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4.1 Introduction

In [7] Cheeger, proved that in every doubling metric measure space (X, ρ, µ) satisfy-
ing a Poincaré inequality Lipschitz functions are di�erentiable µ-almost everywhere.
More precisely, he showed the existence of a family {(Ui , φi)}i∈N of Borel charts (that
is, Ui ⊂ X is a Borel set, X =

⋃
i Ui up to a µ-negligible set, and φi : X → Rd(i) is Lip-

schitz) such that for every Lipschitz map f : X → R at µ-almost every x0 ∈ Ui there
exists a unique (co-)vector df (x0) ∈ Rd(i) with

lim sup
x→x0

∣∣f (x) − f (x0) − df (x0) · (φ(x) − φ(x0))
∣∣

ρ(x, x0) = 0.

This fact was later axiomatized by Keith [15], leading to the notion of Lipschitz di�er-
entiability space, see Section 4.2 below.

Cheeger also conjectured that the push-forward of the reference measure µ under
every chart ϕi has to be absolutely continuous with respect to the Lebesgue measure,
that is,

(φi)#(µ Ui)� Ld(i) ,

see [7, Conjecture 4.63]. Some consequences of this fact concerning existence of bi-
Lipschitz embeddings of X into someRN are detailed in [7, Section 14], also see [8, 9].

Let us assume that (X, ρ, µ) = (Rd , ρE, ν) with ρE the Euclidean distance and ν a
positive Radonmeasure, is a Lipschitz di�erentiability space when equipped with the
(single) identity chart (note that it follows a-posteriori from the validity of Cheeger’s
conjecture that no mapping into a higher-dimensional space can be a chart in a Lips-
chitz di�erentiability structure ofRd). In this case the validity of Cheeger’s conjecture
reduces to the validity of the (weak) converse of Rademacher’s theorem, which states
that a positive Radon measure ν on Rd with the property that all Lipschitz functions
are di�erentiable ν-almost everywhere must be absolutely continuous with respect to
Ld. Actually, it is well known to experts that this converse of Rademacher’s theorem
implies Cheeger’s conjecture in any metric space, see for instance [15, Section 2.4], [6,
Remark 6.11], and [12].
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The (strong) converse of Rademacher’s theorem has been known to be true in R
since the work of Zahorski [21], where he characterized the sets E ⊂ R that are sets of
non-di�erentiability points of some Lipschitz function. In particular, he proved that
for every Lebesgue negligible set E ⊂ R there exists a Lipschitz function which is
nowhere di�erentiable on E.

The same result for maps f : Rd → Rd has been proved by Alberti, Csörnyei &
Preiss for d = 2 as a consequence of a deep structural result for negligible sets in the
plane [1, 2]. In 2011, Csörnyei & Jones [14] announced the extension of the above result
to every Euclidean space. For Lipschitz maps f : Rd → Rm with m < d the situation is
fundamentally di�erent and there exists a null set such that every Lipschitz function
is di�erentiable at at least one point from that set, see [17, 18]. We �nally remark that
the weak converse of Rademacher’s theorem inR2 can also be obtained by combining
the results of [4] and [5], see [5, Remark 6.2 (iv)].

Recently, a result concerning the singular structure of measures satisfying a dif-
ferential constraint was proved in [10]. When combinedwith themain result of [5] this
proves the weak converse of Rademacher’s theorem in any dimension, see [10, Theo-
rem 1.14].

In this note we detail how the results in [5, 10] in conjunction with Bate’s result
on the existence of a su�cient number of independent Alberti representations in a
Lipschitz di�erentiability space [6] imply Cheeger’s conjecture; see Section 4.2 for the
relevant de�nitions.

Theorem 4.1.1. Let (X, ρ, µ) be a Lipschitz di�erentiability space and let (U, ϕ) be a
d-dimensional chart. Then, ϕ#(µ U)� Ld .

Note that by the same arguments of this paper Cheeger’s conjecture would also follow
from the results announced in [1] and [14].

After we �nished writing this note we learned that similar results have been
proved by Kell and Mondino [16] and by Gigli and Pasqualetto [13].

4.2 Setup

4.2.1 Lipschitz di�erentiability spaces

Throughout this chapter, the triple (X, ρ, µ)will alwaysdenote ametricmeasure space,
that is, (X, ρ) is a separable, complete metric space and µ ∈M+(X) is a positive Radon
measure on X.

We call a pair (U, φ) such thatU ⊂ X is a Borel set andφ : X → Rd is Lipschitz, a d-
dimensional chart or simply a d-chart. A function f : X → R is said to be di�erentiable
with respect to a d-chart (U, φ) at x0 ∈ U if there exists a unique (co-)vector df (x0) ∈
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Rd such that

lim sup
x→x0

∣∣f (x) − f (x0) − df (x0) · (φ(x) − φ(x0))
∣∣

ρ(x, x0) = 0.

We call a metric measure space (X, ρ, µ) a Lipschitz di�erentiability space (also
called a metric measure space that admits a measurable di�erentiable structure) if
there exists a countable family of d(i)-charts (Ui , φi) (i ∈ N) such that X =

⋃
i Ui and

any Lipschitz map f : X → R is di�erentiable with respect to every (Ui , φi) at µ-almost
every point x0 ∈ Ui.

4.2.2 Alberti representations

We denote by Γ(X) the set of curves in X, that is, the set of all Lipschitz maps
γ : Dom γ → X, for which the domain Dom γ ⊂ R is non-empty and compact. Note
that we are not requiring Dom γ to be an interval and thus the set Γ(X) is sometimes
also called the set of curve fragments on X. We equip Γ(X) with the Hausdor� metric
distH on graphs and we consider it as a subspace of the Polish space

K =
{
K ⊂ R × X : K compact

}
, (4.1)

endowed with the Hausdor� metric. Moreover, by arguing as in [19, Lemma 2.20], it is
easy to see that Γ(X) is an Fσ-subset ofK, i.e. a countable union of closed sets.

The decomposition of a measure into a family of 1-dimensional Hausdor� mea-
sures supported on curves leads to the notion of Alberti representation. First intro-
duced in [4] for the study of the rank-one property of BV-derivatives, this decomposi-
tion has turned out to be a key tool in the study of di�erentiability properties of Lips-
chitz functions, see for instance [1, 2, 5, 6].

De�nition 4.2.1. Let (X, ρ, µ) be ametric measure space. An Alberti representation of
µ on a µ-measurable set A ⊂ X is a parameterized family (µγ)γ∈Γ(X) of positive Borel
measures µγ ∈M+(X) with

µγ � H1 Im γ,

together with a Borel probability measure π ∈ P(Γ(X)) such that

µ(B) =
∫
µγ(B) dπ(γ) for all Borel sets B ⊂ A. (4.2)

Here, the measurability of the integrand is part of the requirement of being an Alberti
representation.

Remark 4.2.2. Note that this de�nition is slightly di�erent from the one in [6, De�ni-
tion 2.2] since there the set Γ(X) consists of bi-Lipschitz curves. Clearly, the existence
of a representation in the sense of [6] implies the existence of a representation in our
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sense and this will su�ce for our purposes. Let us, however, point out that the converse
holds true as well. Indeed, the part of γ that contributes to the integral in (4.2) can be
decomposed into countably many bi-Lipschitz pieces, see [19, Remark 2.17].

We will further need the notion of independent Alberti representations of a measure.
Let C ⊂ Rd be a closed, convex, one-sided cone, i.e. a set of the form

C :=
{
v ∈ Rd : v · w ≥ (1 − θ)‖v‖

}
for some w ∈ Sd−1 and θ ∈ (0, 1). With a Lipschitz map ϕ : X → Rd, we say that an
Alberti representation

∫
νγ dπ(γ) has φ-directions in C if

(φ ◦ γ)′(t) ∈ C \ {0} for π-a.e. curve γ andH1-a.e. t ∈ Dom γ.

A number of m Alberti representations of µ are φ-independent if there are linearly in-
dependent cones C1, . . . , Cm such that the i’thAlberti representation hasφ-directions
in Ci. Here, linear independence of the cones C1, . . . , Cm means that any collection of
vectors vi ∈ Ci\{0} is linearly independent. In the case X = Rd wewill always consider
ϕ = Id.

One of the main results of [6] asserts that a Lipschitz di�erentiability space nec-
essarily admits many independent Alberti representations, also cf. [5, Theorem 1.1].
Recall that according to Remark 4.2.2 any representation in the sense of [6] is also a
representation in the sense of De�nition 4.2.1.

Theorem 4.2.3. Let (X, ρ, µ) be a Lipschitz di�erentiability space with a d-chart
(U, φ). Then, there exists a countable decomposition

U =
⋃
k∈N

Uk , Uk ⊂ U Borel sets,

such that every µ Uk has d φ-independent Alberti representations.

A proof of this theorem can be found in [6, Theorem 6.6].

4.2.3 One-dimensional currents

To use the results of [10] we need a link between Alberti representations and 1-
dimensional currents. Recall that a 1-dimensional current T inRd is a continuous lin-
ear functional on the space of smooth and compactly supported di�erential 1-forms
on Rd. The boundary of T, ∂T is the distribution (0-current) de�ned via 〈∂T, f 〉 :=
〈T, df 〉 for every smooth and compactly supported function f : Rd → R. The mass of
T, denoted by M(T), is the supremum of 〈T, ω〉 over all 1-forms ω such that |ω| ≤ 1
everywhere. A current T is called normal if both T and ∂T have �nite mass; we denote
the set of normal 1-currents by N1(Rd).
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On a conjecture of Cheeger | 149

By the Radon–Nikodým theorem, a 1-dimensional current T with �nite mass can
be written in the form T = ~T‖T‖ where ‖T‖ is a �nite positive measure and ~T is a
vector �eld in L1(Rd , ‖T‖) with |~T(x)| = 1 for ‖T‖-almost every x ∈ Rd. In particular,
the action of T on a smooth and compactly supported 1-form ω is given by

〈T, ω〉 =
∫
Rd

〈ω(x), ~T(x)〉 d‖T‖(x) .

An integer-multiplicity recti�able 1-current (in the following called simply recti�-
able 1-current) T = JE, τ,mK is a 1-current which acts on 1-forms ω as

〈T, ω〉 =
∫
E

〈ω(x), τ(x)〉m(x) dH1(x) ,

where E is a 1-recti�able set, τ(x) is a unit vector spanning the approximate tangent
space Tan(E, x) and m is an integer-valued function such that

∫
E m dH1 < ∞. More

information on currents can be found in [11].
The relation between Alberti representations and normal 1-currents is partially

encoded in the following decomposition theorem, due to Smirnov [20].

Theorem 4.2.4. Let T = ~T‖T‖ ∈ N1(Rd) be a normal 1-current with |~T(x)| = 1 for
‖T‖-almost every x. Then, there exists a family of recti�able 1-currents

Tγ = JEγ , τγ , 1K, γ ∈ Γ ,

where Γ is a measure space endowed with a �nite positive Borel measure π ∈ M+(Γ),
such that the following assertions hold:
(i) T can be decomposed as

T =
∫
Γ

Tγ dπ(γ)

and
M(T) =

∫
Γ

M(Tγ) dπ(γ) =
∫
Γ

H1(Eγ) dπ(γ) ;

(ii) τγ(x) = ~T(x) forH1-almost every x ∈ Eγ and for π-almost every γ ∈ Γ;
(iii) ‖T‖ can be decomposed as

‖T‖ =
∫
Γ

µγ dπ(γ) ,

where each µγ is the restriction ofH1 to the 1-recti�able set Eγ .

An Alberti representation of an Euclidean measure splits it into measures concen-
trated on “fragments” of curves. In general, these fragments cannot be glued together
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to obtain a 1-dimensional normal current since the boundary may have in�nite mass.
Nevertheless, the “holes” of every curve appearing in an Alberti representation of a
measure ν ∈ M+(Rd) can be “�lled” in such a way as to produce a normal 1-current
T with ν � ‖T‖. Moreover, if the representation has directions in a cone C then the
constructed normal current T has orienting vector ~T in C \ {0} almost everywhere
(with respect to ‖T‖). Indeed, we have the following lemma, which is essentially [5,
Corollary 6.5]; it can be interpreted as a partial converse to Theorem 4.2.4:

Lemma 4.2.5. Let ν ∈ M+(Rd) be a �nite Radon measure. If there is an Alberti repre-
sentation ν =

∫
νγ dπ(γ)with directions in a cone C, then there exists a normal1-current

T ∈ N1(Rd) such that ~T(x) ∈ C \ {0} for ‖T‖-almost every x ∈ Rd and ν � ‖T‖.

Proof. For the purpose of illustration we sketch the proof.
Step 1. Given ν as in the statement, we claim that there exists a normal 1-current

T = ~T‖T‖ with M(T) ≤ 1 and M(∂T) ≤ 2 such that ~T(x) ∈ C, for ‖T‖-almost every x
and that ν is not singular with respect to ‖T‖.

The claim follows from the proof of [5, Lemma 6.12]. For the sake of completeness
let us present the main line of reasoning. By arguing as in Step 1 of the proof of [5,
Lemma 6.12], to every γ ∈ Γ(Rd) with γ′(t) ∈ C and a Borel measure νγ � H1 Im γ

we can associate a 1-Lipschitz map ψνγ : [0, 1] → Rd satisfying

νγ(Im(ψνγ )) > 0 and ψ′νγ (t) ∈ C \ {0} forH1-a.e. t ∈ [0, 1].

This map can moreover be chosen such that γ 7→ ψνγ coincides with a Borel measur-
able map π-almost everywhere once we endow the set of curves with the topology of
uniform convergence, see Step 3 in the proof of [5, Lemma 6.12].

Let Tνγ := JImψνγ , τψνγ , 1K be the recti�able 1-current associated to ψνγ and set

T :=
∫
Tνγ dπ(γ) .

Since ψνγ is 1-Lipschitz,H1(Imψνγ ) ≤ 1 and thusM(T) ≤ 1. Moreover, for all smooth
compactly supported functions f : Rd → R we have

〈∂T, f 〉 = 〈T, df 〉 =
∫
f (ψνγ (1)) − f (ψνγ (0)) dπ(γ) ,

so thatM(∂T) ≤ 2.
By assumption, ~T(x) ∈ C \ {0} for ‖T‖-almost every x ∈ Rd. To show that ‖T‖ and

ν are not mutually singular, for π-almost every γ set

ν′γ := νγ Im ψνγ and ν′ :=
∫
ν′γ dπ(γ) ,

so that ν′ =6 0 and ν′ ≤ ν. We will now establish that ν′ � ‖T‖, for which we will prove
that ν and ‖T‖ are not mutually singular. Let E ⊂ Rd be such that ‖T‖(E) = 0. Using

T =
∫

JImψνγ , τψνγ , 1K dπ(γ) with τψνγ =
ψ′νγ
|ψ′νγ |

∈ C ,
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we get
H1(Imψνγ ∩ E) = 0 for π-a.e. γ.

Since by de�nition νγ � H1 Im γ, we have that ν′γ � H1 Imψνγ . Thus, ν′(E) = 0.

Step 2. Let us de�ne

T :=
{
T ∈ N1(Rd) : M(T) ≤ 1,M(∂T) ≤ 2 and ~T ∈ C ‖T‖-a.e.

}
and

Tν :=
{
T ∈ T : ν and T are not singular

}
.

Note that if C = { v ∈ Rd : v · w ≥ (1 − θ)‖v‖ } for some w ∈ Sd−1, θ ∈ (0, 1), then
~T ∈ C almost everywhere implies that

‖T‖ ≥ T · w ≥ (1 − θ)‖T‖ (4.3)

as measures (here we are identifying T with an Rd-valued Radon measure and use
the pointwise scalar product). Moreover, as a consequence of the Radon–Nikodým
theorem, for every T ∈ Tν we may write

ν = g‖T‖‖T‖ + νs‖T‖ with νs‖T‖ ⊥ ‖T‖ ,
∫
g‖T‖ d‖T‖ > 0 .

Let us set M := supT∈Tν
∫
g‖T‖ d‖T‖ > 0 and let Tk ∈ Tν be a sequence with∫

g‖Tk‖ d‖Tk‖ → M.

De�ne
T :=

∑
k

2−kTk

and note that T ∈ T. Moreover, by (4.3), ‖Tk‖ � ‖T‖ for all k ∈ N, so that there exist
hk : Rd → R with∫

E

hk d‖T‖ =
∫
E

g‖Tk‖ d‖Tk‖ ≤ ν(E) for all Borel sets E ⊂ Rd.

In particular, T ∈ Tν and hk ≤ g‖T‖. Set mk = max1≤j≤k hj. By the monotone conver-
gence theorem, mk → m∞ ≤ g‖T‖ in L1(Rd , ‖T‖) and

M ≤ lim
k→∞

∫
mk d‖T‖ =

∫
m∞ d‖T‖ ≤

∫
g‖T‖ d‖T‖ ≤ M.

Hence, M is actually a maximum and it is attained by T.
Wenowclaim that ν � ‖T‖. Indeed, assumeby contradiction that ν = g‖T‖ d‖T‖+

νs‖T‖ with νs‖T‖ =6 0. Since the Alberti representation of ν induces an Alberti represen-
tation of νs‖T‖, we can apply Step 1 to �nd a normal 1-current

S ∈ Tνs‖T‖ ⊂ Tν
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such that νs‖T‖ and ‖S‖ are notmutually singular. In particular, if ν = g‖S‖ d‖S‖+νs‖S‖,
then there exists a Borel set F ⊂ Rd such that

‖T‖(F) = 0 and
∫
F

g‖S‖ d‖S‖ > 0. (4.4)

Let us de�ne W := (T + S)/2 and note that by (4.3) it holds that ‖T‖, ‖S‖ � ‖W‖ so
thatW ∈ Tν. Moreover, there are functions hT , hS ≤ g‖W‖ such that∫

E

hT d‖W‖ =
∫
E

g‖T‖ d‖T‖ ,
∫
E

hS d‖W‖ =
∫
E

g‖S‖ d‖S‖

for all Borel sets E. However, for F as in (4.4) we obtain

M ≥
∫
Rd

g‖W‖ d‖W‖ ≥
∫
Rd

g‖T‖ d‖T‖ +
∫
F

g‖S‖ d‖S‖ > M,

a contradiction.

4.3 Proof of Cheeger’s conjecture

The key tool to prove Cheeger’s conjecture is the following result from [10, Corol-
lary 1.12]:

Theorem 4.3.1. Let T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(Rd) be 1-dimensional nor-
mal currents. Let ν ∈M+(Rd) be a positive Radon measure such that
(i) ν � ‖Ti‖ for i = 1, . . . , d, and
(ii) span{~T1(x), . . . , ~Td(x)} = Rd for ν-almost every x.
Then, ν � Ld.

Combining the above result with Lemma 4.2.5 we immediately get the following:

Lemma 4.3.2. Let ν ∈M+(Rd) have d independent Alberti representations. Then, ν �
Ld.

Proof. Denote by C1, . . . , Cd independent cones such that there are d Alberti repre-
sentations having directions in these cones. By Lemma 4.2.5 there are d normal 1-
dimensional currents T1 = ~T1‖T1‖, . . . , Td = ~Td‖Td‖ ∈ N1(Rd) such that

ν � ‖Ti‖ for i = 1, . . . , d,

and ~Ti(x) ∈ Ci for ν-almost every x ∈ Rd. By the independence of the cones,

span
{
~T1(x), . . . , ~Td(x)

}
= Rd for ν-a.e. x ∈ Rd.

This implies ν � Ld via Theorem 4.3.1.
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In order to use the above result to prove Theorem 8.1.1 one also needs the following
“push-forward lemma”.

Lemma 4.3.3. Let (X, ρ, µ) be a Lipschitz di�erentiability space with a d-chart (U, φ).
If µ U has d φ-independent Alberti representations, then also the push-forward
φ#(µ U) ∈M+(Rd) has d independent Alberti representations.

Proof. It is enough to show that if there exists a representation of the form µ U =∫
µγ dπ(γ) with φ-directions in a cone C (i.e. such that (ϕ ◦ γ)′(t) ∈ C \ {0} for almost

all t ∈ Dom γ and for π-almost every γ), then we can build an Alberti representation

φ#(µ U) =
∫
νγ̄ dπ̄(γ̄) with π̄ ∈ P(Γ(Rd)),

with γ̄′(t) ∈ C \ {0} for π̄-almost every γ̄ and almost every t ∈ Dom γ̄. To this end con-
sider the map Φ : Γ(X) → Γ(Rd) given by Φ(γ) := φ ◦ γ and let π̄ := Φ#π ∈M+(Γ(Rd)).
Note that, by the very de�nition of the push-forward measure, for π̄-almost every γ̄ it
holds that γ̄ = ϕ ◦ γ for some γ ∈ Γ(X).

By considering π as a probability measure de�ned on the Polish spaceK de�ned
in (4.1), and noting that π is concentrated on Γ(X), we can apply the disintegration
theorem for measures [3, Theorem 5.3.1] to show that for π̄-almost every γ̄ there exists
a Borel probability measure ηγ̄ concentrated on Φ−1(γ̄) and such that

π(A) =
∫
ηγ̄(A) dπ̄(γ̄) for all Borel sets A ⊂ Γ(X).

Note also that, by the disintegration theorem, the map γ̄ 7→ ηγ̄ is Borel measurable.
Let us now set

νγ̄ :=
∫

Φ−1(γ̄)

φ#(µγ) dηγ̄(γ).

Clearly, we have the representation

φ#(µ U) =
∫
νγ̄ dπ̄(γ̄)

and γ̄′(t) = (ϕ ◦ γ)′(t) ∈ C \ {0} for π̄-almost every γ̄ and almost every t ∈ Dom γ̄.
Hence, to conclude the proof we only have to show that

νγ̄ � H1 Im γ̄ for π̄-a.e. γ̄.

Let E be a set with H1(E ∩ Im γ̄) = 0. Since γ̄′(t) =6 0 for almost every t ∈ Dom γ, the
area formula implies that L1(γ̄−1(E)) = 0. If γ ∈ Φ−1(γ̄), say γ̄ = ϕ ◦ γ, then

H1(ϕ−1(E) ∩ Im γ) ≤ H1(γ(γ̄−1(E))) = 0 for all γ ∈ Φ−1(γ̄).

Hence, µγ(ϕ−1(E)) = 0 for all γ ∈ Φ−1(γ̄) which immediately gives

νγ̄(E) =
∫

Φ−1(γ̄)

µγ(ϕ−1(E)) dηγ̄(γ) = 0 .
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This concludes the proof.

Proof of Theorem 8.1.1. Let (U, φ) be a d-chart. By Theorem 4.2.3 there are d φ-
independent Alberti representations of µ Uk, where U =

⋃
k∈N Uk is the decompo-

sition from Bate’s theorem. Then, via Lemma 4.3.3, the push-forward φ#(µ Uk) also
has d independent Alberti representations. Finally, Lemma 4.3.2 yields φ#(µ Uk)�
Ld and this concludes the proof.
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