contains experimental results from a
system with a single light emitter and a single receiver, which
captured images of a static fish model in different poses,
with 200×200 pulse resolution, at 128 samples per 128-ns
pulse record. The frames are taken in clear water, as well
as by controlling the turbidity such that the total attenuation
coefficient at 638nm ranges up to c = 0.75 m–1 (turbid water)
using sparse and dense mode scans. Altogether, the data set
contains 79 frames.

The second data set has a similar structure, but is obtained
from another version of UMSLI with three receivers having a
higher sampling resolution of 256 samples per 128-ns pulse
record. A picture of the test tank with this configuration of
the LiDAR is shown in Fig. 1. The laser occupies a central
position, whereas the three receivers are deployed to the side
of the laser and below it. Fig. 1 also shows part of the model
fish target (an amberjack in this case). Seven different scenes
were taken for each turbidity setting, with moving and static
fish models, as well as with a calibration board. Each scene
was taken 15 times, hence the data set contains altogether over
500 frames per receiver. These challenging data sets provide
an interesting test platform to seek an optimal solution for the
enhancement of LiDAR data under power and computational
complexity constraints. The following section explains our
proposed processing pipeline to produce classifier-friendly
images and depth maps for further post-processing stages.

III. LIDAR DATA PROCESSING PIPELINE AND RESULTS

In this section, we present the steps of the LiDAR data
processing pipeline. We start with water turbidity estimation
in Section III-A. The following steps include image enhance-
ment via backscattering removal (Section III-B), and contrast
enhancement for 2D visualization (Section III-C). Finally, the
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Fig. 2. Backscattered light intensity over time for different turbidity values.

LiDAR scan is transformed into a 3D cloud of points. Those
that are not part of the target are identified and removed via a
clustering algorithm; the remaining points are then employed
to construct a 3D model of the target, which can be employed
for biomass evaluation (Section III-D).

A. Turbidity estimation

An important preliminary step to achieve good-quality Li-
DAR imaging is to estimate environmental parameters, and
specifically turbidity, which is expressed in terms of the total
light intensity attenuation coefficient of the water c [m–1].
In the current setup for test tank experiments, additional
equipment is used for precise turbidity measurements, which
is advantageous for further image processing. However, once
the LiDAR is deployed at sea, it might be challenging to
measure the ocean water’s turbidity without such additional
equipment, especially in the presence of mixing phenom-
ena that may induce turbidity variations over time. In these
cases, the backscattering intensity can be a good measure
for turbidity [13]. Several parameters of the LiDAR affect
backscattering. These include the wavelength, power and gain
of the incident laser beam, the scan area, and the relative
position of the transmitter and receiver [14]. By including
these parameters in a backscattering model, the LiDAR can be
calibrated to infer turbidity from backscattering measurements.

We employed the FAU test tank to carry out several
backscattering calibration measurements in different water tur-
bidity conditions. The results can be observed in Fig. 2, which
presents a superposition of several backscattered light intensity
signals sampled at intervals of 0.5 ns. For the same value of c,
the signals show approximately the same backscattering peak
value. However, this peak varies significantly by varying c. As
observed in Fig. 3, the relationship between the backscattering
intensity peak value and the turbidity level expressed through
c is roughly linear. A least-squares fit (top panel in Fig. 3)
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Fig. 3. (Top) Estimated linear fit of the average backscattering peak value
against the total attenuation coefficient of the tank water. (Bottom) Residual
errors in the estimation of the turbidity value.

is in fact sufficient to achieve very low residual error (bottom
panel), on the order of ±0.02 m–1 or less, which is sufficiently
accurate to inform the subsequent processing steps.

B. Backscattering removal

As backscattered light from particles suspended in water
can strongly corrupt the quality of the LiDAR imaging pro-
cess, it becomes important to compensate for, at least, the
backscattering intensity peak. To achieve this, we consider the
same calibration data set employed to estimate the relationship
between the total attenuation coefficient c and the backscat-
tering peak intensity. We recall that a LiDAR scan comprises
a matrix of 200×200 received pulses, and that 256 samples
are extracted for every channel of each pulse at a sampling
interval of 0.5 ns. We employ this data to generate an average
backscattering pulse to be employed for calibration. This pulse
is obtained by summing the detected light intensity samples
both over all 200×200 pulses in a frame and over several
frames, and by finally normalizing the pulse so that it has a
maximum value of 1. We then consider a Gamma probability
density function (pdf) of the form

f(x; k, θ) =
xk−1 e−x/θ

θk Γ(k)
, x > 0, k > 0, θ > 0 , (1)

where Γ(k) is Euler’s Gamma function, and we employ least-
squares fitting to estimate the parameters of the function that
best approximate the shape of the pulse.

Before we can actually compensate backscattering, we
need to create another average map that conveys the peak
backscattering intensity, and that will be used to scale the
Gamma function approximation. We obtain these maps from
the calibration frames, by recording the average backscattering
peak intensity for each of the 200×200 signals of a frame.
In Fig. 4, we present three heatmaps that show, for each
signal, the amplitude of the backscattering peak. The values
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Fig. 4. Backscattering peak amplitude heatmaps for the three receivers.

D
ig

ita
l c

ou
nt

s

Time sample [x 0.5ns]

Fig. 5. Example of pulse backscattering removal based on the estimated
turbidity and the backscattering model of Figs. 2 and 4.

are normalized with respect to the digital counts corresponding
to the maximum expected backscattering value. Such digital
counts are the output of the digitizer of the photomultiplier
output, and are proportional to the instantaneous detector
current, which in turn is proportional to the time-resolved
scene irradiance (in W/m2) at 638 nm. After scaling each
signal in accordance with the heatmap, the backscattering
component of the signal can be subtracted in order to enhance
the contrast of any other peaks reflected by a target, if present.

In Fig. 5, we provide an example of backscattering removal
from light intensity signals. The blue line is the detected
signal before backscattering removal, whereas the grey line
is its approximation through a Gamma pdf. The red curve is
obtained after the subtraction of modeled backscattering. We
observe that the red curve already contains a distinguishable
component related to the target, located between samples 145
and 180. In order to remove residual noise, as a last step we
apply a Savitzky-Golay (SG) filter. The resulting smoothed
signal is shown using a black line.

The main advantage of the above processing method is
that the residual backscattering intensity is now significantly

smaller that the target reflection peak, so that a simple max-
imum search operation suffices to identify the signal coming
from the target. At the cost of a simple preliminary calibration
step, this method does not require to average multiple LiDAR
frames, and requires fewer LiDAR scans, besides having very
low complexity.

C. 2D image enhancement and visualization

In order to visualize the effect of the backscattering removal,
the intensity of the target peak for each receiver is coded
using a red/green/blue (RGB) color vector. Each color channel
conveys the intensity of one receiver: with reference to the
circles in Fig. 1, we use red for receiver 1 (to the top right of
the laser when facing towards the water in the tank setup),
green for receiver 2 (bottom-central position in the tank),
and blue for receiver 3 (top left position). The three panels
on the top of the figure refer to low turbidity conditions
(c = 0.36 m–1), whereas the three bottom panels refer to
relatively high turbidity (c = 0.75 m–1). The left panel in
Fig. 6 shows the RGB coding for unprocessed signals which
have not undergone any backscattering compensation. Due to
the location of the receivers, the top-left corner is dominated
by blue hues, the top-right corner by red hues, and the bottom
side by greener hues. A pixel color turning towards white
represents a high intensity detected by all receivers.

For the clear water case, the image produced by the system
without any processing (Fig. 6 top-left) is clear enough for
further processing. However even here backscattering removal
(top-middle) improves the visibility of features towards the
far side of the tank. The results are better than a manual
gating procedure focusing on the target-reflected light portion
(top-right). In the bottom-left panel of Fig. 6, in relatively
high turbidity conditions, the shape of the fish target can be
observed from the purple hues in the center of the image,
whereas the near-field calibration target is barely seen along
the left side of the image. After backscattering removal,
we obtain the image in the bottom-middle panel. Here we
observe that the fish target is the brightest element, and its
characteristic biological features (e.g., the shape and the fins)
are much easier to distinguish. For comparison, zeroing out
the backscattering component of the received signal through
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Fig. 6. Example of the RGB representation of a LiDAR image after pulse backscattering removal, compared to a simpler gating solution. (Top) c = 0.36 m–1

(Bottom) c = 0.75 m–1. The distance between the transmitter and the fish is 5.7 m (4.272 beam attenuation lengths at c = 0.75 m–1)

Fig. 7. Contrast enhancement for 2D image representation using peak heatmaps. c = 0.75 m–1.

manual gating would not be as effective in enhancing the
image. An example of a gated image is shown in the bottom-
right panel: here, the overall image is more noisy, and the
sharpness of the fish contours and biological features is greatly
reduced.

We finally derive a black and white version of the target
image by fusing the data from the three receivers of the
LiDAR as follows. Starting from the image with backscattering
removed (bottom middle panel of Fig. 6), we sum the output
intensities over all channels, and normalize the intensity values
to occupy the whole interval [0, 1]. The resulting image for the
c = 0.75 m–1 case is plotted in gray scale in the left panel of
Fig. 7. While both the fish target and the calibration target on

the left already stem clearly from the darker bottom, it is often
useful to generate an image with better contrast. We do so by
producing a peak heatmap where, for each pixel in the image,
we count the number of peaks in the corresponding LiDAR
signal. The result is shown in the middle panel, where we can
observe that the target and its surroundings indeed present a
higher number of intensity peaks per pixel. By performing
a pixel-wise multiplication of each pixel’s intensity value by
the corresponding number of peaks from the heatmap, and by
rescaling the resulting grey intensity values back to the interval
[0, 1], we obtain the image in the right panel of Fig. 7. Here
light intensity differences due to the shape of the fish model
are amplified, and the fish contours stem more clearly out



of a darker background. The same conclusion applies to the
calibration panel on the left.

D. Derivation of a 3D target model

Besides image processing for the enhancement of 2D im-
ages, it is also of interest to create a 3D model of the target.
To do so, further processing is required to separate the light
reflected by the target from backscattered or background light.
To achieve this separation, we employ the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [15].

The DBSCAN algorithm is commonly used for clustering
spatial data with density constraints: its run time is almost
linear with the number of points to be clustered, which makes
it amenable to real-time applications. Moreover, DBSCAN
enables clustering without any prior knowledge about the
number of clusters to be formed. As an input, the algorithm
requires a definition of the meaning of “dense” clusters,
conveyed by the parameters ε and Nmin. Specifically, ε is
the maximum distance between two samples that still allows
both of them to belong in the same neighborhood, and Nmin

is the minimum number of samples in any cluster.
The data passed to DBSCAN is formatted as a set of

samples with four features: three coordinates (to identify the
location of the point in space) and an intensity value. The
coordinates are expressed as sample indices, or “units:” the
x- and y-coordinates can take values in 0, 1, . . . , 199 (since
the scanning grid contains is 200×200 points), whereas the
z-coordinate can take values in 0, 1, . . . , 255 (as there are 256
samples in each received signal). Since the LiDAR transmitter
and receivers are synchronized, the depth of each point can
be derived from the coordinates towards which the transmitter
is pointed, and the round-trip time required for the light to
irradiate back to each receiver. For our results, we set the
parameters of DBSCAN to be ε = 4 units and Nmin = 30.

An example of the output of the clustering algorithm applied
to a LiDAR frame is shown in Fig. 8. We observe that the
cluster of points identifying the fish shape clearly stands out
(orange cluster), along with the near-field calibration target
(dark red cluster), whose border on the right side is interrupted
due to the shadowing of the fish target. Spurious clusters are
also present (e.g., a reflective element on the bottom of the tank

Fig. 8. Example of result obtained by applying the DBSCAN clustering
algorithm to a LiDAR frame. The shape of the fish target (orange) can be
clearly distinguished in the image, along with the calibration target (dark red)
and with the backscattering residual (light yellow on the right).

(dark yellow) and a large planar cluster near the transmitter
(light yellow, on the right of the picture) which corresponds to
residual backscattering intensity that could not be completely
canceled via the method described in Section III-B. Still such
spurious clusters are typically well separated, so that it is
possible to at least distinguish the shape and size of the fish.

Fig. 9 shows three different point clusters pertaining to
the fish target, in three different turbidity conditions: low
turbidity (c = 0.36 m–1, left panel), intermediate turbidity
(c = 0.57 m–1, middle panel), and high turbidity (c =
0.75 m–1, right panel). In each figure, the size of each point is
proportional to the intensity of the signal received from that
location, whereas the red, green and blue colors encode the
receiver of the signal from which the point was estimated.
As expected, in the presence of low water turbidity, several
fish features can be already distinguished directly from the
cloud of points. In the left panel of Fig. 9, this includes all
fins, and the shape of the open mouth. As turbidity increases,
the weakest reflectors of the fish (e.g., the fins) mix up

Fig. 9. Sets of points corresponding to the fish target after clustering. The color of each point corresponds to the receiver (see also Fig. 1 for reference),
whereas the size of marker is proportional to intensity. The coordinates are expressed in meters. (Left) low turbidity, c = 0.36 m–1); (Center) medium turbidity,
c = 0.57 m–1); (Right) high turbidity, c = 0.75 m–1).



Fig. 10. Delaunay triangulation applied to the points of the identified fish
cluster.

Fig. 11. α-shape of the identified fish cluster, c = 0.36 m–1.

Fig. 12. α-shape of the identified fish cluster, c = 0.57 m–1. Fig. 13. α-shape of the identified fish cluster in a more complex pose
facing towards the LiDAR’s receivers. In this case, the pole mount of the
fish model becomes visible. c = 0.36 m–1.

with backscattered light, resulting in an overall increase of
the fish size, with less sharp transitions along the contour
of the fish’s body. In the highest turbidity conditions, the
blurring of the borders becomes even worse, although it is
still possible to distinguish the shape of the fish from the
most reflective components of its body (in this case, the side
facing the LiDAR’s receivers and the caudal fin). Still, we
remark that even in high turbidity conditions the backscattering
compensation and the subsequent processing of the LiDAR
signals make it possible to create sufficiently separated sets of
points, from which the target-related points can be successfully
singled out by DBSCAN.

As a last processing step, we are interested in forming a
3D model of the imaged target, which is typically useful for
classification and biomass evaluation purposes. In order to
achieve this, we start from the clustered samples derived from
the previous step and obtain a first 3D model via Delaunay
triangulation. For c = 0.36 m–1, the result is shown in
Fig. 10. The plain application of the triangulation algorithm
creates triangular simplices that altogether enclose the fish
figure within a convex hull. However the outer simplices tend
to connect much farther points, and thus have larger sides,
compared to the simplices that connect the denser points of
the cloud corresponding to the body and fins of the fish. This
makes it possible to create an alpha-shape [16] by ruling
out the simplices of the Delaunay triangulation that have a
circumscribing sphere of radius greater than α. The value of

α can be chosen to strike a balance between the accuracy of the
3D fish model and the need to achieve a connected complex
of simplices. In this work, we set α = 17, which corresponds
to eliminating simplices which have a circumscribed sphere of
radius larger than about 6 cm.

Fig. 11 shows the alpha-shape computed for the low turbid-
ity point set in the left panel of Fig. 9. The shade of grey on
each face encodes the intensity of the samples at the corner
of the respective simplices. We observe that besides having
a good model of the features of the fish, its length can be
estimated quite reliably from the figure to a total head-to-tail
extension of 1.14 m. While the actual length of the fish model
is 1.3 m the difference can be explained by the relatively low
sampling frequency, which translates to a coarse depth sensing
where a displacement of one sample corresponds to a length
of about 11 cm in the tank. Part of the error is also due to
the slight smoothing of protruding features, such as the fish
nose and tail. In the presence of higher turbidity (e.g., as in
the middle panel of Fig. 9), the alpha-shape is more noisy
as can be observed in Fig. 12, and some fish details are lost
after the execution of the triangulation algorithm. In any event,
the shape and size of the fish are still recognizable, and the
length can be measured with a sufficient degree of accuracy for
biomass assessment. To conclude, we consider the imaging of
the fish target rotated counter-clockwise by an angle of about
60◦ with respect to the horizontal pose of Figs. 10 and 12.
The result of the LiDAR scan in low turbidity conditions is



shown in Fig. 13. Interestingly, in this case the anchoring pole
to which the fish target is attached is included in the fish point
cluster singled out by DBSCAN, due to its greater proximity
to the rest of the fish samples. Even in this case, the fish is
rendered correctly, with several visible biological details, and
the grey scale intensity coding reveals that the tail of the fish
is farther from the LiDAR receiver than the head and pole.

IV. CONCLUSIONS

In this paper, we presented the design of the Florida Atlantic
University (FAU) Harbor Branch Oceanographic institution
(HBOI)’s Unobtrusive Multistatic Serial LiDAR Imager. This
LiDAR system can scan its surrounding using a low average
power red laser at a wavelength of 638 nm, which makes
it non-invasive for fish vision and behavior. The LiDAR
is based on inexpensive components. We presented several
in-tank measurements carried out both in the absence and
in the presence of a model fish target. Our results show
that a simple calibration step is sufficient to estimate near-
field water turbidity and thus inform the following image
processing steps. These steps include both 2D image contrast
enhancement, and further processing to extract the LiDAR
samples related to the target from the background as well
as from backscattering residuals, and construct a 3D sensed
target model. The relatively low complexity of such processing
makes the system amenable to be implemented in real time.
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