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Abstract

The particle swarm optimization (PSO) algorithm has been re-
cently introduced in the non–linear programming, becoming widely
studied and used in a variety of applications. Starting from its original
formulation, many variants for improvement and specialization of the
PSO have been already proposed, but without any definitive result,
thus research in this area is nowadays still rather active. This paper
goes in this direction, by proposing some modifications to the basic
PSO algorithm, aiming at enhancements in aspects that impact on the
efficiency and accuracy of the optimization algorithm. In particular,
variants of PSO based on fuzzy logics and Bayesian theory have been
developed, which show better, or competitive, performances when com-
pared to both the basic PSO formulation and a few other optimization
algorithms taken from the literature.

1 Introduction

Many techniques, mainly based on metaheuristic algorithms, have been de-
veloped for solving non–linear programming. In particular, chaotic algo-
rithms [27], evolutionary programming [33, 34], genetic algorithms [35, 2],
tabu search algorithm [16, 17], have been widely used in these studies. Re-
cently, the particle swarm optimization (PSO) algorithm [15] has been in-
troduced in the non–linear programming becoming widely studied and used
in a variety of applications [36, 9, 14].

The PSO algorithm performs a metaheuristic search based on competi-
tion and cooperation among particles (which represent the search variables)
belonging to an initial swarm or population that covers the search space.
After the basic technique was defined, numerous proposals for improvement
and specialization of the PSO have appeared (refer [25] for a partial survey).
Still, further investigations are nowadays of interest and solicited in PSO,
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to better respond to application needs in a growing variety of sectors, with
related emphasis on different aspects, such as efficiency and accuracy.

In this paper we propose some modifications to the basic PSO algorithm,
aiming at enhancements in the following three aspects that determine the
efficiency and accuracy of the optimization algorithm:

• the setting of the initial population, based on the partitioning of the
search space in disjoint intervals, one for each particle, such that the
initial position for each different particle is selected from a different
interval,

• the setting of the acceleration constants and of the inertia weight pa-
rameter, defined by using a fuzzy logics based strategy,

• the calculation of the current position of each particle, based on a
Bayesian approach.

By adopting approaches very suited to support the dynamics of the PSO
algorithm, such as the fuzzy logics and the Bayesian theory, this paper
offers novel solutions which improve on the basic PSO formulation, thus
potentially resulting more appealing to be employed, as suggested by the
evaluation studies already performed. Although the literature on this family
of optimazation algorithms is very abundant, as already recalled, our goal
is to enrich the set of alternatives to enhance the choice of the best solution
that fits specific applications needs and characteristics.

The rest of the paper is structured as follows. A brief recall of the ba-
sic PSO algorithm is presented in Section 2. In Section 3, the motivation
and innovative aspects of the three proposed modifications to the basic PSO
algorithm are discussed. In the next three sections, we develop our enhance-
ments to the basic PSO algorithm. In particular, the setting proposed for
the initial population is described in Section 4; the approach proposed to set
the acceleration constants and the inertia weight is described in Section 5,
while Section 6 contains the new method to move the control variables in
the search space. By composing the proposed improvements, two variants
of the PSO algorithm are assembled in Section 7, which are then evaluated
and compared both with the basic PSO algorithm in terms of indicators rep-
resentative of their accuracy and efficiency, and with other solutions taken
from the literature when employed to support power flow optimization in a
simple but realistic case study in the electrical power sector. Finally, Section
8 is devoted to the conclusions.

2 Overview of the basic PSO algorithm

In this section, the basic PSO algorithm is briefly described, to provide
the context for the variants that will be presented in the next sections. In
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general terms, an optimization problem is the problem of minimizing (or
maximizing) an objective function f(x1 . . . , xd, y1, . . . , ys), where xi are the
search variables, representing the parameters of the problem that are to be
optimized, and yi are the state variables, representing the parameters that
can be derived as function of the search variables. The variables xi and yi
can be bounded and related together by means of constraint equations or
disequations. For the sake of simplicity, in the following, we omit variables
yi from the notation of the objective function and we only consider search
variables xi.

The PSO algorithm is a heuristic global optimization method which tries
to find those values of the search variables x1, ...xd for which the value of
the cost function f(x1, ...xd) is minimum (or maximum). The search is
based on a discrete-time stochastic process describing the competition and
cooperation between a population or swarm of particles that move in a
search-variables space. The PSO algorithm considers a fixed size swarm
of D particles that randomly change position with velocity vp(k) at each
discrete instant of time (step) k, according to their own experience and
that of their neighbors. The position of each particle p at step k is a vector
xp(k) = (xp1(k), ..., xpd(k)). The solution of the optimization problem found
by PSO is the position b, reached at a certain step by of a particle for the
swarm, for which the value of the cost function is minimum, i.e., f(b) =
min{f(xp(k))|p = 1, . . . , D, k = 1, 2, . . . }. Algorithm 1 describes formally
in pseudo–code the basic PSO procedure of finding the optimal vector b, as
extracted from [15].

The starting velocity and position of the particles at step 0 are initialized
at lines 5 and 6, respectively. The personal best position lp for the particle p
at step k is the best position the particle p has visited since the first step, i.e.,
the position that minimizes the objective function among all the positions of
p for different values of k. It is updated at line 12. The global best position
b at each step k is the best position discovered by any of the particles so far.
It is usually calculated as the personal best position and it is obtained as
the personal best position at step k that minimizes the objective function,
as shown at line 14, where b is updated.

The position xp(k) of the particle p at step k is updated at line 19, based
on the random value assigned to the velocity vp(k), as shown from line 16 to
line 18. The velocity vector drives the optimization process and results from
the sum of three different components, as shown at line 18: the momentum
component, which is the previous velocity, the cognitive component, which
is proportional to the distance of the particle from the best position it has
ever visited, and, finally, the social component which is proportional to the
particle’s distance from the best position where any of the swarm’s particles
has ever been.

The PSO algorithm has some critical points that heavily influence its
performances, like the initial position of the particles and the choice of some
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Algorithm 1: Basic PSO algorithm

1 Data: d,D,w, c1, c2, kmax and bounds xmin,xmax

2 Search variables x = (x1, ...xd) and cost function f(x)
3 Result: b, f(b)
4 for p = 1, . . . , D do // for each particle

5 vp(0)← 0 // initial velocity

6 xp(0)← Rnd(xmin,xmax) // initial random position

7 lp,b← xp(0)

8 begin
9 for k = 1, . . . , kmax do // for each step

10 for p = 1, . . . , D do // for each particle

11 if f(xp(k − 1)) < f(lp) then
12 lp ← xp(k − 1) // new personal best position

13 if f(lp) < f(b) then
14 b← lp // new global best position

15 for p = 1, . . . , D do // for each particle

16 r1 ← U(0, 1) // new uniform random value

17 r2 ← U(0, 1) // new uniform random value

18 vp(k) = wvp(k−1)+c1r1(lp−xp(k−1))+c2r2(b−xp(k−1))
19 xp(k) = xp(k − 1) + vp(k)
20 for i = 1, . . . , d do // for each search variable

21 if xpi(k) < xmini then
22 xpi(k)← xmini

23 else if xpi(k) > xmaxi then
24 xpi(k)← xmaxi

parameters, such as inertia weight w and the acceleration constants c1 and
c2, used to scale the contribution of the moment to the velocity, and of
the cognitive and social components, respectively [8]. Indeed, if the initial
position of the particles is a well-distributed cover of the search space, then
there is a higher probability to avoid local best position and to approach
the global optimum. Moreover, parameters w, c1, c2 heavily influence the
velocity of the particles, i.e., their movements in the search space.

In the next sections we present and evaluate three variants of the PSO al-
gorithm, aiming at enhancements in the aspects just recalled that determine
the efficiency and accuracy of the optimization algorithm.
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3 Three new variants of the PSO algorithm: mo-
tivation and innovative aspects

In this section, we discuss the motivation and the innovative aspects of the
three proposed variants for the PSO algorithm.

The efficiency of PSO is influenced by the initial position of the particles,
i.e. by how well particles are distributed over the search space, since if
regions of the search space are not covered by the initial positions, the
PSO will have difficulty in finding the optimum if it is located within an
uncovered region [8]. Usually, the initial position of each particle is randomly
generated, with uniform distribution, from the set of all possible positions
of the particles. In this case, it is important to use a good pseudo–random
generator, otherwise the performances heavily degrade. In [20], the authors
propose to reinitialize the particle with the biggest objective function value.
In [24], re–initialization of a certain percentage of the total population is
considered if after some steps there is no significative improvement. In [36],
an orthogonal design is proposed in order to sample the initial positions. In
[32], the authors determine the initial position of the particles by means of
the Tent chaotic map. In Section 4, we propose an original algorithm that
forces a uniform distribution for the position of the initial particles, dividing
the search space into small intervals where we randomly generate the initial
positions.

As discussed in the previous section, the values of parameters w, c1, c2

affect the performance of the PSO algorithm. Standard values for the pa-
rameters of the PSO algorithm are c1 = c2 = 1.496172 and w = 0.72984 [4].
However, in many works (like [3], [12], [21] and [24]) values of c1, c2, w are
not constant, but they change during the execution of the algorithm. This is
mainly due to the fact that at the initial steps of the algorithm large values
for w are preferable so that particles have a greater possibility of movement
[23]. On the contrary, small values for w are preferable towards the final
steps of the algorithm. Moreover, other different components could be cho-
sen for modifying the values of w, c1, c2, like, e.g., the distance between the
current particles and the best particles. Since, there are no defined rules to
determine the relationship between parameters w, c1, c2 and other compo-
nents (such as the current step of the algorithm), in Section 5, we use fuzzy
logic in order to manage these relationships. Indeed, fuzzy logics is conge-
nial to capture and to code expert–based knowledge in view of performing
targeted simulations. Usually the fuzzy logic–based systems are tuned using
heuristic criteria (see, e.g., [7, 5]). Fuzzy logic has been already used in var-
ious ways for improving the PSO algorithm [1, 22]. In [28], a fuzzy system
is defined to dynamically adapt the inertia weight of the PSO. It is based on
two input variables, which measure the current best performance and the
current inertia weight, and on an output variable, which is the change of
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the inertia weight. Our approach differs from previous usages of fuzzy logics
(as in [22, 28]) in the choice of the input fuzzy variables, in the tuning of
the membership functions and in the fuzzy rules that combine input/output
fuzzy variables together with their membership functions.

Finally, in Section 6 we propose an innovative method to update the
position of the particles at each step of the algorithm. The core idea of the
basic PSO algorithm is to move the particles around the search space using
information provided by personal and global best positions as shown in Al-
gorithm 1. Here, we propose to move the particles in the search space by
balancing the current position of each particle with the current personal and
global best positions by means of equations based on the Kalman filter [13].
The Kalman filter uses a Bayesian approach providing a posterior estimation
for a system’s state from the current measurement and the prior estimation
of that system’s state by means of the Bayes theorem. In typical applica-
tions of the Kalman filter, it takes a sequence of measurements over time,
containing noise (random variations) and other inaccuracies, and produces
statistically optimal estimates of unknown variables. In our context, such
a Bayesian approach has been reproduced considering the current position
of the particles and the current global best position as the current mea-
surement and the prior estimation, respectively. The posterior estimation
is the new global best position of the particles that should be an improved
estimation for the position of the unknown global best.

4 Variant 1: focus on the initial position of the
particles

Here, we propose an easy sampling method that guarantees a good uniform
distribution of the initial position of the particles in the search space, thus
improving the use of pseudo–random generators.

It is based on the partitioning of each dimension of the search space in
disjoint intervals, one for each particle, such that the initial position of each
different particle is randomly selected for each dimension from a different
random interval.

Let xmini and xmaxi be the lower and upper bound of each search variable,
i.e.,

xmini ≤ xpi(k) ≤ xmaxi , ∀p = 1, . . . , D, ∀i = 1, . . . , d, ∀k.

Each interval [xmini , xmaxi ] is partitioned into D disjoint subintervals, one for
each particle p[

xmini + (p− 1)
xmaxi − xmini

D
,xmini + p

xmaxi − xmini

D

]
, ∀p = 1, . . . , D.

The initial position xpi(0) of each different particle p for each dimension i is

6



Algorithm 2: Initial position of the particles for the PSO algorithm

1 Data: d,D, xmini , xmaxi , for i = 1, . . . , d
2 Result: xpi(0) for p = 1, . . . , D and i = 1, ..., d
3 begin
4 for i = 1, . . . , d do // for each search variable

5 ρ ← random permutation of (1, . . . , D)
6 for p = 1, . . . , D do // for each particle

7 xpi(0)←
U
(
xmini + (ρ(p)− 1)

xmax
i −xmin

i
D , xmini + ρ(p)

xmax
i −xmin

i
D

)

uniformly randomly selected from a randomly selected different subinterval,
as shown in Algorithm 2. At line 7 it is shown that the position of the
particle p is selected by the ρ(p)–th subinterval, where ρ() is the random
permutation function of the indexes of the particles, as shown at line 5.
Using this approach, the location of each different particle is selected for
each dimension (search variable) from different partitions of the range of
values for that dimension, improving the distribution of the particles in
the search space. This approach also protects against weaknesses of bad
pseudo–random generators, which might result in a poor cover of the search
space.

5 Variant 2: fuzzy logic–based inertia weight and
acceleration constants

Usually, as shown in [4], the following relation among w, c1, c2 holds:

w =
2

|2− φ−
√
φ2 − 4φ|

, φ = w(c1 + c2),

from which, using equal values for c1, c2, we obtain

c1 = c2 =
(w + 1)2

2
. (1)

Some works, like [21], propose a varying value for w:

w =
kmax − k
kmax

(wmax − wmin) + wmin,

where k is the current step of the algorithm, kmax is the maximum number
of steps, and usually wmin = 0.8 and wmax = 1.2. In [24] and [37] different
formulas for w have been proposed and in [12] similar formulas have been

7



used for the coefficients c1 and c2. In [3], a good survey on the problem of
determining the parameters w, c1, c2 is provided.

Here, we propose a novel fuzzy strategy to determine the parameters
w, c1, c2 based on the steps number and the current particle position. Gen-
erally, a fuzzy strategy is composed by

• fuzzy variables (input and output), fuzzy sets and membership func-
tions,

• fuzzy rules that relate input and output variables,

• a fuzzy inference engine that combines the fuzzy rules,

• a defuzzification method that provides an output value.

Our strategy is based on a 2-input/1-output inference scheme, with the
fuzzy variables k, α and w. The output is the value of w. The first input
is the current step k of the algorithm. The second input is the percentage
distance

α =
(f(xp(k))− f(b)) · 100

f(b)

between the objective function f(xp(k)) evaluated on the current position
of the particle p at step k and the objective function f(b) evaluated on the
global best position at step k. When α is small, it may be convenient to
move the particle around its current position, corresponding to a low value
of w. On the contrary, when α is large it may be sensible moving the particle
far from its current position, corresponding to a high value of w.

During the execution of the PSO algorithm, the value of w can be eval-
uated at each step k in the following way.

A membership degree is assigned to the current step k, as shown in Fig-
ure 1a for different fuzzy sets: VeryShort, Short, Moderate, Long, VeryLong.
A fuzzy set characterizes the current step k in terms of the membership de-
gree of k, according to the following rules (the choice of values are expert
based):

1. if k ≤ 4kmax

20 , then current step k is VeryShort,

2. if 2kmax

20 ≤ k ≤ 6kmax

20 , then current step k is Short,

3. if 5kmax

20 ≤ k ≤ 17kmax

20 , then current step k is Moderate,

4. if 14kmax

20 ≤ k ≤ 18kmax

20 , then current step k is Long,

5. if k ≥ 17kmax

20 , then current step k is VeryLong.

For example, looking at Figure 1a if the value of k is less or equal than
kmax

20 , then k belongs to the fuzzy set VeryShort with membership degree

1. If 2kmax
20 ≤ k ≤ 4kmax

20 , then k belongs to the fuzzy sets VeryShort and
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Figure 1: Membership degrees of the current step k, as a function of the
value of k, for different fuzzy sets: VeryShort, ..., VeryLong (a), membership
degrees of the percentage distance α, as a function of the value of α, for
different fuzzy sets: Small, Medium, Large (b) and membership degrees of
w for different fuzzy sets: Low, Intermediate, High (c).
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Short with membership degrees given by the ordinates of the corresponding
curves.

Similarly, a membership degree is assigned to α, as shown in Figure 1b,
according to the following rules:

1. if α ≤ 10%, then distance is Small,

2. if 5% ≤ α ≤ 65%, then distance is Medium,

3. if α ≥ 50%, then current step is Large,

where Small, Medium and Large are the labels of the fuzzy sets that char-
acterize the distance variable α. Let us observe that if α < 0, then we set
α = 0 as input. Indeed, in this case the current particle has improved the
global best and consequently we would like to perform the search around
this position giving to α the maximum membership degree 1 at the fuzzy
set Small.

Finally, the membership degree of w is obtained, as shown in Figure 1c,
according to the following rules (the choice of values are expert based):

1. if 0.6 ≤ w ≤ 0.8, then distance is Low,

2. if 0.7 ≤ w ≤ 0.9, then distance is Intermediate,

3. if 0.8 ≤ w ≤ 1, then current step is High,

where Low, Intermediate and High are the labels of the fuzzy sets related
to w.

The derived membership functions (depicted by triangular or trapezoidal
shapes) reflect expert–based choices. The inference system, used by the

Table 1: Inference system to derive the value of w.

k α w

VeryShort Small Intermediate

VeryShort Medium or Large High

Short Small Low

Short Medium or Large High

Moderate Small Low

Moderate Medium Intermediate

Moderate Large High

Long Small Low

Long Medium or Large Intermediate

VeryLong Small or Medium Low

VeryLong Large Intermediate

inference engine to derive the value of w, is based on the eleven rules shown
in Table 1.
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The inference engine is the basic Mamdani model [19] with if–then rules,
minimax set–operations, sum for composition of activated rules, and de-
fuzzification based on the centroid method that provides the abscissa of the
barycentre of the fuzzy set composed according to the activated rules.

Finally, the values of c1 and c2 can be derived as a function of w from (1).

6 Variant 3: Bayesian approach to change the po-
sition of particles

In this section, we propose a new strategy to change the position of the par-
ticles with respect to the PSO algorithm shown in Algorithm 1. Specifically,
in Subsection 6.1 we derive the new algorithm based on the Kalman filter,
and in Subsection 6.2 we describe the new parameters of the algorithm and
we analyze how they impact on the velocity of the particles.

6.1 Bayesian PSO algorithm

In [6], the authors highlighted that the Kalman filter can be taken back to
the Bayes theorem, considering random variables with normal distributions.

Let L|X, X and X|L be random variables denoting, in terms of the
Kalman filter, respectively, the current measurement (conditional on un-
known parameter X), the prior estimation and the posterior estimation of
the system’s state. The Bayes theorem states

fX|L(x|l) =
fL|X(l|x)fX(x)∫ +∞

−∞ fL|X(l|u)fX(u)du
,

where fX|L is the posterior density, fX the prior density, fL|X the likelihood
and the denominator is a normalization factor.

Assume that L|X and X have the normal distributions N (µL|X , σ
2
L|X)

and N (µX , σ
2
X), respectively. Then, it is well–known that the posterior

estimation X|L has the normal distribution N (µX|L, σ
2
X|L), where

µX|L =
σ2
L|XµX + σ2

XµL|X

σ2
L|X + σ2

X

, σ2
X|L =

(
1

σ2
L|X

+
1

σ2
X

)−1

.

Now, we define the new position of the particles at step k, for k ≥ 1, of
the PSO algorithm, in terms of the Kalman filter.

For each particle p = 1, . . . , D and for each dimension i = 1, . . . , d, we
consider that:

• the global best position bi(k − 1) (for the sake of brevity denoted as
bi) is the current measurement B|Y ,
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• the position xpi(k − 1) is the prior estimation Y = X|L, and

• the new position xpi(k) is the posterior estimation Y |B.

The prior estimation Y is obtained by the posterior estimation X|L of the
new position xpi(k), considering that:

• the personal best position lpi(k − 1) (for the sake of brevity denoted
as lpi) is the current measurement L|X,

• the position xpi(k − 1) is the prior estimation X, and

• the new position xpi(k) is the posterior estimation X|L.

Thus, observing that L|X ∼ N (lpi, σ
2
L|X) and X ∼ N (xpi(k−1), σ2

pi(k−1)),

the posterior density of the random variable Y = X|L is the normal distri-
bution N (µX|L(k), σ2

X|L(k)) derived by the Bayes theorem as

µX|L(k) =
σ2
L|Xxpi(k − 1) + σ2

pi(k − 1)lpi

σ2
L|X + σ2

pi(k − 1)
,

σ2
X|L(k) =

(
1

σ2
L|X

+
1

σ2
pi(k − 1)

)−1

.

Finally, observing that B|Y ∼ N (bi, σ
2
B|Y ) and Y ∼ N (µX|L(k), σ2

X|L(k)),

the posterior density of the random variable Y |B is the normal distribution
N (µY |B(k), σ2

Y |B(k)) derived by the Bayes theorem as

µY |B(k) =
xpi(k − 1) + δL|X(k − 1)lpi + δB|Y (k − 1)bi

1 + δL|X(k − 1) + δB|Y (k − 1)
, (2)

σ2
Y |B(k) =

σ2
pi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
, (3)

where

δL|X(k − 1) =
σ2
pi(k − 1)

σ2
L|X

and δB|Y (k − 1) =
σ2
pi(k − 1)

σ2
B|Y

. (4)

Using this Bayesian approach to change the position of the particles,
the value for xpi(k), at each step k, for each particle p and each dimen-
sion i, is derived from the random variable Y |B with normal distribution
N (µY |B(k), σ2

Y |B(k)) as

xpi(k) = Y |B. (5)

The mean µY |B(k) is derived from equation (2) replacing recursively xpi(k−1)
by the value of µY |B(k − 1) (the mean of Y |B at previous step k − 1). The
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variance σ2
Y |B(k) is derived from equation (3), replacing recursively σ2

pi(k−1)

by the value of σ2
Y |B(k−1) (the variance of Y |B at previous step k−1), when

the position xp(k−1) is the new global best, i.e., f(xp(k−1)) < f(b), other-
wise, when f(xp(k− 1)) ≥ f(b), σ2

Y |B(k) is considered equal to σ2
Y |B(k− 1).

In this way, considering h(k) the number of steps with a new global best
until the step k, for k ≥ 1, i.e.,

h(k) =

{
h(k − 1) + 1 if f(xp(k − 1)) < f(b)

h(k − 1), otherwise.
(6)

with h(0) = 0, then the closed formulas of σ2
Y |B(k), δL|X(k) and δB|Y (k) for

k ≥ 1 are given by

σ2
Y |B(k) =

σ2
pi(0)

1 + h(k)(δL|X(0) + δB|Y (0))
=

σ2
pi(0)

1 + h(k)

(
σ2
pi(0)

σ2
L|X

+
σ2
pi(0)

σ2
B|Y

) , (7)

δL|X(k) =
δL|X(0)

1 + h(k)(δL|X(0) + δB|Y (0))
=

σ2
pi(0)

σ2
L|X + h(k)σ2

pi(0)

(
1 +

σ2
L|X
σ2
B|Y

) ,
(8)

δB|Y (k) =
δB|Y (0)

1 + h(k)(δL|X(0) + δB|Y (0))
=

σ2
pi(0)

σ2
B|Y + h(k)σ2

pi(0)

(
1 +

σ2
B|Y
σ2
L|X

) .
(9)

The function h(k) is monotone non-decreasing and h(k) ≤ k.
The dimension i of the velocity of the particle p at step k, denoted by

vpi(k), is derived as the difference of two normal random variables xpi(k)−xpi(k−1)
(as shown in Appendix A), that is a normal random variable with distribu-
tion N (µV (k), σ2

V (k)) [31], where

µV (k) = µY |B(k)− µY |B(k − 1)

=
δL|X(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
(lpi(k − 1)− xpi(k − 1))

+
δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
(bi(k − 1)− xpi(k − 1)), (10)

σ2
V (k) = σ2

Y |B(k) + σ2
Y |B(k − 1)

=
(2 + δL|X(k − 1) + δB|Y (k − 1))σ2

pi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
. (11)

In (10) the velocity vpi(k) results from the sum of the cognitive and social
components of the PSO. Thus, as soon as the current position of a particle
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converges to the current personal and to the current global best position,
the mean of the velocity µV (k) becomes 0 and the expected new position of
the particle tends to be equal to the current one. In this case, although the
mean of the new velocity is 0, a new position, that can be also significantly
different from the current position, can occur with a probability that depends
on the value of the variance σ2

Y |B(k − 1).

A different formula for µV (k) can be derived from (10) (as described in
Appendix A), showing that the velocity vpi(k) can result from the sum of
three different components (the momentum, the difference between the local
best positions of the last two steps and the difference between the global best
positions of the last two steps), obtaining

µV (k) =
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
(lpi(k − 1)− lpi(k − 2))

+
δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
(bi(k − 1)− bi(k − 2)). (12)

Equation (12) shows that, when the mean µV (k) of the velocity of a particle
is greater than 0, the particle changes direction with respect to the current
velocity (moment or inertia component) only when new current personal
or global best positions occur. Otherwise, when personal or global best
positions do not change then the magnitude of new velocity is obtained as
a fraction of the current velocity.

When the i-th dimension of the research space is bounded by xmini and
xmaxi , the value xpi(k) is obtained from the random variable Y |B with nor-
mal distribution N (µY |B(k), σ2

Y |B(k)) defined in (2) and (3), using the for-
mula

xpi(k) = xmini + (Y |B − x̄min)
xmaxi − xmini

x̄maxi − x̄mini

, (13)

where

x̄mini = min{xmini , µY |B(k)− 3σY |B(k)}, (14)

x̄maxi = max{xmaxi , µY |B(k) + 3σY |B(k)}. (15)

In this way, values sampled from Y |B that are in the interval [x̄mini , x̄maxi ]
are adjusted with values in the interval [xmini , xmaxi ] of the search variable.
The interval [x̄mini , x̄maxi ] is defined in (14) and (15) such that the probabil-
ity that Y |B lies out of this interval is small. This probability is less than the
probability that Y |B is out of the interval [µY |B(k)−3σY |B(k), µY |B(k)+3σY |B(k)],
that is equal to 0.003 [31]. The values sampled from Y |B that are out of
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the interval [x̄mini , x̄maxi ] are adjusted with the bounds xmini or xmaxi of the
search variable.

Algorithm 3 describes formally in pseudocode the detailed steps to up-
date the position of each particle at step k, with k ≥ 1. The condition at

Algorithm 3: Bayesian approach to update the position of each par-
ticle at step k, with k ≥ 1

1 Data: Step k, σ2
B|Y , σ2

L|X , µY |B(k − 1) and σ2
Y |B(k − 1) for p and i

2 f(xp(k − 1)), f(b(k − 1))
3 Bounds xmini and xmaxi of the i-th dimension of the particle’s position
4 Result: xpi(k), µY |B(k) and σ2

Y |B(k) for p and i

5 begin
6 for p = 1, . . . , D do // for each particle

7 new global best=f(xp(k − 1)) < f(b(k − 1))
8 for i = 1, . . . , d do // for each search variable

9 xpi(k − 1)← µY |B(k − 1)

10 σ2
pi(k − 1)← σ2

Y |B(k − 1)

11 µY |B(k)← the right expression of equation (2)

12 if new global best then
13 σ2

Y |B(k)← the right expression of equation (3)

14 else
15 σ2

Y |B(k)← σ2
Y |B(k − 1)

16 x← N (µY |B(k), σ2
Y |B(k)) // new normal random value

17 x̄mini ← min{xmini , µY |B(k)− 3σY |B(k)}
18 x̄maxi ← max{xmaxi , µY |B(k) + 3σY |B(k)}
19 if x < x̄mini then
20 xpi(k)← xmini

21 else if x > x̄maxi then
22 xpi(k)← xmaxi

23 else

24 xpi(k)← xmini + (x− x̄min)
xmax
i −xmin

i

x̄max
i −x̄min

i

line 7 verifies if the position of the particle p at the previous step k − 1 is
the new global best position for the step k, i.e., if it is lower than the global
best position obtained at the previous step k− 1. This condition, that does
not depend on the value of i, is used at line 12 to decide the current value
of the variance σ2

Y |B(k), for each i.
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6.2 Parameters and analysis of the Bayesian PSO algorithm

As shown in (2), the new position of a particle is determined by means of
a weighted mean among the previous position of the particle, the current
personal best position and the current global best position. The weights of
each component are determined by δL|X(k − 1) and δB|Y (k − 1), which are
defined as a function of the variances σ2

B|Y , σ2
L|X and σ2

pi(0). These variances
represent the uncertainties associated to the current measurement at each
step of bi (conditioned to the prior estimation of li), the current measurement
at each step of li (conditioned to the prior estimation of the position xpi) and
the posterior estimation at step 1 of the new position xpi(1), respectively.
Parameters σ2

B|Y and σ2
L|X correspond to the acceleration coefficients of the

basic PSO algorithm, since they control the impact of the cognitive and
social components on the velocity of the particle. Parameter σ2

pi(0) adjusts
the position of a particle with respect to the new value of the mean µY |B(k).
From (4) and (10) it follows that, the ratio of the weights of the cognitive
and social components is

σ2
B|Y

σ2
L|X

. (16)

Thus, when σ2
L|X < σ2

B|X , the impact of the cognitive component on the
velocity of the particle is greater than of the impact of the social component,
like in the basic PSO algorithm when c1 > c2. In this case, the particle
is more attracted to its own personal best position, resulting in excessive
wandering [8]. On the other hand, if σ2

L|X > σ2
B|X then, like in the basic

PSO algorithm when c1 < c2, the particle is strongly attracted to the global
best position, causing particles to converge prematurely towards global best
position [8]. Considering different values of σ2

L|X and σ2
B|Y while maintaining

the same ratio, different values for µV (k) can be obtained without changing
the relative impacts of the cognitive and social components.

From (10) it follows that, for k ≥ 1:

• the mean of the new position µY |B(k) remains equal to the mean of
the current position µY |B(k − 1), i.e., the mean of the velocity µV (k)
tends to 0, as δL|X(k − 1) and δB|Y (k − 1) approach to 0, and

• µY |B(k) tends to lpi(k− 1) or bi(k− 1) when, respectively, δL|X(k− 1)
or δB|Y (k − 1) tend to infinity.

In fact, δL|X(k) or δB|Y (k) can assume very high values only when k = 0.
Definitions (4) for k = 0 imply that δL|X(0) or δB|Y (0) vary from 0 to infinity
as σ2

L|X or σ2
B|Y , respectively, vary from infinity to 0, or as σ2

Y |B(0) varies
from 0 to infinity.
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From the closed formulas (8) and (9) we derive that, depending on the
initial value assigned to σ2

pi(0), for h(k) ≥ 1

0 < δ2
L|X(k) <

1

h(k)

(
1 +

σ2
L|X
σ2
B|Y

) , 0 < δ2
B|Y (k) <

1

h(k)

(
1 +

σ2
B|Y
σ2
L|X

) (17)

where δL|X(k) and δB|Y (k) become 0 when σ2
pi(0) tends to 0, and they tend

to the (less than 1) upper bounds of the equations when σ2
pi(0) approaches

infinity. Thus, the maximum value that δ2
L|X(k) and δ2

B|Y (k) can reach for

h(k) ≥ 1 depends on the ratio between the values of σ2
L|X and σ2

B|Y and on

the value of h(k), independently from the value of σ2
pi(0).

Replacing the bounds of equation (17) in equation (10) we get

0 ≤ µV (k) ≤ 1

h(k)

(
1 +

σ2
L|X
σ2
B|Y

)(lpi(k − 1)− xpi(k − 1))

+
1

h(k)

(
1 +

σ2
B|Y
σ2
L|X

)(bi(k − 1)− xpi(k − 1)), (18)

where, for h(k) ≥ 1, the mean µV (k) of the velocity becomes 0, when σ2
pi(0)

approaches 0, and it tends to the upper bound of (18), when σ2
pi(0) ap-

proaches infinity.
From (8) and (9) it follows also that, for h(k) ≥ 1, δ2

L|X(k) and δ2
B|Y (k)

have opposite trends, with δ2
L|X(k) decreasing and δ2

B|Y (k) increasing for in-

creasing values of σ2
L|X , and with δ2

L|X(k) increasing and δ2
B|Y (k) decreasing

for increasing values of σ2
B|Y . This implies that, when the two (cognitive

and social) components of the velocity in (10) are positive and for a fixed
value of σ2

pi(0) and h(k), the mean µV (k) of the velocity is greater than a

positive lower bound; it is not dependent on the values of σ2
L|X and σ2

B|Y ,

but only on the value of σ2
pi(0) and h(k).

Thus, when the cognitive and social components of the velocity in (10)
are positive, µV (k) for h(k) ≥ 1 is limited by a positive lower bound, that
depends only on h(k) and σ2

pi(0), and by the upper bound of (18), that

depends only on h(k) and on the ratio between σ2
L|X and σ2

B|Y .

Depending on the initial value assigned to σ2
pi(0), from (7) we have for

h(k) ≥ 1

0 < σ2
Y |B(k) <

1

h(k)

(
1

σ2
L|X

+ 1
σ2
B|Y

) =
σ2
L|X

h(k)

(
1 +

σ2
L|X
σ2
B|Y

) (19)

17



where σ2
Y |B(k) becomes 0, when σ2

pi(0) approaches 0, and it tends to the

upper bound of (19), when σ2
pi(0) approaches infinity. Thus, the maximum

value that the variance σ2
Y |B(k) and σ2

V (k) can reach is limited by the values

of the parameters σ2
L|X and σ2

B|Y , independently from the value of σ2
pi(0).

From (7) we derive that, for values of σ2
L|X >> σ2

pi(0) or σ2
B|Y >> σ2

pi(0)

and for a limited value of h(k), the variance σ2
Y |B(k) can be approximated

by the constant σ2
pi(0).

As an example of parameter setting, considering σ2
L|X = σ2

B|Y and

σ2
pi(0) >> σ2

L|X , we get for h(k) ≥ 1

δ2
L|X(k) = δ2

B|Y (k) ' 1

2h(k)
and σ2

Y |B(k) '
σ2
L|X

2h(k)
,

where the right side expressions of the two equations are derived from the
upper bounds of (17) and (19), respectively.

When the number of new global best positions h(k) of the algorithm in-
creases, the uncertainties relative to the current personal best position and
the current global best position decrease, since improved positions for the
personal and global best should be reached. From the previous discussion
about the trends of µY |B(k) and from equations (7), (8) and (9) it follows
that, for increasing values of h(k), the mean µY |B(k) tends to be constant
and the variance σ2

Y |B(k) decreases to 0. In order to avoid that the mean

µV (k) and the variance σ2
V (k) of the velocity decrease below a certain min-

imum value before the optimal position is reached, the following condition
must be verified:

σ2
Y |B(kmax) ≥ ε, (20)

where ε > 0 and kmax is the maximum number of steps for which the optimal
position is reached. Given the values for σ2

L|X , σ2
B|Y , kmax and ε, then the

minimum value for σ2
pi(0) for which the variance σ2

Y |B(kmax) ≥ ε is derived

from (7) as

ε

1− εh(kmax)

(
1

σ2
L|X

+ 1
σ2
B|Y

) , (21)

with

1

σ2
L|X

+
1

σ2
B|Y

<
1

εh(kmax)
.

For large values of σ2
L|X or σ2

B|Y , formula (21) is approximated by ε.

On the contrary, low values of σ2
L|X and σ2

B|Y imply smaller values for ε or

h(kmax) and values for σ2
pi(0) higher than ε.
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7 Evaluation of the proposed solutions

In this section, we carry on an evaluation study to assess performance and
quality indicators of our solutions via simulation. To this purpose, we set
up two variants of the basic PSO algorithm by assembling the previously
described features. Specifically, the two PSO variants we concentrate on are
generated respectively by i) employing the novel Algorithm 2 for the sample
of the initial population and the fuzzy approach described in Section 5 (re-
ferred in the following as PSOF variant), and ii) employing the Algorithm 3
to change the position of particles (referred in the following as PSOB vari-
ant). Two kinds of evaluation are performed. First, the PSOF and PSOB
solutions are compared with the basic PSO algorithm (indicated as PSOC)
in terms of performance and quality indicators. Then, the new algorithms
are employed in a simple but realistic use case in the electrical power sector
taken from the literature and compared with a few other optimization solu-
tions already adopted in the referred study. These analyses are detailed in
the next two subsections.

7.1 Analysis and comparison with the basic PSO

In this study, we consider the Rosenbrock function [26] and the Griewank
function [11], which are functions widely used to test the quality of op-
timization algorithms. In particular, we will use their multi–dimensional
generalizations, i.e.,

f(x1, ..., xd) =
d−1∑
i=1

((1− xi)2 + 100(xi+1 − x2
i )

2)

and

g(x1, ..., xd) = 1 +
1

4000

d∑
i=1

x2
i −

d∏
i=1

cos
xi√
i
,

respectively. Moreover, we consider -10 and 10 as the lower and upper
bounds for each variable of the Rosenbrock function and -20, 20 as the
lower and upper bounds for each variable of the Grienwank function.

The two indicators we analyzed are accuracy A, which represents the
ability of the algorithm to better approximate (or possibly reach) the op-
timal solution b∗ within a given number of steps, and efficiency K, which
represents the promptness (in number of steps) of the algorithm in reaching
the optimal solution b∗ or a certain approximated value a of the objective
function. A and K are random variables defined as

A = f(b(kmax))− f(b∗),

K = min{k|f(b(k)) ≤ a and k is not limited}.
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When the minimum of the objective function is 0, i.e., f(b∗) = 0, then A is
equal to the minimum value of the objective function obtained by the PSO
algorithm, i.e., b(kmax).

To enrich the analyses and the comparison between the three variants, for
both indicators we evaluated the minimum and maximum values obtained
out of the set of simulations performed, as well as the mean value, i.e.,

AminX = min{A}, AmaxX = max{A} and AmeanX = E[A],

Kmin
X = min{K},Kmax

X = max{K} and Kmean
X = E[K],

where X is the name of the variant for wich the measure is derived: PSOC,
PSOF or PSOB.

The maximum number of steps kmax and the swarm dimension D are
the two parameters that have been varied in the analyses, as specified in the
tables summarizing the obtained results. Default values for the algorithms
parameters, assumed in the simulations when not otherwise specified, are
respectively: kmax = 150 and D = 35.

Moreover, in the simulations we use the following standard values for
the PSOC parameters:

w = 0.72984, c1 = c2 = 1.496172.

For the PSOF algorithm, the coefficients w, c1, c2 are determined at each
step k by using the fuzzy inference scheme described in Section 5.

Finally, in the PSOB algorithm, the parameters σ2
pi(0), σ2

L|X , σ2
B|Y are

set by expert-based choice as follows:

σ2
p(0) = σ2

L|X =
|xmaxi − xmini |

2D
, σ2

B|Y =
|xmaxi − xmini |

D
,

for each component i of the pth particle.

7.1.1 Results for accuracy

Results of 100 simulation runs to evaluate the accuracy parameter are sum-
marized in Table 2 for the PSOC, PSOF, PSOB algorithms used to minimize
the Rosenbrock function with d = 3. The Rosenbrock function with d = 3
takes the minimum value, that is zero, at the point (0, 0, 0).

We can observe that for the default values of the parameters (first row
of the table), PSOF has a better accuracy than PSOB and PSOC with
respect to the minimum value. Instead, PSOB shows a better accuracy
than PSOF and PSOC for both AmeanPSOB and AmaxPSOB. Similar results are
obtained for different values of the parameters D and kmax. Although there
is no definitive rank among the three variants of the PSO under analysis,
the accuracy of the basic PSO version is never better than both the other
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Table 2: Minimization of the Rosenbrock funtion with d = 3 using PSOC,
PSOF, PSOB algorithms, for 100 simulations.

Amin
PSOC Amean

PSOC Amax
PSOC Amin

PSOF Amean
PSOF Amax

PSOF Amin
PSOB Amean

PSOB Amax
PSOB

Default 4.8 · 10−5 0.5730 8.7900 4.2·10−7 0.04701 7.3425 0.0008 0.0339 0.1523

D = 20 8.8·10−5 0.9532 8.0209 8.0·10−5 0.3920 9.2987 0.0033 0.1473 0.6662

D = 50 1.1·10−5 0.1951 4.9227 2.1·10−7 0.0134 0.0645 2.1·10−5 0.0127 0.1057

kmax = 100 6.2632 · 10−5 0.6534 5.8641 0.0002 0.0727 0.2868 0.0005 0.0552 0.2147

kmax = 200 6.1·10−6 0.3933 5.2793 4.3·10−9 0.0284 0.1110 6.5·10−5 0.0258 0.1179

two. Especially when focusing on AmeanPSOC , it is constantly (and significantly)
higher than AmeanPSOF and AmeanPSOB, meaning lower accuracy.

Similarly, results of 100 simulation runs are summarized in Table 3 for
the PSOC, PSOF, PSOB algorithms used to minimize the Griewank function
with d = 5, again to evaluate the accuracy indicator. The Griewank function
with d = 5 takes the minimum value, that is zero, in several different points.

Table 3: Minimization of the Griewank funtion with d = 5 using PSOC,
PSOF, PSOB algorithms, for 100 simulations.

Amin
PSOC Amean

PSOC Amax
PSOC Amin

PSOF Amean
PSOF Amax

PSOF Amin
PSOB Amean

PSOB Amax
PSOB

Default 0.0004 0.0757 0.2234 2.2·10−6 0.0118 0.0236 0.0038 0.0071 0.0481

D = 20 0.0072 0.0901 0.2280 0.0001 0.0839 0.2228 0.0005 0.0369 0.1073

D = 50 9.1·10−5 0.0626 0.2046 6.4·10−10 8.2·10−5 0.0005 6.9·10−5 0.0008 0.0035

kmax = 100 0.0114 0.0941 0.2612 0.0007 0.0832 0.2490 0.0006 0.0075 0.0481

kmax = 200 0.0003 0.0699 0.1626 4.7·10−8 0.0007 0.0153 3.0·10−5 0.0004 0.0495

Comments similar to those already made with reference to the previous
table are applicable also to Table 3. PSOC accuracy is always outperformed
by either PSOB or PSOF (actually, by both, unless for the minimum value
in the first row when the default parameters are used, for which PSOC is
better than PSOB). Therefore, also in this use case the proposed variants
PSOF and PSOB should be preferred.

7.1.2 Results for efficiency

To assess the efficiency indicator, we considered the Griewank function only
and calculated the (minimum, mean and maximum) number of steps re-
quired by each of the three PSO variants to reach a predefined value a for
this function. Again, 100 simulations have been performed; each run is com-
pleted either when the specified value is obtained by the execution of the
PSO algorithm, or a maximum of 150 steps is exceeded. Table 4 summarizes
the simulation results. The values chosen for a are the minimum, mean and
maximum values obtained in Table 3 by PSOC, in correspondence of the row
“Default”, that is, AminPSOC = 0.0004, AmeanPSOC = 0.0757 and AmaxPSOC = 0.2234,
respectively. The values 0 in the table indicate that the initial position ran-
domly selected by the corresponding algorithms already provide an outcome
better than a. Instead, when “not found” appears, it means that a is not
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reached within 150 steps (maximum number of steps set in the simulations).
Looking at the results in Table 4, we can immediately appreciate the signif-
icantly better efficiency shown in general by the variants PSOF and PSOB.
In fact, for both a = AmeanPSOC and a = AmaxPSOC , the number of steps requested
by PSOF and PSOB is much lower than that required by PSOC, being in-
deed 0 for a = AmaxPSOC . The only exception is PSOB for a = AminPSOC , which
is not surprising, since looking at Table 3, PSOB shows lower accuracy than
the minimum value obtained by PSOC, when default parameters are used
(which is 0.0004).

Table 4: Minimization of the Griewank funtion with d = 5 using PSOC,
PSOF, PSOB algorithms, for 100 simulations.

Kmin
PSOC Kmean

PSOC Kmax
PSOC Kmin

PSOF Kmean
PSOF Kmax

PSOF Kmin
PSOB Kmean

PSOB Kmax
PSOB

a = Amin
PSOC 127 131 not found 16 28 50 not found not found not found

a = Amean
PSOC 17 66 144 4 14 21 8 12 31

a = Amax
PSOC 1 26 122 0 0 0 0 0 0

7.2 Evaluation in a practical case study: optimization of
electrical grids

In this section, we have evaluated our modified PSO algorithms when em-
ployed in electrical grid optimizations, in terms of minimizing the total power
loss over the lines. In particular, we focused on the IEEE–6 bus system in
Figure 2, typically used as a simple case study to deal with optimization
in electrical grids. A survey on the general optimal power flow problem
(i.e., the problem to optimize electrical grids) can be found in [10] and [30].
In [18] and [29], the authors have reported the results of the optimization

Figure 2: IEEE–6 Bus System

of the IEEE–6 bus system by using different optimization algorithms: Ge-
netic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABA), Differential Evolution (DE). The optimization has been im-
plemented through minimizing the total power loss over the lines of the
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electrical grid, expressed as follows:

Ploss =
1

2

N∑
i=1

n∑
j=1

gi,j(V
2
i + V 2

j − 2ViVj cos(δi − δj))

where N is the total number of bus (nodes), Vi is the voltage magnitude
at bus i, δi is the voltage angle at bus i, gi,j is the conductance of the
line connecting busses i and j. For optimization purposes, seven control
variables have been used in these papers: P6 active power of bus 6, V1

and V6 voltages of busses 1 and 6, Q3 and Q4 reactive power of busses
3 and 4, T24 and T35 tap changers of transformers over lines connecting
busses 2,4 and 3,5. We have instantiated our PSOF and PSOB solutions
to this problem, adopting the same control variables (which correspond to
the search variables of our algorithms), to which the same range of values
as in [18] and [29] have been assigned, for the sake of comparison with the
previously analysed optimization algorithms. Of course, we have used the
same values also for state variables.

In Table 5, we report the results obtained in [18] and [29] for the GA,
PSO, ABA and DE algorithms, with the addition of the results that we
have obtained using our modified algorithms PSOB and PSOF. The results
are obtained with kmax = 200, D = 30, running 30 simulation experiments.
From this table, it can be observed that both PSOF and PSOF show the best
values under the column “Min”, and the PSOB is the best also for the values
under the other column. Although dependent on the specific setting adopted
in the set up of this case study, the observed results are encouraging to
investigate more deeply the suitability of our proposed solutions to support
power flow optimizations, which we plan as future work.

Table 5: OPF solutions obtained by using GA, PSO ABC, DE, PSOB, and
PSOF for the 6–bus test system

Method Min Mean Max

GA 6.7747 6.9705 7.5292

PSO 6.7486 6.8425 7.1517

ABA 6.7361 6.7361 6.7364

DE 6.7361 6.7361 6.7368

PSOF 6.7329 6.7557 6.9042

PSOB 6.7329 6.7331 6.7333

For completeness on the presented case study, in Table 6 we report the
optimal configuration for the control variables that yields the minimum value
obtained by the PSOB and the PSOF algorithms.

8 Conclusions

In this paper, the problem of performing non–linear optimization has been
treated by means of the PSO algorithm. Moving from the original for-
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Table 6: Values of control variables corresponding to minimum solution
obtained by PSOB and PSOF algorithms

Control variable Value

V1 1.1

V6 1.1

P6 27.6

Q3 43

Q4 27

T24 1.0475

T35 0.9975

mulation of the PSO algorithm, improvements have been proposed on the
sampling of the initial population, the setting of the algorithm’s parameters
and the method for the moving of the control variables in the search space.
Well consolidated techniques have been adopted to cover the critical points
of the algorithm we worked on, namely the fuzzy logics and the Bayesian
theory. A simulation study has been carried on to show the benefits of the
new proposed PSO solutions with respect to the classical PSO formulation,
using well–known testing functions like the Rosenbrock function and the
Griewank function. Moreover, a case study in the electrical field has been
worked out, to show results on the suitability of our proposed solutions to
support optimization needs in this context, in comparisons with other al-
ready adopted alternatives. The obtained results are encouraging, and we
expect that the new features we introduced into the PSO algorithm are ac-
tually relevant in a variety of application contexts, especially those that are
sensitive to the input sampling and the coverage of the search space.

Several research extensions are foreseen. A first direction would be to
investigate further the benefits of the proposed variants by considering addi-
tional combinations of them, such as combining the solution for the sample
of the initial population with the Bayesian technique to change the position
of the particles. Further simulations devoted to improve the understanding
of the sensitivity of the three compared solutions to the algorithms param-
eters would be undoubtedly another valuable direction to explore. Other
refinements would be also interesting, such as focus on the setting of vari-
ances and introducing correlation factors in the Bayesian approach, as well
as setting of expert–based choices in the fuzzy logics strategy. Of course,
addressing more deep investigations on the usage of the proposed solutions
in specific application contexts, such as the electrical power system already
tackled in this paper, is another planned research line. Finally, practical sup-
port to the the selection of the most suited algorithm to solve optimization
aspects would be also very helpful by exploring the characterization of the
PSO family with respect to typical needs raised in optimizations problems.
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A Appendix

We use equation (2) for deriving formula (10) for µV (k) as follow

µV (k) = µY |B(k)− µY |B(k − 1)

=
xpi(k − 1) + δL|X(k − 1)lpi + δB|Y (k − 1)bi

1 + δL|X(k − 1) + δB|Y (k − 1)
− xpi(k − 1)

=
xpi(k − 1) + δL|X(k − 1)lpi + δB|Y (k − 1)bi

1 + δL|X(k − 1) + δB|Y (k − 1)

−
xpi(k − 1) + δL|X(k − 1)xpi(k − 1) + δB|Y (k − 1)xpi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)

=
δL|X(k − 1)(lpi(k − 1)− xpi(k − 1)) + δB|Y (k − 1)(bi(k − 1)− xpi(k − 1))

1 + δL|X(k − 1) + δB|Y (k − 1)
.

Formula (11) for σ2
V (k) is derived from (3) as follow

σ2
V (k) = σ2

Y |B(k) + σ2
Y |B(k − 1)

=
σ2
pi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
+ σ2

pi(k − 1)

=
(2 + δL|X(k − 1) + δB|Y (k − 1))σ2

pi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
.

Formula (12) for µV (k) is derived from equations (10) and (2) as follow.
From (3) we get

1

σ2
Y |B(k)

=
1

σ2
Y |B(k − 1)

+
1

σ2
L|X

+
1

σ2
B|Y

, (22)

1

σ2
Y |B(k − 1)

=
1

σ2
Y |B(k)

− 1

σ2
L|X
− 1

σ2
B|Y

, (23)

σ2
Y |B(k)

σ2
Y |B(k − 1)

= 1− δL|X(k) + δB|Y (k), (24)

σ2
Y |B(k − 1)

σ2
Y |B(k)

= 1 + δL|X(k − 1) + δB|Y (k − 1). (25)
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From (4) for each value of k and h we get

σ2
Y |B(k)δL|X(h) =

σ2
Y |B(k)σ2

Y |B(h)

σ2
L|X

= δL|X(k)σ2
Y |B(h) (26)

σ2
Y |B(k)δB|Y (h) =

σ2
Y |B(k)σ2

Y |B(h)

σ2
B|Y

= δB|Y (k)σ2
Y |B(h). (27)

From (10) we obtain a new fomula for µV (k) as

µV (k − 1) =
1− δL|X(k − 1)− δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1)

=
1

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1)

−
δL|X(k − 1) + δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1)

=
σ2
Y |B(k − 1)

σ2
Y |B(k − 2)

σ2
Y |B(k − 2)

σ2
Y |B(k − 1)

1

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1)

−
δL|X(k − 1) + δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1)

=
σ2
Y |B(k − 1)

σ2
Y |B(k − 2)

1 + δL|X(k − 2) + δB|Y (k − 2)

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1)

−
δL|X(k − 1) + δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
µV (k − 1), from (25)

=
σ2
Y |B(k − 1)

σ2
Y |B(k − 2)

1 + δL|X(k − 2) + δB|Y (k − 2)

1− δL|X(k − 1)− δB|Y (k − 1)

δL|X(k − 2)(lpi(k − 2)− xpi(k − 2)) + δB|Y (k − 2)(bi(k − 2)− xpi(k − 2))

1 + δL|X(k − 2) + δB|Y (k − 2)

−
δL|X(k − 1) + δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
(xpi(k − 1)− xpi(k − 2)), from (10)

=
σ2
Y |B(k − 1)

σ2
Y |B(k − 2)

δL|X(k − 2)(lpi(k − 2)− xpi(k − 2)) + δB|Y (k − 2)(bi(k − 2)− xpi(k − 2))

1− δL|X(k − 1)− δB|Y (k − 1)

+
δL|X(k − 1) + δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
(xpi(k − 2)− xpi(k − 1))

=
σ2
Y |B(k − 2)

σ2
Y |B(k − 2)
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δL|X(k − 1)(lpi(k − 2)− xpi(k − 2)) + δB|Y (k − 2)(bi(k − 2)− xpi(k − 2))

1− δL|X(k − 1)− δB|Y (k − 1)

+
δL|X(k − 1) + δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)
(xpi(k − 2)− xpi(k − 1)), from (26) and (27)

=
δL|X(k − 1)lpi(k − 2)− δL|X(k − 1)xpi(k − 2)

1− δL|X(k − 1)− δB|Y (k − 1)

+
δB|Y (k − 2)bi(k − 2)− δB|Y (k − 2)xpi(k − 2)

1− δL|X(k − 1)− δB|Y (k − 1)

+
δL|X(k − 1)xpi(k − 2) + δB|Y (k − 1)xpi(k − 2)

1− δL|X(k − 1)− δB|Y (k − 1)

+
−δL|X(k − 1)xpi(k − 1)− δB|Y (k − 1)xpi(k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)

=
δL|X(k − 1)(lpi(k − 2)− xpi(k − 1)) + δB|Y (k − 1)(bi(k − 2)− xpi(k − 1))

1− δL|X(k − 1)− δB|Y (k − 1)

(28)

Finally from (10) and (28) we derive formula (12) for µV (k) as

µV (k) =
δL|X(k − 1)(lpi(k − 1)− xpi(k − 1)) + δB|Y (k − 1)(bi(k − 1)− xpi(k − 1))

1 + δL|X(k − 1) + δB|Y (k − 1)

=
δL|X(k − 1)lpi(k − 1)− δL|X(k − 1)xpi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)bi(k − 1)− δB|Y (k − 1)xpi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δL|X(k − 1)lpi(k − 2)− δL|X(k − 1)lpi(k − 2)

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)bi(k − 2)− δB|Y (k − 1)bi(k − 2)

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1− δL|X(k − 1)− δB|Y (k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)(
δL|X(k − 1)lpi(k − 2)− δL|X(k − 1)xpi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)bi(k − 2)− δB|Y (k − 1)xpi(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)

)
+
δL|X(k − 1)lpi(k − 1)− δL|X(k − 1)lpi(k − 2)

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)bi(k − 1)− δB|Y (k − 1)bi(k − 2)

1 + δL|X(k − 1) + δB|Y (k − 1)
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=
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)(
δL|X(k − 1)lpi(k − 2)− δL|X(k − 1)xpi(k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)

+
δB|Y (k − 1)bi(k − 2)− δB|Y (k − 1)xpi(k − 1)

1− δL|X(k − 1)− δB|Y (k − 1)

)
+
δL|X(k − 1)lpi(k − 1)− δL|X(k − 1)lpi(k − 2)

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)bi(k − 1)− δB|Y (k − 1)bi(k − 2)

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)

δL|X(k − 1)(lpi(k − 2)− xpi(k − 1)) + δB|Y (k − 1)(bi(k − 2)− xpi(k − 1))

1− δL|X(k − 1)− δB|Y (k − 1)

+
δL|X(k − 1)(lpi(k − 1)− lpi(k − 2)) + δB|Y (k − 1)(bi(k − 1)− bi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)(lpi(k − 1)− lpi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)(bi(k − 1)− bi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)
, from (28) (29)

Another interesting formula for µV (k), it derived from (28) observing
that

lpi(k − 1)− lpi(k − 2) = (xpi(k − 1)− xpi(k − 2))

+ (lpi(k − 1)− xpi(k − 1))

− (lpi(k − 2)− xpi(k − 2)), (30)

bi(k − 1)− bi(k − 2) = (xpi(k − 1)− xpi(k − 2))

+ (bi(k − 1)− xpi(k − 1))

− (bi(k − 2)− xpi(k − 2)). (31)

Replacing (30) and (31) in equation (28) we get

µV (k − 1) =
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)(lpi(k − 1)− lpi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)
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+
δB|Y (k − 1)(bi(k − 1)− bi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
(xpi(k − 1)− xpi(k − 2))

+
δL|X(k − 1)((lpi(k − 1)− xpi(k − 1))− (lpi(k − 2)− xpi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
(xpi(k − 1)− xpi(k − 2))

+
δB|Y (k − 1)((bi(k − 1)− xpi(k − 1))− (bi(k − 2)− xpi(k − 2)))

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)((lpi(k − 1)− xpi(k − 1))− (lpi(k − 2)− xpi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δB|Y (k − 1)((bi(k − 1)− xpi(k − 1))− (bi(k − 2)− xpi(k − 2)))

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1− δL|X(k − 1)− δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1) + δB|Y (k − 1)

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)((lpi(k − 1)− xpi(k − 1))− (lpi(k − 2)− xpi(k − 2))

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)((bi(k − 1)− xpi(k − 1))− (bi(k − 2)− xpi(k − 2)))

1 + δL|X(k − 1) + δB|Y (k − 1)

=
1

1 + δL|X(k − 1) + δB|Y (k − 1)
µV (k − 1)

+
δL|X(k − 1)((lpi(k − 1)− xpi(k − 1))− (lpi(k − 2)− xpi(k − 2)))

1 + δL|X(k − 1) + δB|Y (k − 1)

+
δB|Y (k − 1)((bi(k − 1)− xpi(k − 1))− (bi(k − 2)− xpi(k − 2)))

1 + δL|X(k − 1) + δB|Y (k − 1)
.

(32)
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Equation (32) shows also that, when the mean µV (k) of the velocity of
a particle is greater than 0, the particle changes direction with respect to
the current velocity (moment) only when the distance between the current
position and the personal or global best postition is changed with respect
to the previous step. Otherwise, the magnitude of new velocity is obtained
as a fraction of that of the current velocity.
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