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Abstract. We present here some conjectures on the diagonalizability of uni-

form principal bundles on rational homogeneous spaces, that are natural exten-

sions of classical theorems on uniform vector bundles on the projective space,
and study the validity of these conjectures in the case of classical groups.

1. Introduction

Within the framework of the theory of vector bundles, the concept of uniformity
and the problem of explaining its relation with homogeneity arose in the early
1960’s, and it is usually attributed to R.L.E. Schwarzenberger, and H. Grauert
(see [24, I, Section 3], and the references therein). Building upon Grothendieck’s
theorem on the complete reducibility of vector bundles on the Riemann sphere
P1, it seems natural to start the study of vector bundles on Pn by focusing on
those whose restriction to every line is the same and the simplest examples of the
kind are the homogeneous bundles. Obviously, direct sums of line bundles –the
so-called diagonalizable bundles– are uniform and the main question is to construct
non diagonalizable ones. Thanks to [7, 26] we know that the only examples of
uniform non diagonalizable bundles of rank smaller than or equal to n on Pn are
constructed upon TPn (by twisting and/or dualizing) and so they are homogeneous.
Examples of non homogeneous uniform bundles on Pn are known to exist in higher
rank ([4, 6], [24, I, Theorem 3.3.2]).

Similar results have been proved for other particular examples of rational ho-
mogeneous manifolds ([1, 2, 8, 13, 19, 20, 28, 29]). In the archetypal case of
Grassmannians, non diagonalizable uniform vector bundles of the lowest rank are
constructed upon universal bundles. In other words, they are constructed upon a
principal bundle subjacent to the family of lines on the variety –with respect to
which the uniformity is defined–.

More generally, the natural extension of the concept of “universal bundle” to
the case of a general rational homogeneous space is not anymore a vector bundle
but a G-principal bundle (for a certain semisimple group G), upon which one con-
structs homogeneous vector bundles by means of representations of G. Hence the
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relation between homogeneity and uniformity should be explained, within the gen-
eral framework of rational homogeneous spaces and representation theory, in the
following terms:

Problem 1. Classify low rank uniform principal G-bundles (G semisimple
algebraic group) on rational homogeneous spaces.

Among all the possible projective realizations of G-principal bundles, we have
chosen to work here, as in the preceding article [21], with the associated G/B-
bundles (where B is a Borel subgroup of G). The reasons are that, on one hand,
the G-bundle can be reconstructed upon the associated G/B-bundle and, on the
other, flag varieties G/B have a particularly well known geometry, determined by
their rational curves of minimal degree and the combinatorics of the root system
associated with G. In this paper we will make use of the cohomology ring of G/B,
that was completely described by Borel in terms of the root system and the Weyl
group of G (see Theorem 3.2).

In the above setting, one expects the universal bundles of a given rational ho-
mogeneous manifold X to provide a certain bound under which the only uniform
flag bundles on X are diagonalizable (see Definition 2.1). A natural way of express-
ing this is to define the rank r(π) of a G/B-bundle π : Y → X as the semisimple
rank of the group G and r(X) to be the minimum of r on the universal bundles
on X. However, computations suggest that one should use a more subtle way of
comparing flag bundles on X with its universal bundles; we then define h(π) to be
the Coxeter number of the Dynkin diagram of G (see Section 2.1, and Remark 3.1),
and h(X) to be the minimum of h on the universal bundles on X. In either case,
examples support the following:

Conjecture 1.1 (Splitting conjectures). Let X be a rational homogenous man-
ifold of Picard number one, quotient of a simple algebraic group G and M its family
of G-isotropic lines. Let G be another simple algebraic group, and let π : Y → X
be a G/B-bundle, uniform with respect to M.

(h) If h(X) > h(π) then π : Y → X is diagonalizable.
(r) If r(X) > r(π) then π : Y → X is diagonalizable.

In this paper we will show that the Splitting conjecture (h) holds in the case in
which G and G are of classical type (Theorem 5.1), and that the Splitting conjecture
(r) holds when G is of type An (Proposition 6.3).

The structure of the paper is the following. In Section 2, after recalling some
basic facts on flag bundles and uniformity, we show how their diagonalizability
can be written in terms of the constancy of certain maps to rational homogeneous
spaces. We then describe the cohomology rings of flags and rational homogeneous
manifolds, with particular attention to the classical cases in Section 3; we use this
description in Section 4 to prove some cohomological restrictions on morphisms to
rational homogeneous spaces (Proposition 4.8); summing up, we prove Theorem 5.1
in Section 5. The last section is devoted to discussing the Splitting conjecture (r).

2. Setup and preliminaries

2.1. Flag bundles. Along this section, X will denote a complex projective
algebraic variety andG a semisimple Lie group. We will fix a Borel subgroupB ⊂ G.
A G/B-bundle on X is, by definition, a smooth morphism π : Y → X whose fibers
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are isomorphic to G/B. We will always assume that X is simply connected (which
is the case if, for instance, X is Fano), and then, given π, we may choose (see [23,
Remark 2.1]) G to be the identity component of the automorphism group of G/B,
so that π is determined by a cocycle θ ∈ H1(X,G). Moreover, π : Y → X may
be constructed upon the G-principal bundle πG : E → X associated to θ, since we
may identify Y with the algebraic variety

E ×G G/B := (E ×G/B)/ ∼, (e, gB) ∼ (eh, h−1gB), ∀h ∈ G.

Under this identification, π corresponds to the natural map sending the class of
(e, gB) to πG(e).

In a similar way, given any finite dimensional complex linear representation V
of G, the variety E×GV defines a vector bundle over X, whose fibers are isomorphic
to V . Moreover, a projective representation P(V ) of G defines a projective bundle
over X.

If we consider a maximal torus H ⊂ B, it determines a root system Φ, whose
Weyl group W is isomorphic to the quotient N(H)/H of the normalizer N(H) of H
in G. Within Φ, B provides a base of positive simple roots ∆ = {αi, i = 1, . . . , n},
whose associated reflections we denote by si. Finally, as usual, we consider the
Dynkin diagram D, whose set of nodes is ∆. When G is simple the nodes of the
Dynkin diagram will be numbered as in the standard reference [16, p. 58] and we
will identify each node αi ∈ ∆ with the corresponding index i. We will say, as
usual, G of classical type (resp. exceptional) when its Dynkin diagram is of type
An, Bn, Cn or Dn (resp. En, Fn or Gn). The rank of the semisimple group G is
defined as rk(G) := dimH = ](∆). The order of the composition s1 ◦ · · · ◦ sn ∈W
will be called the Coxeter number of D, see [16, 3.18].

Finally, we denote by N1(Y |X) the cokernel of the pullback map N1(X) →
N1(Y ), between the real vector spaces of classes of R-divisors in X and Y . The
dimension of N1(Y |X), which is equal to rk(G), will be called the rank of π.

2.2. Partial flag bundles. For every subset I ⊂ ∆ we may considered a
parabolic subgroup P (I) defined by P (I) := BW (I)B, where W (I) ⊂ W is the
subgroup of W generated by the reflections si, i ∈ I. Given a G/B-bundle π : Y →
X as above, for every such subset I ⊂ ∆, there is a factorization:

Y

π

''

ρI
// YI πI

// X

where YI := E ×G G/P (I). Note that ρI is a flag bundle over YI , with fibers
P (I)/B ∼= G(I)/B(I), where G(I) denotes the semisimple group obtained as a
quotient of P (I) by its radical (we simply call it the semisimple quotient of P (I)),
and B(I) denotes a Borel subgroup of G(I).

For I = {i}, we simply write Yi, ρi and πi. The map ρi : Y → Yi is a P1-bundle,
whose relative canonical divisor and fiber we denote by Ki and Γi, respectively.
Note that the relative canonical divisors Ki, i ∈ ∆, form a basis of N1(Y |X), and
that the matrix (−Ki · Γj) is equal to the Cartan matrix of G (cf. [22, Proposi-
tion 3]).

2.3. Examples. The simplest way of constructing G/B-bundles over X is by
means of a Cartan subgroup H ⊂ G:
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Definition 2.1. Let X be an algebraic variety, π : Y → X be a G/B-bundle
over X defined by a cocycle θ ∈ H1(X,G). Then we say that the bundle π is
diagonalizable if θ lies in the image of the natural map H1(X,H) → H1(X,G),
where H ⊂ B is a maximal torus.

Note that H1(X,H) ∼= H1(X,C∗)n ∼= Pic(X)n, hence the choice of n line
bundles on X determines a diagonalizable G/B-bundle over X. Diagonalizable
G/B-bundles admit ](W ) disjoint sections, one for each possible Borel subgroup of
G containing H.

On the other hand, the best known non diagonalizable flag bundles are universal
bundles, which are defined over rational homogeneous spaces. Let us first introduce
some notation, that we will use in the sequel.

Notation 2.2. Let G be a semisimple group with Dynkin diagram D. It is well
known that the projective quotients of G are determined by the different markings
of D. For this reason, we will set:

D(∆ \ I) := G/P (I),

for every subset I of the set of nodes ∆ of D.

Example 2.3. Let X be rational homogeneous, of the form X = G/P (I) =
D(∆ \ I). Denoting by B the Borel subgroup of G contained in P (I), the map ρI :
G/B → D(∆\ I) is a flag bundle, whose fibers are isomorphic to G(I)/B(I), where
G(I) denotes the semisimple quotient of P (I), and B(I) ⊂ G(I) is a Borel subgroup.
The Dynkin diagram of G(I) is the subdiagram DI of the Dynkin diagram of G
supported on the set of nodes I. If DI has k connected components (supported on
nodes Is ⊂ I, s = 1, . . . , k), this G(I)/B(I)-bundle will be a fiber product over X
of k flag bundles of the form:

D((∆ \ I) ∪ Is) −→ X = D(∆ \ I).

Each one of these is called a universal flag bundle over X.
For instance, over X = Pm = Am(1), the universal flag bundle is just the

complete flag bundle associated to P(TX); on the Grassmannian G(k,m) = Am(k)
of k-dimensional projective subspaces in Pm, we have two universal flag bundles,

Am({i ≤ k})→ Am(k) and Am({i ≥ k})→ Am(k),

which are the complete flag bundles associated to the projectivizations of its clas-
sical universal subbundle and quotient bundle.

2.4. Flag bundles on rational curves. In the case in which X is the projec-
tive line P1, Grothendieck’s theorem [12] tells us that G-principal bundles depend
only on some discrete data. In fact, given a Cartan subgroup H of the semisimple
group G this theorem states that every G-principal bundle over P1 is diagonalizable,
in the sense that the natural map

H1(P1, H)→ H1(P1, G)

is surjective. Moreover, this map corresponds precisely to the quotient of H1(P1, H)
by the natural action of the associated Weyl group W .

Now, by considering the exponential map from h to H, whose kernel is L(H),
taking into account that H1(P1, h) = 0, we have:

H1(P1, H) ∼= H2(P1,L(H)) ∼= L(H).
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One may interpret this result geometrically on the associated G/B-bundles
(see [23, Section 3.3]). If π : Y → P1 is the G/B-bundle associated to a cocycle
θ ∈ H1(P1, H) ∼= L(H), we may consider a minimal section Γ0 of π over P1,
that is a section whose deformations with a point fixed are trivial. The n-tuple
δ = (d1, . . . , dn) formed by the integers obtained by intersecting Γ0 with the relative
canonical divisors Kj , j = 1, . . . , n is called the tag of the flag bundle π, and it
determines it completely.

Since every Kj corresponds to a node of the diagram D, it makes sense to
represent the above data by a tagged Dynkin diagram, that is, the Dynkin diagram
of the Lie algebra decorated with the integer di at the node corresponding to αi, for
each i. The tagged Dynkin diagram determines completely the flag bundle over P1.
For instance, the tag of the PGlm+1 /B-bundle associated to the projectivization
P(E) of a vector bundle E on P1 is computed as the successive differences of the
splitting type of E (see [21, Remark 4.1]).

2.5. Uniformity of flag bundles. We may now discuss the concept of uni-
formity of flag bundles on higher-dimensional varieties. This is an extension of a
classical concept within the framework of vector bundles (cf. [24, §3]), that applies
to a triple (X,M,E), where X is an algebraic variety, M is a family of rational
curves on X, and E is a vector bundle on X. Then E is said to be uniform with
respect to M if the (isomorphism class of the) pullback of E via the normalization
of one of the curves of the family does not depend on the chosen curve.

Let us consider a G/B-bundle π : Y → X on a projective variety X, and a
family of rational curves M on X (not necessarily complete). Denote by p : U→M

the universal family of M and by q : U→ X the evaluation morphism, that we will
usually assume to dominate X. We may consider the pullback q∗Y := Y ×X U,
which is a G/B-bundle over U, whose natural morphism onto U will be denoted by
π, by abuse of notation. Then, for every rational curve Γ = p−1(z) ⊂ U we may
consider the tagged Dynkin diagram of the restriction of q∗Y to Γ, and pose the
following definition:

Definition 2.4. Given a projective variety X, a dominating family of rational
curves M on X, and a flag bundle π : Y → X, we say that Y is uniform with respect
to M if the tag of Y on Γ is independent of the choice of the curve Γ = p−1(z),
z ∈ M. Obviously, if π is uniform, the vector bundles associated to π, via linear
representations of the group G, are all uniform as vector bundles.

The next example shows that universal bundles on rational homogeneous spaces
G/P (I) are uniform, with respect to a family of rational curves determined by the
group G. For simplicity, we present only the case in which G/P (I) has Picard
number one.

Example 2.5. Consider a semisimple group G, and a maximal parabolic sub-
group P (I) ⊂ G, where I := ∆ \ {}, for some node  ∈ ∆ (notation as in Section
2.1). We have a decomposition:

∆ = {} t ngb() t dis(),

where ngb() is the set of neighboring nodes of  (meaning that they are joined to
 by an edge of the Dynkin diagram). The homogeneous space

M := D(ngb())
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parametrizes a family of rational curves in X := D(), whose universal family and
evaluation:

M U := D({} t ngb())
p

oo
q

// X

are the natural morphisms given by the inclusions of the corresponding parabolic
subgroups. This is not, in general, a complete family of minimal rational curves
in X (it is properly contained in it precisely in the case in which  is an exposed
short node, see [17, Theorem 4.3]), but a closed subvariety. Nevertheless, it is a
covering family of minimal rational curves, that we call the family of G-isotropic
lines in X, with respect to which X is rationally chain connected. As usual, we set
Mx := q−1(x), for x ∈ X, which is the rational homogeneous space DI(ngb()). The

complete flag manifold Ũ := G/B can be considered as a G(I)/B(I)-bundle over X
(where B(I) ⊂ G(I) denotes the Borel subgroup of G(I) contained in P (dis())),

which is uniform with respect to the family M; in fact, the tag of Ũ→ X on every
G-isotropic curve is given by di = −Ki · Γ, on every node i ∈ I.

2.6. A criterion for diagonalizability of uniform flag bundles. Let X
be a Fano manifold of Picard number one and π : Y → X a G/B-bundle over X,
uniform with respect to an unsplit dominating family M of rational curves, with
tag δ = (d1, . . . dn). Let us set

(1) I0 := {i ∈ ∆| di = 0} ⊂ ∆,

and denote by P (I0) ⊂ G the corresponding parabolic subgroup (so that the fibers
of the submersion ρI0 : Y → YI0 are flag manifolds associated to the semisimple
group G(I0), whose Dynkin diagram is DI0). Then over every rational curve Γ of
the family we have a well defined trivial proper subflag FI0×Γ ⊂ π−1(Γ), where FI0
is a fiber of ρI0 . This subflag determines a section of the restriction of the pullback
q∗YI0 → U to Γ, for every Γ, and one may then prove that all these sections glue
together into a section:

(2) s0 : U→ YI0 .

See [21, Section 5.1] for details.

Definition 2.6. With the same notation as above, given any set of nodes
I ( ∆ containing I0, we say that π : Y → X is uniformly reducible with respect to
M and I, if and only if the composition sI := ρI0,I ◦ s0 (where ρI0,I : YI0 → YI
denotes the natural projection) factors via q : U → X. In other words, if there
exists a morphism σI : X → YI such that the following diagram is commutative:

(3) YI0

ρI0,I

��

U
sI //

q
��

s0

77

YI
πI

~~

X
σI

HH

Combining [21, Corollary 5.5] and [21, Lemma 5.3], we can state the following:

Proposition 2.7. Let X, M, π : Y → X and I0 be as above. If Y is uniformly
reducible with respect to M and I = ∆ \ {r}, for every r ∈ ∆ \ I0, then π is
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diagonalizable. In particular, if Mx does not admit non constant maps to D(r),
r ∈ ∆ \ I0, then π is diagonalizable.

3. Cohomology of rational homogeneous varieties

In this section we recall some well known facts on the cohomology ring of ra-
tional homogeneous varieties. We will always use cohomology with real coefficients,
and set H•(M) := H•(M,R), for any complex variety M .

3.1. Cohomology of flag varieties. Let N1(G/B) be the vector space of
linear combinations with coefficients in R of line bundles on G/B modulo numerical
equivalence. It can be endowed with an action of the Weyl group W of G, as follows:
given a Cartan subgroup H ⊂ B, we may consider the group of characters M(H) of
H; every character corresponds to a line bundle on G/B, and we have N1(G/B) ∼=
M(H) ⊗Z R. Under this identification, the elements {−K1, . . . ,−Kn} correspond
to a base of positive simple roots {α1, . . . , αn} of the root system Φ ⊂ M(H) ⊂
N1(G/B), and the elements of the Weyl group of Φ provide linear automorphisms of
N1(G/B). Moreover, N1(G/B) supports a scalar product (·, ·) which isW -invariant,
so that the elements of W are isometries with respect to it.

The action of W on N1(G/B) extends to an action of W on the symmetric
algebra:

SN1(G/B) =
⊕
k≥0

SkN1(G/B), where S0N1(G/B) := R.

The corresponding invariant subalgebra, denoted by

SN1(G/B)W = {p ∈ SN1(G/B)| w(p) = p for all w ∈W},
is known to be a polynomial algebra (see, for instance, [14, p. 77]), generated by
n = rk(G) homogeneous elements, whose degrees, called fundamental degrees of G
(cf. [14, p. 87]), are uniquely determined by the Weyl group W . In the following
table we present the fundamental degrees of the Weyl groups of the simple algebraic
groups.

D Fundamental degrees

An 2, 3, . . . , n, n+ 1

Bn,Cn 2, 4, . . . , 2(n− 1), 2n

Dn 2, 4, . . . , 2(n− 1), n

E6 2, 5, 6, 8, 9, 12

E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

F4 2, 6, 8, 12

G2 2, 6

Table 1. Fundamental degrees of the simple algebraic groups

Obviously, the set of fundamental degrees of a semisimple group is the union
of the set of fundamental degrees of its simple factors.

Remark 3.1. It is well known that the maximum of the fundamental degrees
of G equals the Coxeter number of D.
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Denoting by (SN1(G/B)W )+ ⊂ SN1(G/B)W the subset of invariant polyno-
mials of positive degree, and by I :=

(
(SN1(G/B)W )+

)
⊂ SN1(G/B) the ideal

generated by them, the corresponding quotient SN1(G/B)/I is called the ring of
coinvariants of W on N1(G/B), and we have the following well known result due
to Borel (cf. [3, Proposition 26.1]):

Theorem 3.2. With the same notation as above:

H•(G/B) ∼=
SN1(G/B)

I
,

defined by assigning to every R-divisor class L ∈ N1(G/B) its corresponding coho-
mology class c1(L) ∈ H2(G/B).

Moreover, given a set of indices I ⊂ {1, . . . , n}, Theorem 3.2, together with
Leray–Hirsch theorem provides the following description of the cohomology ring of
the rational homogeneous space D(∆ \ I):

Corollary 3.3. With the same notation as above:

H•(D(∆ \ I)) ∼=
(
SN1(G/B)

I

)W (I)

∼=
SN1(G/B)W (I)

I
.

3.2. Cohomology ring of rational homogeneous spaces of Picard num-
ber one: classical groups. In the case in which G is of classical type, using
Theorem 3.2 and Corollary 3.3 one may easily write explicit presentations of the
cohomology ring of the corresponding Picard number one varieties, in terms of
symmetric polynomials.

Following [15, p. 64] one can choose elements x1, . . . , xn+ε ∈ N1(G/B) (ε = 1
when An or ε = 0 when Bn, Cn or Dn) , satisfying the relations with the roots αj
displayed in Table 2.

D Relation

An αi = xi − xi+1

Bn αi = xi − xi+1, i < n, αn = xn

Cn αi = xi − xi+1, i < n, αn = 2xn

Dn αi = xi − xi+1, i < n, αn = xn−1 + xn

Table 2. Relation between αi’s and xj ’s

In the cases Bn,Cn,Dn the xi’s form a basis of N1(G/B), whilst in the case An,
they are a system of generators satisfying the linear relation

∑
i xi = 0. For every

type, the reflection si corresponding to αi can now be described as the transposition
(xi, xi+1), for i < n. The reflection sn is the transposition (xn, xn+1) in the case
An, the change of sign of xn in the case Bn and Cn, and the simultaneous change
of sign of xn−1 and xn in the case Dn.

Theorem 3.2 tells us then that we may write:

H•(G/B) = R[x1, . . . , xn+ε]/I,
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If we set ηn = x1 · · ·xn and define the polynomials

Q(t) =

n+1∏
i=1

(1 + txi), K(t) =

n∏
i=1

(1− t2x2
i ),

whose coefficients are the elementary symmetric polynomials in x1, . . . , xn+1 and,
up to a sign, the elementary symmetric polynomials in x2

1, . . . , x
2
n, then we can

describe generators of I as shown in Table 3 (in which Coeff+(p(t)) stands for the
set of coefficients of positive degree of the polynomial p(t) in the variable t, and Σn
for the symmetric group of degree n); note that the coefficient of maximal degree
of K(t) is equal to (−1)nη2

n.

D W I Generators

An Σn+1

(
R[x1, . . . , xn+1]

Σn+1

+

)
Coeff+(Q(t))

Bn, Cn Σn n Zn
2

(
R[x2

1, . . . , x
2
n]Σn

+

)
Coeff+(K(t))

Dn Σn n Zn−1
2

(
R[x2

1, . . . , x
2
n]Σn

+ , ηn = x1 · · ·xn
)

Coeff+(K(t)) ∪ {ηn}

Table 3. Cohomology rings of complete flags

According to Corollary 3.3, given r ∈ ∆, and setting I = ∆ \ {r}, the cohomol-
ogy of the Picard number one variety D(r) is the quotient modulo I of the subring
of R[x1, . . . , xn+ε] invariant by the subgroup W (I) of W generated by all the re-
flections si, i 6= r. Note that the varieties Dn(n − 1) and Dn(n) are isomorphic;
hence we may assume that D(r) 6= Dn(n − 1). Then W (I) is the product of the
two subgroups LW (I), RW (I) ⊂ W (I), generated by {si, i < r} and {si, i > r},
respectively, and we have a decomposition:

R[x1, . . . , xn+ε]
W (I) ∼= R[x1, . . . , xr]

LW (I) ⊗R[xr+1, . . . , xn+ε]
RW (I).

Note also that LW (I) ∼= Σr, whilst the group RW (I) is equal to Σn−r+1 (case An),
Σn−r n Zn−r

2 (cases Bn, Cn), or Σn−r n Zn−r−1
2 (case Dn).

Let us denote by ei the symmetric elementary polynomial of degree i. A set of
generators of the polynomials invariant by W (I) is given in Table 4:

Variety Invariant polynomials i

An(r)
qi := ei(x1, . . . , xr) 1, . . . , r

si = ei(xr+1, . . . , xn+1) 1, . . . , n− r + 1

Bn(r),Cn(r)
qi := ei(x1, . . . , xr) 1, . . . , r

k2i = (−1)iei(x
2
r+1, . . . , x

2
n) 1, . . . , n− r

Dn(r) (r 6= n− 1)

qi := ei(x1, . . . , xr) 1, . . . , r

k2i = (−1)iei(x
2
r+1, . . . , x

2
n) 1, . . . , n− r − 1

ηn−r = xr+1 · · ·xn

Table 4. W (I)-invariant polynomials, for I = ∆ \ {r}
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Set q0, s0, k0 := 1, and, in the case Dn(r), k2(n−r) := (−1)n−rη2
n−r, and define

the polynomials

q(t) =

r∑
i=0

qit
i, s(t) =

n−r∑
i=0

sit
i, k(t) =

n−r∑
i=0

k2it
2i.

We have, in the case An(r):

Q(t) =

r∏
i=1

(1 + txi)

n+1∏
i=r+1

(1 + txi) = q(t)s(t)

In the cases Bn(r), Cn(r) and Dn(r):

K(t) =

r∏
i=1

(1 + txi)

r∏
i=1

(1− txi)
n∏

i=r+1

(1− t2x2
i ) = q(t)q(−t)k(t)

So we get the presentation for the cohomology rings described in Table 5.

Variety Cohomology ring

An(r) H•(X) =
R[q1, . . . , qr, s1, . . . , sn−r+1](

Coeff+(q(t)s(t))
)

Bn(r), Cn(r) H•(X) =
R[q1, . . . , qr, k2, . . . , k2(n−r)](

Coeff+(q(t)q(−t)k(t))
)

Dn(r) (r 6= n− 1) H•(X) =
R[q1, . . . , qr, k2, . . . , k2(n−r−1), ηn−r](

Coeff+(q(t)q(−t)k(t)) ∪ {qrηn−r}
)

Table 5. Cohomology rings

3.3. Geometrical interpretation. Let V be the natural representation of
the Lie algebras of type D = An,Bn,Cn,Dn (which has dimension N = n+ 1, 2n+
1, 2n, and 2n, respectively), and let P(V ) be its Grothendieck projectivization.
We fix an index r ∈ ∆, and assume, as usual D(r) 6= Dn(n − 1). Then, every
variety D(r) can be embedded in the Grassmannian of (r−1)-dimensional projective
subspaces in P(V ), G(r − 1,P(V )). Note that the embedding is given by the
ample generator of Pic(D(r)), except in the cases Bn(n) and Dn(n) (in which the
embedding is given by the second tensor power of it). In any case, the restriction to
D(r) of the corresponding universal quotient bundle, Q, provides a surjective map:

OD(r) ⊗ V −→ Q,

whose kernel we denote by S∨.
In the cases Bn, Dn (respectively, Cn), V supports a nondegenerate quadratic

(respectively, skew-symmetric) form ω : V ∨ → V , with respect to which the vector
subspaces parametrized by D(r) are isotropic. In other words, the composition:

Q∨ −→ OD(r) ⊗ V ∨ −→ OD(r) ⊗ V −→ Q

is zero, and we have a surjection S −→ Q, whose kernel we denote by K. Summing
up, we have a commutative diagram, with short exact rows and columns:
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(4) Q∨

��

Q∨

��

// 0

��

S∨ //

��

O⊗ V ∨
ω∼= O⊗ V

��

// Q

K∨ ∼= K // S // Q

Note that, setting I = ∆ \ {r}, I+ := {i ∈ ∆| i > r}, qi = ei(x1, . . . , xr) as in
Table 4, and recalling that:

H•(G/P (I)) =
R[q1, . . . , qr]⊗R[xr+1, . . . , xn+ε]

RW (I)

I
,

Corollary 3.3 allows us to write:

H•(G/P (I+)) ∼=
R[x1, . . . , xr]⊗R[xr+1, . . . , xn+ε]

RW (I)

I

∼=
R[q1, . . . , qr]⊗R[xr+1, . . . , xn+ε]

RW (I) ⊗R[x1, . . . , xr]

I +
(
{ei(x1, . . . , xr)− qi}i

)
∼=

H•(G/P (I))⊗R[x1, . . . , xr](
{ei(x1, . . . , xr)− qi}i

) .

The bundle ρI+,I : G/P (I+) −→ G/P (I) is the complete flag bundle (of type
Ar−1) associated with the Grothendieck projectivization of the universal bundle Q

on G/P (I). The following statement is based on the well known splitting principle
for vector bundles (see for instance [9, Section 5]):

Proposition 3.4. The elements qi ∈ H•(G/P (I)) are the Chern classes of the
universal quotient bundle Q on G/P (I).

Proof. Following [9, Section 5], the pullback bundle ρ∗I+,I(Q) fits in a sequence

of vector bundles and surjective maps

Qr := ρ∗I+,I(Q) −→ Qr−1 −→ . . . −→ Q1 −→ Q0 := 0,

where, for every i < r, the bundle Qi is defined as the pullback to G/P (I+) of:

• the universal quotient bundle on Dn(n) ↪→ G(n− 2,P(V )), if (D(r), i) =
(Dn(n), n− 1), or

• the universal quotient bundle on D(i) ↪→ G(i− 1,P(V )), otherwise.

From the sequence, we have an equality of Chern polynomials:

ct(ρ
∗
I+,I(Q)) =

∏
i

ct(ker(Qi → Qi−1)) =
∏
i

(
1 + (c1(Qi)− c1(Qi−1))t

)
.

We consider now the fibers Γj of the elementary contractions of the flag manifold
G/B (see Section 2.2). By construction, the classes Li := c1(Qi) satisfy

Li · Γj =


2, if (D, i, j) = (Bn, n, n), (Dn, n, n),

1, if (D, i, j) = (Dn, n− 1, n),

δi,j , otherwise.
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In the case An, we also set Ln+1 := 0. From this data one can write the αi’s in
terms of the xj ’s, by means of Table 2, and in terms of the Lj ’s using the fact that
αi · Γj = −Ki · Γj is the coefficient in the position (i, j) of the Cartan matrix of D,
to conclude that Li − Li−1 = xi for every i. For instance, in the case Dn(n), this
follows from the equality:

1 −1 . . . 0 0

0
. . .

. . . 0
...

. . .
. . .

...

0 . . . . . . 1 −1

0 . . . . . . 1 1





x1

...

...

xn−1

xn


=



2 −1 . . . 0 0

−1
. . .

. . . 0
...

. . . 2 −1 −1

0 . . . −1 2 0

0 . . . −1 0 2





L1

...

...

Ln−1 − 1
2Ln

1
2Ln


Now one may finally assert that the Chern classes of ρ∗I+,I(Q) are the elementary

symmetric polynomials in the elements xi, from which the statement follows.

Corollary 3.5. With the same notation as above:

q(t) = ct(Q), s(t) = ct(S
∨), and, for D 6= An, k(t) = ct(K).

Proof. The first equality follows from Proposition 3.4. Then, in the case An

we also have ct(S
∨) = s(t) by Table 5.

In the cases Bn, Cn and Dn, by the diagram (4) above we have the equalities
of Chern polynomials: ct(S)ct(Q

∨) = 1 and ct(K)ct(Q) = ct(S). Multiplying the
second equality by ct(Q

∨) we get ct(K)ct(Q)ct(Q
∨) = 1.

On the other hand (see Table 5) in H•(X)[t] we have the equality of polynomials
k(t)ct(Q)ct(Q

∨) = k(t)q(t)q(−t) = 1. Then, setting p(t) =
∑
i pit

i := ct(K)−k(t) ∈
H•(X)[t], we have

p(t)ct(Q)ct(Q
∨) = 1 ∈ H•(X)[t].

By construction p0 = 0. Hence, since the constant term of ct(Q)ct(Q
∨) is equal to

1, we can easily show, by induction on i, that pi = 0, for all i, and conclude that
ct(K) = k(t).

4. Morphisms to rational homogeneous manifolds of Picard number one

In this section we will use the above description on the cohomology of rational
homogeneous spaces to obtain conditions for the existence of non constant mor-
phisms from projective manifolds to rational homogeneous spaces. Let us start by
recalling the definition of good divisibility from [25] and a refined version of it –for
effective cycles– that we will use later on.

Remark 4.1. By definition, an element xi ∈ H2i(X) is called effective (and
we write xi ≥ 0) if it can be expressed as a non negative real linear combination of
classes of subvarieties of codimension i in X.

Definition 4.2. We say that a complex projective manifold M has (effective)
good divisibility up to degree s, and we write (e.d.(M) = s) g.d.(M) = s, if s is
the maximum positive integer such that, given (effective clasess) xi ∈ H2i(M) and
xj ∈ H2j(M) with i+ j ≤ s and xixj = 0, then we have xi = 0 or xj = 0.

It is clear from the definition that g.d.(M) ≤ e.d.(M) ≤ dim(M).
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Example 4.3. If H2i(M) ∼= R for every i then clearly e.d.(M) = g.d.(M) =
dim(M) (in fact they are equivalent by the Hard Lefschetz theorem). This is the
case, for instance, of the projective spaces An(1), and the odd dimensional quadrics
Bn(1). If H2i(M) ∼= R for every i ≤ s < dim(M), then we may conclude that
e.d.(M) ≥ g.d.(M) ≥ s + 1. For instance, in the case of the even dimensional
quadric Q2n = Dn+1(1), we have:

H•(Dn+1(1)) =
R[q1, ηn]

(η2
n − (−1)nq2n

1 , q1ηn)
,

so that H2i(Q2n) ∼= R for i < n and, in particular, e.d.(Q2n) ≥ g.d.(Q2n) ≥ n. On

the other hand we have a relation q1ηn = 0 in H2(n+1)(Q2n), which tells us that
g.d.(Q2n) = n (note that this implies that [25, Lemma 5.4] is incorrect). Since
q1 is an ample generator of H2(Q2n), the condition q1ηn = 0 implies that ±ηn
cannot be effective, and we have e.d.(Q2n) > n. Moreover, since H2i(Q2n) = Rqi1
for i < n, it follows that we have only one nontrivial relation in degree n + i,
namely qi1ηn = 0, and so e.d.(Q2n) ≥ 2n − 1. On the other hand, in codimension
n, the two classes α, β of (n − 1)-dimensional linear spaces in Q2n satisfy, either
αβ = 0 (if n is even), or α2 = β2 = 0 (if n is odd), and we may finally conclude
that e.d.(Q2n) = 2n − 1 (moreover one may show, from the above equations, that
qn1 = α+ β, and ηn = α− β).

Another example in which g.d.(M) 6= e.d.(M) is the Grassmannian of lines in
Pm, Am(2) = G(1,m), m ≥ 3. In this case, a straightforward computation provides
a presentation:

H•(Am(2)) =
R[q1, q2]

(q1sm−1 + q2sm−2, q2sm−1)
,

where sm−1, sm−2 can be written as polynomials in q1, q2 as follows:

(5)

(
sm−1

sm−2

)
=

(
−q1 −q2

1 0

)m−1(
1

0

)
.

For instance, in the case m = 3, the first generator of the ideal above provides a
relation q1(q2

1 − 2q2) = 0 in the cohomology ring, which provides g.d.(A3(2)) = 2;
this was already known from the fact that A3(2) is a 4-dimensional quadric. More
generally, we have:

Lemma 4.4. The Grassmannian Am(2) = G(1,m), m ≥ 3 has good divisibility
equal to m− 1.

Proof. By means of (5), the relation q1sm−1 + q2sm−2 = 0 can be written in
terms of q1, q2 as: (

1 0
)( q1 q2

−1 0

)m(
1

0

)
= 0.

One can prove, recursively, that this is either a homogeneous polynomial in q2 and
q2
1 for m even, or a multiple of q1 when m is odd. In any case, it is reducible, and

we have exactly g.d.(Am(2)) = m− 1.

In order to calculate the effective good divisibility of Am(2), we will use stan-
dard Schubert calculus, for which we introduce the following notation.
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Notation 4.5. We denote by σa1,a2 the Schubert cycle in G(1,m) determined
by the sequence (a1, a2), where m − 1 ≥ a1 ≥ a2 ≥ 0; this cycle has codimension
|a| := a1 + a2. Taking a partial flag Pm−1−a1 ⊂ Pm−a2 , σa1,a2 is the cohomology
class of the set of lines meeting Pm−1−a1 , and contained in Pm−a2 .

Lemma 4.6. The Grassmannian Am(2) = G(1,m), m ≥ 3 has effective good
divisibility equal to m.

Proof. Note that q2 ≥ 0 and either sm−1 ≥ 0 or −sm−1 ≥ 0, hence our
presentation of the cohomology ring of Am(2) tells us already that e.d.(Am(2)) ≤ m.

For the converse, let Γk ∈ H2k(G(1,m)), ∆l ∈ H2l(G(1,m)) be two effective nonzero
classes, such that Γk∆l = 0; we want to show that k + l ≥ m+ 1. Since the cones
of effective classes in G(1,m) are polyhedral cones generated by Schubert classes
(see [11, Corollary of Theorem 1] for a more general statement), we may write:

Γk =

bk/2c∑
i=0

aiσk−i,i, ∆l =

bl/2c∑
j=0

bjσl−j,j ,

where the ai’s and the bj ’s are non negative integers.
Every intersection σk−i,iσl−j,j is a combination of Schubert cycles, with non-

negative coefficients (due to the Littlewood–Richardson rule, see [10, Lemma 14.5.3
and Section 14.7]), hence it is then enough to prove the statement for Γk = σa1,a2
and ∆l = σb1,b2 , where we assume, up to order exchange, that a1 − a2 ≥ b1 − b2.
By [5, Proposition 4.11] we have

σa1,a2σb1,b2 =
∑
|c|=k+l

a1+b1≥c1≥a1+b2

σc1,c2 ;

since (k + l)/2 ≤ c1 ≤ m − 1 the above sum has no summands if and only if
a1 + b2 ≥ m, which, recalling that a1 ≤ m − 1, provides b2 ≥ 1. Therefore
b1 ≥ b2 > 0, and so k + l = |a|+ |b| ≥ m+ 1.

Definition 4.7. Let π : Y → X be a G/B-bundle. The Coxeter number of
π, denoted by h(π), is defined as the Coxeter number of the Dynkin diagram of G.
For a rational homogeneous manifold of Picard number one, different from P1, we
define:

h(X) := min{h(π)| π universal flag bundle on X},
and set h(P1) := +∞.

Proposition 4.8. Let M be a complex projective manifold and D(r) a ratio-
nal homogeneous manifold of Picard number one of classical type, satisfying that
e.d.(M) ≥ h(D). In the case D = Dn, assume also that 2g.d.(M) > h(D). Then
there are no nonconstant morphisms from M to D(r).

Proof. Since Dn(n) ' Dn(n−1), we can assume r 6= n−1 in case Dn(r). Let
φ : M → D(r) be a morphism, and set

λ(t) = φ∗q(t), µ(t) =

{
φ∗s(t) if D = An

φ∗(q(−t)k(t)) if D = Bn,Cn,Dn

First we claim that deg(λ(t)) + deg(µ(t)) ≤ h(D), which follows from the
definition in cases An,Bn and Cn. For case Dn we have φ∗qrφ

∗ηn−r = 0 (see
Table (5)) which, together with the hypothesis on g.d.(M), tells us that either
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φ∗qr = 0 or φ∗ηn−r = 0. Since the leading term of λ(t) (resp. µ(t)) is φ∗(qr)t
r

(resp. (−1)r−1φ∗(qr−1)φ∗(ηn−r)
2t2n−r−1) then, either deg(λ) ≤ r − 1 or deg(µ) ≤

2n− r − 2. In any case the sum of their degrees is at most 2n− 2 = h(Dn).
Write λ(t) =

∑
i λit

i, and µ(t) =
∑
i µit

i, and let ı and  be the maximum
indexes for which λı 6= 0 and µ 6= 0. From Table (5), we have λ(t)µ(t) = 1, and,
as we have already noticed that ı+  ≤ h(D). If ı+  6= 0, we have

λıµ = 0;

since, from Corollary 3.5, λı = cı(φ
∗Q) is an effective class and µ = c(φ

∗S∨)
is either effective or antieffective, we reach a contradiction with the assumption
e.d.(M) ≥ h(D). We conclude that λ and µ are constant, so that, in particular,
the pullback by φ of the ample line bundle det(Q) is numerically trivial, and φ is
constant.

5. Splitting Conjecture (h) for groups of classical type

Theorem 5.1. Let X be a rational homogenous manifold of Picard number
one, quotient of a simple algebraic group G and M its family of G-isotropic lines.
Let G be another simple algebraic group, and let π : Y → X be a G/B-bundle,
uniform with respect to M. Assume that both G and G are of classical type and
that h(X) > h(π). Then π : Y → X is diagonalizable.

Proof. Let us write X as X = D(), where D is the Dynkin diagram of G
and, following Section 2.6, denote by I0 the set of nodes of the Dynkin diagram D

of G for which the tag of the uniform bundle π is equal to zero. We will show that,
for every r ∈ ∆, there are no nonconstant maps from Mx to D(r), and conclude by
Proposition 2.7; for this purpose, we will apply Proposition 4.8.

Let us assume first that  is an extremal node, that is, that the subdiagram
D \ {} is connected. The possibilities are listed in Table 6 below.

X h(X) Mx g.d.(Mx) e.d.(Mx)

An(1) n An−1(1) n− 1 n− 1

Bn(1) 2n− 2 Bn−1(1) 2n− 3 2n− 3

Bn(n) n An−1(n− 1) n− 1 n− 1

Cn(1) 2n− 2 Cn−1(1) 2n− 3 2n− 3

Cn(n) n An−1(n− 1) n− 1 n− 1

Dn(n) n An−1(n− 2) n− 2 n− 1

Dn(1) 2n− 4 Dn−1(1) n− 2 2n− 5

Table 6. Picard number one RHS corresponding to an extremal node

In all the cases we have e.d.(Mx) ≥ h(X)− 1 ≥ h(π) = h(D), and 2g.d.(Mx) ≥
h(X) > h(π) = h(D), so we can conclude by Proposition 4.8.

Assume now that the node  is not extremal and set {s}s = ngb(). In this
case, Mx is isomorphic to a product of rational homogeneous spaces, one for each
neighboring node of , that we will describe as follows.

For every neighboring node t, we consider the following rational homogeneous
varieties:

Ut := D({} ∪ {s}s6=t), U′t := D({s}s6=t),



16 R. MUÑOZ, G. OCCHETTA, AND L.E. SOLÁ CONDE

and the corresponding contractions:

X

U

q ..

//

%%

Ut

88

pt

&&
M // U′t

Denoting by Jt the union of {} and the connected component of dis() containing
t, the fibers Ft of the map pt : Ut → U′t are rational homogeneous manifolds
of Picard number one, isomorphic to DJt(). Every Ft can be thought of as a
subvariety of X, covered by a subfamily qt : UFt → MFt of G-isotropic lines, that
we may identify with

DJt({, t}) −→ DJt(t)

Now, for every x ∈ Ft, we will have MFt,x
∼= DJt\{}(t), which is a fiber of the

natural map U→ Ut. Finally, we have:

Mx
∼=

∏
t∈ngb()

MFt,x.

Note that, by construction, every Ft is defined by an extremal node, h(Ft) ≥
h(X) > h(π), and the restriction of the bundle Y to Ft is uniform with respect to
the family MFt . Hence we may apply our previous argument to Ft, and claim that
the section sI is constant on the MFt,x, x ∈ Ft, hence on the fibers of U → Ut.
Since this holds for every t, we conclude that sI is constant on the fibers of q.

To help the reader following the above proof we provide the corresponding
marked Dynkin diagrams for D = B5,  = 2, t = 3.

X
 t

MFt,x

t

U
 t

q
))

��

// Ut

 t

OO

pt

��

UFt

 t
Ft

 t

M
 t

// U′
t

 t

MFt

 t

6. Some remarks on Splitting conjecture (r)

In this section we briefly discuss the Splitting conjecture (r). Let us start with
the following definition.
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Definition 6.1. Let X be a rational homogeneous manifold of Picard number
one. We define:

r(X) :=

 min{r(π)| π universal bundle on X}, if X 6= P1

+∞, if X = P1.

Remark 6.2. The fact that the Coxeter number of a connected Dynkin di-
agram is always bigger than the number of its nodes (see Table 1) implies that
r(X) < h(X), for X rational homogeneous of Picard number one, different from
P1. However, this does not imply the Conjecture (r) to be stronger than the Con-
jecture (h). In fact the logical implications between the two conjectures depend on
X and on the fiber G/B of the bundle π –see Table (7) for some examples–.

X

Am(1) Bm(1) Bm(m) Cm(1) Cm(m) Dm(1) Dm(m)

D

An (r)⇔(h) (h) (r)⇔(h) (h) (r)⇔(h) (h) (r)⇔(h)

Bn (r) (r)⇔(h) (r) (r)⇔(h) (r) (r) (r)

Cn (r) (r)⇔(h) (r) (r)⇔(h) (r) (r) (r)

Dn (r) (h) (r) (h) (r) (r)⇔(h) (r)

Table 7. Which conjecture ((h) or (r)) is stronger?

The next result shows that the Conjecture (r) holds for flag bundles of type A.

Proposition 6.3. Let X be a rational homogenous manifold of Picard number
one, quotient of a simple algebraic group G and M its family of G-isotropic lines.
Let G be a simple algebraic group of type An. If π : Y → X is a G/B-bundle,
uniform with respect to M and r(X) > r(π), then π : Y → X is diagonalizable.

Proof. If the Dynkin diagram of G is of type An then it holds that h(π) =
r(π) + 1. If we impose r(π) < r(X), then we have h(π) < h(X) (since r(X) < h(X)
holds for every X, see Remark 6.2). Hence, if moreover G is a classical group, the
statement follows from Theorem 5.1.

We are left with the case in which X is a quotient of a group G of exceptional
type. Moreover, arguing verbatim as in the second part of the proof of Theorem
5.1, it is enough to prove the statement in the case in which X is defined by the
marking of an extremal node  on a Dynkin diagram D of exceptional type, that
is, in the cases collected in Table 8 below.

Once again, by Proposition 2.7, it is enough to prove the constancy of maps
from Mx to An(r). In any of the cases, one can check that, for n < r(X):

dim(Mx) >

(
r(X)

2

)2

≥
(
n+ 1

2

)2

≥ (n− r + 1)r = dim(An(r)).

Since Mx has Picard number equal to one, this concludes the proof.

Remark 6.4. The above statement is sharp in the case in which X = D()
such that the smallest connected component of the Dynkin diagram D \ {} is of
type An. In fact, in this case, the corresponding universal bundle has rank r(X).
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X r(X) Mx dimMx

Em(1) m− 1 Dm−1(m− 1) (m− 1)(m− 2)/2

Em(2) m− 1 Am−1(3) 3(m− 3)

E7(7) 6 E6(6) 16

E8(8) 7 E7(7) 27

F4(1) 3 C3(3) 6

F4(4) 3 B3(3) 6

Table 8. Special groups

Conjecturally, these should be the only non diagonalizable uniform bundles of the
lowest possible rank. This is known to be true in the cases X = Am(r) (see [20,
Theorem 4.1]), and X = Dm(m) (see [20, Proposition 4.5]).

Remark 6.5. A complete proof of Conjecture (r) cannot be based on cohomo-
logical conditions on maps Mx → D(r), as the ones we have used here. For instance,
there exist obvious nonconstant maps from Am(1) = Pm to Cn(1) = P2n−1, for
n < m ≤ 2n− 1. The example below (which is a generalization of [27, Example 1])
shows that we have a similar situation in the cases in which G is of type Bn or
Dn. We expect that a global view on the map sI : U→ YI should provide stronger
diagonalizability conditions on uniform flag bundles.

Example 6.6. Consider the second Veronese embedding v2(Pn) ⊂ P(S2Cn+1).
Given homogeneous coordinates (x0 : · · · : xn) in P(Cn+1), the polynomials Zi,j :=
xixj provide a set of homogeneous coordinates in P(S2Cn+1), and a set of genera-
tors of the ideal of v2(Pn) of the form Zi,jZk,l − Zi,lZk,j .

Set, for n odd and even respectively:

Fodd :=

(n−1)/2∑
i=0

(Z2i,2iZ2i+1,2i+1 − Z2
2i,2i+1) = 0

Feven :=

(n−2)/2∑
i=0

(Z2i,2iZ2i+1,2i+1 − Z2
2i,2i+1) + (Zn−2,n−1Zn,n − Zn−2,nZn,n−1) = 0

The vertex of Fodd (resp. Feven) has codimension 3(n + 1)/2 (resp. 3(n + 2)/2),
being defined respectively by the linear equations:

Zj,j = Z2i,2i+1 = 0, 0 ≤ j, 2i+ 1 ≤ n,

Zj,j = Z2i,2i+1 = Zn−1,n = Zn−2,n = 0, 0 ≤ j, 2i+ 1 ≤ n.
Since, in each case, the vertex V of the quadric is contained in the subset given by
the equations Zj,j = 0, it follows that V ∩ v2(Pn) = ∅. Hence, the linear projection
of v2(Pn) from V is contained in a smooth quadric, of dimension (3n − 1)/2, for
n odd, or (3n + 2)/2, for n even. Summing up, we have constructed non constant
morphisms from Pn to Q3bn2 c+1, for every n.

Problem 2. It is known, see [18, Theorem 4.1], that there are no non constant
maps from Pn to Qn. Find an optimal bound b(n) such that the only morphisms
f : Pn → Qm with m ≤ b(n) are the constant maps.
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Paris Sér. A-B, 291(2):A125–A128, 1980.

[5] David Eisenbud and Joe Harris. 3264 and all that—a second course in algebraic geometry.
Cambridge University Press, Cambridge, 2016.

[6] G. Elencwajg. Des fibrés uniformes non homogènes. Math. Ann., 239(2):185–192, 1979.
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