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The lack of formulation of macroscopic equations for irreversible dynamics of vis-
cous heat-conducting media compatible with the causality principle of Einstein’s
Special Relativity and the Euler-Lagrange structure of General Relativity is a long-
lasting problem. In this paper, we propose a possible solution to this problem in
the framework of SHTC equations. The approach does not rely on postulates of
equilibrium irreversible thermodynamics but treats irreversible processes from the
non-equilibrium point of view. Thus, each transfer process is characterized by a char-
acteristic velocity of perturbation propagation in the non-equilibrium state, as well as
by an intrinsic time/length scale of the dissipative dynamics. The resulting system
of governing equations is formulated as a first-order system of hyperbolic equations
with relaxation-type irreversible terms. Via a formal asymptotic analysis, we demon-
strate that classical transport coefficients such as viscosity, heat conductivity, etc. are
recovered in leading terms of our theory as effective transport coefficients. Some nu-
merical examples are presented in order to demonstrate the viability of the approach.

1 introduction
The lack of formulations of macroscopic equations for irreversible dynamics of viscous heat-
conducting and resistive media compatible with the causality principle of Einstein’s special rel-
ativity and the Euler-Lagrange structure of general relativity (GR) is a long lasting problem
[1, 2, 3]. In this paper, we propose a possible solution to this problem in the framework of
Symmetric Hyperbolic and Thermodynamically Compatible (SHTC) equations [4, 5, 6, 7, 8, 9].
Such an approach is not relying on postulates of equilibrium irreversible thermodynamics but
treats irreversible processes from the non-equilibrium standpoint. Thus, each transfer process is
characterized by a characteristic velocity of perturbation propagation cch in the non-equilibrium
state as well as by an intrinsic time scale τ of the dissipative (irreversible) dynamics. The result-
ing system of governing equations is formulated as a first-order system of hyperbolic equations
with relaxation-type irreversible terms and thus causal by construction. Via a formal asymptotic
analysis, we demonstrate that classical transport coefficients such as viscosity and heat conduc-
tivity are recovered in leading terms of our theory as effective transport coefficients of the form
∼ τc2ch. Some numerical examples will be presented in order to demonstrate the viability of the
approach.

The overall time evolution described by SHTC equations is split into two parts, reversible and
irreversible. The reversible part (all the differential terms) comprises most of the mathematical
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structure of the governing equations. This part is associated with the most non-equilibrium
state of the system, i.e. for the relaxation parameter approaching infinity, τ → ∞. On the other
hand, when τ → 0, the system is driven towards the global thermodynamic equilibrium which
is described by a system with a reduced structure (the Euler equations of an ideal inviscid fluid).

The reversible part conserves both the energy and the entropy and admits a variational formu-
lation and thus, it is compatible with the Euler-Lagrange structure of the Einstein field equations
of GR. An important feature of our approach is that the variational principle is formulated in
the Lagrangian reference frame, while the final form of the governing equations is obtained after
the passage from the Lagrangian to the Eulerian frame. This is discussed in Sec. 2. Finally, we
recover a covariant form of the Eulerian equations, and the corresponding 3+ 1 split (’Valencia-
type’) formulation [10, 11, 12], which is also well suited for carrying out numerical experiments
for a first and direct validation of the proposed theory.

The irreversible part, which rises the entropy (second law of thermodynamics), is represented
by algebraic relaxation-type source terms ∼ τ−1, and can be viewed as gradients (with respect to
the state variables) of a dissipation potential [4], see Sec. 3.

The relaxation character of the irreversible part, in particular, imposes a challenge for the
numerical methods in the near equilibrium (diffusive) regime τ� 1. Therefore, in the numerical
simulations, we rely on the so-called ADER approach [13, 14, 15] which can be used to obtain
the numerical solution in all regimes: near equilibrium τ � 1, non-equilibrium τ � 1, and
intermediate τ ∼ 1, see [16, 17].

The SHTC approach was not developed as a non-equilibrium thermodynamics theory, but
grew up from studying the admissible mathematical structure of macroscopic equations initi-
ated by Godunov in [5]. Such a structure should simultaneously guarantee consistency with the
principles of thermodynamics and the causality principle, and also should have good mathemat-
ical properties such as well-posedness of the initial value problem (Cauchy problem), which is
in particular obligatory for a system of evolutionary equations to be solved numerically. Nev-
ertheless, the SHTC approach shares many common features with other non-equilibrium ther-
modynamics theories. For example, it has been shown recently [4] that the SHTC equations
admit a Hamiltonian formulation via Poisson brackets and thus, it can be seen as a particular
realization of the GENERIC formulation of non-equilibrium thermodynamics [18, 19]. Moreover,
as many theories, e.g. GENERIC, Extended Irreversible Thermodynamics (EIT) [20], Rational
Extended Thermodynamics (RET) [21], the SHTC approach intends to identify new macroscopic
fields (state parameters) and find evolution equations governing them in order to approach more
and more non-equilibrium regime. The physical meaning of the new state parameters might be
very different though from those used in RET and EIT, e.g. flux-type quantities in EIT and RET
and density-type quantities in SHTC and GENERIC. Additionally, similar to RET, special care is
given to the hyperbolicity of the governing equations.

We note that a distinguishing feature of the SHTC and Hamiltonian GENERIC approach is
the exceptional role of the energy potential in formulating the governing equations. Indeed,
the variational nature of the SHTC equations and the Hamiltonian nature of GENERIC imply
a unique role of the Lagrangian and the Hamiltonian, respectively, which act as generating
potentials (they generate the entire structure of the reversible part of the governing PDE system)
and are intimately connected with the energy of the system. On the other hand, in theories
such as EIT and RET, the role of the generating potential is given to the entropy. In SHTC and
GENERIC, the entropy potential, which is intimately connected to the dissipation potential [4], is
only responsible for generating the irreversible part of the time evolution.

Concerning the existing approaches to relativistic fluid mechanics, it is worthwhile to mention
that there are also many theories for causal relativistic dissipation which can be roughly divided
into two classes. The first class consists of models which are presented by mixed-order (first- and
second-order) PDE systems such as the original covariant reformulation of the Navier-Stokes-
Fourier equations put forward by Eckart [22] and Landau and Lifshitz [23] and which have
been shown later to be acausal and unstable [2]. Recently, the causality and stability issues
of the Eckart-Landau theory was addressed by several authors [24, 25, 26, 27, 28]. Thus, in
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contrast to their predecessors [22, 23], Ván and Biró used the Lagrange multiplier approach to
obtain a stable formulation in [24], Freistühler and Temple [25, 26] derived a causal and stable
formulation which has a locally well-posed initial value problem and has a close connection
with the second-order symmetric hyperbolic systems in the sense of Hughes-Kato-Marsden [29]
and which is referred to as mixed-order symmetric hyperbolic system by the authors. Recently,
Bemfica and co-authors [27, 28] proposed another causal, stable and locally well-posed extension
of the Eckart-Landau theory, first in the case of conformal fluids [27] and later in the general case
[28] which also can be derived from the relativistic Boltzmann kinetic equation via a perturbative
expansion technique developed in [31]. See a more thorough review of the aforementioned
approaches in [27]. The second class of models consists of those which are presented by first-
order hyperbolic PDE systems such as Müller-Israel-Stewart theory [32, 33, 34, 35] which was
originally established as a phenomenological extended thermodynamic theory but later it was
shown [36] that it can benefit from the connection with the relativistic Boltzmann equation via
the moment expansion method of Grad [37]. There are various state of the art extensions and
modifications of the original Müller-Israel-Stewart theory, e.g. see [3, 38, 36, 39, 40, 41, 42]. Also, a
quite general class of divergence-type theories [43, 3] can be related to the first-order PDE models.
In particular, the divergence-type models are known to be symmetric hyperbolic by contraction
due to the Godunov-Boillat theorem [4]. As it is shown on the example of viscous dissipation
in [44], the theory proposed in this paper is equivalent to the Müller-Israel-Stewart theory up to
the first-order terms in the out of equilibrium formal Chapman-Enskog expansion in the small
relaxation parameter. However, the higher order terms are different as they differ within various
versions of the Müller-Israel-Stewart theory [41] depending on the selected closure relations.

Let us finally name the two most important features that should help the reader to distinguish
our approach within the aforementioned approaches to relativistic dissipative fluid mechanics.
First of all, an attractive feature of our theory is that it admits a variational formulation so
that the matter energy-momentum is equivalent to the GR canonical matter energy-momentum
tensor. In other words, coupling of the matter and gravity occurs in a natural way, that is in
contrast to the existing approaches, the energy-momentum tensor of our theory does not have
to be added in an ad hoc manner to the Einstein field equations but emerges there as the Noether
current via the variation of the Hilbert-Einstein action. The same can be said for coupling
of matter and electromagnetic force as in the nonlinear electrodynamics of moving medium
[17]. Additionally, due to the variational nature of the SHTC equations discussed here, the
governing equations have a certain structure conditioned by the canonical structure of the Euler-
Lagrange equations. This is convenient for designing of numerical methods and in particular, for
developing of structure preserving methods. Let us also remark that despite the paramount role
of the variational principle in relativistic physics, to the best of our knowledge, there were no
much attempts to employ variational principle for deriving equations for relativistic dissipative
continuum mechanics apart from the works [45, 46, 47]. However, at the end of the day, the
viscosity law is postulated but not derived in these papers.

The second distinguishing feature of our approach is that it provides a unified description of
fluids and solids [48, 16, 49, 50]. In contrast to the existing first-order hyperbolic approaches
which rely on the kinetic theory of gases or parabolic theories which rely on the phenomeno-
logical Navier-Stokes-Fourier constitutive laws, our theory is not restricted by applications to
only fluids but can be applied simultaneously to both relativistic liquids and solids (e.g. the star
interior, the outer crust of the neutron stars [51]).

2 formulation of reversible equations
In this section, we give a variational formulation of the reversible part of the time evolution
for relativistic viscous and elastoplastic heat-conducting media. As it will be clear from what

In this work, we consider only first-order systems and the symemtric hyperbolicity is understood with respect to such
systems, i.e. in the sense of Friedrichs [30, 5].
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follows, our formulation involves two manifolds, the matter manifold and spacetime manifold.
It is therefore not obvious on which manifold of the two one has to formulate the variational
principle. In fact, the Euler-Lagrange equations are the same regardless whether the variations
are performed on matter or spacetime manifold. However, the Euler-Lagrange equations are
not the only equations we need in our theory. We also need the so-called integrability conditions
(7)2 and (25)2 which form the evolution equations for the principal fields of the theory, which
are the distortion field and the thermal impulse. It appears, that these equations cannot be rig-
orously derived if one works on the spacetime manifold (Eulerian frame) but they can only be
obtained in an ad hoc manner. On the other hand, the formulation of the variational principle
on the matter manifold (Lagrangian frame) allows us to obtain all equations in a rigorous math-
ematical way. Therefore, in what follows, we formulate the variational principle in the matter
manifold (Lagrangian frame) and then transform the Euler-Lagrange equations and integrability
conditions to the Eulerian frame associated with the spacetime manifold. In particular, we show
that the matter energy-momentum tensor obtained in such a way is equivalent to the GR matter
energy-momentum obtained in the standard way, i.e. by varying the action with respect to the
spacetime metric gµν.

Also, note that the governing equations are formulated in such a way that the Lagrangian
density is left unspecified and has to be provided by the user in order to close the equations.
Such a closure may depend on a particular application. This emphasizes an exceptional role
of the energy potential in the formulation of the reversible equations, similar to the GENERIC
formulation [18, 19].

2.1 Lagrangian equations of motion

In continuum mechanics, the motion of a continuous medium can be viewed as an embed-
ding of the 4d matter-time manifold (4-continuum) M4 with a Lorentzian metric κab in the 4d
spacetime V4 with a general Lorentzian metric gµν, see [44]. This embedding can be described
in Lagrangian coordinates ξa associated with M4, i.e. the coordinates that are comoving and co-
deforming with the medium, or, alternatively, in generic non-comoving coordinates xµ associated
with V4, that are usually called Eulerian coordinates for convenience. Sometimes the Lagrangian
coordinates are also named material coordinates, but in this work we prefer the first against the
latter. The embedding implies that the following one-to-one relation

xµ = xµ(ξ), ξa = ξa(x), µ,a = 0, . . . , 3 (1)

holds between Lagrangian and Eulerian coordinates, also called motion. In this work, by con-
vention, we refer general Greek indexes to the non-comoving (Eulerian) system of coordinates,
while lowercase Latin indexes a,b, c = 0, 1, 2, 3 to the comoving (Lagrangian) coordinates. Addi-
tionally, capital Latin letters A, B, C = 1, 2, 3 refer to the three purely spatial Lagrangian material
coordinates, e.g. ξA.

We further specify the Lagrangian coordinates ξa by assuming that the three scalars ξA label
the matter particles and hence label the particle worldlines, while ξ0 := τ is defined to be the
matter proper time, that is the time of the Lagrangian observer as measured from his comoving
clock, i.e.

−dτ2 = gµνdxµdxν. (2)

In the Lagrangian formalism, the motion (1), as seen by an Eulerian observer, represents
deformation of the medium and hence, the gradients of the motion, also called configuration
gradients in the relativistic elasticity literature, e.g. [52, 53, 54, 55, 56],

xµa (ξ) :=
∂xµ

∂ξa
, ξaµ(x) :=

∂ξa

∂xµ
(3)
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play a central role [44]. In particular, the 4-velocity of the material elements with respect to the
Eulerian coordinate system xµ is defined as the first column of the configuration gradient xµa

uµ := xµ0 =
∂xµ

∂ξ0
=
∂xµ

∂τ
, (4)

Thus, in the absence of other material fields (which will be introduced later), it is implied that
the material Lagrangian density Λ̃ explicitly depends on the configuration gradient xµa

Λ̃
(
ξa, xµ(ξ), xµb (ξ)

)
= Λ

(
x
µ
b (ξ)

)
(5)

and does not explicitly depend on the unknowns ξa and the potentials xµ(ξ). Hence, the first
variation of the action S =

∫
Λdξ with respect to δxµ gives the Euler-Lagrange equation

∂aΛxµa = 0, (6a)

where we introduced the notation Λxµa = ∂Λ
∂x
µ
a

, and the Einstein convention of summation
over repeated indexes is assumed. There are only 4 conservation laws in (6a) for 16 unknowns
x
µ
a . The remaining 12 equations are indeed hidden within the integrability conditions of any

configuration gradient, i.e.
∂b x

µ
a − ∂a x

µ
b = 0, a 6= b. (6b)

In fact, system (6b) consists of 24 equations, where 12 of them are effective evolution equations,
i.e. those for a,b = 0, while the other 12 are the so-called involution constraints, e.g. see [44, 4],
that are pure spatial constraints, conserved along the particle trajectories.

2.2 Eulerian equations of motion

Existence of the Lagrangian coordinates ξa is a mathematical idealization and their practical use
for general fluid-like motion is usually very problematic. Therefore, our unified approach to
fluids and solids [48, 16] relies on the reformulation of governing equations (6) in the Eulerian
frame and later, on the replacement of the integrable (global) deformation field ξaµ by the non-
integrable (local) distortion field Aaµ which can be seen as a local basis tetrad (or non-holonomic
basis tetrad). Therefore, in this section, we formulate equations of motion in the Eulerian frame
which are obtained from the Lagrangian governing equations (6) by changing the unknowns
ξa → xµ, see details in [44].

Thus, after a sequence of equation transformations, equations (6) read

−∇ν(|ξ| ξbµΛξbν) = 0, uν(∇νξaµ −∇µξaν) = 0, (7)

where∇ν denotes a covariant derivative associated with the symmetric Levi-Civita connection of
GR, and the first equation represents the conservation of the energy-momentum tensor-density
Σνµ of our theory

Σνµ := −|ξ| ξµaΛξνa = |ξ| xνaΛxµa , |ξ| = det(ξaµ). (8)

After introducing the Eulerian counterpart L of the material Lagrangian Λ:

L := |ξ|Λ, (9)

the energy-momentum reads

−Σνµ = ξaµLξaν −Lδνµ, Tνµ := Σνµ/
√
−g, g = det(gµν). (10)

In particular, it is shown in [44] that in the absence of other material and electromagnetic fields,
Tνµ can be written in a conventional form

−Tνµ = Euνuµ + phνµ + σνµ, hνµ := δνµ + uνuµ, (11)
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where E = L/
√
−g is the total energy, p := ρEρ − E is the isotropic pressure, ρ is the rest

mass density, σνµ = ξaµEξaν is the anisotropic part of the energy-momentum, hνµ is the spatial
projector.

The complete system of Eulerian governing equations for determining the 16 unknown fields
ξaµ reads

−∇ν(ξaµEξaν − Eδνµ) = 0, uν(∇νξaµ −∇µξaν) = 0. (12)

Finally, we note that, as discussed in detail in [44, 57], the developed approach is geometrical
in nature, in which the matter is considered as a non-Riemannian manifold in which the geom-
etry is determined by the distortion field Aaµ (non-holonomic frame field), which replaces the
holonomic tetrad ξaµ and plays the role of moving Cartan frames. In such a geometrical frame-
work, the 4-velocity uµ and the rest mass current jµ :=

√
−gρuµ are collinear by construction

[44]. In other words, the proposed approach can be viewed as a generalization of Eckart’s choice
of the 4-velocity (Eckart’s frame), see [22, 58, 3].

consistency with gr. As it was shown in [44], our energy-momentum tensor (10) agrees
well with the canonical matter energy-momentum tensor-density of GR (the source term in the
Einstein field equations) which reads as

√
−g Tνµ := −gνλ

∂LGR

∂gλµ
= gµλ

∂LGR

∂gλν
=
√
−g
(
2gµλEgλν − Eδνµ

)
, LGR :=

√
−gE, (13)

where E is the total energy. In particular, if we assume L = LGR, it was shown in [44] that

−Tνµ = ξaµEξaν − Eδνµ = −
(
2gµλEgλν − Eδνµ

)
= −Tνµ. (14)

This is an important result, saying that our way of formulating the variational principle, which
consists in defining the action in the matter-time manifold M4 and varying the action with
respect to the configuration gradient ξaµ, gives the energy-momentum tensor (14) equivalent to
the conventional GR matter energy-momentum, which is obtained if the action is defined in the
spacetime V4 and the variation is performed with respect to the spacetime metric gµν.

Equality (14) also guarantees that the GR energy-momentum tensor Tνµ coincides identically
with the SHTC energy-momentum Tνµ for arbitrary energy potential E even in the presence of
extra fields, e.g. the thermal impulse needed for the heat conduction formulation.

In the end, we note that the proposed continuum theory does not rely on any specific assump-
tions of GR, e.g. Einstein’s equivalence principle, and in fact, it can be viewed as a theory whose
main feature is the causal description of dissipative phenomena, see Sec.2.4, i.e. it is compatible
with the special relativity theory. Nevertheless, a side effect of using the configuration gradient
ξaµ (the frame field) as the principal field is that the SHTC energy-momentum tensor Tνµ is
equivalent to the GR canonical matter energy-momentum tensor Tνµ for arbitrary background
Lorentzian metric gµν. Moreover, due to their specific structure, the governing equations are
also generally covariant, e.g. see [44] and eqs.(23) and (24) below, for the torsion-less spacetimes.

2.3 Heat conduction

In this Section, we give a variational formulation for the reversible part of the relativistic version
of the SHTC heat conduction equations [8, 4].

As it was shown in [4], non-relativistic SHTC equations can be viewed as a particular real-
ization of the GENERIC formulation for non-equilibrium thermodynamics. It is therefore not
surprising that the same heat conduction equations were also proposed by Öttinger [59, 60, 61]
within the GENERIC approach in the relativistic context.
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2.3.1 Lagrangian equations.

In the Lagrangian frame, let us consider a scalar potential J(ξa) and the action integral

S =

∫
Λ(J,∂aJ)dξ. (15)

We assume that the Lagrangian Λ does not depend explicitly on the potential J itself, but only
on its first derivatives Ja := ∂aJ. In analogy with non-relativistic equations [16, 17, 4], vector Ja
is called relativistic thermal impulse. Furthermore, we shall single out the zeroth component J0 :=

−T of the gradient Ja, where, as will become clear later, T can be identified as the temperature
in the medium.

The first variation of the action (15) with respect to J gives the Euler-Lagrange equation

∂aΛJa = 0, ∂bJa − ∂aJb = 0, (16)

which are accompanied by the integrability condition (second equation). The first equation in (16)
will be associated with the entropy evolution equation and its more conventional form will be
unveiled later. The second equation will be used to evolve the three spatial components of the
thermal impulse.

2.3.2 Eulerian equations.

We now rewrite the Lagrangian equations (16) in the Eulerian frame xµ. Thermal impulse Ja
and Lagrangian Λ transform as

Jµ = ξaµJa, L(Jµ) = |ξ|Λ(Ja). (17)

In particular, keeping in mind that uµ = xµ0 , we have

uµJµ = −T . (18)

Furthermore, it follows from (17) that |ξ|xµaΛJa = LJµ and hence, using the identity ∂µ(|ξ|x
µ
a ) =

0 and that ∂a = xµa ∂a, one can rewrite (16)1 as

0 = |ξ| xµa ∂µΛJa = ∂µ(|ξ| x
µ
aΛJa) = ∂µLJµ , (19)

that is the vector-density LJµ conserves both ordinarily and covariantly:

∂µLJµ = 0, and ∇µLJµ = 0. (20)

Let us now transform equation (16)2. One may write (we consider only three genuine evolu-
tion equations, but not the spatial constraints ∂BJA − ∂AJB = 0)

∂τJb − ∂bJ0 = ∂τ(x
µ
b Jµ) − ∂b(u

µJµ) = u
λ∂λ(x

µ
b Jµ) − x

λ
b ∂λ(u

µJµ). (21)

Then, using (18) and that ∂λx
µ
b = −xηb x

µ
a ∂λξ

a
η, we can write (21) as

uλ∂λJν − uλJµx
µ
a ∂λξ

a
ν + ∂νT = 0, (22)

which using the evolution equation for the configuration gradient uλ∂λξaν + ξaλ∂νu
λ = 0 (see

[44]), can be rewritten as
uλ∂λJν + Jµ∂νu

µ = −∂νT . (23)

Because the left hand-side is the Lie derivative of Jµ along the 4-velocity, while the right hand-
side is the derivative of the proper scalar T = −uµJµ, we may replace the ordinary derivatives
with the covariant ones:

uλ∇λJν + Jµ∇νuµ = −∇νT . (24)

Using (18), this equation can be equivalently written as uλ(∇λJν−∇νJλ) = 0. Thus, the Eulerian
form of the relativistic heat conduction equations (in the absence of the irreversible processes)
reads

∇µLJµ = 0, uλ(∇λJν −∇νJλ) = 0. (25)
Note that within (16), there are only 4 evolution equations for 4 unknowns Ja and 3 pure spatial constraints ∂BJA −
∂AJB = 0.
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2.3.3 Energy-Momentum and Thermal Stress.

We now demonstrate that the energy-momentum tensor has a contribution due to thermal im-
pulse Jµ. Thus, during the Lagrange-to-Euler transformation the energy-momentum tensor den-
sity Σνµ =

√
−gTνµ (10) transforms as

Σνµ = |ξ| xνa

(
Λ(xλb , Jb)

)
x
µ
a

= −|ξ| ξaµ

(
|ξ|−1L(ξbλ, ξbλJb)

)
ξaν

= Lδνµ − ξaµLξaν − JµLJν .

Therefore, in the presence of heat conduction, the energy-momentum tensor Tνµ = Σνµ/
√
−g is

−Tνµ = ξaµEξaν + JµEJν − Eδνµ, (26)

where the term JµEJν can be called the thermal stress.

2.3.4 Entropy.

In this section, we introduce an entropy of our theory and rewrite the conservation law (25)1,
which is in fact the entropy conservation law, in a conventional form. For brevity, we shall not
consider the dependence of the energy potential on ξaµ in this section.

First, we introduce the spatial projection wµ of the thermal impulse Jµ

wµ := hλµJλ = Jµ − Tuµ. (27)

Let us also define total energy potentials (at the moment we use symbol E, while symbol E
will appear later on, after a Legendre transform in (30))

E(Jµ) = Ē(T , J) = Ě(T ,w), (28)

where E = L/
√
−g, T = −uµJµ, J := JµJµ, w := wµw

µ = J+ T2, and, in particular,

EJµ = −ĚTu
ν + Ěwλ

∂wλ
∂Jν

= −ĚTu
ν + Ěwλh

ν
λ = −ĚTu

ν + Ěwν . (29)

Eventually, the entropy s can be introduced conventionally, i.e. as the Legendre conjugate to
the temperature T . Thus, we introduce a new potential E(s,wµ) = TĚT − Ě and hence, one has

s := ĚT , T = Es, Ewµ = −Ěwµ . (30)

After that, conservation law (25)1 reads

∇µEJµ = ∇µ(−ĚTuµ + Ěwµ) = −∇µ(suµ + Ewµ), (31)

which represents the reversible part of the entropy evolution. Note that the non-advective part
Ewµ of the entropy current is orthogonal to the 4-velocity

Ewµuµ = 0 (32)

because Ewµ = −Ěwµ = −2Ěww
µ and wµuµ = 0. In terms of the thermal impulse wµ, eq. (25)2

reads
uλ(∇λwµ −∇µwλ) + hλµQλ = 0, (33)

where Qµ := ∇µT + Tuλ∇λuµ is the auxiliary temperature gradient vector, e.g. see [59, 3].
However, in the numerical simulation, it is more convenient to use equation (25)2 for Jµ and
then compute wµ using (27) because, after the 3+ 1 split, (25)2 has the same structure as the
non-relativistic SHTC heat conduction equation [4, 8].
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2.3.5 The symmetry of the thermal stress

Let us now consider the question of symmetry of the energy-momentum. Thus, in new terms,
the thermal stress can be written as

JµEJν = −(wµ + Tuµ)(su
ν + Ewν) = −(wµEwν + Tsuµu

ν + swµu
ν + TEwνuµ) (34)

which is symmetric if and only if
swν = TEwν . (35)

This, in fact, implies that ĒT = ĚT + 2TĚw = s− 2TEw = 0, that is Ē(T , J) = Ē(J) does not depend
explicitly on T and we can identify E ≡ Ē in (28).

2.3.6 Heat flux

Recall that, in the SHTC theory [8, 4, 16], the heat flux is introduced as

qµ := EsEwµ = TEwµ (36)

hence, if condition (35) holds, the thermal stress (34) can be equivalently rewritten as

JµEJν = −(sEsu
µuν +wµEwν + q

νuµ + uνqµ), (37)

which is manifestly symmetric. Hence, the total energy-momentum for a relativistic heat-conducting
fluid (anisotropic shear stress is omitted) reads

−Tνµ = (sEs − E)uνuµ + (−ρEρ − sEs + E)hνµ − sEsu
νuµ −wµEwν − q

νuµ − uνqµ, (38)

so that we have
Tνµ = Euνuµ + phνµ +wµEwν + q

νuµ + uνqµ, (39)

with p := ρEρ + sEs − E being the pressure. Here, the last two terms are conventional [58, 3],
while the term wµEwν is due to the non-equilibrium nature of the theory. The presence of such
a term can be in particular justified based on macroscopic equations for non-equilibrium gas
flows (moments equations) [62] derived from the Boltzmann kinetic equation. Such a term also
appears in the GENERIC formulation of relativistic heat conduction [59, 61] which we found to
be equivalent to the SHTC variational formulation. However, in the near-equilibrium settings
(diffusive regime), this term can be ignored due to its smallness, see Sec. 3.4.

2.4 Hyperbolicity

Hyperbolic PDEs provide a natural framework for modeling time-dependent physical phenom-
ena at a macroscale because they have a locally well-posed initial value problem and admit only
finite speeds for perturbation propagation usually associated with the sound speeds in matter,
which are subluminal (causality). Moreover, local well-posedness is also a critical property of a
PDE system for its consistent numerical resolution. In particular, it is one of the goals of this
paper to obtain a relativistic version of our hyperbolic equations for viscous momentum [48, 16]
and heat transfer [8, 16, 4]. However, because hyperbolicity of a non-homogeneous first-order
system is defined by only its leading order terms, we can consider this question even before the
introduction of the irreversible source terms (low-order terms) in Sec. 3.

From the mathematical standpoint, hyperbolicity of a first-order non-linear PDE system in
a domain Ω is equivalent to its strong linear stability at any point of Ω [63]. Recall that the
strong linear stability implies not only that the characteristic velocities of the considered PDE
system (eigenvalues) are real but also that a full set of eigenvectors exists, that is the quasilinear
form of the PDE system is diagonalizable. In turn, this two conditions results in that the norm
of Fourier-Laplace modes (the solution of the linearised PDE system) are uniformly bounded in
time. Therefore, it is in principle equivalent to study hyperbolicity of a model in Eulerian and
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Lagrangian frames (if only the two have the same number and types of unknowns) because their
Fourier-Laplace modes are connected by the solution-dependent non-singular transformation
(17) and thus, the growth type of the Fourier-Laplace mode cannot qualitatively change, i.e.
from a uniformly bounded to unbounded behavior (blow-up solution) and vice versa.

Having said that, it has appeared that it is much easier to prove hyperbolicity, and even sym-
metric hyperbolicity, of the Lagrangian system (6) and (16) while hyperbolicity of its Eulerian
counterpart that is summarized later in (41) and used in the numerical simulation in Sec.4 fol-
lows from the discussion above. In addition to the reasoning discussed at the beginning of Sec.2,
this is another reason why we employ the Lagrangian frame in our theoretical considerations.
Also, recall that for the first-order symmetric hyperbolic equations, a non-increasing energy func-
tional can be easily obtained, see e.g. [64, 65, 1], which can be used to obtain estimates for the
norm of the solution and its derivatives.

Lagrangian governing equations (6) and (16), after introducing new variables mµ := Λuµ ,
S := ΛT , and a new potential U := uµΛuµ + TΛT −Λ as Legendre conjugates, read as

∂τmµ − ∂A UxµA
= 0, ∂τ x

µ
A − ∂A Umµ = 0, (40a)

∂τS+ ∂AUJA = 0, ∂τJA + ∂AUS = 0, (40b)

where ∂τ = ∂0 is the Lagrangian time derivative and τ is the proper time. This is exactly
the system of conservation laws studied in [7, 4] and which is symmetrizable and compatible
with the first law of thermodynamics (thermodynamical compatibility), i.e. it admits an extra
conservation law for the potential U:

∂τU− ∂A(UmµUξAµ
−USUJA) = 0, (40c)

which can be interpreted as the total energy conservation. Moreover, this system is symmetric
hyperbolic [30] if the potential U is convex, see details in [4], that is its characteristic velocities
(they give the perturbation propagation velocities) are guarantied to be always real and the
quasilinear form of (40) is diagonalizable. Moreover, the potential U is designed in such a way
that the characteristic velocities coincide with the high-frequency limit of the sound speeds of
the material under consideration, e.g. see (47), which can be taken from experimental data
[66, 16, 49] or estimated from microscopic theories. Of course in reality, these sound speeds are
always less than the speed of light and hence, the model is causal. Thus, similar to the Müller-
Israel-Stewart theory [3], our theory has the longitudinal, transversal or shear, and thermal sound
velocities, e.g. see [16].

3 relativistic heat-conducting viscous media
In this section, we finalize the formulation of the SHTC equations for relativistic heat-conducting
viscous/elastoplastic media by specifying the irreversible part of the time evolution. Note that
the differentiation between viscous and elastoplastic media is achieved via a proper choice of
the dependence of the relaxation time τsh, see (49), on the state variables, e.g. see [67, 50], and
does not depend on the reversible part of the time evolution. We then discuss thermodynamic
consistency of the governing equations, close the system by providing an example of the energy
potential, and recover effective shear viscosity and heat conductivity of our theory.

The system of SHTC governing equations for general relativistic heat-conducting viscous/elastoplastic
media reads as follows

∇ν(Euνuµ + phνµ +AaµEAaν +wµEwν + q
νuµ + uνqµ) = 0, (41a)

uν(∇νAaµ −∇µAaν) = −
1

θsh
GabgµνEAbν , (41b)

This is not always the case. For example, the Eulerian formulation of the Euler equations of ideal fluids requires 5

fields (density, momentum and energy), while its Lagrangian formulation requires extra nine fields for the deformation
gradient, e.g. see [63].
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∇µ(suµ + Ewµ) =
1

T

(
1

θsh
GabgµνEAaµEAbν +

1

θh
gµνEwνEwµ

)
> 0, (41c)

uλ(∇λwµ −∇µwλ) + hλµQλ = −
1

θh
gµνEwµ , (41d)

∇µ(ρuµ) = 0, (41e)

where

p = ρEρ + sEs − E, T = Es, qµ = TEwµ , Qµ = ∇µT + Tuλ∇λuµ, (41f)

The left hand-side in (41) represents the reversible part of the time evolution derived in Sec.2.1
and 2.3, while the newly added relaxation source terms on the right hand-side of (41) represent
the irreversible part and can be viewed as gradients of the quadratic dissipation potential [4].
The total energy E is left unspecified so far. However, one may clearly notice that the definition
of the reversible and irreversible terms depends on the specification of the total energy E and
will be provided in Sec. 3.3 as well as the specification of the relaxation parameters θsh and θh.

One of the non-trivial differences between the reversible equations (with zeros on the right
hand-side) and irreversible ones is in the substitution of the configuration gradient ξaµ, which
can be seen as a holonomic basis tetrad, by the distortion field Aaµ, which is a non-holonomic
basis tetrad, i.e. it is not a gradient of the mapping (1). This is discussed in detail in [44] in
the relativistic setting and in [57, 48, 16] in the non-relativistic setting. It is implied though that
|A| = |ξ|.

One may clearly see that the GR version of SHTC equations (41) shares a lot of common
structural features with the non-relativistic SHTC equations, e.g. [4]. We, therefore, expect that
the relativistic equations (41) also admit a Hamiltonian formulation similar to [59, 18], that is the
reversible part of the time evolution is generated by the anti-symmetric Poisson brackets, while
the irreversible part can be generated by a symmetric bracket, see [18] and Sec.4 in [19]. However,
to show this, one may need to obtain a genuinely 4-dimensional formulation of the GENERIC
approach which currently relies on the explicit treatment of the time coordinate and therefore, is
not truly 4-dimensional. Nevertheless, one may note that the irreversible part of the GR SHTC
equations (41) is identical to its non-relativistic counterpart in [4] and thus, it can be seen as the
gradient of the quadratic dissipation potential , see [4], and hence, it can also be viewed as it is
generated by a symmetric dissipative bracket as in the branch of GENERIC developed in [59, 18].

3.1 Linear stability

One of the fundamental observations of the non-equilibrium thermodynamics is that an out-of-
equilibrium system, if left free of external stimuli, tends towards the global equilibrium state
[19]. From the mathematical standpoint, this is equivalent to that the equilibrium solution of
(41) is linearly stable. Therefore, introduction of the dissipative relaxation terms in (41) should
not contradict to this observation. To prove that the out-of-equilibrium solutions of (41) tend
towards the equilibrium state, or that the perturbations of the equilibrium state decay in time, is
again easy to do in the Lagrangian frame, that is for system (40) supplemented with the same
type source terms as in (41) generated by the quadratic (convex) dissipation potential (see the
discussion just before this subsection). Indeed, the resulting Lagrangian symmetric hyperbolic
relaxation system, e.g. see [4], fulfills the conditions (symmetrizability and the non-negative
definiteness of the dissipation matrix) of the class of first-order hyperbolic PDE systems studied
by Yong and co-authors in [68, 69] for which it is proven that the equilibrium state is linearly
stable.

3.2 Thermodynamic consistency

The choice of the entropy production source term in eq.(41c) is guided by both laws of thermo-
dynamics, i.e. it has to be non-negative in order to guarantee the non-decreasing of the physical
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entropy in irreversible process (second law of thermodynamics), but it also allows to conserve
the total energy (first law of thermodynamics). Indeed, system (41) is an overdetermined PDE
system, that is there are more equations than unknowns. Hence, if all equations are compatible
with each other, one of the equations should be the consequence of the others. Thus, one can
check that the 0-th equation in (41a), the total energy conservation law, is a linear combination
of the remaining equations

∇ν(Euνu0 + phν0 + P
ν
0) = −

ui

u0
∇ν(Euνui + phνi + P

ν
i) −

EAaµ

u0
uν(∇νAaµ −∇µAaν)

−
Es

u0
∇µ(suµ + Ewµ) −

Ewµ

u0
(uλ(∇λwµ −∇µwλ) + hλµQλ) −

Eρ

u0
∇µ(ρuµ), (42)

where Pνµ = AaµEAaν + wµEwν + qνuµ + uνqµ. The source terms in (41) are designed in
such a way that they canceled out during the summation (42), that is the total energy is indeed
conserved.

Finally, we note that the rest mass conservation law (41e) is, in fact, not an independent
equation, but can be derived from the configuration gradient (12)2 or distortion evolution equa-
tion (41b), e.g. see [44]. Nevertheless, it is convenient to formally treat the rest mass density
ρ := ρ0|A|/

√
−g as an independent variable [44], which should be taken into account in the

derivatives EAaµ and Eρ. Here, ρ0 is the reference mass density.

3.3 Closure: equation of state

As we have seen, the SHTC system of governing equations is formulated without specifying the
Lagrangian density L or energy E. We say that the energy potential E is the generating potential
for system (41) which has to be specified in order to close the system.

Because E has to be a proper scalar, it has to depend on the the tensor fields via their invariants,
including mixed invariants of two or more fields. The subsystems of (41) can be, therefore, non-
linearly coupled via a specific closure, i.e. a specific choice of the potential E. In this paper,
however, we give an example of a rather simple closure (quadratic energy) which is discussed in
the following subsection.

We assume the following decomposition of the total energy potential E

E(ρ, s,wµ,AAµ) = ρ(1+ ε(ρ,S,wµ,AAµ)), (43)

where S = s/ρ is the specific entropy (per unit of rest mass).
Furthermore, we shall need the material metric Gµν, see [44],

Gµν := GabA
a
µA

b
ν = κABA

A
µA

B
ν, Gab := κab +UaUb =


0 0 0 0

0

0 κAB
0

 , (44)

where we have defined the Lagrangian matter projector Gab in the local relaxed frame, and
Ua = ∂ξa

∂τ = (1, 0, 0, 0), Ua = κabU
b = (−1, 0, 0, 0) is the Lagrangian 4-velocity. Following our

papers on Newtonian continuum mechanics [16, 17], we shall decompose the material metric
Gµν into a traceless part G̊µν and a spherical part:

Gµν = G̊µν +
Gλλ
3
hµν, where G̊µν := Gµν −

Gλλ
3
hµν. (45)

Note that, in this definition, G̊µν refers to the spatial projector hµν and not to the full spacetime
metric gµν. We then use the norm of the traceless part (here one has to use that hµµ = gµλhλµ =

3)
G̊λνG̊

ν
λ = I2 − I

2
1/3, I1 = Gµµ, I2 = GµνG

ν
µ, (46)

as an indication of the presence of non-volumetric (tangential) deformations, and define the
specific energy ε(ρ,S,wµ,AAµ)
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ε(ρ,S,AMµ,wµ) = εeq(ρ,S) +
c2sh
4
G̊λνG̊

ν
λ +

α2h
2
wµwµ, (47)

where εeq is given by a hydrodynamic equation of state (EOS), which can be either the ideal
or stiffened gas EOS (in the case of liquids or solids) or a general tabulated one. Here, csh de-
notes the sound speed of propagation of shear perturbation, that is the characteristic velocity of
propagation of shear perturbation in the most non-equilibrium state, i.e. when the associated
relaxation parameter τsh goes to infinity, τsh → ∞. The parameter αh is related to the char-
acteristic velocity of propagation of thermal perturbations ch (so-called second sound) in the
non-equilibrium state (τh → ∞) as c2h = α2hT/cV , where τh is the thermal relaxation time scale,
and cV is the specific heat capacity at constant volume [16]. For such a specification of E, we
have

EAAµ
= ρ c2shκABA

B
λg
λαG̊αβh

βµ, AAµEAAν = ρ c2shG̊
ν
λG
λ
µ, (48a)

wµEwν = ρα2hw
νwµ, qµ = Tρα2hw

µ, T = Es = ε
eq
S (48b)

Based on the dimensional reasoning and asymptotic analysis performed in the following section,
it is convenient to define the relaxation parameters θsh and θh as follows [44, 16, 4]

θsh = ρ0 τshc
2
shG

λ
λ/3, θh = ρα2hτh. (49)

3.4 Asymptotic analysis

In this section, via a formal asymptotic analysis performed for the closure (47), we demonstrate
that in the asymptotic relaxation limit τsh → 0 and τh → 0, the leading terms of our equations
are identical to the relativistic Navier-Stokes-Fourier equations [3]. Although, the latter are
parabolic and non-causal and known to be unstable [1, 2, 70], it is the high-order terms of our
theory which should be responsible for the stability of the solution. Via a formal asymptotic
analysis, we express the effective transport coefficients of the theory such as shear viscosity and
heat conductivity in terms of the characteristic velocities csh, ch and the relaxation times τsh and
τh.

effective heat conductivity. Assuming that the thermal impulse can be expanded as

wµ = w
[0]
µ + τhw

[1]
µ + τ2hw

[2]
µ + . . . , (50)

we plug it in the equation (33), where the irreversible terms are now added:

uλ∇λ(w
[0]
µ + τhw

[1]
µ ) + (w

[0]
λ + τhw

[1]
λ )∇µuλ + hλµQλ + . . . = −

ρα2h
θh

wµ, (51)

where dots ‘. . .’ mean higher order terms. It is convenient to define θh as in (53). Then, collecting
terms with equal orders of power of τh, we obtain that at the zeroth order w[0]

µ = 0, while at the
first order w[1]

µ = −hλµQλ. Therefore, by truncating expansion (50) to first order, the solution
can be approximated as wµ = −τhh

λ
µQλ. Then, using that the heat flux 4-vector is defined as

qµ = TEwµ in (36), one has

qµ = TEwµ = Tρα2hw
µ = −Tρα2hg

µντhh
λ
νQλ, (52)

that is the effective heat conductivity κeff of our model in the diffusive regime (τh � 1) can be
defined as

κeff = ρ Tτhα
2
h = ρ cVτc

2
h . (53)
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effective shear viscosity. In [44], it was shown that, in the absence of heat conduction
(ch = 0), a formal asymptotic expansion reveals the structure of the leading terms of viscous
stress σνµ = AAµEAAν in the asymptotic relaxation limit when τsh → 0,

σµν = −
1

6
ρ0τshc

2
sh

(
hµλ∇νuλ + hλν∇µuλ −

2

3
(hαλ∇αu

λ)hµν + uλ∇λhµν
)

, (54)

which is equivalent to the Landau-Lifshitz version of the relativistic Navier-Stokes stress [71, 3]
with the effective viscosity µ = 1

6ρ0τshc
2
sh.

4 numerical validation

4.1 3+1 formulation

In a few words, in the 3 + 1 foliation of spacetime it is a usual procedure to project the 4d
covariant governing equations into a set of 3d equations by using the so called spatial and temporal
projection operators, γµν and Nµν, respectively, such that gµν = γµν +Nµν, e.g. see [3]. In this
way, any symmetric rank-2 tensor can be decomposed in its spatial and temporal components,
e.g.

Tµν = Sµν + Sµnν +nµSν +Unµnν, (55)

where,
Sµν := γµαγ

ν
βT
αβ, Sµ := −γµαnβT

αβ, U := nαnβT
αβ (56)

In particular, such operators are defined after specifying on the spacetime V4 a proper field of
local (Eulerian) observers travelling with non-constant 4-velocity nµ. In particular, one can show
that [3]

gµν =

(
−α2 +βiβ

i βi
βi γij

)
, gµν =

(
−1/α2 βi/α2

βi/α2 γij −βiβj/α2

)
,

nµ = −α∇µt = (−α, 0i) , nµ = (1/α,−βi/α) , nµn
µ = −1,

γµν := gµν +nµnν , Nµν := −nµnν,

where t is chosen to be the time coordinate, α is the lapse function, βj is the shift vector, and γij
are the spatial components of the spatial metric γµν. The corresponding identities related to the
medium 4-velocity uµ are

uµ = Γ (nµ + vµ) , Γ := −nµu
µ = αut = (1− viv

i)−1/2 = (1− v2)−1/2 ,

γ ·u = (δµν +nµnν)u
ν = Γvµ , vi = ui/Γ +βi/α ,

where Γ is the Lorentz factor.
Then, after denoting with V the array of the so-called 33 primitive variables

V :=
(
ρ, vj,p,Aij, Jj, κAB,α,βj,γij

)
, (57)

where κAB are the material components of the matter-time metric κab. The so-called 33 con-
served variables Q(V) can be easily expressed in terms of the primitive variables via the rela-
tions

D := ρΓ , S := ρhΓ2v, U := ρhΓ2 − p . (58)

Here, U is the conserved energy density, h = 1+ ε+ p/ρ is the specific enthalpy and ε is the
specific internal energy [3]. Then, the chosen state vector Q of conserved variables with respect
to the PDE system (60) is defined as

Q :=
(√
γD,

√
γSj,

√
γU,Aij, Jj, κAB,α,βj,γij

)
. (59)
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While the transformation from primitive to conserved variables is explicit and straightforward,
in this work, the inversion of the primitive to conserved function is computed iteratively.

Eventually, after a standard 3+ 1 foliation of spacetime [72, 3], system (41) projected into the
Valencia-type formulation reads as follows:

∂t

(
γ
1
2D
)
+ ∂i

[
γ
1
2D
(
αvi −βi

)]
= 0, (60a)

∂t

(
γ
1
2 Sj

)
+ ∂i

[
γ
1
2

(
αSij −β

iSj

)]
− γ

1
2

(
1

2
αSik∂jγik + Si∂jβ

i −U∂jα

)
= 0, (60b)

∂t

(
γ
1
2U
)
+ ∂i

[
γ
1
2

(
αSi −βiU

)]
− γ

1
2

(
αSijKij − S

j∂j,α
)
= 0, (60c)

∂tA
i
j + ∂j

(
v̂kAik

)
+ v̂k

(
∂kA

i
j − ∂jA

i
k

)
= −

1

θsh
AiµG̊

µ
j, (60d)

∂tJi + ∂i

(
v̂kJk + T̂

)
+ v̂k (∂kJi − ∂iJk) = −

1

θh
Ji, (60e)

∂tκAB + v̂
k∂kκAB = 0, ∂tα = 0, ∂tβ

i = 0, ∂tγij = 0, (60f)

where T̂ = αT/Γ . In more detail, the components Sij, Si and U are defined as the space-time
decomposition (56) of the energy-stress tensor Tνµ that appears in equation (41a). Also, we have
introduced the definition of the so called transport velocity as v̂i := (vi +βi)/α. Finally, we stress
that due to the fact that system (41) is overdetermined, see (42), we are free to chose whether the
total energy or entropy equation is discretized (we chose to discretize the energy equation). The
remaining quantity is computed from the equation of state. Finally, for the static spacetimes, the
Cowling approximation [72]

αSijKij ≡
1

2
Sikβj∂jγik + S

j
i∂jβ

i (61)

can be used for the extrinsic curvature Kij [3] in (60c).

4.2 Numerical examples

heat conduction. Here we solve a simple Riemann problem that involves heat conduction.
The initial condition consists in a density jump from ρL = 1 to ρR = 0.9 located at x = 0.5.
The other state variables are globally constant and are chosen as v = J = 0, A = I and p = 1.
We furthermore assume a flat Minkowski spacetime, hence the lapse function is α = 1, the shift
vector is βi = 0 and the spatial metric tensor is γij = δij. The remaining parameters of the model
are the ideal gas EOS for εeq in (47) with γ = 5

3 (the ratio of the specific heats), csh = 0, αh = 0.8,
cV = 1 and two different relaxation times τh � 1 are considered, namely τh = 5 · 10−3 and
τh = 5 · 10−4. The chosen initial data lead to a temperature jump of TL = 1

γ−1
1
ρL

to TR = 1
γ−1

1
ρR

.
Simulations are run on the domain Ω = [0, 1]× [0, 1] until t = 0.5 using a fourth order ADER-DG
scheme [15, 16, 73] with polynomial approximation degreeN = 3 and 100× 4 spatial elements. A
fine grid reference solution is computed with a third order ADER-WENO finite volume scheme
[14, 16, 73] on 1000 cells.

The obtained results are depicted in the left panel of Fig. 1, which show the typical behavior
of heat conduction in the limit of the Fourier law. The agreement of the numerical simulation
carried out with the high order discontinuous Galerkin finite element scheme and the finite
volume reference solution is excellent.

relativistic sod shock tube. In this last test problem, we solve a relativistic version of the
Sod shock tube problem for the complete model (41), including viscosity and heat conduction.
The initial data consist of a jump located in x = 0.5 with ρL = 1, ρR = 0.125, v = J = 0, A = 3

√
ρ I,

pL = 1, pR = 0.1, α = 1, βi = 0, γij = δij. The remaining model parameters are chosen as the
ideal gas EOS for εeq with γ = 5

3 , cV = 1, ch = 0.01 and csh = 0.5. Three different values of
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relaxation times τsh = τh � 1 are used in the numerical simulations, namely 2 · 10−1, 2 · 10−2,
and 2 · 10−3. The computational domain is Ω = [0, 1]× [0, 1] and is covered with 100× 4 fourth
order ADER-DG elements of polynomial approximation degree N = 3. Simulations are run until
a final time of t = 0.4. Since the problem under consideration involves shock waves, we make
use of the a posteriori subcell finite volume limiter presented in [74]. The computational results
are compared against the exact solution of the Riemann problem of the ideal relativistic hydro-
dynamics (RHD) equations, which was kindly provided by Dr. Zanotti, see [75]. The obtained
results are depicted in the right panel of Figure 1. For small relaxation times, an excellent agree-
ment between the stiff relaxation limit of our model and the ideal relativistic Euler equations can
be noted.
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Figure 1: Left panel: Heat conduction based on the SHTC model. Temperature distribution at t = 0.5 for
two different relaxation times τh = 5 · 10−3 and τh = 5 · 10−4, starting from a temperature jump
initially located at x = 0.5. Right panel: Relativistic Sod shock tube problem solving the SHTC
model (60) with viscosity and heat conduction with different relaxation times τh = τsh = 2 · 10−3,
2 · 10−2, and 2 · 10−1. As reference, also the exact solution of the Riemann problem of the ideal
relativistic Euler equations (RHD) is shown.

5 conclusion
We have presented a general relativistic formulation for viscous/elastoplastic heat-conducting
continuous medium. Such a formulation is a generalization of the non-relativistic unified formu-
lation for fluid and solid dynamics advanced recently in [48, 16, 49] and relies on the theory of
first-order Symmetric Hyperbolic Thermodynamically Compatible (SHTC) equations [4, 5, 7, 8].

Both transport processes are considered from a non-equilibrium viewpoint, that is no local
equilibrium assumptions such as Newton’s law of viscosity or Fourier law of heat conduction
are used. We provide a variational formulation for the reversible part of the time evolution which
makes the model compatible with the Euler-Lagrange structure of the Einstein field equations.
The irreversible part is represented by algebraic (no space and time derivatives) relaxation-type
source terms and can be viewed as gradients of a dissipation potential intimately connected with
the entropy, see [4]. We have observed that our variational formulation of the relativistic heat
conduction provides equivalent equations to the Hamiltonian formulation by Öttinger [61, 59]
within the GENERIC approach to non-equilibrium thermodynamics. The viscous part which is
governed by the distortion evolution equation (41b) is different from that presented in [61, 59].
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Nevertheless, at least in the Newtonian limit, it also admits a Hamiltonian formulation as proven
in [4].

Via a formal asymptotic analysis, we have recovered the effective transport coefficients of our
theory in the near equilibrium regime, see Sec. 3.4. Finally, we presented a 3+1 split of the gov-
erning equations in Sec. 4.1 which are then solved using the ADER-DG family of high-order
numerical schemes [14, 15, 16, 73, 76] designed specifically for hyperbolic partial differential
equations, see Sec. 4. We solved two one-dimensional Riemann problems in the special relativis-
tic settings in order to demonstrate the physical consistency and mathematical regularity of the
numerical solution.

Further research will concern the obtaining of general relativistic versions of the SHTC elec-
trodynamics equations in moving medium [17, 4] with resistivity and of hyperbolic equations
for mass transfer [77, 78].
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