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ABSTRACT

T he water-energy nexus holds paramount relevance in the context of the
transition to a carbon free energy system, being water the only renewable

energy source with reliable storage capacity.
Modelling hydropower production in a large domain over a long time window
represents an open challenge due to a variety of reasons: firstly, high-resolution,
large-scale hydrological modelling in a context of uncertainty needs calibra-
tion, thus representing a computationally intensive task due to the large do-
main and time window over which calibration is needed; secondly, as stated by
many works in literature, hydropower production modelling and in particular
reservoir modelling is a very information-demanding procedure, and excessive
simplifications adopted to face the lack of information might lead to consistent
bias in the predictions.
This thesis can be subdivided into three main parts: firstly, the model that
was used to perform every analysis, HYPERstreamHS, will be presented. The
model is a continuous, large-scale hydrological model embedding a dual-layer
MPI framework (i.e. Message Passing Interface, a common standard in parallel
computing) that ensures optimal scalability of the model, greatly reducing the
computation time needed. Explicit simulation of water diversions due to hy-
dropower production is also included in the model, and adopts only publicly
available information, making the model widely applicable. Secondly, a first
validation of the model will be presented, and the adopted approach will be
compared with some other approaches commonly found in literature, show-
ing that the inclusion of a high level of detail is crucial to ensure a reliable
performance of the model; this first application was performed on the Adige
catchment, where extensive information on human systems was available, and
allowed to effectively assess which information were indispensable and which,
in turn, could be simplified to some extent while preserving model performance.
Finally, the model setup has been applied on a relevant portion of the Western
Italian Alps; in this case, two different meteorological input forcing data sets
were adopted, in order to assess the differences in their performance in terms
of hydropower production modelling. This latter study indeed represents a
preliminary analysis and will provide stepping stone to extend the modelling
framework to the Italian Alpine Region.
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INTRODUCTION

In this chapter a general overview of the relevant topics concerning hydropower produc-

tion modelling is provided, with particular attention to three topics: first, the adoption

of High Performance Computing (HPC) resources in hydrological modelling applica-

tions, followed by a review of the works that include explicit simulation of streamflow

alterations due to hydropower system. Finally, the role of meteorological input data

sets in hydropower production modelling will be discussed.
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CHAPTER 1. INTRODUCTION

1.1 Thesis Structure

The thesis is articulated through 6 main chapters. In Chapter 1, the relevant

topics for this research are introduced and the state of the art is briefly reviewed,

leading to the scientific questions and objectives of the research. Chapter 2

covers the methods adopted for the research, illustrating in detail the model

and elaboration tools that were used to carry over all the activities. Chapter

3 covers the data, case studies and statistical tools for our analyses. Chapters

4 to 6 contain the main results and findings of this work. Finally, the results

are summarized in Chapter 6, which provides concluding remarks as well as

perspective work on this topic.

1.2 Hydropower production in the Alpine Region

The Alpine Region certainly represents one of the largest sources of freshwa-

ter in Europe, providing water to major continental catchments, such as those of

the Danube, Rhine, Po and Rhone rivers. Abundant freshwater has always repre-

sented a primary requirement for human settlement, as it contributed to many

important aspect of early societies, such as irrigation, breeding, transportation,

personal and public hygiene and many forms of hydro-power exploitations.

While breeding, agriculture and hygiene still represent primary water us-

ages, water is nowadays also used in industrial processes such as engine cooling

or in the production of hydroelectricity. In fact, the term hydropower has pro-

gressively lost its wider meaning of exploitation of the mechanical energy stored

in a water body, in favor of the more particular one of hydroelectricity, (i.e. en-

ergy obtained converting water’s kinetic energy into electricity by means of

turbines). The perception of water as a primary resource might have therefore

changed in recent years, since traditional water usages have been concentrated

and automated in several ways (e.g. municipalisation of drinking water and

wastewater treatment, industrialization breeding and agricultural activities, use

of fuels and electricity as the main sources of power); albeit many forms of water

usage have changed through the course of history, freshwater availability still
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CHAPTER 1. INTRODUCTION

plays a key role in every society. Furthermore, the steady increase in world pop-

ulation corresponds to an increase in demand for food and energy, which are

both closely linked to water availability. It is therefore clear that water should

be in many circumstances regarded to as a scarce resource to be preserved

proactively, rather than as a disposable good.

In the context of optimizing worldwide resource usage, freshwater certainly

holds capital importance since its usage is at the foundation of countless ac-

tivities (i.e. hydro-power exploitation, agriculture, manufacturing, touristic

and recreational uses, to cite the most relevant ones) (Beniston, 2012; Meiss-

ner and Relier, 2005). In particular, hydropower contributes for more than

19% to the worldwide electricity demand (Akpinar, 2013; IEA), and storage

hydropower currently represents the only renewable energy source that ensures

reliable, long-term energy storage capacity (Barton and Infield, 2004), though

technology is rapidly advancing in this sector and scenarios with progressive

decommissioning of dams in favor of a more diffuse use of solar energy have

been recently envisioned (Waldman et al., 2019). Nevertheless, hydropower can

be expected to cover a key role in the near future energy market, helping to

ensure a smoother transition to a low-carbon footprint energy market, and its

contribution should be therefore planned with utmost care.

Many studies on climate change expect temperature to be generally higher

in the near future (Brunetti et al., 2009; Jasper et al., 2004; Keiler et al., 2010); on

the other hand, predictions on precipitations and of their effects on hydrologic

regimes are closely linked to the topography of the domain.

Nowadays, environmental regulators all around the world are drawing guide-

lines and/or enforcing prescriptions aimed at a more sustainable water usage,

acknowledging the scarcity of the resource. In a climate-change context, this

calls for models that are able to deal with all levels of uncertainty, from the one

embedded in future climate, to hydrological uncertainty, all the way up to all

kinds of water usage, which potentially carry the largest amount of uncertainty,

being them related to economy and influenced by human decision making.
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CHAPTER 1. INTRODUCTION

1.3 Large-scale hydrological modelling and HPC

In the last decades, the renewed awareness for issues related to water avail-

ability has favored the development of a wide set of modelling tools, commonly

referred to as Earth System Models (ESM), which are usually operated at the

continental scale in order to reproduce the interactions between land and cli-

mate; however, high temporal and spatial resolution are required to render

the relevant physical processes related to the water cycle with sufficient detail,

which in turn results in higher computational loads. The complex orography

that characterizes mountain regions, which are for obvious reasons the most

advocated to provide hydroelectric energy (due to the naturally available geode-

tic jumps available below most reservoirs), makes it difficult to adopt General

Climate Models to correctly represent runoff with the needed spatial and tem-

poral resolution. These difficulties notwithstanding, Climate Models provide

important insights on pattern of changes, both in space and in time, that are

expected due to climate change. (Bavay et al., 2013; Beniston, 2012; Gobiet et al.,

2014).

Climate change impact assessment studies have made wide use of hydro-

logical modelling throughout the last decades, to support water resources man-

agement by developing new adaptation plans (see e.g., Kundzewicz et al., 2007).

However, the simulation of hydrological processes typically requires a high

spatial and temporal resolution; indeed, sufficiently high spatial resolution is

mandatory in order to properly reproduce the main dynamics of key hydrologi-

cal variables such as e.g., snow accumulation (Scipión et al., 2013) and soil water

storage (Rojas et al., 2008). On the other hand, dealing with climate change anal-

yses requires simulations run over a sufficiently wide time period (Todd et al.,

2011). Due to the aforementioned requirements, it can be easily understood

that the execution of distributed hydrological models over medium-to-large

catchment necessarily involves higher computational loads, in terms of both

run time, which is needed by the hydrological kernel to simulate hydrological

processes over such high-resolved domains, and of instantaneous memory

allocation, due to the large amount of data that are processed during each step
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CHAPTER 1. INTRODUCTION

of the simulation (Liu et al., 2013; Vivoni et al., 2011).

Another factor that should be always kept into consideration when simu-

lating the spatial variability of hydrological fluxes is the inherent uncertainty

involved in the process, whose main causes can be sought after in: i) structure

of the conceptual model (i.e., epistemic uncertainty), ii) model parametrization,

and iii) input data uncertainty (like e.g. errors in observed meteorological input

forcing data and/or flaws in the spatialization techniques applied to the raw

input meteorological observations ). Indeed, many approaches have been pro-

posed when it comes to the quantitative assessment of uncertainty associated

its these different sources acknowledging the relevance of the subject (see e.g.,

Montanari et al., 2009, for a review). When it comes to the model’s parameters,

the optimal set can be identified by either adopting a calibration procedure that

aims directly at the recognition of the single optimal set of parameters, or within

a formal/informal Bayesian framework, where the a-posteriori probability dis-

tribution of the parametrization is computed (see e.g., Beven and Binley, 1992;

Liu and Gupta, 2007; Vrugt et al., 2003). However, regardless of the choice of

parametrization procedure, a specified sampling scheme to explore parameters’

space is required, such scheme being informed by an appropriately chosen

performance metric computed at the end of every simulation (Madsen, 2000). It

appears therefore evident that model calibration and uncertainty analyses both

require a rather large number of forward runs of the model. This, in conjunction

this with the computational load which is inherent to highly resolved (in space

and time) simulations, motivated and led to a growing interest in the use of

High Performance Computing (HPC) for applications in hydrological modelling

(Li et al., 2011; Vivoni et al., 2011).

Thanks to the linearity of most governing processes in hydrological models,

the first and most intuitive way to exploit a high computational capacity, is

to execute those processes in parallel (i.e., have distinct CPUs treat different

parts of the model, after appropriately subdividing the computational domain

and/or workload). Indeed, different parallelization strategies have been applied

to distributed hydrological models, aimed at reducing the overall runtime as
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CHAPTER 1. INTRODUCTION

well as improving the management of large amount of data; among the most

common parallel-computing protocols are Message Passing Interface (MPI,

MPI Forum, 1994) and Open Multi-Processing (openMP, Dagum and Menon,

1998) . Examples of application of the MPI standard to hydrological model are

the works from Wu et al. (2013) and Li et al. (2011), where a parallel frame-

work (MPI) was implemented into the SWAT and DWM hydrological models,

respectively: the study area was partitioned into smaller sub-domains (i.e., sub-

basins), and the computation of the hydrological processes relative to each

sub-area was assigned to a different processor and performed independently.

Due to its better computational performance (albeit more expensive), GPU-

based (Graphics Processing Unit) parallel computing has also found numerous

applications in distributed hydrological modelling. In the work from Ortega

and Rueda (2010), GPU parallel computed has been adopted to compute the

drainage network of large river basins corresponding to the Digital Elevation

Model (DEM) provided as an input. Qin and Zhan (2012) and Rueda et al. (2016)

applied the parallel GPU standard to streamflow accumulation process. Finally,

Le et al. (2015) implemented GPU-based parallel computing into the GCS-flow

model, simulating surface-sub-surface flow interactions.

The application of parallel computing framework to distributed hydrologi-

cal modelling brings unquestionable advantages but, along with those, some

known limitations should be taken into account. In particular, the speed-up

(i.e., the improvement in run time execution due to parallelization) does not

increase once the number of processors exceeds a certain threshold (Amdahl,

1967); such threshold characterizes the scalability of a model, i.e. its ability to

efficiently subdivide its workload on as many processors as there are available,

hence increasing its performance. The limitation of a model’s scalability is gen-

erally due to a variety of factors: i) tasks interdependencies; ii) time spent for

communication between parallel threads; and iii) load imbalance, i.e., the un-

even distribution of computational workload between the available processors.

Although load imbalance issues can be reduced, or even removed, through a

mindful coding of the parallelization scheme, the first two elements are inher-
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CHAPTER 1. INTRODUCTION

ent to parallel computing; hence, no model can achieve ideal scalability. In

addition to the endemic limitations of parallel computing, most of the existing

hydrological models include parts of the code that must be carried out serially

due to the nature of the phenomena being represented, further capping the

theoretical scalability (i.e. the maximum achievable speed-up of the model)

regardless of the number of processors used (Amdahl, 1967). This kind of limita-

tion is particularly evident in models that adopt explicit hydrodynamic routing

through the numerical solution of the mass and momentum conservation

equations (i.e., the de Saint-Venant equations), but also for models adopting

cell-to-cell routing algorithms, which are also based on mass conservation and

relationships between river-channel storage and streamflows (de Paiva et al.,

2013; Yamazaki et al., 2011). Liu et al. (2013) and Wang et al. (2012) computed

the maximum (hence, theoretical) run time acceleration that can be achieved

in distributed hydrological models, by adopting either grid or sub-basins as

simulation units for the parallelization framework, respectively.

Since the bottleneck due to the serial execution of processes associated to

streamflow routing along the river network is inevitable, other works focused

their attention on a different concept of single layer parallelization, in which

single (forward) model executions adopting different sets of parameters are

dispatched to multiple processors: this is usually the case of calibration proce-

dures, where multiple forward runs are required. Calibration of hydrological

model parameters adopting HPC systems is indeed promising and can in fact

significantly reduce the computational time required in this phase. For example,

in the work from Kan et al. (2018), the OpenMP standard was implemented

onto a calibration algorithm based on the Shuffled Complex Evolution Method

and then used into the XAJ hydrological model. Likewise, the calibration mod-

ule of the SWAT hydrological model was parallelized by assigning different

forward runs (i.e. each adopting a different set of parameters) to different pro-

cessors in the work from Rouholahnejad et al. (2012). Finally, Tristram et al.

(2014) adopted GPU parallelization for parameters’ uncertainty estimation into

(Pitman, 1973)’s hydrological model.

8



CHAPTER 1. INTRODUCTION

In all of the cited works, a single-layer parallelization of hydrological models

is proposed, either based on the spatial decomposition of the domain or on

the decomposition of the parameters’ space, which are then taken as computa-

tional units. Recently, multi-layered parallelization strategies have also been

explored to improve the exploitation of HPC resources. Indeed, adding one layer

in the logical subdivision of the workload implies that no serial dependencies

exist between jobs assigned to different layers, thus allowing to employ a larger

number of CPUs for performing single jobs, as opposed to applications where

only one level of parallelization can be adopted.Liu et al. (2013) proposed a

layered approach to parallel computing for FSDHM distributed hydrological

model in which simulation units are divided into layers according to flow direc-

tion by guaranteeing that no upstream or downstream relationships are present

within each individual layer. Liu et al. (2016) presented a two-level paralleliza-

tion method for the same FSDHM hydrological model by dispatching parallel

tasks in a multi-nodes cluster first at a sub-basin level and then, within each

node, at the grid cell level using a shared-memory configuration. Zhang et al.

(2016) introduced a double-layer parallel system for the calibration of DYRIM

hydrological model: the second layer adopted a MPI framework to simulate

hydrological process at the sub-basin scale, while the parallelization in the first

layer was achieved by running simultaneous hydrological simulations with

different sets of parameters generated by a genetic search algorithm.

Layered parallelization strategies are therefore particularly appealing in

the field of distributed hydrological modelling, although the examples of ap-

plication remain limited in number. Furthermore, in all the cited studies the

influence of antropic activities that affect the natural water cycles are neglected;

examples of such include water supply systems, pumping stations, irrigation

networks, storage reservoirs, diversion channels, etc. Indeed, water storage and

transfer network related to human activities have implications on the water

cycle and security, and their feedbacks on climate are effective both at the local

and at the regional-to-global scales (see e.g., Destouni et al., 2010, 2013; Panday

and Huyakorn, 2004). An integrated hydrological model able to encompass

9
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into a single holistic model multiple water-related processes is therefore ad-

visable to provide full coupling between the natural hydrological processes

and alterations to water fluxes and storage due to human systems (Hwang

et al., 2019; Refsgaard et al., 2010). The topic becomes particularly relevant for

large scale hydrological models, since the detailed inclusion of different kinds

of water usages at a scale significant and informative for water management

(i.e. regional scale or larger) is challenging due to the amount of technical and

operational details that need to be retrieved (see e.g., Nazemi and Wheater

(2015a,b) for a review on the issues associated to the inclusion of water re-

sources management modules into Earth System Models). For example, the

presence of diversion channels alters the natural direction of streamflows, as

well as requiring a specific modelling approach for solving the associated water

mass balance equations (see e.g., Bellin et al., 2016). Indeed, the presence of

human water uses alters the natural stream network topology, with repercus-

sions on the modelled hydrology (Gregory, 2006). All things considered, the

simulation of non-natural infrastructures adds a non-negligible burden to the

overall workload, because it introduces upstream-downstream dependencies in

transfers along the river network that must be solved serially, hence impairing

the full parallelization of the code and limiting its scalability.

1.4 Explicit simulation of streamflow alterations

due to Human Systems

Water cycles are often represented using Earth System Models (ESM), which

seek to simulate many relevant aspects of the global environment. These mod-

els are set to operate on a large scale following physical constraints, allowing

a good coupling with Climate Models. However, a comprehensive analysis of

the water cycle should encompass the interactions between the natural stream-

flows and different kinds of anthropogenic water usages causing all sorts of

alterations such as modifications in timing, magnitude of peak flows, as well as

modifications to flow velocity and water quality (Poff et al., 2015), hence requir-

10
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ing a deeper insight on the relevant phenomena (Clark et al., 2015). For these

reasons, accurate regional scale models including anthropogenic streamflow

alterations are needed to test and compare different water management strate-

gies. As far as the Italian Alpine Region is concerned, hydropower-related water

uses exceed in diverted volumes all other kinds of water usage (agricultural,

recreational and industrial). In particular, large hydropower plants (i.e. with

installed power greater than 3MW, according to the Italian definition) constitute

about 80% of the diverted volumes yearly (TERNA,2015).

The inclusion of hydropower systems in a meso-scale (or larger) hydrologi-

cal model is often challenging from a modelling perspective, as it requires that

the relevant characteristics of each system are adequately described (Nazemi

and Wheater, 2015a,b). While operations of run-of-the-river hydropower plants

could be assimilated to natural streamflow committing relatively little mistake,

due to their limited storage volume, reservoir hydropower most likely do intro-

duce changes in downstream flows and must therefore be modelled in peculiar

ways that account for operational constraints (Ashraf et al., 2018; Bonnema and

Hossain, 2017). Assessing the changes brought by reservoirs to downstream

flows calls for new data, which include reservoirs’ stage-storage-surface area

curves, geometrical information on the outlets and their capacity, and most im-

portantly the operational rules specific to each reservoir, which are difficult to

acquire because they are often kept confidential by the hydropower companies.

Models dealing with hydropower-related water diversions thus involve a trade

off between the extension of the domain and the level of detail at which human

systems are modelled, allowing to draw a coarse subdivision in two categories:

firstly, works focused on detailed hydropower modelling, who usually adopt a

simplified hydrological model and focus their effort on a highly detailed model

of the systems of interest (see e.g. Beheshti et al. (2019); Koch et al. (2016)).

Conversely, models typically applied to large spatial scales and used for climate

change impact assessment studies, simplify hydraulic infrastructures and their

connections: in their work, Shin et al. (2019) developed and implemented a

reservoir operation module over the CONUS (Contiguous U.S.) region, in order

11



CHAPTER 1. INTRODUCTION

to improve the representation of catchment dynamics, explicitly modelling

storage and release mechanics for around 1900 reservoirs around the U.S.: how-

ever, no information on other hydraulic infrastructures potentially altering river

continuity was included in the simulation.

It is however worth noticing that attempts have already been made to de-

velop modelling framework that take into account both the natural water cycle

and its alterations due to hydropower-related activities: as an example, Fatichi

et al. (2015) analyzed the potential effects of climate change on hydropower

production on a system of 14 reservoirs located in the Upper Rhone basin

(Switzerland); Amjath-Babu et al. (2019) coupled the WEAP hydrological model

(Yates et al., 2005) with an economic optimization model, to test the benefits

brought to the food-water-energy nexus by the development of a system con-

sisting of 11 reservoirs located in the central part of the Koshi river basin (south

Asia). However, to date and to the best of our knowledge, existing works that

model hydropower production are in fact impact analyses that focus on varia-

tions between different future scenarios, one of which is defined as baseline,

or with gross hydropower potential estimates, (defined as the hydropower that

could be produced if all the water flowing in the area of investigation could

be turbined at sea level) (Lehner et al., 2005). Exception to this procedure is

the work by Qin et al. (2020), where daily hydropower time series are used to

develop a detailed daily reservoir regulation scheme for the Three Gorges Reser-

voir (China). This low number of works that attempt to validate their modelled

hydropower production against historical data might be explained by the fact

that hydropower production is strongly influenced by exogenous factors such

as energy market and decision making, and is therefore hard to grasp within

any purely physically-based model; in fact, while the overall hydropower pro-

duction (e.g. annual average) is more related to water availability, the timing of

said production is closely related to reservoir management strategies, which

are confidential wherever electricity is not a service provided by the Nation

itself. Likewise, the validation data themselves (i.e., time series of turbined

water discharge or hydropower production) are treated as confidential by the

12



CHAPTER 1. INTRODUCTION

hydropower companies, as revealing them would unveil reservoir management

strategies thus jeopardizing company’s competitiveness in the market;.

Reservoir operations do therefore represent a major source of uncertainty in

the modelling chain, becoming one of the unknowns of the model themselves.

This problem is sometimes circumvented by introducing in the model objective

functions that include turbined flow as their unknown. Optimizing such ob-

jective functions while complying with several constraints (e.g. environmental

flows, estimated downstream water demands, etc.) allows to create optimized

discharge time series that are often applied to multi-purpose reservoirs(see

e.g. Anand et al., 2018). However, this kind of practice involves a particularly

high computational load and is rarely applied to complex systems or to large

simulations. On the other hand, if some level of information concerning the

hydropower systems is available, deterministic reservoir management rules

are usually preferred, to cope with larger simulations: in this case, reservoir

discharge is enforced directly by the model and follows physical and operational

constraints. While only inducing a marginal effect on the modelled catchment

hydrology, the repercussions of reservoir operation on modelled hydropower

production can be considerable.

A wide set of deterministic approaches to reservoir operation modelling

can be found in literature: hedging curve rules seek to satisfy all sources of

downstream demand, according to prioritization rules set by the user. In or-

der to do so, several scaling factors (one for each different component of the

downstream demand) are computed, depending on current reservoir filling

and/or drought/flood foresights (see e.g. Guo et al., 2013; Shrestha et al., 2014;

Tu et al., 2003). This approach is able to account for the seasonality of water

inflows by appropriately modulating its scaling factors throughout the year, and

might indeed provide good results: the main limitation to the performance of

this approach lays in the definition of the downstream demand, which has to

be known precisely for every system being modelled, while at the same time

strongly relying on a proper definition of the hedging thresholds and demand

scaling coefficients. Another deterministic reservoir operation scheme that is

13
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commonly found in literature as well as in many well-established water re-

source management tools is the target volume approach (see e.g. Fatichi et al.,

2015; Finger et al., 2012): in this case, 365 (daily) target stored volume values

are assigned to each reservoir. The model can be based either on averaged daily

volume observations if available, or on typical target volume curves derived

from reservoir geometry. Within this approach, turbined flows are determined

in such a way that makes the current volume tend towards the target volume for

the day. This methods represents an easily applicable, yet accurate alternative

where detailed volume time series are available; however, the same cannot be

stated about the adoption of generalized target volume curves: in fact, this does

not allow to consider the specificity of each individual system, which is crucial

to ensure proper hydropower production modeling. This approach therefore re-

lies heavily on the availability of reservoir volume time series, which are in many

countries protected by industrial secret, due to the reasons already explained

in the previous paragraph. Despite the potential of being extended to a wide

number of systems, adopting normalized target volume curves obtained by

averaging time series of other reservoirs could introduce further uncertainty in

modelled hydropower production, as different reservoirs might have different

usage regimes (some reservoirs are emptied and refilled weekly, some monthly

or seasonally, etc.): therefore, the same normalized curve will suit only partially

the systems being modelled. A common assumption made in works dealing

with hydropower reservoirs is that the downstream (hydroelectric) demand is

always equal to the system capacity (i.e., the maximum water discharge that the

turbines can elaborate), except for drought periods when MVF (Minimum Vital

Flow, depending on local regulations) is guaranteed as a priority (Turner et al.,

2017; Wagner et al., 2016). This relatively parsimonious approach performs

well at the global scale and suits well large scale impact assessments, in fact

as already stated hydropower production is strongly linked to water availabil-

ity (see also Jabbari and Nazemi, 2019). However, when modelling mesoscale

catchments in order to test the effects of different management strategies and

environmental regulations in terms of e.g. water budget, hydropower produc-

tion, and impact of said strategies on the natural habitat downstream of the
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power plants, a higher level of detail is necessary, in order to fully grasp the

complex interactions between the hydrological cycle and the different water

uses (Zhang et al., 2018).

1.5 Implications of uncertainties in meteorological

input forcing on hydropower production

forecasts

The great effort devoted to hydrological modelling in the last decades is

not just aimed at gaining a deeper understanding of the relevant phenomena

involved in the water cycles and of their interactions; rather, it stems from the

perspective forced by climate change. In this regard, the best possible modelling

tools need to be developed in order to minimize the uncertainty involved at

each level of the modelling chain (the uncertainty cascade concept was firstly in-

troduced by Wilby and Dessai (2010)). When it comes to climate change impact

assessment on hydropower production, the sources of uncertainty are multi-

plied, as the initial uncertainty inherent to Climate Models is then amplified by

the subsequent steps of the modelling chain, such as the hydrological model

and the hydropower system operation models, not to mention the uncertainty

involved in the evolution of the energy market itself.

Sperna Weiland et al. (2015) Highlighted how the meteorological forcing con-

stitutes a major source of uncertainty, compared to the minor effects brought by

hydrological models’ parametric uncertainty. Indeed, uncertainty in meteoro-

logical input forcing is well-acknowledged, as many studies have tried to assess

the impacts of uncertain meteorological forcing on the estimation of water

balance (see e.g. Clark et al., 2016, for a review). This is particularly true when

dealing with catchments characterized by a complex topography, since small

difference in climate forecast can result in larger differences in the hydrological

response of the catchment (Kotlarski et al., 2014; Majone et al., 2012; Tuo et al.,

2016). This notwithstanding, adopting a single meteorological input dataset

15



CHAPTER 1. INTRODUCTION

not questioning the uncertainty it might add to the model is a rather common

practice (Yang et al., 2014). Conversely, with an ever-increasing computational

capacity at hand, one might be tempted to just perform ensemble runs with

several different CMs, ending up with an unreasonably wide set of ’plausible’

scenarios, but in this case the uncertainty would be strongly inflated, making

the result itself less relevant.

It is therefore clear that where a high degree of accuracy is required through-

out the modelling chain, democracy should not be the leading criterion when

it comes to the selection of input data sets (using the words of Knutti (2010)).

Following this concept, Laiti et al. (2018) developed a goal-oriented approach

to climate dataset benchmarking, by means of which different dataset can be

classified based on how well they can reproduce observed streamflows in the

catchment of interest. Several works attempted to assess the impact of differ-

ent climate data sets on hydropower production (see e.g. Carvajal et al., 2017;

Majone et al., 2016; Oyerinde et al., 2016): as it can be expected, the range of un-

certainty associated with future hydropower is often rather wide with projected

changes covering a range of 50% or more; furthermore, in all the aforemen-

tioned works it can be observed that variation patterns in hydrologic response

(i.e. runoff, streamflows) are not strictly followed by the variations in modelled

hydropower production and/or potential: this is due to the complexity inherent

to hydropower systems, in particular when it comes to reservoir hydropower

where decision making and market strategies play a key role.

In light of the above considerations, goal-oriented approaches to input

selection represent an appealing way to reduce the inherent uncertainty in

hydropower production modelling, where the initial uncertainty interacts and

is amplified by a number of factors, hence reducing the uncertainty of the final

results.
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1.6 Aim of the study

In this thesis we would like to contribute to the aforementioned research

topics by addressing three distinct issues. Firstly, we would like to develop a

suitable hyydrological modelling framework called HYPERstreamHS, that is

able to exploit HPC resources and to be executed on large catchments at a suffi-

ciently spatial and temporal resolution, by means of an efficient subdivision of

the workload. Secondly, we included detailed and explicit simulation of Human

Systems in the modelling framework, by means of specific modules reproducing

the behavior of some of the main water infrastructures related to hydropower

(i.e. reservoirs, diversion channels, restitution points), constraining them with

intensive information. We chose to only adopt publicly available information to

inform our model, so that the same framework could be applied in any domain

(at least in Italy). Finally, the role of different meteorological input datasets in

terms of modelled hydropower production will be investigated.

Once the modelling framework is set, we firstly applied it on the Adige river

catchment, a large catchment located in the Eastern Alps; here the model has

been tested for performance in terms of scalability and in terms of its ability

to reproduce hydropower production and streamflow time series. Moreover,

we tried to "deteriorate" the input information to the model in a way that re-

sembles some assumptions commonly made in reservoir operation modelling.

This was done in order to understand the effect of some common simplifica-

tions and assumptions in terms of hydrological- and hydropower production

modelling. Finally, the model was applied to a second domain, composed by

five catchments located in the Western Alps; in this case, after validating the

model for hydrological- and hydropower production modelling, we studied

the differences in the model’s output caused by using different meteorological

input forcing datasets.
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2
THE HYDROLOGICAL MODELLING
FRAMEWORK: HYPERSTREAMHS

In this Chapter a detailed description of the HYPERstreamHS model, that has been used

to perform all of the analyses contained in this work, will be provided: the description

will cover the hydrological component of the model, the Human System modules as

well as the parallel computing features embedded in the model in order to improve its

scalability.

This Chapter is based on:

Avesani, D., Galletti, A., Piccolroaz, S., Bellin, A., Majone, B. A Dual layer MPI continuous

large-scale hydrological model including Human Systems, Environmental Modelling &

Software, SUBMITTED
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HYPERstreamHS inherits the core features of the HYPERstream routing

scheme recently presented in the work from Piccolroaz et al. (2016), while im-

proving it by means of a dual-layer MPI framework and the inclusion of explicit

modelling of streamflow alterations due to Human Systems (hence, the HS

suffix to the model’s name). HYPERstream is a multi-scale streamflow routing

method based on the Width Function Instantaneous Unit Hydrograph (WFIUH)

approach; this approach has been specifically designed for reliably simulating

the relevant horizontal hydrological fluxes preserving the geomorphological

dispersion of fluxes and thus being able to perform well at different scales,

from a single catchment to the meso-scale. The routing scheme is prone to

parallelization, due to the fact that the routing processes are linear and are

independent from the runoff generation module adopted in the simulation

unit (grid cells in this case). Indeed, developing improved routing schemes

to model horizontal fluxes achieving a good trade off between accuracy and

computational effort has been pointed out as one of the priorities for the im-

provement of state-of-the-art large-scale hydrological models (see e.g., for a

review Clark et al., 2015). Specifically, HYPERstream has been coupled with

continuous modules for surface and subsurface flow generation, as well as

adding to it specific routines modelling the alterations introduced by infras-

tructures related to hydropower, like e.g. reservoirs and diversion channels.

Human System modules are inserted in the stream network as nodes, in each of

which specifically constrained water mass balance equations are solved during

every timestep. Furthermore, a dual-layer parallelization strategy based on the

MPI standard was adopted in the HYPERstreamHS framework, allowing for an

optimal exploitation of the domain decomposition, both in terms of geographic

domain (computation of horizontal fluxes) and of the parameters’ space (model

calibration). In particular, the first level of parallelization subdivides among

the available CPUs the simulation of the physical processes acting in each grid

cell of the domain. The presence of a high number of hydraulic infrastructures

in the hydrological conceptual model affects model scalability by increasing

the point-to-point dependencies (and as a consequence the sheer number of

communications needed between processors); to cope with this bottleneck, a
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second layer of parallelization is introduced, this one handling the workload

due to model calibration and uncertainty analyses: a new increase in scalability

can be achieved by subdividing the available processors in sub-sets, each one

managing an independent simulation of the hydrological model (forward run,

performed by the so-called first layer) adopting a given set of parameters, hence

speeding up the exploration of the parameters’ space.

In the present Chapter, all the main components of HYPERstreamHS will

be covered: firstly, the natural and artificial modules of will be described. After-

wards, the algorithms embedded in the model and used for the identification

of the hydrological model’s parameters will be presented. Finally, the paral-

lelization strategy adopted in HYPERstreamHS using the MPI standard will be

illustrated.

2.1 HYPERstreamHS model components

2.1.1 Natural hydrological system

The natural component of HYPERstreamHS hydrological model is obtained

by coupling HYPERstream routing scheme (Piccolroaz et al., 2016) and a model

for the generation of vertical fluxes (presented in Laiti et al., 2018). The model

is characterized by 12 parameters, 11 of which pertaining to the soil moisture

accounting procedures and one adopted in the routing model. In the follow-

ing paragraphs only the key aspects of the natural hydrological model will be

illustrated. For a more comprehensive overview of the domain decomposition

and of the flow generation, snow melting, soil moisture accounting and routing

modules embedded in HYPERstreamHS, please refer to the Appendix A.1.

2.1.1.1 Computational grid

The modelling framework relies on two key geometric objects (see Fig-

ure 2.1): i) macrocells (i.e., grid cells), groups of DEM cells to which the same

meteorological forcing is assigned and the vertical water fluxes are evaluated
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(Figure 2.1a), and ii) nodes, in which streamflow is computed.

The computational domain is firstly partitioned into M macrocells of equal

shape and size (Figure 2.1b), which can be defined in such a way so that the

hydrological model grid can be exactly superimposed to an overlaying climate

model or gridded dataset providing the input meteorological forcing. After-

wards, N nodes are identified: nodes correspond to the locations in which

streamflow is computed (Figure 2.1a). The nodes are arbitrarily distributed

along the river network, and are typically located in correspondence of existing

gauging stations where streamflow observations are available (such locations

are often used for the calibration and validation of the hydrological model), as

well as in relevant locations where anthropogenic alterations to the streamflow

are present, which will be simulated by the Human System module (see Section

2.1.2).

A one-time geometrical pre-processing step is run prior to model execu-

tion: during this phase, the geometrical information needed to implement the

streamflow routing scheme are processed based on input data. The DEM is

analyzed in order to extract the river network, according to one of the sev-

eral criteria available for the identification of the hillslope-channel separation

(e.g., Lazzaro, 2009; Tarboton et al., 1991), as well as the drainage character-

istics of the study area, and to derive the corresponding geomorphological

width functions for each macrocell-node pair (see Figure 2.1b): indeed, runoff

generated in each macrocell flows towards one or more downstream nodes;

therefore, each connection between a portion of macrocell and the node it

directly contributes its runoff to is defined as macrocell-node pair. In virtue

of this definition and as it can be seen in 2.1b each macrocell (large squares)

contributes to several nodes and, vice-versa, each node receives runoff contri-

butions from several macrocells, as well as from the river network. Furthermore,

the necessary parameters for vertical fluxes’ evaluation (e.g., average elevation,

soil use and type, crop coefficient etc., which are further explained in Section

3.1) are computed and assigned to each macrocell, by means of an analysis of

the available DEM and land-use/land-cover spatial maps. A detailed example

23



CHAPTER 2. THE HYDROLOGICAL MODELLING FRAMEWORK:

HYPERSTREAMHS

of macrocell-discretization and width functions derivations can be found in

Piccolroaz et al. (2016).

2.1.1.2 HYPERstream routing scheme

HYPERstream is a multi-scale hydrological routing scheme based on the

width function instantaneous unit hydrograph (WFIUH) theory (see, e.g., Rodríguez-

Iturbe and Rinaldo, 1997). The model has been designed in order to preserve the

geomorphological dispersion of the river network (Pilgrim, 1977; Rinaldo et al.,

1991), independent of the grid resolution providing the meteorological forcing,

and therefore is well suited for multi-scale applications, from the catchment

up to the meso-scale. This is achieved by deriving the geomorphological width

functions from the fine-scale spatial structure of the drainage basin embedded

in the digital elevation model (DEM) of the study area. As a result, the routing

of the horizontal water fluxes is grid-invariant, and a "perfect upscaling" of the

river network geomorphological dispersion is achieved (Piccolroaz et al., 2016).

The approach allows to use grid cells (hereafter referred to as macrocells) of any

shape and size, thus making the model particularly suitable for the coupling

with gridded datasets, such as e.g. climate models outputs (Laiti et al., 2018).

2.1.1.3 Simulation of vertical water fluxes

Vertical fluxes (i.e., water storage and runoff generation processes) are mod-

elled adopting the approach proposed by Laiti et al. (2018). In particular, sur-

face flow generation module relies on a continuous soil moisture accounting

procedure (Michel et al., 2005) based on the SCS-CN methodology (U.S. Soil

Conservation Service, 1964), coupled with a nonlinear bucket model for soil

moisture depletion (Majone et al., 2010), a linear bucket model for the base-flow

component, Hargreaves and Samani (1982) model for the computation of po-

tential evapotranspiration, and a degree-day model for the snow dynamics (see

also Bellin et al., 2016; Majone et al., 2016; Piccolroaz et al., 2015, for similar flow

generation modules successfully applied in Alpine catchments). A schematic of

the vertical water flux generation model and routing scheme is depicted in Fig-
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ure 2.1a. The information derived from the DEM is used to build the probability

density function (pdf) of the flow path lengths (i.e., width function) connecting

the hillslope-channel transition sites of a macrocell to the first downstream

node. A width function is evaluated for each macrocell-node pair (Figure 2.1b),

and then it is rescaled through a constant stream velocity to obtain the pdf

of the travel times required by the WFIUH routing scheme. The assumption

of constant stream velocity makes the transfer process linear and hence the

routing model highly parallelizable. In this regard, it should be noticed that the

assumption of a constant stream velocity is supported by previous experimental

measurements (see e.g., Pilgrim, 1977) and is coherent with the evidence that

varying flow velocity along the network (i.e., stream hydrodynamic dispersion,

Rinaldo et al. (1991)) is largely dominated by geomorphological dispersion

(Rodríguez-Iturbe and Rinaldo, 1997), expecially under high flow conditions.
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Figure 2.1 Schematic of the natural hydrological system used in this
study, coupling a vertical fluxes generation module (a) with the HYPER-
stream routing scheme (b). The details of the vertical fluxes generation
module are the same as in Laiti et al. (2018). Each one of the (8) colors
in panel (b) identify the portions of a specific macrocell contributing
to each node, therefore said colors are as many as the macrocell-node
pairs.

2.1.1.4 Model’s parameters

A total of 12 model parameters is used, 11 pertaining to the vertical water

flux generation module and 1 to the HYPERstream routing scheme. Parame-

ters of vertical water flux module are assumed as spatially uniform, with the

spatial heterogeneity of hydrological processes being delegated to the different

values of S and Kc (respectively: soil water storage and cultural coefficient)

assigned to the different macrocells: these values are derived from available

infiltration capacity and soil use maps, and are computed as weighted averages

of the values at each DTM cell contained in a given macrocell. Routing scheme

requires the definition of a single parameter, the stream velocity Vc , which is

assumed constant over the domain, thus making the model linear and easily
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Table 2.1 List of the calibration parameters with their range of variation.
Ts and Tm : temperature thresholds for snow precipitation and snow
melting; cm : snow melting factor; cs and ca : parameters of the rainfall
excess model; qr e f and µ: parameters of the nonlinear reservoir mim-
icking the dynamics of the unsaturated zone; c f c and cr : coefficients
for field capacity and residual soil moisture; k: mean residence time of
the baseflow linear reservoir; : α partition coefficient for leakage flux;
Vc : stream velocity.

Parameters Range of variation Unit
Ts −2÷6 [◦C ]
Tm −2÷6 [◦C ]
cm 0÷10 [mm◦C−1d−1]
cs 0.1÷10 -
ca 0.01÷1 -
qr e f 10−7 ÷10−3 [mm s−1]
µ 0.5÷300 [mm]
c f c 0÷1 -
cr 0÷0.25 -
k 200÷1000 [d ay]
α 0÷1 -
Vc 0.2÷4 [m s−1]

parallelizable. The list of the 12 calibration parameters, with their units and

range of variation is presented in Table 2.1.
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2.1.2 Human Systems modules

Streamflow alterations due to the presence of human infrastructures are

modelled by adding specific nodes to the network, in each of which a set of

rules is enforced when computing the water mass balance. These rules are

derived following the way human systems are operated and are the main factor

that alters natural flow regime. From a modelling perspective, this is achieved

constraining water mass balance to physical, geometrical or operational prop-

erties of the described system. The water mass balance performed at each node

during every time step leads to different partitioning of the inflows, depending

on the ability of the node to store water (reservoir only) and on a variable pri-

oritization of the outflow based on node functionality. Simulation of human

systems is performed in HYPERstreamHS by means of a suite of object types

which are described in the following subsections.

2.1.2.1 type-Reservoir nodes

Reservoir nodes are the only nodes where storage can occur. As it can be

seen from Figure 2.2, each reservoir is subdivided into three volume pools:

flood control, active and inactive volume. The deterministic release scheme

associated to each reservoir (due to hydropower and environmental needs)

is fully met whenever the current stage falls inside the active storage. If the

current stage is outside this portion of the reservoir, either pool conservation

measures or flood control measures (i.e., water spilling) are taken, and the

resulting set of releases will differ from the default scheme. As a result of reser-

voir constraints and operation schedules, a water mass balance following the

general formulation of Eq. (2.1) is performed at each reservoir and at every time

step:

ΣQ I N (t )−ΣQD IV (t )−QOU T (t )−Qspi l l (t ) = dV

d t
(2.1)

where
∑

QI N (t) is the total inflow to the reservoir,
∑

QD IV is the total flow

diverted from the reservoir for hydropower or agricultural water uses, QOU T
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is the flow released to the downstream river network including the Minimum

Ecological Flow (MEF, which is set for each reservoir and computed according

to existing regulations), Qspi l l is the flow that is spilled when the maximum

regulation level is exceeded during flooding events, and finally V is the reservoir

volume at time t . The summation in the first two right hand terms of Eq. (2.1)

indicates that the reservoir may receive water from more than one source (for

example the river network upstream and a second river network connected

through a channel deriving water from lateral streams intercepted at a level

higher than the reservoir level) and may feed more than one source, though

this last situation is unlikely.

Figure 2.2 Sketch of the partitioning of the reservoir volume and the
corresponding operational water levels.

Mass balance described by Eq. (2.1) is applied by considering the following

priority of releases:

a. Minimum Ecological Flow: local environmental regulations determine

the amount of water that must be released to the downstream river network by

reservoirs. MEF is released with absolute priority, only releasing a lower amount

of water if current reservoir stage is below the minimum regulation level.

b. Spillways: they are activated when reservoir water level is above the

maximum regulation level hmax,r eg and water is released in the downstream

river. The reservoir is equipped with one or more spillways such as to release

a given maximum discharge when the maximum water level hmax is reached.

Often spillways are equipped with gates, which allow flexibility in dealing with
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flood events since timing of the release can be, to some extent, decided by the

operator. Considering that spillways operate seldom, only during major events,

and given the impossibility of predicting operator’s decisions we introduced an

equivalent spillway in each reservoir, which is unmanned and starts to release at

the maximum regulation level and discharges the maximum water discharge at

the maximum water level. In doing this we impose that the cumulative released

volume is respected, but the exact timing of the release is not captured. The

water spilled from the reservoir is therefore computed as follows:

Qspi l l (t ) = Leq cq

√
2g

(
h (t )−hmax,r eg

)3/2 (2.2)

where cq is a coefficient of discharge, and Leq is the equivalent length of the

spillway, computed by imposing that it releases the maximum water discharge

(Qspi l l ,max) when the water level is at its maximum (hmax):

Leq = Qspi l l ,max

cq
√

2g∆h3/2
f c

(2.3)

In Eq. (2.3), ∆h f c = hmax −hmax,r eg is the maximum hydraulic head. Due to

the rapid variability of flow during flood events, the time step ∆t adopted for

solving Eq. (2.1) is set in such a way to obtain good accuracy in the computation

of the level into the reservoir and discharge. For example, in our simulations

the adopted time step is of 1 h for the hydrological kernel of HYPERstreamHS,

which is reduced to 1 minute for the computation of water balances depicted

in Eq, (2.1).

c. Release scheme: whenever the water stage is above the minimum regula-

tion level, a specific release scheme is applied to the reservoir. The derivation

scheme is a deterministic time series that must be set by the user prior to the

simulation. Further detail on the development of the release scheme adopted

in this work is provided in upcoming Section 2.1.2.5.
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2.1.2.2 type-Diversion Channel

Diversion channels divert water from the natural stream network by means

of an intake and route it to a downstream restitution point. These objects are

fully characterized by the channel length and a celerity describing how fast the

water can move along the artificial channel. Celerity is assumed as constant

throughout the simulation and can be set by the user prior to the simulation.

2.1.2.3 type-Intake nodes: diversions, restitution points and confluences

In our modelling scheme intake points are locations where water is diverted

from the natural stream network by means of artificial channels (see Fig. 2.3).

Furthermore, intake nodes can be used to model other human infrastructures,

such as restitution points and confluences between tunnels. In each of these

situations, a specific water mass balance is performed as described in the

ensuing paragraphs.

Diversion points are locations at which water is withdrawn from the river

network and sent to channels or tunnels, both for hydropower uses. Similarly

to reservoirs, diversions from river network (Fig. 2.3a) must obey to MEF and

operational constraints:

{
QI N ,nat (t ) =QOU T,nat (t )+QD IV ,ar t (t )

QOU T,ar t (t ) =QD IV ,ar t (t )+QI N ,ar t (t )
(2.4)

In the above equations, contributions to the water mass balance are distin-

guished between natural (flows related to the stream network) and artificial

(related to the channel). It should be also noted that all terms refer to the loca-

tion of the diversion point. QD IV ,ar t (first line of Eq. 2.4) represents the portion

of natural streamflow that is diverted from the stream network after the MEF

requirement has been met at the diversion node; moreover, this portion of flow

is limited by the capacity of the downstream artificial channel as well as from

the portion of flow already present in it, QI N ,ar t (second line of Eq. 2.4); by

virtue of this constraint, the flow to be routed downstream along the diversion
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channel, QOU T,ar t , will never exceed the channel’s capacity. In other words, if

the maximum channel capacity is reached before the diversion point in object,

this will not divert any more water from the natural stream network.

In the case of a restitution point, water mass balance between all natural

(ΣQI N ,nat ) and artificial (ΣQI N ,ar t ) incoming flows is performed (Fig. 2.3b),

with the resulting flow being routed downstream along the natural network,

without any further constraint:

QOU T,nat (t ) =ΣQI N ,ar t (t )+ΣQI N ,nat (t ) (2.5)

Figure 2.3 Schematic of the infrastructures simulated in the Human
System module of HYPERstreamHS. Insets in the lower panel detail a
particular structure that can be simulated with the object type-intake:
diversion (a), restitution point (b) and confluence between tunnels (c).

Finally, intake points are also used to model confluences between tunnels, in

situations like e.g. the one depicted in Fig. 2.3c: in this case, only artificial flows
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are accounted for, as there is no water exchange between the natural stream

network and the tunnels at these locations:

QOU T,ar t (t ) =ΣQI N ,ar t (t ) (2.6)

As it can be seen from Eq. (2.6), water incoming from upstream tunnels is

conveyed to the downstream tunnel without any constraint.

2.1.2.4 type-Hydropower Plant nodes

Power plant elements act similarly to restitution points illustrated in the pre-

vious paragraph, where all the incoming contributions are summed up before

being routed downstream. Before performing the water balance, the contribu-

tions incoming from penstocks are used to compute hydropower production

by means of a hydropower production function that applies to each inflow to

the power plant, and computes hydropower production (HPP ) at every time

step, as shown in Eq. (2.7):

HPP (t ) = η
N∑

i=1
γQTU RB ,i∆Hi (t ) (2.7)

where QTU RB ,i and ∆Hi represent the turbined flow and the hydraulic head

for each water inflow (i ) to the plant (hydropower plants may have more than

one inflow), respectively. The hydraulic head is computed as the difference

between the reservoir stage at timestep t and the turbine axis level, in the

case of reservoir hydropower. In the case of run-of-the-river plants, it is just

assumed equal to the constant value declared by the system owning company.

Furthermore, η represents the turbine efficiency, which we assumed constant

and equal to η = 0.8 for every plant on the basis of efficiencies data available at

some plants located within the case study.
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2.1.2.5 Derivation of the deterministic reservoir release schemes

In type-reservoir nodes, whenever the water stage is above the minimum

regulation level, a specific derivation scheme is applied to the reservoir. We

developed a deterministic reservoir operating rule that proportions the average

reservoir derived discharge on the expected mean annual production of the

i-th hydropower system, as illustrated in Eq. 2.8:

Q AV G ,i =
HPE X P,i

γ∆Hiη∗24∗365
(2.8)

where HPE X P,i is the expected average annual production declared by the

plant operating company, ∆Hi represents the nominal head for the plant (this

quantity is often declared by plant owners, available in public concession acts

etc.), and η is the plant efficiency, which in our applications was set constant

and equal to the average of the efficiencies of the hydropower plants for which

it was available (further detail on this provided in Chapter 3). This is justified

from the similarity in the hydraulic characteristics of the power plants. The final

value for the hydropower discharge rule is obtained by modulating this value

using three coefficients representing different factors that influence decision

making and reservoir operating routines, as shown in Eq. 2.9:

QTU RB ,i =Q AV G ,i kmδwφe (2.9)

In the previous equation, the coefficient km = HPpr ov,m/HPpr ov,ann repre-

sents the ratio between monthly average production and yearly average pro-

duction in the province of interest (detailed motivation for this choice can be

found in Section 3.3). Therefore, km will assume 12 different values throughout

the year. Furthermore, km is computed for each province belonging to the study

area, and each plant will adopt the set of coefficients related to the province it

belongs to. δw is a user-set variable controlling the variation of the production

during weekdays, while φe = Pav g ,3/Pav g ,month is computed comparing the

3-day moving average of electricity price with the average price for the current
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month, reflecting short-to-medium term adjustments to management strate-

gies. A similar approach has been adopted by Schaefli et al. (2007), where a

stochastic component was added to a deterministic water demand, in order to

model stochastic processes such as the evolution of demand or perturbations

in electricity market.

The resulting deterministic hydropower production rule depicted in Eq. 2.9

varies in time (due to the daily variability of φe and to the monthly variability

of km) and and space (due to km assuming a different set of values for each

province), differing from typical target volume approaches where an average

year is defined and then repeated for the entire simulation. An example year

of deterministic hydropower discharge scheme is shown in Figure 2.4. The

turbined discharge varies monthly according to variation of incoming flow and

shows daily fluctuations according to the energy price. Particularly relevant

is the shutoff of production during the weekends, achieved by setting δw = 1

during weekdays, and to 0 otherwise.

Figure 2.4 Example of deterministic discharge scheme for hydropower
reservoirs. Discharge is influenced by current month, electricity price
and weekday, as well as from the location of the reservoir
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2.2 Parameter Identification

As it was already mentioned in Chapter 1, the parameters of the hydrological

model (cfr. Sec. 2.1.1) can be computed by either a conventional-deterministic

approach or in a more general-statistical Bayesian framework. While in the

first case, the single optimal set of parameters is sought after (optimality here

defined as the parameters set that allows to minimize the error between model

predictions and measure data), on the other hand, Bayesian approaches aim to

quantify the uncertainty of model predictions and the a-posteriori distributions

of the parameters.

In light of this distinction, HYPERstreamHS is equipped with two calibration

procedures belonging to the aforementioned approaches: the Particle Swarm

Optimization (PSO) algorithm (Castagna and Bellin, 2009; Kennedy and Eber-

hart, 1995; Majone et al., 2010; Robinson and Rahmat-Samii, 2004) and the

Monte Carlo analysis in conjunction with Latin Hypercube Sampling (LHS)

technique (McKay et al., 1979), respectively. PSO is a robust stochastic genetic

optimization technique based on the movement of a swarm of bees, which

represent the parameters set in the space of parameters. The application of this

algorithm is particularly suited to calibration procedures in the presence of

a large number of parameters since it is insensitive to both initial conditions

and the shape of the objective function. On the other hand, uncertainty eval-

uation generally holds that all parameters sets of a system shall be retained

until they are rejected (Wagener, 2003). The set of plausible models obtained by

different parametrizations is used to construct confidence intervals for model

outputs. According to the concept of "equifinality" (Beven and Binley, 1992),

which states that many parameter sets within a given modelling framework are

capable to simulate reliably a given output, a likelihood value can be assigned

to each parameter set to indicate how well the given set of parameters provides

a behavioural simulation of the observed variable. Here we adopted the LHS

sampling scheme as the technique to adequately explore the entire parameters

space.
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In both cases, the inverse modelling procedures were based on the maxi-

mization of the Nash-Sutcliffe Efficiency (NSE) index (Nash and Sutcliffe, 1970)

for streamflow time series evaluated at chosen nodes of the river network:

N S = 1− σ2
e

σ2
o

, (2.10)

where σ2
o is the variance of the observed streamflow time series, σ2

e is the

variance of the residuals, i.e. the difference between observed and simulated

streamflow. Nevertheless, other efficiency metrics used in the hydrological lit-

erature could well be implemented (like e.g., the Kling-Gupta efficiency, KGE,

(Gupta et al., 2009)) without any loss of the generality for the proposed mod-

elling framework (e.g., see Laiti et al. (2018); Piccolroaz et al. (2015)).

2.3 Parallelization strategy

In the present work, the MPI standard has been adopted in order to imple-

ment a dual-layer parallelization scheme into HYPERstreamHS. Each paral-

lelization layer contributes to the model’s scalability, either reducing the com-

putational time associated to each run of the hydrological model (first-layer) or

improving the workload subdivision during model calibration or uncertainty

analyses procedures (second-layer). In addition to this, the parallelization en-

ables the use of multiple CPUs (which can have multiple processors) with their

own and independent memory access: this allows in order to overcome the

volatile memory allocation issues due to the simultaneous managing of a large

amount of data, which is typical in hydrological modelling applications.

MPI standard has been preferred over a standard scheduler approach (Zhang

et al., 2016) due to its flexibility and portability (i.e. it can be used in different

computing platforms, Musiał et al. (2008)). In fact, MPI can interact with every

kind of processor memory configuration (i.e. shared, distributed or distributed-

shared), and it can work with processors using either fast or slow communica-

tion networks.
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Furthermore, the use of MPI standard allowed to implement a master-slave

architecture. Figure 2.5 shows an illustrative example of such architecture,

considering np = 16 processors hypothetically available in a HPC system. Be-

fore parallelization, all the processors pk belong to the same group, named

as MPI _GROU P_W ORLD, and are associated to its corresponding commu-

nicator, termed according to the MPI terminology as MPI _COM M_W ORLD :

a simple distinction between groups and communicators lays in the fact that

groups are entities that represent a set of processes, whereas a communicator

is a set of processes that are able to communicate with each other and may

consist of processes from a single group or from multiple groups. More de-

tailed definitions of the terms MPI groups, communicators and topology can

be found in MPI Forum (1994) and Gropp et al. (1996). When the parallelization

is performed, the global group and its communicator are split in ng sub-sets,

here named MPI _LOC AL_COM ML, where each sub-set has ns = np /ng pro-

cessors. The processors are then renamed pi ,k , according to the group they

belong to.

Each sub-set constitutes now an univocal set of processors and defines the

first level of the MPI parallelization, where independent simulation runs are

performed. In the illustrative example (see Figure 2.5) the total number of np =
16 processors is divided into 4 sub-sets, i.e. ng = 4, with each set accounting for

4 processors (see dashed black lines in Figure 2.5). The Figure also highlights

that each sub-set has its own local communicator, MPI _COM M_LOC AL, and

its own local identifier pi ,k for the processor i d . The definition of a group

of processors that interact by means of a communicator establishes the first

parallelization level.

The second parallelization layer is obtained having multiple groups com-

municate with each other. From Figure 2.5 it can be noticed that a master

processor is defined in each sub-set; the master processor coordinates the

activity of other processors within its sub-set. These non-master processors

are usually referred to as sl aves, and it should be noticed that each master

also performs sl ave tasks within its own sub-set. The second level of paral-
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lelization is achieved by creating a new group, MPI _M AST ERS_COM M (see

continuous black line in Figure 2.5), which gathers the master processors of

all sub-sets together with its own communicator. The master processors are in

charge of subdividing the workload during the parallel computation involved

in the inverse modelling procedures described in Section 2.2, while the slaves

perform the parallel computations associated to each given run of the hydro-

logical model identified by their own master from a different set of parameters.
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Figure 2.5 Illustrative example of the MPI dual layer parallelization The
original set of 16 processors is subdivided in 4 local sets (dashed line),
each one provided with its local communicator MPI _LOC AL_COM M .
Each processor has its local identifier pi ,k , where i ∈ [0..3] identifies
the group and k ∈ [0..3] represents the local numbering within the
sub-set. Notice that k = 0 identifies the master of each set. The addi-
tional set composed by masters of each group with its communicator
MPI _M AST ERS_COM M is also presented as continuous black line.
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2.3.1 First parallelization level

As discussed in Section 2.1.1, many of its features make HYPERstreamHS

inherently highly parallelizable: i) subdivision of the computational domain

in independent macrocells, each of which is assigned its corresponding prop-

erties and input meteorological forcing; ii) vertical water fluxes are computed

independently for each macrocell; and iii) the WFIUH approach allows to apply

the superposition principle at the node itself. when transferring the specific

runoff generated in each portion of the macrocell to the corresponding down-

stream node using the HYPERstream routing scheme (Piccolroaz et al., 2016).

The serial computations foreseen in HYPERstreamHS are indeed associated

only to the transfers along the river network of the streamflows generated at

the node level. In light of these considerations, the first level of parallelization

scheme assigns the parallel tasks based on the number of macrocell-node pairs

identified by the geometric pre-processor (see Section 3.1). Figure 2.6 illustrates

the parallelization approach adopted in the first MPI level: the processed being

carried over can be broken down into four separate phases, represented by the

horizontal panels shown in the Figure:

a. Reading of Input Data: at the beginning of the simulation each processor

stores the hydrological model parameters and the network topology;

b. Macrocell-node Splitting: afterwards, the macrocell-node pairs are evenly

subdivided between the available processors, and the corresponding macrocell-

node width functions and input meteorological forcing are read, limited to the

subset of macrocell-node pairs pertaining to each processor;

c. Hydrological Kernel: afterwards, each processor computes the hillslope

runoff time series of the assigned macrocells and transfers the streamflow

contribution to the connected downstream node. A first water mass balance

is then performed at each network node by summing up all the pertaining

contributions to each node coming from different macrocells;

d. HS Modules and Final Routing: once macrocell-node streamflow contri-

butions have been aggregated at each node, a single processor is designed to
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perform the serial computations envisioned in the code: i) enforcement of the

constraints on natural water budget imposed by the presence of the human

infrastructures (see Section 2.1.2); and ii) routing along the natural and artificial

network of the resulting fluxes simulated at the nodes.

41



CHAPTER 2. THE HYDROLOGICAL MODELLING FRAMEWORK:

HYPERSTREAMHS

Figure 2.6 Illustrative example of the first parallelization level consid-
ering 4 processors. Each processor reads river topology and model
parameter, then macrocell-node pairs are assigned to processors which
read the corresponding input meteorological forcing and evaluate verti-
cal fluxes and the macrocell-to-node routing. Finally, a single processor
solves the water balance equations imposed by the presence of HS
and performs the final routing along the entire natural and artificial
network.
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2.3.2 Second parallelization level

The second level of parallelization has been applied to the parameters iden-

tification schemes described in Section 2.2: the Latin Hypercube Sampling

(LHS) and the Particle Swarm Optimization (PSO). Figure 2.7 and 2.8 illustrate a

schematic of the implemented dual layer framework for LHS and PSO, respec-

tively.

2.3.2.1 Latin Hypercube Sampler - LHS

The LHS calibration procedure allows an easy and direct implementation

of the parallel scheme. At the beginning of the simulation a given number of

sets of parameters are randomly generated; afterwards, these sets are equally

subdivided among the master processors. Each master and its slaves perform

a simulation run of HYPERstreamHS and evaluate model performance corre-

sponding to each given set of parameters. In the case of the LHS algorithm, the

second MPI layer is onlyactivated at the beginning of the calibration procedure,

and no further communications between masters are required. An illustrative

example of the LHS scheme functioning is depicted in Figure 2.7; firstly, one

processor (termed as master of masters, with local identifier p0,0) generates all

the sets of parameters according to the LHS scheme and subdivides such sets

equally among the 4 masters (p0,0, p1,0, p2,0, p3,0). Each master coordinates the

cycling over the assigned subset of parameters, having its slaves run the hydro-

logical model a number of times equal to the number of the sets of parameters

assigned to the sub-set. The cycling over the parameter sub-set assigned to

each master is depicted with a red box in Figure 2.7.

2.3.2.2 Particle Swarm Optimization - PSO

Differently from the LHS, the PSO is an evolutionary computation technique

characterized by the presence of a population of potential solutions, called par-

ticles, exploring the multi-dimensional parameters space in order to find the

optimal solution of a given inverse problem. After a preliminary step in which

particle positions are generated randomly and independently, each particle
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starts to explore the parameters and updates its own position considering both

the memory of its own best position and the knowledge of the overall best

position (i.e., the location visited by one among all the particles that achieved

the highest efficiency metric up to now). It can be easily noticed that the paral-

lelization strategy in the case of PS must differ from the LHS case (see Figure

2.8). Even in this case, the master of the masters (p0,0) generates randomly the

initial locations in the parameters space of a given number of particles, which

are then assigned evenly to all the masters. Afterwards, each master (pi ,0) and

the associated slaves perform a number of runs of the hydrological model equal

to the number of particles assigned to each master. At the end of each PSO

iteration step, the masters must share information in order to recognize the

best-scoring particles, and then to update the positions of all particles based

on the performance achieved at the previously explored locations.

This is clarified in Figure 2.8 where the PSO scheme in the dual-layer frame-

work is illustrated. As it can be noticed, the PSO configuration shares some

similarities with LHS: in both cases the master of masters initializes the pop-

ulation of candidate solutions, and then subdivides them among the masters.

Thereafter, the LHS and PSO differ: while in PSO the 4 masters are forced to

communicate at each step in order to track the best solution among all the

population, communication in LHS occurs only at the very end of the process.

44



CHAPTER 2. THE HYDROLOGICAL MODELLING FRAMEWORK:

HYPERSTREAMHS

Figure 2.7 LHS double-layer parallelization scheme. The master of the
masters (p0,0) computes the parameters and divides them equally be-
tween other masters. Each masters runs the parallel hydrological model
with its own slaves.There is no communication between masters until
the end of the process. The cycling over the parameter sub-set assigned
to each master is depicted with a red box.
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Figure 2.8 PSO double-layer parallelization scheme. The master of the
masters (p0,0) computes the parameters and divides them equally be-
tween other masters. Each masters runs the parallel hydrological model
with its own slaves, and at each iteration step the masters communicate
in order to find the best global solution (red horizontal arrow). The
cycling over the parameter sub-set assigned to each master is depicted
with a red box.
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DATA, CASE STUDIES AND
STATISTICAL TOOLS

In this Chapter an overview of the information required to characterize the model is

presented. Then, a detailed presentation of the different case-studies is provided and

finally the statistical tools adopted in Chapter 5 are illustrated.
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Inputs to HYPERstreamHS can be subdivided into three main categories:

a. Geometric information: required for preprocessing the domain, hence

defining the computational grid and stream network, as well as assigning soil

characteristics to each macrocell;

b. Meteorological input forcing: spatialized rainfall and temperature time

series are provided as input to the model;

c. Nodes characterization: this category includes both observed streamflow

time series obtained at relevant stream gauging stations, as well as a wide set of

information required to characterize HS nodes that will be further detailed in

the upcoming sections.

While geometrical data and meteorological input are already available over

the entire Alpine Region, collection of Human System information is an ongoing

task. However, it has already been completed for the first two applications of

HYPERstreamHS, the first of which is the Adige catchment, located in the

Eastern Italian Alps, and the second case study being located in the Western

Alps, composed of 5 catchments, namely the Dora Baltea, Orco, Stura di Lanzo,

Dora Riparia and Pellice river catchments. Both domains are depicted in Figure

3.1.
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Figure 3.1 Location of the two case studies investigated in this thesis.
The Adige catchment is located in the Eastern portion of the Italian
Alps. In the Western part of the map is the second domain, which was
further subdivided within two areas during its implementation: the up-
per portion is the Dora Baltea catchment, while the lower one contains
the Orco, Stura di Lanzo, Dora Riparia and Pellice catchments.

3.1 Geometry and Soil information

As anticipated in Section 2.1.1, a preliminary geometric processing is re-

quired to set up the simulation. Four raster files are required as input: the DEM

(Digital Elevation Model) of the area, a Drainage Direction file, which can be

computed starting from the DEM by means of a GIS analysis (or can be provided

otherwise), a Crop Coefficient raster map, useful for the determination of the

S parameter adopted in the SCS-CN infiltration model, and finally a Stream

Network raster file, which again can be computed by means of a raster GIS or

provided otherwise. Along with the input raster files, a text file containing the

coordinates of the nodes, grid information (macrocell size, and top-left grid cor-

ner coordinates), and the sampling width for the definition of the widthfunction

is provided. The key outputs from the geometrical preprocessing are indeed

files that contain node-to-node dependencies based on drainage directions and
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stream network, macrocell infiltration data, and widthfunctions computed for

each macrocell-node pair: these files are suitable for use from HYPERstreamHS.

The raster input files are shared between all of the analyses presented in this

thesis (and will also be adopted in the upcoming ones) and are the following:

a. DEM: the 30m EUDEM Digital Elevation Model was used; the DEM has

then been reconditioned in order to comply with the official stream network;

b. Land use information and crop coefficients were extracted from the

Corine dataset (https://www.eea.europa.eu/publications/COR0-landcover).

c. Stream Network provided by the Superior Institute for Environmental Pro-

tection and Research (ISPRA, available at http://www.sinanet.isprambiente.it/it/sia-

ispra/download-mais/reticolo-idrografico/view).

3.2 Meteorological Input Forcing

Gridded meteorological forcing is also provided as an input. Temperature

(minimum, mean, and maximum) and precipitation time series are required.

Temperature dataset is also used to compute PET (Potential EvapoTranspira-

tion) gridded dataset. The meteo forcing grid should overlap with the com-

putational grid (i.e. macrocell grid): therefore, a preliminary reprojection of

the dataset might be necessary. The input meteorological information is then

processed and associated to each macrocell, together with the soil infiltration

properties presented in the previous Section. As already introduced, two sepa-

rated case studies were investigated: the chosen input forcing was different for

each case, as detailed in the following.

3.2.1 Meteorological input forcing for the Adige catchment

The ADIGE dataset (Mallucci et al., 2019) was used for this case study. The

dataset consists of daily readings taken at 244 and 350 gauging stations for

precipitation and air temperature respectively, which have then been spatial-

ized on a 5x5km grid by means of Ordinary Kriging with External Drift (OKED),
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adopting terrain elevation as the secondary variable (Gooaverts, 1997). The

portion of the ADIGE dataset that was used in our analyses covers the 1989-2013

time window. This dataset was employed in the analyses presented in Chapters

4 and 5.

3.2.2 Meteorological input forcing for the Dora Baltea, Orco,

Stura di Lanzo, Dora Riparia and Pellice catchments

The analysis carried over in this second case study was aimed at the vali-

dation of HYPERstreamHS hydropower production model against historical

observations, as a first application of the framework that later will be applied to

the entire Alpine Region. For this study, the COSMO datasets for temperature

and precipitation were adopted, limited to the 1995-2008 time window, in order

to match the data availability for model characterization. COSMO (Bollmeyer

et al., 2015) is a weather prediction model whose results have been improved by

means of a data assimilation, i.e. the inclusion of heterogeneous observations to

improve the prediction of COSMO’s physical model. The improvement brought

by the data assimilation was assessed through a dynamical downscaling ex-

periment (i.e. comparing model results with and without data assimilation)

COSMO provides both temperature and precipitation time series, and data over

the 1995-2008 time window were used in this case study.

3.2.3 Temporal and Spatial disaggregation of the inputs

The spatial resolution for the data sets of both case studies was set to 5x5

km, hence overlapping the macrocell grid and allowing to assign different

input at each macrocell; the time window covered by the two datasets allowed

to perform the simulations over the 1995-2008 time window, adopting daily

measurements that were disaggregated to the hourly scale, in order to match

simulation time step. Disaggregation procedures were linear, hence assuming

the same temperature throughout each day and partitioning evenly the daily

precipitation among the 24h.
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3.3 Node characterization

3.3.1 Streamflow time series

Streamflow time series for many Northern Italian rivers were retrieved from

multiple sources as a part of a concurrent activity of this project, as described

in Todaro (2020). Streamflow observations are available at a daily time step at

388 locations, as displayed in Figure 3.2. The accuracy and time span of the

measurements vary substantially, however a follow-up analysis on the data

set showed that measurements at many stations cover more than 90% of their

entire time span; stations with extensive measurement coverage and reliable

measurements represent the ideal candidate locations for model calibration

and validation.

Figure 3.2 Location of the 388 stream gauging station provided by sev-
eral Environmental Agencies in Italy. Streamflow time series at relevant
locations are used to calibrate and validate HYPERstreamHS.
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3.3.2 Human System Nodes

The approach to modelling hydropower-related infrastructure required a

particularly high level of detail. Firstly, as many information as possible were

collected to characterize human systems; then, after a phase of model tuning it

was possible to define the modelling strategy, thus refining and reducing the re-

quired input information to an optimal and minimal set. Since global database

do not contain detailed information about Italian hydropower systems, and

since key information concerning reservoir operation are rather often protected

by industrial secret, we chose to model human systems only adopting data that

are typically available to the public without any particular agreement: since

no standard dataset is available for this kind of information, an in-depth, site-

by-site search was carried over in order to progressively fill the input dataset;

the information required to characterize and constrain the HS nodes in HY-

PERstreamHS is synthesized in Table 3.1. Information concerning the location,

structure and operation of the hydropower systems, as well as network topology

information, was collected and structured in a GIS database during the EoCoE2

(https://www.eocoe.eu/water-for-energy/) project, which is visually displayed

in Figure 3.3. Due to the sheer number of information it includes, the comple-

tion of the data set often requires system-specific investigation and is therefore

ongoing. It has, however, already been completed over the three catchments

already investigated in our analyses, which are depicted in Figure 3.1.
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Figure 3.3 Current state of completion of the Human System database
for the Alpine Region. The database is organized in a GIS platform and
each node is characterized according to Table 3.1
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Table 3.1 Data requirements to fully characterize HS nodes in HYPER-
StreamHS. All the information contained in this Table (with the ex-
ception of the location, which is accounted for during the geometric
preprocessing) is provided as-is to the model, with the exception of the
HPP schedule, which is computed offline and then provided as input.

Reservoir
Characteristic Description Data type [units]
xr es , yr es Location CRS: WGS 84-UTM 32 N [m]
Qspi l l ,M AX Spillway capacity [m3s−1]
V (H) Stage-Storage curve array [m a.s.l. vs. Mm3]
hmi n,r eg Minimum regulation stage [m a.s.l.]
hmax,r eg Maximum regulation stage [m a.s.l.]
hmax,i nv Spillway crest elevation [m a.s.l.]
Qtur b,M AX Maximum turbined flow [m3s−1]
MEF (t ) Minimum Ecological Flow [m3s−1]
qtur b(t ) HPP schedule time series [m3s−1]
Intake Data type
Characteristic Description Data type [units]
xi tk , yi tk Location CRS: WGS 84-UTM 32 N [m]
Qmax,chann Intake capacity [m3s−1]
MEF (t ) Minimum Ecological Flow [m3s−1]
Hydropower Plant Data type
Characteristic Description Data type [units]
xpl t , ypl t Location CRS: WGS 84-UTM 32 N [m]
Hpl ant Elevation [m a.s.l.]
∆Hpl ant Head (run-of-the-river only) [m]
Pann Mean annual production [MWh/y]
Wi nst Installed power [MW]
η Plant efficiency -
Channel
Characteristic Description Data type [units]
i dU P Upstream node ID Node attribute
i dDOW N Downstream node ID Node attribute
t y penU P Upstream node type Node attribute
t y penDOW N Downstream node type Node attribute
l Length [m]
uar t Celerity [m3s−1]

56



CHAPTER 3. DATA, CASE STUDIES AND STATISTICAL TOOLS

3.3.3 Hydropower production time series

Hydropower production data were made available upon request by the Man-

ager of the Italian electricity grid, TERNA (http://www.terna.it/). Hydropower

production time series are publicly available at a monthly time scale and ag-

gregated by-province (Figure 3.4), and cover the 2000-2015 time window with

no gaps. Moreover, data are subdivided between small and large hydropower

plants (3 MW installed power threshold), in line with the classification com-

monly adopted in Italy and inherited from the present work (Figure 3.5). In

order to validate the model, hydropower production time series produced by

the model must be comparable with observations. Since provinces do not con-

stitute hydrologically independent units (except by coincidence, like it happens

for the upper portion of the Adige catchment which falls in- and covers en-

tirely in the province of Bolzano), setting up the model to directly reproduce a

province’s production could be troublesome and not significant. Conversely,

we decided to scale the available observations so that they could represent the

hydropower production of any catchment of interest. The production from a

catchment was therefore estimated through the following relationship:

HPPcatchment =ΣHPPpr ov,i wi (3.1)

Where HPPpr ov,i represents the hydropower production related to each province

in which the catchment has at least one hydropower plant, and being wi a

weighting factor computed as the ratio between the total hydropower capacity

installed in the portion of the province belonging to the catchment and the

installed capacity of the entire province. This procedure requires the knowledge

of single plant capacity of both the plants pertaining to the catchment of inter-

est and of the plants belonging to provinces partially touched by the catchment.

Under the hypothesis that the all hydropower systems are operated similarly,

we can consider the so-obtained values as observations, and are able to use

them for comparison with the model’s predictions during validation.
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Figure 3.4 Distribution of the average annual hydropower production
due to large hydropower plants in the provinces of Northern Italy. The
average is based on the available observations (years 2000-2015). Gray
provinces mean that no large hydropower plants are known to belong
to the province.

Figure 3.5 Total monthly hydropower production in Northern Italy. The
two series represent the contribution to the total from large (blue) and
small (green) hydropower plants; the distinction is based on the 3MW
installed power threshold.
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3.4 Case studies

As anticipated, the modelling framework illustrated in Chapter 2 has been

applied to two different domains. The Adige domain was the first application,

and both scalability testing of the model and hydrological/hydropower mod-

elling and validation were performed on this catchment: their results will be

illustrated in Chapters 4 adn 5, respectively. The second case of study is com-

posed by five catchments located in the Western Alps: Dora Baltea, Orco, Stura

di Lanzo, Dora Riparia and Pellice. Together with usual hydrological and hy-

dropower production modelling and validation, this second case study served

for an analysis of the role of different meteorological input data sets in hy-

dropower forecasts, which will be presented in Chapter 6.

3.4.1 The Adige catchment

The Adige catchment is the second widest of all the Italian river catchments

and is located in the eastern portion of the Italian Alps. It is a mesoscale basin

(around 10600 square kilometers, considering the catchment closed at the

Vo Destro stream gauging station); it includes a wide variety of topographic

characteristics ranging from small, mountainous catchments to larger basins,

resulting in a variable geomorphology and hydrologic regime throughout the

catchment, that reflect themselves on different reservoir management strategies

for hydropower production. As anticipated in Section 3.2, the ADIGE dataset

provided temperature and precipitation input forcing for the simulation: the

distribution of average rainfall and temperature are depicted in Figures 3.6 and

3.7, respectively.

In the Adige river basin, as many as 40 large hydropower plants are present,

with installed power ranging from 3 to 230 MW and 30 of them being fed by as

many 30 reservoirs, which operational volume ranges between 0.48 and 200

Mm3. A rather extensive network of diversion channels with capacity ranging

from 0.3 to 203 m3/s is feeding the whole system. The total average production
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Figure 3.6 Average rainfall provided by the ADIGE data set over the
reference period 1989-2013 in the Adige river basin.

of the Adige large hydropower plants is around 6609 GWh/y, according to data

available from the hydropower companies operating in the river basin, thereby

contributing to more than 14% of the yearly Italian hydropower production

(TERNA, 2015). The resulting conceptual model for the Adige catchment in-

cludes 146 nodes 30 of which represent reservoirs, 41 intake, 40 hydropower

plants and 35 nodes that include stream gauging stations or nodes inserted for

modelling purposes; this setup is depicted in Figure 3.8.

As anticipated in Table 3.1 the Italian law prescribes a minimum value

of the streamflow that must remain in the river network at each water usage

location, called Minimum Environmental Flow (MEF). This threshold often

varies seasonally, and its definition pertains to Regional authorities. Detailed

prescriptions for MEF at each water diversion were retrieved from the Public
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Figure 3.7 Average temperature provided by the ADIGE data set over
the reference period 1989-2013 in the Adige river basin.

Water Usage Plans of the Trento and Bolzano autonomous provinces, ensuring

complete coverage of the Adige catchment (Piano Generale di Utilizzazione

delle Acque Pubbliche, available at http://www.pguap.provincia.tn.it for Trento,

and at https://ambiente.provincia.bz.it/acqua/piano-generale-utilizzazione-

acque-pubbliche.asp for the Bolzano province).
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Figure 3.8 Map of the Adige river basin closed at the Vo’ Destro section.
In the figure are indicated the locations of the relevant streamflow
gauging stations (yellow dots), reservoirs, hydropower plants, artificial
channels network connecting the main hydropower systems and intake
points. The inset recalls the position of the catchment in Italy.

3.4.2 The Dora Baltea, Orco, Stura di Lanzo, Dora Riparia and

Pellice catchments

For the analyses presented in Chapter 6, a different domain was used. The

choice of the domain has been driven by the progress in the completion of the

HS nodes database: the availability of HS node characterization on a sufficiently

large region allows for a significant application of the model, which is mainly

made to be applied at the regional scale. The final choice of the domain was

performed accounting for a set of adjacent river catchments in which the HS

dataset was completed.

Dora Baltea is the fifth tributary of the Po river, and its catchment area mea-
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sures roughly 3850 square kilometers. The river is fed by a number of glacial,

mountainous creeks and this gives it the unique trait among the major Italian

rivers of having a nivo-glacial hydrologic regime. Few reservoirs can be found

in the mountainous portion of the catchment, while the majority of the hy-

dropower activities are concentrated on the main body of the river by means

of run-of the river plants. Orco, Stura di Lanzo, Dora Riparia and Pellice rivers

are four tributaries of the Po river, wose catchments are located immediately

South of the Dora Baltea catchment. These catchment present a similar mor-

phology, all having a mountainous region located to their western side. Indeed,

the hydrological regimes of the rivers are also the same and mainly exhibit a

pluvio-nival characteristic. The joint surface area of these catchments is around

4100 square kilometers. The Pellice catchment is only mildly influenced by

hydropower activities, while the other three catchment are influenced by the

presence of many hydropower plants, all concentrated in the mountainous

region of the catchment.

As anticipated, one of the purposes of the analyses performed on this do-

main was to assess the effects of different climate data sets in terms of mod-

elled hydropower production. Therefore, two combinations of data sets were

adopted, all in the 1995-2008 time window. Firstly, COSMO was used to provide

both temperature (Figs. 3.9a and 3.9b) and precipitation (Figs. 3.9c and 3.9d).

Observed streamflow time series at 17 relevant stream gauging stations

were selected among those available at the Superior Institute for Environmental

Protection and Research website (ISPRA, http://www.isprambiente.gov.it); mea-

surements were taken at a daily scale, and all the records showed a relatively

low share of missing observations (i.e. 30% or lower).

As mentioned in the previous paragraph, most hydropower plants in this

study area are run-of-the-river plants: among 63 hydropower plants, only 18

are served by upstream reservoir. The declared mean annual production for

this area is around 4496 GWh//y. A relatively complex network of intake points

and tunnel serves the hydropower systems present in this area, resulting in

119 modelled intake nodes. The total conceptual model hence includes 18
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Figure 3.9 Average annual temperature and precipitation over the 1995-
2008 time window int the two subsets of the domain: the left column is
relative to the Dora Baltea catchment while the right column is referred
to the Orco, Stura di Lanzo, Dora Riparia and Pellice river catchments.
In the rows are shown respectively: COSMO average temperature (a,b)
and precipitation (c,d)

reservoirs, 119 intakes, 63 hydropower plants and 17 stream gauging station

locations, for a total of 217 nodes. The resulting model is shown in Figures 3.10

a and b, split in two as usual for sake of clarity.
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Figure 3.10 Map of the Dora Baltea (a) and Orco, Stura di Lanzo, Dora
Riparia and Pellice (b) river catchments, with indicated the location of
the outlet and the relevant streamflow gauging stations (yellow dots),
reservoirs, hydropower plants, artificial channels network connecting
the main hydropower systems and intake points. The insets recalls the
position of the catchments in Italy.
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3.5 Clustering analysis tool

In order to perform the additional analyses presented in Section 5.3, a

standard clustering analysis was performed. To this aim, the kmeans algorithm

was used: the algorithm is based on Lloyd (1982) clustering algorithm: in this

procedure, the number of clusters must be guessed by the user prior to the

partitioning (based e.g. on expected results or just by trial-and-error); at the

first iteration, k cluster centroids are chosen at random, and each data point

is assigned to the cluster with the closest centroid. At the start of the second

iteration, k new centroids are computed based on the locations of evry data

point belonging to their cluster; subsequently, data points are assigned to a new

cluster, again based on the closest centroid. This procedure is repeated until

convergence (i.e. the centroids do not move between iterations) or when the

maximum number of iterations is reached. For our analysis, three normalized

indicators were taken into account:

H(i ) = Hr es,max(i )−Hr es,mi n(i )

Hs y s(i )
(3.2)

Where Hr es represent the maximum and minimum regulation stage of the

i−th reservoir, respectively and Hs y s represents the average geodetic jump of

the hydropower system (i.e. from reservoir to turbine axis in case of storage

hydropower plant, or the jump declared by the plant operator in the case of

run-of-the-river hydropower plants). This indicator accounts for the relevance

of the reservoir geodetic head compared to the overall geodetic head of the

system.

HPP (i ) = HPsi m(i )−HPr e f (i )

HPr e f (i )
(3.3)

Where HPsi m represents the simulated hydropower production obtained in

the current scenario at the i−th plant and HPr e f represents the reference hy-

dropower production for the same plan, as computed by means of our standard

simulation setup (further detail provided in Section 2.1.2.5).

Q(i ) = Qr ul e (i )

Qi n,av g (i )
(3.4)
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This third indicator accounts for the ratio between the average turbined flow at

reservoir i in the current scenario, Qr ul e , and the average inflow to the same

reservoir (Qi n,av g ). The results of the k-means clustering analysis are shown in

Section 5.3.
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HYPERSTREAMHS SCALABILITY
PERFORMANCE

HYPERstreamHS is a developed version of the HYPERstream model. The main ad-

ditions to the previous version were parallel computing and explicit simulation of

Human Systems related to hydropower. In this Chapter the results concerning the

computational performances of the model will be covered.

This Chapter is based on:

Avesani, D., Galletti, A., Piccolroaz, S., Bellin, A., Majone, B. A Dual layer MPI continuous

large-scale hydrological model including Human Systems, Environmental Modelling &

Software, SUBMITTED
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4.1 Model calibration and setup

The scalability of HYPERstreamHS was tested in a real case which was

considered suitable for its application. The Adige was selected due the exten-

sive knowledge of the hydropower systems of the area, and to well-organized

publicly available of in-depth information, which have been fundamental to

guarantee a reliable development and implementation of the Human Systems

module. Specifications on the case of study, its conceptual model and on the

input data set are provided in detail in Section 3.4.

Bronzolo

Trento

Vo' Destro

Figure 4.1 Map of the Adige river basin with indicated the locations
of the Vo’ Destro outlet section and the streamflow gauging stations
of Trento and Bronzolo (yellow dots), reservoirs, hydropower plants,
artificial channels network connecting the main hydropower systems
and intake points. The inset shows the geographic location of the Adige
river basin within the Italian territory.

All the simulations were conducted at a hourly time step during the 1989-

2006 time window using a 5x5km computational grid. Streamflow time series
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collected at the Trento and Bronzolo gauging stations (see Figure 4.1 for node’s

location and Section 3.3 for further details on streamflow time series) were used

as observations in the inverse modelling procedures. The first two years of sim-

ulations were used as a spin-up and thus were excluded from the computation

of the NSE efficiency index. In the forward simulations the parameters charac-

terizing the natural hydrological component (see Section 2.1.1) were assumed

as equal to the values obtained during one of the optimization experiments

described in previous applications of HYPERstream to the Adige catchment

(Laiti et al., 2018).

Although sharing the same stream network closed at the Vò Destro section

(included in the setup just as catchment closing section but not as a calibration

node), two different sets of network nodes were used, in order to create two

similar cases with different computational complexity involved.

a. Full Setup: The first node setup represents the "complete" setup, and

envisions the implementation of all the relevant human infrastructures present

within the Adige river basin, resulting in 30 storage reservoirs, 37 intake points

and 36 hydropower plants, for a total (including all available streamflow gauging

stations) of 138 nodes. It should also be noted that 35 nodes representing

streamflow gauging stations were included in this setup, though only 2 of them

were effectively used for model parameters inference (i.e., Trento and Bronzolo).

b. Simplified Setup: In a second configuration we considered a simplified

representation of the human system in which only 5 nodes were considered,

composed by 2 storage reservoirs, the two aforementioned streamflow gauging

stations adopted for parameters calibration and the Vò Destro outlet section.

Given the 5−km grid spacing adopted and the number of implemented

nodes, the two setups yielded a different number of macrocells-node pairs; this

quantity is indeed relevant during the parellelization of the HYPERstreamHS

model. In particular 569 and 1167 macrocells-node pairs for the 5-nodes and

138-nodes cases, respectively. According to the parallelization strategy de-

scribed in Sect. 2.3, in the following Sections the computational performances

72



CHAPTER 4. HYPERSTREAMHS SCALABILITY PERFORMANCE

of HYPERstreamHS and its scalability are tested considering both a single and a

dual layer decomposition schemes. In the case of the dual layer implementation

we considered 500 runs for LHS and 10000 for PSO (specifically 100 iterations

and 100 particles). Under this perspective, it is worth to clarify that we are not

interested either in evaluating the convergence to the global optimum in the

PSO scheme or in a full uncertainty assessment of the posterior parameters dis-

tribution in the LHS, but rather to evaluate how HYPERstreamHS scalability can

be influenced by the adopted parameters sampling scheme (see Section2.2). It

is also worth mentioning that, despite being tested on a realistic case, the aim of

this first application was not to measure the performance of the model in terms

of reproducing streamflow time series, which has indeed been already demon-

strated in previous applications (see e.g. Laiti et al., 2018; Piccolroaz et al., 2016),

but rather to show the peculiarities of the holistic approach implemented in

the HYPERstreamHS model.
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4.2 Scalability of the single-layer MPI

implementation

As previously clarified, the first MPI layer only handles the workload re-

lated to macrocell-node pairs and to the computation of their fluxes. Therefore,

single-layer parallelization performance is tested in forward mode, adopting the

same parametrization as in Laiti et al. (2018), since the investigated catchment

is the same (the only difference being the explicit simulation of Human Systems)

and since hydrologycal performance is beyond the scope of these tests anyway.

Testing on the first MPI layer has been performed with reference to the 5 and 138

nodes cases already described in Section 4.1. Moreover, the two test cases have

been further differentiated: each one has been run both in natural and artificial

mode, meaning that a natural scenario which does not account for the presence

of artificial infrastructure is simulated in the first mode, while in the second one

all hydraulic works are modeled, mimicking river flow alteration and requiing

a higher number of computations; this further distinction resulted in a total

of four configurations. These four cases were expected to show a trend of the

relative impact of node numerosity and of the simulation of artificial systems

on the overall scalability. Indeed, a low number of nodes requires both a low

number of macrocell-node width function computations and likewise lowers

the required inter-processors communications. Conversely, a higher number

of nodes not only increases the number of width function computations (per-

formed in parallel) but also increases inter-processors communications due to

the increased number of upstream-downstream dependencies that necessarily

have to be carried out serially without relying on parallelization. Likewise, the

artificial infrastructures add up to the overall computational time, requiring

the computation of complex water mass balances for each node representing a

hydraulic work .

In Figure 4.2 is depicted the speed-up of HYPERstreamHS achieved with

a single level of parallelization: the computational time is plotted against the

number of processors in a logarithmic scale. In particular, the computational
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time using a different number of processors (1,2,4,8,16,32,64) is compared with

the theoretical 100% speedup as represented by the dashed lines in Figure

4.2, which means that doubling the number of processors would halve the

computational time. the four theoretical speedup curves represent the four

combination of node number and artificial/natural mode explained previously.

As it could be expected, the number of nodes strongly influences scalability: the

test case with 5 nodes exhibits a better scalability than the case with 138 nodes

in both cases, with relatively small differences between the natural and the

artificial scenario. Indeed, in the 5 nodes case the serial part of the hydrological

model is limited to the streamflow routing between the 5 nodes themselves and

to the computations of the water balances at the 2 reservoirs (i.e., simulation

of the water storage in the two reservoirs and partitioning of outflows). The

presence of reduced serial computations also explains why there are negligible

differences in the theoretical speed-up curves between the natural and artificial

scenario in the presence of 5 nodes.

On the other hand, in the 138 nodes cases the scalability drops evidently

after 8 processors are used, ultimately showing a negative trend when 64 pro-

cessors are used. Indeed, the presence of 138 nodes increases significantly the

serial computations to be performed. Similarly, the presence of 103 artificial

nodes (see Section 4.1) explains the larger difference in the computational time

between the natural and artificial scenarios (see green lines in Figure 4.2) as

opposed to the 5 nodes test cases. In fact, when the number of human infras-

tructures increases, a larger amount of time has to be spent in order to solve the

continuity equations for all the hydraulic works present in the system, following

the rules detailed in Section. 2.1.2.

Drops in scalability implied by the serial computations required in stream-

flow routing are a well-acknowledged issue in parallel computing which is

typical of single-layer decomposition schemes (see e.g. Wang et al. (2012) and

Zhang et al. (2016)). Nevertheless, it should to be kept in mind that a first layer

of parallelization of the hydrological model already reduces the computational

time with respect to a single-processor run and, more importantly, eases the
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simultaneous handling of large amounts of data, overcoming the allocation

problems typical of shared memory codes. According to Lai et al. (2018), this is

a mandatory feature in order to handle big earth data in large scale simulations.

While the results for dual-layer implementation will be presented in next Sec-

tion, it should be noticed that these results constitute a preliminary step for the

following analysis, as they allow to define the optimal number of processors

to be used as slaves in the dual layer MPI implementation, as using too many

slaves might result in a net loss of scalability for most realistic applications.
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Figure 4.2 First MPI layer parallel scalability of the hydrological model
considering 5 and 138 network nodes and the presence of artificial
structures. Ideal (100%) scalability is represented with dashed lines.
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4.3 Scalability of the dual-layer MPI

implementation

As anticipated by the end of the previous Section, optimal results in terms

of scalability of a dual-layer parallelization can only be achieved with an appro-

priate subdivision of the workload between the two layers; in order to achieve

the best results from the dual-layer MPI implementation, we explored different

configurations between the number of slaves and the number of masters, (for

definitions please refer to Section 2.3). These configurations are applied to both

LHS and PSO calibration procedures (described in Section 2.2), and range be-

tween two opposite situations: the first, where only one master in the first MPI

layer and one slave in the second level are used (i.e. np = 1); and the second,

which considers 32 masters (i.e. np = 32), each associated with a single slave.

The first case represents the condition in which the run is performed without

parallelization as the master coincides with the slave. Consequently, this can be

considered as the benchmark test for speedup measurements. On the opposite,

the second case represents a simulation in which only the second MPI layer is

active and all the hydrological simulation are run as a serial code. In between

these two configurations, different master-slave combinations have been tested,

with a number of total processors ranging from 1 to 64 (in particular, np = (

1,2,4,8,16,32,64), see Figures 4.3 and 4.4).

Similarly to the first layer performance analysis (Sect. 4.2), we consider

both the 5 and the 138 nodes configurations, although we limit the analysis

to the artificial scenarios in which all hydraulic infrastructures are considered,

since the second parallelization layer is not affected by the hydrological model

setup. The model’s scalability in both cases is depicted in Figures 4.3 and 4.4.

For a better visual recognition of the actual improvements introduced by dual-

layer MPI strategy, on the x-axis is shown the total number of processor used

(computed as the number of masters multiplied by the number of assigned

slaves) and contain the speed-up curves drawn for an increasing number of

masters (different coloured lines in Figures 4.3 and 4.4).
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With reference to Figure 4.3, the computational time considering the LHS

sampling scheme and using both 5 and 138 nodes, are displayed. The perfor-

mance results are indeed satisfactory, with the efficiency of the parallel scheme

approaching the ideal speed up line as the number of masters increases. It can

also be noted that the configuration adopting a single master achieves a plateau

in the speed-up with reference the 5 nodes test and even a negative scalability

in the 138 nodes case. This result is a confirmation of the results presented in

Figure 4.2, since for this configuration the second MPI layer is deactivated. A

similar behavior is also exhibited in the 2 and 4 masters configurations in the

138 nodes setup (Figure 4.3b).

The master-slave configurations that were explored in the case of PSO sam-

pling scheme were the same analyzed for LHS; this time, each configuration

was tested on performing 100 Montecarlo realizations adopting 100 particles,

for a total of 10000 forward HYPERstreamHS runs. Furthermore, Figure 4.4

shows the scalability performances for 5 and 138 nodes, respectively; it can

be seen that with respect to the configuration using a single master (green

lines), the configurations with 2 and 4 masters (marked with blue and red lines,

respectively), achieve scalability performances progressively closer to the ideal

speed-up, which resembles the results achieved by the LHS scheme. However,

once the number of masters further increases (purple, blue and gray lines), the

performances deteriorate and the scalability diverges from the ideal one.

The differences between the dual-layer parallelization strategy applied to

LHS and PSO schemes can be explained by the different nature of the two

algorithms: while LHS presents a naturally parallelizable structure, in the case

of PSO the masters are forced to communicate multiple times in order to update

the best solution at each iteration. It is therefore clear that the number of

communication is not fixed, but rather it scales with the number of masters

in use. Therefore, a successful exploitation of the dual-layer parallelization

strategy using the genetic PSO algorithm can only be achieved seeking the

optimal balance between the number of masters to be used in second layer

and the number of slaves in the first level should be identified. To this, aim, the
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considerations made in Section 4.2 come in handy, showing that the network

topology and the number of macrocell-node pairs strongly define the scalability

threshold, regardless of the number of available processors. Combining the

information derived from the two analyses makes it possible to exploit the ideal

master/slaves configuration in the case of PSO calibration. This result is clarified

even further by the plots displayed in Figure 4.5. The figure focuses the attention

on a 64-processors configuration, applied only to the 138 nodes, artificial case

to both PSO and LHS algorithms. The plots display the computational time

in the two cases as a function of the number of masters (and consequently of

slaves, given the fixed total of 64 processors). In the case of LHS (Figure 4.5a) the

total computational time drops rapidly as the number of masters increases from

1 to 32. On the contrary, for PSO (Figure 4.5b) an increasing number of masters

(i.e. 32) does not correspond to a decrease in computational time. In particular,

the computational time decreases until the number of master increases to 8,

and then starts to increase after this number of masters is surpassed, meaning

that the time loss due to communication is larger than the time gain due to

workload splitting.

To briefly summarize the main findings of this chapter, HYPERstreamHS

shows good scalability on single-layer parallelization, which can be furter im-

proved by activating the second parallelization layer. However, while the LHS

scheme presents increasingly good performances as the number of masters

is increased at the expenses of the slaves, (the only limit being represented by

memory allocation issues), PSO cannot exploit as many processors as there

are available due to its structure, and instead requires preliminary scalability

analyses which are peculiar to the case of study, aimed at the identification of

both the optimal number of slaves dealing with the forward runs (i.e. first MPI

layer) and of masters handling the inverse modelling procedure (i.e., second

MPI layer).
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Figure 4.3 Speed-up test cases for LHS in the case of a) 5 and b) 138
nodes.

Figure 4.4 Speed-up test cases for PSO in the case of a) 5 and b) 138
nodes.

4.4 Conclusions

In this Chapter we presented the development of HYPERstreamHS, a hydro-

logical model that explicitly models alterations due to Human Systems when

simulating natural streamflows, and is also able to exploit HPC resources by

mean of a dual-layer MPI implementation.

The scalability tests that were performed on both the single-layer and on

the dual-layer parallelization schemes highlighted that the hydrological model

(forward simulation) has some inherent bottlenecks that limit its scalability, in
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Figure 4.5 Computational time of the dual-layer system applied to HY-
PERstreamHS in the LHS scheme (a) and PSO scheme (b) with a fix
number of 64 processors and different masters and slaves configura-
tions applied to the 138 nodes case.

which case only a small portion of the computational resources can be exploited.

Such limitations are circumvented by implementing a second parallelization

layer that speeds up calibration procedure and uncertainty analyse, which

indeed require the majority of the computational time in hydrological simula-

tions; this allowed to push further the scalability limit of the model, achieving

close-to-ideal scalability up to 32 processors, with the appropriate workload

subdivision between masters and slaves.
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5
DETAILED SIMULATION OF STORAGE
RESERVOIR AND HYDROPOWER
PRODUCTION IN A MESOSCALE
CATCHMENT

The Adige catchment was used as the first case study to test the performance of the

HYPERstreamHS model; a reservoir-specific hydropower production schedule was de-

veloped and tested for consistency prior to its application to the entire catchment. This

Chapter will present the results in terms of hydrological and hydropower production

modelling, as well as a robustness analysis that was conducted in order to assess the

influence of detailed input information on both modelled hydrology and hydropower

production.

This Chapter is based on:

Galletti, A., Avesani, D., Bellin, A., Majone, B. Detailed simulation of storage hydropower

systems in a large Alpine watershed, in preparation for Water Resources Research
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5.1 Model calibration and setup

In this study, HYPERstreamHS was applied on the Adige river basin in order

to test the capabilities of our modelling framework in terms of hydrological

and hydropower production modelling. In fact, hydrological modelling of this

catchment is challenged by its widely variable topography and by the presence

of numerous hydropower systems which affect the natural water cycle. Further-

more, we would like to provide a complete benchmarking of the framework

developed and explained in Section 2.1.2 by also validating the hydropower

production model. For specifications on the case of study, its conceptual model

and on the input data set please refer to Section 3.4.

The model was calibrated using the PSO algorithm adopting a 2-masters,

8-slaves configuration of the parallel scheme. NSE was chosen as the objective

function for the calibration algorithm, in order to achieve an optimal solution

while preserving a good correlation between observed and simulated stream-

flows. The choice of the calibration nodes was different from the one adopted

in the previous Chapter, and was mainly led by two considerations: firstly, the

adoption of the outlet node as model calibration site in large catchments often

leads to large errors in the upstream sub-catchments, because the calibration

fails to capture the spatial variability of model’s parameters and instead suffers

the disturbing effect of streamflow alterations due to water usages (Bombelli

et al., 2019). Secondly, a multisite calibration of the model is suggested by Zhang

et al. (2008) in order to increase the spatial reliability of the calibrated para-

meters. Since most hydropower plants are located at intermediate elevations,

accurate modeling of streamflow in the higher sub-catchments is crucial. The

aforementioned recommendations resulted in the choice of three gauging sta-

tions at the outlet of undisturbed mountainous sub-catchments as calibration

nodes: the Aurino station, the Gadera station and the Vermiglio station (see Fig-

ure 3.8). A multi-site calibration was performed in the time window 1989-2013

where the first two years were used as spin-off (i.e., they are not accounted for

when computing the objective function), adopting the average NSE among the

three gauging stations as the objective function for the PSO algorithm. During
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the calibration, artificial water diversions have been turned off in order to focus

on natural flows.

It is worth noticing that our chosen calibration procedure does not repre-

sent an absolute best, but rather our preference to improve some aspects of

the model, potentially sacrificing its performances elsewhere. For instance, the

choice of upstream sections as calibration nodes ensures a better reproduction

of upstream hydrology, but cannot ensure that hydrology is properly repro-

duced downstream, due to the disturbing effect of hydropower systems and

to different hydraulic soil properties. Furthermore, the NSE objective function

tends to avoid high errors, hence reproducing better high peaks, rather than low

flows, as opposed, for instance, to KGE which focuses more on mid-to-low flows.

This translates into the fact that our model will be more likely to reproduce

high flows with little bias, and also that it won’t achieve absolute accuracy in

reproducing lower flows.

5.2 Hydrological and Hydropower production

modelling performances

The hydrological performance of the model was measured by computing

the NSE index for 5 gauging stations not used in the calibration, along with

those that were used to calibrate the model. The two downstream gauging

stations of Bronzolo (catchment area: 7400 km2) and Trento (9000 km2) were

taken as benchmark to evaluate the overall performance of the model. The

position of these two gauging stations within the Adige catchment is shown

in Figure 3.8, while the corresponding simulated and observed streamflows

are shown in Figures 5.1 (Bronzolo) and 5.2 (Trento). The resulting NSE values

ranged between 0.49 and 0.81, which according to Moriasi et al. (2007) can

be considered a satisfactory result (NSE>0.5); as it can be observed in Table

5.1, the introduction of human systems’ effects in the model improved the

NSE at the gauging stations of Trento and Bronzolo, highlighting the fact that

the introduction of the hydraulic infrastructures adds relevant information to
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Table 5.1 NSE values obtained in calibration and validation. The in-
troduction of human systems in the simulation improved the NSE at
downstream nodes (Trento and Bronzolo), showing that positive infor-
mation was introduced in the model

STATION NSEcal ,nat NSEval ,nat NSEval ,ar t

Isarco 0.49 0.49
Aurino 0.59 0.59 0.59
Anterselva 0.59 0.59
Gadera 0.71 0.71 0.71
Rio Funes 0.59 0.59
Vermiglio 0.60 0.60 0.60
Bronzolo 0.79 0.81
Trento 0.73 0.75

the model, though the improvement is somewhat limited. Furthermore, this

result is in agreement with the findings from Dang et al. (2020), where the intro-

duction of reservoir simulation improved the performance of the hydrological

model (also measured in terms of NSE). All things considered, the results are

encouraging, given that the introduction of the hydraulic infrastructures was

finalized to obtain a reliable model for hydropower production, not to improve

the hydrological model.

The hydropower production model was validated against hydropower pro-

duction time series for the Trento and Bolzano provinces; data were compared

over the 2000-2013 time window, where both modelled and observed data were

available. The comparison was performed at the catchment scale, adopting the

procedure described in Section 3 to obtain consistent datasets. Figure 5 shows

the comparison between modelled and observed hydropower production, at

a monthly time scale, for the entire Adige catchment. The mean annual pro-

duction for each hydropower plant was also compared with the value declared

by the owners. The mean modelled annual production in the Adige catchment

differed by only -4.7% from the observations (6469 GWh/y against 6786 GWh/y),

with the computed production of run-of-the-river systems differing from the

amount declared by the producer by +4% (3285 GWh/y against 3164 GWh/y)
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and reservoir hydropower by -8% (3184 GWh/y against 3466 GWh/y). The re-

sults showed a good performance of our modelling framework in terms of

hydropower production modelling; the framework itself can be considered an

improvement with respect to most studies related to hydropower production,

that limit themselves to confronting model output against baseline scenarios,

without seeking validation against observed data.
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Figure 5.1 Observed and simulated streamflows at the Bronzolo gaug-
ing station; the inset shows the streamflows for years 2002-2004. The
continuous line in the scatterplot marks the 1:1 correspondence, while
the dashed line represent the set trend.
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Figure 5.2 Observed and simulated streamflows at the Trento gauging
station; the inset shows the streamflows for years 2002-2004. The con-
tinuous line in the scatterplot marks the 1:1 correspondence, while the
dashed line represent the set trend.
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Figure 5.3 Aggregate monthly hydropower production over the Adige
catchment.
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5.3 Effects of the deterioration of the input

information

It is well known that anthropogenic interventions cause profound alter-

ation of numerous physical and hydrological processes in the affected reaches

(Nazemi and Wheater, 2015a,b). The activity of hydraulic infrastructures such as

dams and diversion channels, for instance, alters streamflows in terms of both

timing and magnitude. Furthermore, a proper representation of hydropower

systems is crucial when developing hydropower production predictive tools.

In this section, we investigated to what extent an unrealistically simplified

modelling of human system might affect model performances. Firstly, we in-

vestigated the incidence on hydropower production of simplifications in hy-

dropower system geometry, neglecting intermediate water intakes where it

was possible, reducing each system to a dam-plant one. Secondly, we replaced

our hydropower production schedule with a simpler one that finds frequent

application in literature, where water is always turbined at the maximum plant

capacity: we compared effects on hydropower production and on macroscopic

reservoir dynamics (i.e. stored volume time series) between this approach and

ours. Finally, we maintained the aforementioned hydropower production sched-

ule, and assumed a biased knowledge of the plant capacity, in order to assess its

effects on hydropower production, putting it in relationship with other reservoir

characteristics by means of a clustering analysis.

5.3.1 Effect of flaws in artificial network geometry

Many works usually refer to the World Register of Dams ( https://www.icold-

cigb.org), to the USACE register (nid.usace.army.mil) or to other national or

continental dam registers to gather geometry information on hydropower reser-

voirs (see for instance Boehlert et al. (2016); Turner et al. (2017); Zhao et al.

(2016)). Other works assume that a direct link exists between the intake located

in the reservoir and the hydropower plant (see Ali et al., 2018; Bosona and Ge-

bresenbet, 2010). However, it should be noted that the aforementioned global
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dam datasets rarely contain detailed information on penstock capacity or on

additional intakes that might be present between the dam and the hydropower

plant; in fact, these registers provide information on reservoir geometry, stor-

age volume, dam height and spillway capacity, as well as information on the

downstream plant mean annual production: therefore, the maximum discharge

capacity of the hydropower system could in principle be computed backwards,

but this value together with any additional downstream characteristics of each

system remain substantially uncertain. Information on maximum turbine ca-

pacity can sometimes be provided by the Global Energy Observatory database

(http://globalenergyobservatory.org), however information coverage varies sig-

nificantly across the world (e.g., for Italy only 5 hydropower plants are listed,

while at least 260 large hydropower plants exist in Northern Italy), and infor-

mation for each dam is not certified, nor necessarily exhaustive. Despite being

possibly correct in some cases, making the assumption that no other contribu-

tions to hydropower production exist between reservoir and hydropower plant,

hence relying solely on reservoir management models to reproduce hydropower

production leads to incorrect estimations when more complex geometries are

involved. In our case study, five reservoir hydropower systems (out of 22 to-

tal) had intermediate water intakes between the reservoir and the hydropower

plant. To test their significance, we simplified these systems excluding any in-

termediate water intake, considering discharge from the reservoir as the only

contribution to the hydropower plant. Results obtained under this hypothesis

are shown in Table 5.2.

As it can be seen from Table 5.2, neglecting intermediate water intakes

basically leads to neglecting effectively contributing drainage area: a rather

obvious direct relationship exists between the reduction of the drainage area

contributing to a specific hydropower plant, and the reduction in hydropower

production: this caused underestimations up to 48% in the case of the Sarentino

power plant. It is therefore clear that the best possible level of detail needs to be

sought when implementing complex hydropower systems, as simplifications

in system geometry showed direct consequences on the model’s predictive
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Table 5.2 Incidence of the reduction of catchment area due to the use of
simplified geometry in terms of mean annual production, investigated
in five catchments with complex geometry.

Power Plant Area Area reduction Baseline HPP HPP variation
[km2] [%] [GWh/y] [%]

Cogolo 88.0 22 116 17
Glorenza 217.9 34 291 18
Naturno 124.1 40 335 32
Sarentino 180.6 46 63 48
Santa Valpurga 23.5 35 52 46

capabilities.

5.3.2 Simplified reservoir operation scheme

Hydropower reservoir operating rules often represent a difficult step in hy-

dropower production modelling, as they are kept secret by the dam operating

companies. A simplification that can be commonly found in literature is to

assume that the reservoir always turbines water at its maximum capacity (see

Ng et al. (2017) as well as the already cited works from Turner et al. (2017); Wag-

ner et al. (2016)); this means that monthly variability, according to the overall

hydropower production, is no longer imposed to the single hydropower sys-

tem, which operates at its maximum capacity under the constraint that storage

cannot be smaller than the minimum storage. When the minimum storage is

reached production is disactivated until the storage recovers to a value that

allows to operate again the system at its maximum capacity. Although this kind

of simplification might still perform well in terms of long term water balance, it

might lead to biased predictions of the timing of the releases downstream of

the power plants, as well as to wrong estimation of hydropower production, if

the system constraints are based on wrong or missing information (as stated

in the previous section, outlet capacity is not always available in global dams

registers).The expected result in this approach was that discrepancies between

the mean inflow in the reservoir and the enforced release scheme would have

led to a loss of geodetic jump if the discharge was higher than the average
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inflow, or to water spilling if it was lower. In either case, we expected a reduction

of hydropower production either due to geodetic head loss or to lower total

turbined water volume. As it can be seen from the example plot in Figure 5.4,

reservoir Gioveretto behave very differently with an operation scheme set at

a constant discharge equal to its maximum outlet capacity, as opposed to the

so-denominated TERNA rule (the one adopted in this work), which is inferred

accounting for flow seasonality and reservoir specifics: in fact, the reservoir

suffered a significant reduction of the average water stage, due to the fact that

the operation scheme does not follow neither the seasonality of the inflows

nor their amount. Always turbining at maximum systems capacity leads to

similar turbined volumes between the two approaches, the only difference

being in the spilled volumes, which are often negligible in common operations

and obviously even lower when turbining at maximum capacity. This notwith-

standing, the loss in reservoir geodetic head caused by continued production at

maximum capacity results in a loss of hydropower production. As we expected,

this approach caused some losses in hydropower production, resulting in a

decrease of modelled hydropower production: while our approach achieved

a -4.7% error with respect to historical observations, this approach showed a

worse performance , achieving a -9.8% discrepancy (reservoir hydropower lost

around 5.6% of their modelled production, as recalled in Table 5.3). Another

aspect that should be kept in mind is the fact that, despite potentially being

able to guess the long-time estimates for hydropower production with low bias,

this kind of approach misses completely the timing of hydropower production.

Although not being relevant in many hydropower production studies, timing

of discharges plays a key role in assessing the impacts of hydropeaking on the

downstream biota (Kiesel et al., 2019; Poff et al., 2015), and efforts should be

devoted to this aim, in order to have a more complete understanding of the

impacts of hydropower systems on a river catchment.
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Figure 5.4 Stored volume time series for the Gioveretto reservoir over
the 2000-2006 period. The QMAX discharge scheme causes a decrease
in the average water stage inside the reservoir, as opposed to the TERNA
scheme which accounts for expected inflow and seasonality.

5.3.3 Incorrect assumptions or missing knowledge on

turbined flows

Secondly, we further investigated the QM AX approach detailed in the pre-

vious Section, by testing the effects of incorrect estimation of the turbined

flows; in fact, most hydropower plants can operate each turbine independently,

according to the available water inflow. Since the maximum system capacity

refers to all the turbines being operated simultaneously, assuming that a con-

stant flow is always turbined in a plant might incur in both overestimation and

underestimation bias. For this reason, the (constant) turbined flow value en-

forced to each reservoir was modified by [-80%, -50%, +50%]: these values were

arbitrary, and were aimed at investigating the effects of both overestimation

and underestimation of the turbined flows. The expected results were the same

as in the previous approach (i.e., a reduced hydropower production either due

to head loss or to lower turbined water volume), but this time quantitatively

emphasizing impacts of overestimation and underestimation of the constant

flow to be turbined. The effects on modelled hydropower production at the
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Table 5.3 Variation in mean annual hydropower production achieved
in different scenarios: the reference scenario is represented by our
simulation (reservoir release scheme detailed in Section 2.1.2.5), and it
is compared with the production obtained adopting a constant reservoir
operation scheme equal to system capacity (i.e., QM AX ) modulated by
a constant parameter (detailed in Section 5.3.2 and 5.3.3). The variation
is computed both in terms of overall hydropower production over the
whole catchment and restricted to the subset of reservoir hydropower
systems.

0.2QM AX 0.5QM AX QM AX 1.5QM AX

Overall HPP −22.7% −6.7% −3.1% −2.5%
Reservoir HPP −44.4% −13.4% −5.6% −3.9%

catchment scale are synthesized in Table 5.3: the results confirmed our expec-

tations and in fact a decrease in hydropower production was observed in all

four cases. Furthermore, our results suggests that underestimating the turbined

flows implies severe underestimation of hydropower production compared

to turbined flow overestimations, which only affect hydropower production

marginally.

A k-means clustering analysis (described in Section 3.5) was performed

on the sample constituted by all 30 reservoir hydropower systems operated

with the constant turbined flows equal to 0.2, 0.5, 1 and 1.5 times the outlet

capacity (120 points total). The analysis compared normalized indicators for

geodetic head incidence (H, defined in Equation 3.2), variation in hydropower

production (HPP, defined in Equation 3.3), and ratio between average turbined

flow and average inflow to the reservoir (Q, defined in Equation 3.4). The results

are summarized in Figure 5.5.

The three clusters resulting from the analysis represent three typical sit-

uations. The first cluster (blue) gathers those cases in which the discharge

requested by the reservoir operation rule is roughly equal to the average inflow

to the reservoir (Q=1), or in which the reservoir head has limited incidence on

the hydraulic jump of the system (H«20%): in both cases, losses in hydropower

production are very limited (average HPP for this cluster = -3.22%). The sec-
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Figure 5.5 Clustering analysis between normalized indicators of reser-
voir head, discharge and hydropower production: when the turbined
flow is higher than the inflow and the reservoir head has significant
incidence on the overall system head, minor losses in hydropower pro-
duction can be expected (yellow cluster). When the turbined flow is
lower than the average inflow, major losses can be expected (red clus-
ter). The other cases include turbined flow slightly higher than average
inflow and/or small incidence of the reservoir head compared to system
head: in both cases, losses are negligible (blue cluster).

ond cluster (yellow) only comprises reservoirs in which the reservoir head has

considerable incidence on the hydraulic jump of the system (H > 40%, this can

be visually noticed from the size of the markers): in this cluster, as soon as Q

gets greater than 1, the reservoir faces losses in average head as it is forced to

operate at its minimum level, resulting in significant HPP loss (average HPP =

-18.23%). Finally, a third cluster gathers the majority of the situations in which
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Q < 1, meaning that the requested discharge to be turbined is lower than the

available inflow: in this way, a lower volume of water is used for hydropower

overall, resulting in serious losses in terms of HPP (average HPP = -50.91%).

It can also be noticed that some outliers are present in Figure 5.5, being them

the cases resulting in an increased hydropower production (HPP > 0) despite the

simplification of the reservoir operation rules. This behavior can be explained

splitting the outliers into two opposite categories: the reservoirs exploiting

Q>1 to increase their production, and those achieving increases in hydropower

production while Q<1 (in fact, the highest hydropower production should be

obtained when Q=1, in which case the system is able to turbine all the incoming

flow at optimal head). In the first category, the reservoir operation scheme

that was applied to the reservoir during the reference simulation prescribed a

turbined flow lower than the average inflow: therefore, the reservoir is operating

’often full’, spilling water many times; as a result, when a higher discharge is

enforced, the reservoir is still able to meet the demand and to achieve a higher

hydropower production. On the other hand, and for opposite reasons, there

are reservoirs that operate ’often empty’, working at their minimum stage: in

these cases, when a lower discharge is enforced, the reservoir is able to raise its

average stage while turbining the same water volume overall (limited by inflow),

hence increasing its hydropower production.

5.4 Conclusions

The analyses presented in this Chapter highlighted the positive performance

of HYPERstreamHS, both in terms of hydrological and hydropower produc-

tion modelling, finding that the explicit representation of Human System im-

proves the performance of the hydrological model, and validating modelled

hydropower production at the catchment scale against monthly observations,

achieving satisfactory results. Further tests tried to deteriorate the input infor-

mation to the model, following some assumptions or simplified approaches

that are commonly made when dealing with reservoir operation modelling. The
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analyses showed that such assumptions are mostly prone to errors, in particular

if further uses of the model’s results are planned like e.g. ecological impact

assessment studies.

A detailed implementation of Human Systems should be therefore sought

after in order to guarantee reliable estimations of streamflow alterations and

hydropower production.
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6
PERSPECTIVE WORK

In this final chapter, the HYPERstreamHS model was applied to five large catchments

in the Western Italian Alps. The aim of this section is to validate the hydropower

production model using the COSMO dataset as meteorological input, as a first step

towards the application of the HYPERstreamHS framework over the Italian Alpine

Region.
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6.1 Model setup

In this Chapter a second application of the HYPERstreamhS framework

will be presented. This simulation had the main objective of validating the

modelling framework on a second study area (as explained in Section 3.3, com-

plete characterization of HS nodes is inherently time consuming, therefore

new catchments can be tested only as soon their implementation is complete).

This contributes to the overall goal of our activity, which is the application of

HYPERstreamHS on the Italian Alpine Region.

As anticipated in Section 3.4, this analysis will focus on five catchments

located in the Western Alps: namely, the Dora Baltea, Orco, Stura di Lanzo,

Dora Riparia and Pellice river catchments. Since the hydrologic regime of Dora

Baltea differs rather strongly from that of the other four catchments, and given

the noticeable discrepancies in the morphology of the upper and lower sides

of this study area, we decided to split this domain in two parts, as it was al-

ready illustrated in Section 3.4, in order to improve the spatial reliability of

the parameters of the hydrological model (explained in Section 2.1.1.4). This

resulted in performing two different calibrations of the model as well as the

corresponding forward simulation, so that each set could be simulated with the

appropriate hydrological parameters. The two resulting sub-domains and their

conceptual models are described in detail in Section 3.4. The simulations were

performed on the 1995-2008 time window, at a hourly time step. As anticipated,

the COSMO dataset was used as meteorological input forcing (see Section 3.2).

The same configuration of the parallelization scheme adopted in the previous

Chapter was used (i.e. 2-masters, 8 slaves for a total of 16 processors used), to

minimize calibration time; likewise, the PSO algorithm aimed at maximizing

the NSE index at the calibration nodes was adopted for both calibrations.

The calibration was performed over the 1995-2008 time window, adopting

the PSO algorithm with a NSE averaged between calibration sites as its objec-

tive functions, following the same logic explained in Section 5.1; we selected

stream gauging stations located at the end of undisturbed (i.e. by hydropower
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activities) mountainous sub-catchments as calibration nodes. Two nodes were

chosen for the calibration of the hydrological model in each sub-domain, to

ensure spatial reliability of the resulting parametrizations (Zhang et al., 2008):

after investigating the available streamflow observations and the degree of

completeness of each time serie, we chose the stream gauging stations at Gres-

soney and Cogne for the calibration of the hydrological model in the Dora

Baltea catchment (node location shown in Figure 6.1), and those located at

Beulard and Germagnano for calibrating the hydrological model in the second

sub-domain (node location shown in Figure 6.2). Finally, NSE index at several

down-stream stations was computed to assess the hydrological performance of

the model. The gauging stations that were used for validation were Tavagnasco

(Dora Baltea, Figure 6.1), and S.Benigno (Orco), Torino (one gauging station for

Dora Riparia and one for Sturadi Lanzo) and Villafranca (Pellice), all four shown

in Figure 6.2. The following Sections will illustrate the results on each one of the

two sub-domains separately, for sake of clarity.

Figure 6.1 Location of the relevant stream gauging stations in the Dora
Baltea catchment, including those adopted as calibration (red) and
validation nodes (yellow).
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Figure 6.2 Location of the relevant stream gauging stations in the Orco,
Stura di Lanzo, Dora Riparia and Pellice catchments, including those
adopted as calibration (red) and validation nodes (yellow).

6.2 Dora Baltea catchment

The hydrological performance of HYPERstreamHS in the Dora Baltea catch-

ment was measured evaluating the NSE values computed at the Tavagnasco

station. The NSE index achieved by the simulations was 0.408: according to

Moriasi et al. (2007), a threshold for good performance in hydrological appli-

cations can be set at NSE = 0.5, thus making the hydrological performance

almost satisfactory. The NSE achieved during calibration and validation are

summarised in Table 6.1.

A comparison between observed and simulated streamflows is shown in

Figure 6.3: as it can be seen, streamflows are often overestimated. This result

is possibly due to having calibrated the hydrological model parameters in

upstream nodes of the catchment, which most likely have different hydrological

properties compared to those found at the Tavagnasco section.

Hydropower production was validated at the aggregate catchment and

monthly scale, following the procedure described in 3.3, and the result is vi-
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Table 6.1 NSE values obtained during multisite calibration and during
validation in the Dora Baltea catchment. Numeric indexes refer to nodes
depicted in Figure 6.1.

efficiency N SEcal N SEval

multisite102,105 N103

NSE 0.615 0.408

Figure 6.3 Observed and simulated streamflows at the Tavagnasco gaug-
ing station. The continuous line in the scatterplot marks the 1:1 corre-
spondence, while the dashed line represents the set trend.

sually displayed in Figure 6.4. While the observed mean annual hydropower

production is 2886 GWh, the predicted value was 3768 GWh which overesti-

mates the observed value by 30.6%. This result could also be foreseen, given

that this model calibration tends to overestimate streamflows and given that

few reservoir systems are present in this catchment, hence allowing for little

regulation of the incoming flows, that are therefore turbined whenever available.

From a visual inspection of Figure 6.4 it can be noticed that overestimation

of hydropower production is recurrent, with an exception in the months from

January to May every year, suggesting that the excessive flows might possibly

be due to flawed estimation of snow melting.
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Figure 6.4 Aggregate monthly hydropower production over the Dora
Baltea catchment.

6.3 Orco, Stura di Lanzo, Dora Riparia and Pellice

catchments

The resulting NSE values computed at the S. Benigno, Torino and Villafranca

gauging stations, obtained from the simulations are summarized in Table 6.2.

Table 6.2 NSE values computed at the S. Benigno, Torino and Villafranca
gauging stations. Numeric indexes refer to nodes depicted in Figure 6.2.

efficiency N SEcal N SEval

multisite93,95 N98 N100 N101 N102

NSE 0.601 0.591 0.245 0.159 0.001

Multisite calibration of the hydrological model yielded satisfactory perfor-

mance, ensuring spatial reliability of the hydrological paramenters (NSE>0.6);

streamflows computed at the two calibration nodes are displayed in Figure 6.5.

However, once we consider validation performance, only node 98 (S. Benigno

station) exhibits a satisfactory behavior, node 100 has a mediocre performance,

while the performance in nodes 101 and 102 is clearly not satisfactory. It should

be noted, however, that all validation nodes are located downstream, and that
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their streamflow signals are disturbed by the presence of water diversions or

restitutions related to hydropower; therefore, the biased prediction of stream-

flows might be due to poor representation of Human Systems. Indeed, our

approach is general and might not suit perfectly every hydropower system. As

opposed to the relatively good results achieved during calibration, an analysis

of the plots shown in Figure 6.6 shows that the model tends to largely over-

estimate low flows and to underestimate high flows, amplifying a behavior

that was already visible at the calibration nodes. A preliminary calibration test

conducted adopting the four downstream stations (nodes 98, 100, 101 and 102)

as calibration nodes showed that good NSE indexes can be achieved in these

stations, exhibiting NSE values always larger than 0.6 both in single-site and

multi-site calibration. However, as we expected, this kind of calibration largely

underestimated upstream flows, dramatically reducing modelled hydropower

production, achieving a variation of -65% with respect to observed hydropower.

For this reason, we eventually maintained the upstream-nodes calibration in

order to improve the representation of hydropower production.
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Figure 6.5 Observed and simulated streamflows at the calibration nodes
of Germagnano and Beulard gauging stations. The continuous line in
the scatterplot marks the 1:1 correspondence, while the dashed line
represents the set trend.
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Figure 6.6 Observed and simulated streamflows at the validation nodes
of S. Benigno, Torino and Villafranca gauging stations. The continuous
line in the scatterplots marks the 1:1 correspondence, while the dashed
lines represent the set trend.
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Hydropower production was validated aggregating data from the four catch-

ments and at the monthly scale, following the procedure described in 3.3: the

result is displayed in Figure 6.7. While the observed mean annual hydropower

production is 1610 GWh, the predicted value was 1646 GWh (+2.3%). From a

visual inspection of Figure 6.7 we can see a general agreement between the ob-

servations and the hydropower production, with the exception of few low-peak

months. It is worth pointing out that the observations themeselves exhibit very

little regularity: this is due to the fact that most of the upstream water bodies

in this area are mountain creeks which rather often face droughts or floods. In

these situations, multiple choices can be taken by plant operators, depending

on the physical condition of the streams: such complex decision making can

hardly be framed analitically, therefore in cases like this we might have to accept

some loss of accuracy.

Figure 6.7 Aggregate monthly hydropower production over the four
catchments under analysis.

6.4 Conclusions

In this Chapter we applied HYPERstreamHS on five catchments in the West-

ern Alps with the objective of validating the modelling framework in terms of

hydrological- and hydropower production modelling. A multi-site calibration
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of the hydrological model was performed in the two domains of study, cali-

brating the model in upstream, undisturbed catchments, achieving satisfactory

results (multisite NSE > 0.5 in all cases). However, three validation nodes located

downstream of the corresponding sub-catchments did not achieve satisfactory

performance, suggesting that the alterations to the natural streamflow due

to hydropower weren’t modelled properly due to the difficulty of collecting

detailed system-specific information. Hydropower production was compared

with historical observations on the two sub-domains, achieving an error of

+30% in the Dora Baltea catchment and a discrepancy of +2.3% in the second

sub-domain, with respect to the observed mean annual production; as it could

be expected, some flaws in streamflow modelling also affected the timing of

hydropower production modelling.

This Chapter presented the first application of the HYPERstreamHS frame-

work in the perspective of completing its modelling setup over the entire Italian

Alpine Region. As soon as more catchments will be fully characterized in terms

of hydropower systems, this same framework will be applied to them. Once the

model setup will be complete, it will serve as stepping stone for several scenario

analyses.
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7
CONCLUSIONS

This Chapter draws conclusions on the present work, and offers some perspective on

its future developments, either planned or potential.
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7.1 Concluding remarks and perspective work

This work revolved around the development and implementation of a suit-

able modelling framework to perform analyses at multiple scales, and at a high

temporal resolution, explicitly simulating hydropower systems in order to be

able to model hydropower production together with the hydrological cycle,

with the ultimate goal of applying the framework to the Italian Alpine Region.

The task presented multiple challenges: first of all, most hydrological mod-

els include steps that must be executed serially: this hinders the models’ ability

to fully exploit the available computational resources, as well as requiring the

simultaneous allocation of large segments of memory; therefore, complex hy-

drological simulations represent a computationally intensive task. The second

challenge is represented by how the interactions between the natural hydrolog-

ical system and anthropogenic water uses are modelled: indeed, most times a

trade-off exists between the level of detail embedded in such models and the ex-

tension of the domain on which such approach is applied, due to the bottleneck

created by limited or even secret information concerning these uses. Thirdly,

we found that few studies on hydropower production devote their attention

on the validation of the model, focusing their analyses on different scenarios

compared to a (synthetic) one. This problem is, in all likelihood, due to similar

reasons i.e. to the very little amount of information freely available for scientific

research.

We aimed to contribute to the above challenges and topic with the de-

velopment of HYPERstreamHS, a hydrological model that explicitly models

alterations due to Human Systems such as reservoirs, intakes, power plants, etc.

when simulating natural streamflows, and is also able to exploit HPC resources

by mean of a dual-layer MPI implementation. Indeed, a scalability analysis

performed on multiple combinations of workload subdivision allowed to assess

the optimal subdivision between the two parallelization layers, granting HYPER-

streamHS a quasi-ideal speedup, up to 64 processors used. HYPERstreamHS

was also embedded with explicit modules for Human Systems, which were
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developed and refined exclusively basing them on information that is publicly

available in Italy. In order to fully inform the model, an in-depth search is con-

ducted for each case-study, in order to fill in a highly detailed dataset for Human

Systems’ characteristics.

The model was firstly applied to the Adige catchment (Eastern Italian Alps),

achieving very good results both in terms of hydrological and hydropower pro-

duction modelling, and showing that the inclusion of Human System improved

the predictions of the hydrological model. Modelled hydropower production

was also validated at the catchment scale against monthly observations, achiev-

ing satisfactory results. Further analyses showed that many common simpli-

ficative assumptions come at a cost and are mostly prone to errors, especially

in terms of timing and magnitude of the releases from hydropower systems,

which in turn are very relevant quantity in ecosystem impact assessments.

A second application of HYPERstreamHS was performed over 5 catchments

in the Western Alps, adopting the general framework that we plan on applying

to every other catchment in the Italian Alpine Region as soon as their datasets

are ready to be implemented. The model succesfully reproduced hydropower

production, despite showing some flaws in reproducing the downstream hy-

drological behavior, possibly due to the spatial variability of the hydrological

properties of the catchment.

The perspective activities for this work include the validation on the remain-

ing portion of the Italian Alpine Region of the HYPERstreamHS framework,

hence including the completion of the Human Systems input dataset. Once

the modelling setup is completed and validated, it will provide stepping stone

for analyses that can range from climate change impact assessments, to sce-

nario analyses comparing the effects of several reservoir operating rules and

environmental policies, to multi-objective optimization studies.
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A.1 Natural Hydrological conceptual model

In this Appendix, the vertical water flux generation module adopted in

HYPERstremHS model is presented, together with the main concepts of HY-

PERstream routing scheme (Piccolroaz et al., 2016).

A.1.1 Computational grid

The spatial domain is partitioned into M macrocells of equal shape and

size (Figure 2.1b). Furthermore, N nodes are identified, which correspond to

the locations where streamflow is computed (Figure 2.1a). Macrocells can be

defined such that the hydrological model shares the same grid of an overlaying

climate model or of a gridded dataset providing the input meteorological forc-

ing. The nodes are arbitrarily distributed along the river network, and typically

are located in correspondence of existing gauging stations where streamflow

observations are available (needed for model calibration and validation), or

in the presence of infrastructures that need to be simulated by human system

module.

A one-time and offline pre-processing step is run to prepare the geometrical

information needed to implement the streamflow routing scheme. The DEM is

analyzed in order to extract the river network and the drainage characteristics

of the study area, and to derive the corresponding geomorphological width

functions for each macrocell-node pair (see Figure 2.1b). Other properties

useful for the evaluation of the water fluxes (e.g., average elevation, soil use

and type, crop coefficient etc.) are computed for each macrocell based on the

analysis of the available DEM and land-use/land-cover spatial maps. A detailed

example of macrocell-discretization and width functions derivations can be

found in Piccolroaz et al. (2016).

A.1.2 Vertical water flux module

The vertical water flux module adopted in HYPERstreamHS employs the

formulation proposed by Laiti et al. (2018). It relies on the coupling of the con-
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tinuous soil-moisture accounting scheme for surface flow generation based on

the SCS-CN (Michel et al., 2005) with a non-linear bucket model for soil mois-

ture depletion (Majone et al., 2010), and a linear reservoir model to simulate

the base-flow component. In addition, a simple degree-day model is used for

the simulation of snow dynamics while Hargreaves and Samani (1982) formula-

tion is employed for the computation of potential evapotranspiration (ETp ). A

schematic of the water flux generation module is presented in Figure 2.1a, while

each component is presented in details in the ensuing paragraphs. Calibration

parameters are shown in bold.

The degree-day model for snow accumulation and melting dynamics is

based on the following water balance equation (e.g., Hock, 2003; Majone et al.,

2010; Rango and Martinec, 1995):

dhs

d t
= ps −pm , (1)

where hs [L] is the snowpack water equivalent, ps [LT −1] is the solid precipi-

tation intensity, and pm [LT −1] is the snowmelt intensity. ps and pm are quanti-

fied according to the following equations based on air temperature thresholds:

ps =
p, Ta ≤ Ts

0, Ta > Ts

(2)

pm =
0, Ta ≤ Tm

cm(Ta −Tm), Ta > Tm

(3)

where, Ta [◦C ] is the air temperature, Ts [◦C ] is the threshold temperature

below which precipitation is assumed as solid, Tm [◦C ] is the threshold tem-

perature above which the snowpack melts, and cm [L T −1 ◦C−1] is the melting

factor providing the amount of snow melted per unit of time. Notice that when

Ts < Ta ≤ Tm precipitation is liquid, but the energy input to the snowpack is

117



CHAPTER 7. CONCLUSIONS

not sufficient for triggering melting. The effective liquid precipitation pe [LT −1]

entering the soil can be then computed as follows:

pe =


0, Ta ≤ Ts

p, Ts < Ta ≤ Tm

p +pm , Ta > Tm

The degree-day approach used here requires mean daily air temperature Ta

as input, thus provides mean daily values of pm . If the time step integration of

the HYPERstreamHS model is less than one day, the melt water contribution is

evenly distributed during the day.

The soil moisture accounting accounting scheme for surface flow generation

is fed by effective rainfall pe , and is governed by the following non-linear water

balance equation:

dSM

d t
= pe −qr −qp −ETr , (4)

where SM [L] is the soil moisture, qr [LT −1] is the surface runoff rate, qp

[LT −1] is the leakage flux (i.e., the water flux from the top soil layer towards

groundwater), and ETr [LT −1] is the real evapotranspiration. The surface runoff

rate qr is evaluated according to the procedure proposed by Michel et al. (2005),

which is an extension of the well-known SCS-CN approach (U.S. Soil Conserva-

tion Service, 1964) accounting for a time varying soil moisture in the active soil.

In particular, qr is evaluated as follows:

qr =

pe
SM −Sa

S∗

(
2− SM −Sa

S∗

)
, SM ≥ Sa

0, SM < Sa

where S∗ [L] is the maximum potential soil infiltration, and Sa [L] is the

threshold above which runoff is generated. S∗ is given by the product of the
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maximum potential infiltration estimated from the land use and lithological

characteristics of the soil (S [L]) and a scaling coefficient cs [-], such that:

S∗ = csS . (5)

This correction allows to account for possible uncertainties in the iden-

tification of S. Sa is defined as the soil moisture level at the beginning of a

precipitation event plus the initial abstraction, and is assumed proportional to

S∗ through the following relationship:

Sa = caS , (6)

where ca [-] is a scaling coefficient. We notice that pe −qr is the infiltration

rate into the soil layer and that its saturation level is given by S∗ plus Sa .

Daily reference evapotranspiration ET0 [LT −1] is estimated through the

equation proposed by Hargreaves and Samani (1982), based on mean, mini-

mum, and maximum daily air temperature Ta . Following Allen et al. (1998), ET0

is multiplied by a monthly varying crop coefficient Kc [-] in order to estimate

potential evapotranspiration ETp , thus accounting for the presence of specific

crop or natural vegetation and their seasonal vegetative conditions:

ETp = Kc 0.408

[
0.0023Ra (Ta +17.8)

√
T max

a −T mi n
a

]
, (7)

where Ra is the extraterrestrial radiation [M Jm−2d−1]. Finally, real evap-

otranspiration ETr is computed taking into account that evapotranspiration

reaches its potential (upper) limit only when soil moisture is larger than the

field capacity values SM f c [-], and that ETr tends to zero as SM approaches its

residual limit SMr :
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ETr =


0, SM ≤ SMr

ETp
SM −SMr

SM f c −SMr )
SMr < SM ≤ SM f c

ETp , SM > SM f c

where

SMr =(S∗+Sa)cr ,

SM f c =(S∗+Sa)cfc ,

and c f c and cr are calibration coefficients smaller than one. In particular,

for values of SM between SMr and SM f c , ETr is assumed to vary linearly from

zero to ETp . Similar to the snowmelting, ETr is evaluated as daily average, and

if the computational time step of HYPERstreamHS is smaller than one day, ETr

is evenly distributed during the day.

The leakage flux from the active soil qp is evaluated through the following

exponential law

qp = qref

e

(
SM −SMr

µ

)
−1

 , (8)

where qr e f [LT −1] and µ [L] are calibration parameters controlling the max-

imum and rate of variation of the leakage flux, respectively. We notice that

both qp and ETr tends to zero as SM approaches SMr , thus avoiding SM to

drop below its lower physical bound SMr in absence of infiltration (i.e., when

pe −qr = 0). Similar exponential relationships for storage-discharge dynamics

coupled with the surface runoff model by Michel et al. (2005) have been success-

fully applied in previous applications conducted in Alpine and Mediterranean

catchments (Bellin et al., 2016; Majone et al., 2012, 2016; Piccolroaz et al., 2015).
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The leakage flux qp is then divided into two components through a partition pa-

rameter α. The first component contributes to the runoff as interflow qi [LT −1],

whilst the latter constitutes deep percolation to groundwater qd p [LT −1]:

qi =qpα ,

qd p =qp (1−α) .

Finally, qd p feeds a linear reservoir model described by the following conti-

nuity equation:

k
d qb

d t
= qd p −qb , (9)

where qb [LT −1] is the baseflow contributing to the streamflow, and k is a

calibration parameter.

The vertical water flux generation model described above is applied for

all macrocells separately, using as input the meteorological forcing pertaining

to each of them. At each macrocell, the total runoff per unit area qs [LT −1] is

evaluated by summing together the surface runoff rate qr , the interflow qi , and

the baseflow contribution qb .

A.1.3 Routing algorithm

Following Piccolroaz et al. (2016), the streamflow Q(i )
k (t ) [L3T −1] generated

by macrocell i and contributing to the node k at time t reads as follow:

Q(i )
k (t ) = A(i )

k

∫ t

0
q (i )

s (t −τ) f (i )
k (τ)dτ= A(i )

k

(
q (i )

s (t )∗ f (i )
k (t )

)
, (10)

where A(i )
k [L2] is the fraction (area) of macrocell i contributing to node k,

q (i )
s [LT −1] is the vertical water flux per unit area produced by the macrocell i ,

f (i )
k is the pdf of the travel times of macrocell i relative to node k obtained by
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rescaling the width function (built in the pre-processing step) by the stream

velocity, and the asterisk denotes convolution. In doing this, it is assumed that

q (i )
s is constant through the macrocell and is evaluated according to the vertical

flux generation module above described.

The total streamflow at node k (Qk (t )) is computed as the sum of the contri-

bution of each macrocell to that node, plus the streamflow transferred from the

nodes upstream of k:

Qk (t ) =
M con

k∑
i=1

Q(i )
k (t )+

N
up
k∑

j=1
Q j (t −τ j k ) , (11)

where τ j k = D j k /Vc [T ] is the travel time from node j , located upstream of

k, to node k, D j k [L] is the distance between the two nodes, Vc [LT −1] is the

stream velocity, M con
k is the number of macrocells contributing to node k, and

N up
k is the number of nodes upstream of k.

A.1.4 Model’s parameters

A total of 12 model parameters is used, 11 pertaining to the vertical water

flux generation module and 1 to the HYPERstream routing scheme. Parameters

of vertical water flux module are assumed as spatially uniform, with the spatial

heterogeneity of hydrological processes being delegated to the different values

of S and Kc assigned to the different macrocells. Such values are derived from

available infiltration capacity and soil use maps, and are computed as weighted

averages of the values at each DTM cell contained in a given macrocell. Routing

scheme requires the definition of a single parameter, the stream velocity Vc ,

which is assumed constant, thus making the model linear and easily paralleliz-

able. The list of the 12 calibration parameters, with their units and range of

variation is presented in Table .1.
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Table .1 List of the calibration parameters with their range of variation.
Ts and Tm : temperature thresholds for snow precipitation and snow
melting; cm : snow melting factor; cs and ca : parameters of the rainfall
excess model; qr e f and µ: parameters of the nonlinear reservoir mim-
icking the dynamics of the unsaturated zone; c f c and cr : coefficients
for field capacity and residual soil moisture; k: mean residence time of
the baseflow linear reservoir; : α partition coefficient for leakage flux;
Vc : stream velocity.

Parameters Range of variation Unit
Ts −2÷6 [◦C ]
Tm −2÷6 [◦C ]
cm 0÷10 [mm◦C−1d−1]
cs 0.1÷10 -
ca 0.01÷1 -
qr e f 10−7 ÷10−3 [mm s−1]
µ 0.5÷300 [mm]
c f c 0÷1 -
cr 0÷0.25 -
k 200÷1000 [d ay]
α 0÷1 -
Vc 0.2÷4 [m s−1]
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RESEARCH OUTPUTS AND RELEVANT
WORKS

The work presented in this thesis produced the following scientific research

outputs:

B.2 Articles

Avesani, D., Galletti, A., Piccolroaz, S., Bellin, A., Majone, B. A Dual layer

MPI continuous large-scale hydrological model including Human Systems,

Environmental Modelling & Software, SUBMITTED;

Galletti, A., Avesani, D., Bellin, A., Majone, B. Detailed simulation of storage

hydropower systems in a large Alpine watershed, in preparation for Water

Resources Research.

C.3 MS Theses supervision

Analysis of the correlation between hydropower production, observed stream-

flows and electricity price in the Italian Alps Region (original title: "Influenza

dei fattori idrologici e di mercato sulla produzione idrolettrica nell’Arco Alpino

Italiano", author: Stefano Flaim);

Setup and validation of HYPERstreamHS on a large catchment in the West-

ern Alps (original title: "Simulazione della produzione idroelettrica in cinque

bacini delle Alpi Ociidentali", author: Sergio Cimoli);

Investigation of the performance of several Machine Learning techniques in

reproducing anthropogenic streamflow alterations (original title: "Applicazione

delle tecniche di intelligenza artificiale nella previsione della portata nei bacini
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con deflussi alterati dall’uso idroelettrico", author: Gregorio Ortombina).

D.4 Posters and Oral presentation

Poster: Galletti A., Todaro A., Bellin A., Majone B. (2017), "Hydropower Gen-

eration in the Italian Alpine Region", EoCoE F2F meeting, Toulouse (France),

29-30 November 2017;

Presentation: Galletti A., Todaro A., Bellin A., Majone B. (2018), "Modelling

hydropower production in the Italian Alpine region: statistical vs physically-

based approach", EoCoE Project final conference, Nicosia (Cyprus), 17-18

September 2018;

Poster: Galletti A., Avesani, D., Bellin A., Majone B. (2019), "Detailed simula-

tion of storage hydropower in a large alpine watershed", EGU meeting, Wien

(Austria), 7-12 April 2019;

Poster: Avesani, D., Galletti A., Bellin A., Majone B. (2019), "HYPERstreamHS:

a dual-layer MPI continuous large-scale hydrological model", SII meeting,

Bologna (Italy), 17 September 2019;

Poster: Galletti A., Avesani D., Bellin A., Majone B., (2019) "Detailed simula-

tion of storage hydropower in a mesoscale catchment: modelling approach and

data requirements", AGU meeting, S. Francisco (California), 9-13 December

2019.
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