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DEPENDENT SUBSETS OF
EMBEDDED PROJECTIVE VARIETIES

EDOARDO BALLICO

ABSTRACT. Let X C P be an integral and non-degenerate variety. Set
n := dim(X). Let p(X)” be the maximal integer such that every zero-
dimensional scheme Z C X smoothable in X is linearly independent.
We prove that X is linearly normal if p(X)” > [(r 4+ 2)/2] and that
p(X)" <2[(r+1)/(n+1)], unless either n = r or X is a rational normal
curve.

1. Introduction

Let X C P" be an integral and non-degenerate variety defined over an alge-
braically closed field with characteristic zero. Set n := dim X. We recall that
a zero-dimensional scheme Z C X is said to be smoothable in X if it is a flat
limit of a family of finite subsets of X with cardinality deg(Z) (see [14] for a
discussion of it). If X is smooth (or if Z is contained in the smooth locus of
X) Z is smoothable in X if and only if it is smoothable in P and the notion
of smoothability in P" does not depend on the choice of the embedding of Z in
a projective space ([14, Proposition 2.1]). Let p(X) (resp. p(X)’, resp. p(X)")
denote the maximal integer ¢ > 0 such that each zero-dimensional scheme (resp.
each finite set, resp. each zero-dimensional scheme smoothable in X) Z C X
with deg(Z) = ¢ is linearly independent. Obviously p(X) < p(X)" < p(X)".
Since X is embedded in P", we have p(X) > 2.

The integer p(X)’ appears in very classical projective geometry papers and
books (see [22, Ch. 8,9,10,12], [23, Ch. 27] and references therein for the case of
a finite field). When X is a finite set of a finite dimensional vector space over
a finite field, this integer is related to the minimum distance of the dual of the
code obtained evaluating linear forms at the points of X ([18]). In the set-up
of the X-rank described below the integer p(X)’ gives a uniqueness result (see
Remarks 2.3 for details and references).
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For algebraic varieties the integer p(X) is very natural. Zero-dimensional
schemes appeared in several papers concerning the additive decomposition of
polynomials and the equations of embedded projective varieties ([7, 14, 15])
and they allowed the introduction of a name, the cactus rank (of a point,
of a homogeneous polynomial or a tensor) ([11,13,25]); in [24] it was called
the scheme-rank. Over a finite field combining zero-dimensional schemes (all
of them smoothable) with [18] is a standard feature to get bounds on the
minimum distance and number of minimal weight codewords for an evaluation
code coming from certain projective curves ([3,8-10]).

To justify the integer p(X)” one should justify the use of smoothable zero-
dimensional schemes, not just of zero-dimensional schemes. Smoothable zero-
dimensional subschemes of X and the integer p(X)” arise in the study of secant
varieties and border ranks described below (see [14, Proposition 2.5] for the case
of additive decompositions of homogeneous polynomials). Computing p(X)”
gives a lower bound for p(X)" and an upper bound for p(X). Thus one can try
to compute p(X)”, when computing p(X) fails. At least after [14] each time a
lower bound for p(X)" is computed, it seems useful to ask ourself if the same
proof works (with minimal modifications) for p(X) or at least for p(X)”. Using
only smoothable zero-dimensional schemes instead of arbitrary ones allows the
check of a shorter list of schemes in several proofs ([4-7,12,16]).

For any ¢ € P" the X-rank rx(g) of ¢ is the minimal positive integer ¢ such
that ¢ € (S) for some finite subset S C X with #(S) = ¢, where ( ) denotes the
linear span. For any positive integer ¢ the t-secant variety o:(X) of X is the
closure in P" of the union of all (S) with S a finite subset of X with cardinality
t.

The border X-rank bx(q) of ¢ € P" is the minimal integer k such that
q € ox(X). The generic rank T'X gen 1S the minimal integer & > 0 such that
0x(X) = P". There is a non-empty open subset U C P" such that rx(q) =
Tx gen forall g € U.

In this paper we prove that if p(X)” is large, then X is linearly normal and
that p(X)” cannot be very large for n > 1 (Theorem 1.1).

We prove the following results.

Proposition 1.1. Assume that X is a curve and p(X)"” > [(r +2)/2]. Then
X s linearly normal.

Proposition 1.2. Assume n := dimX > 2, rx gen = [(r +1)/(n + 1)] and
(X)) > [(r+1)/(n+1)]. Then X is linearly normal.

Theorem 1.3. Let X C P" be an integral and non-degenerate variety. Set
n = dimX. We have p(X)" > 2[(r+1)/(n+ 1)] if and only if either r = n
(i.e., X =P") orn=1, r is odd and X is a rational normal curve.

If n = r we have p(X)" = p(X) = 2. If X is a rational normal curve we have
p(X) = p(X) =r+ 1. This is the only case with p(X)" =r + 1 (Lemma 2.4).
Theorem 1.3 implies that p(X)” < 2[(r+1)/(n+1)]if (r+1)/(n+1) ¢ Z.
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The example of a general linear projection in P* of the Veronese surface
shows that in Proposition 1.2 it is not sufficient to assume that p(X)” > [(r +
2)/(n+1)).

We point out that to get our results we only use a small family of zero-
dimensional schemes, each of them with connected components of degree 1 or
2, but that this family contains a complete family covering X: each p € X is
contained in some scheme Z of the family.

I want to thank the referee for several useful suggestions.

2. Preliminaries

Let X C P" be an integral and non-degenerate variety. Set n := dim X.
For any g € P" let S(X,q) be the set of all S C X such that |S| = rx(q) and
q € ().

Remark 2.1. Fix q € 03(X). If k < p(X)" there is a zero-dimensional scheme
Z C X smoothable in X and such that deg(Z) < k and ¢ € (Z) ([15, Lemma
2.6, Theorem 1.18] and [14, Proposition 2.5]).

Remark 2.2. Let X C P" be a smooth variety with dim X < 2. Every zero-
dimensional subcheme of X is smoothable ([19]) and hence p(X)" = p(X).
Easy examples show that we may have p(X) < p(X)' for a smooth curve
(Example 4.2).

Remark 2.3 ([15, Theorem 1.17]). Fix ¢ € P" and A, B € S(X,q). Set z :=
rx(¢) and assume p(X )’ > 2z. Since |AUB| < 2z, AUB is linearly independent.
Thus A = B ([4, Lemma 1]). Hence |S(X,q)| = 1.

In following extremal case we are able to use only p(X)’ instead of p(X)".

Lemma 2.4. The following conditions are equivalent:

(1) X is a rational normal curve;
(2) p(X) =r+2-n;
3) p(X) >r+2—n.

Proof. Tt is sufficient to prove that (3) implies (1).

First assume n = 1. Let H C P" be a general linear hyperplane. Since
X NH is formed by deg(X) points, if p(X)" > r we have deg(X) = r and hence
X is a rational normal curve.

Now assume n > 1. Take a general linear subspace V' C P” with codimension
n — 1. The scheme X NV is an integral curve spanning V. If X NV is not
a rational normal curve we have p(X)' < p(X NV) <r —n+ 1 by the case
n = 1 just proved. Now assume that X NV is a rational normal curve, i.e.,
assume deg(X) = r 4+ 1 — n. The classification of minimal degree subvarieties
of projective spaces ([21, Proposition 3.10]) show that X contains lines (and
hence p(X)" = 3) unless r = 5, n = 2 and X is the Veronese surface. If X is
the Veronese surface of P° we have p(X)" = 3, because no 3 points of X are
coplanar, but X contains plane conics. (I
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3. The proofs

Proof of Proposition 1.1. Assume that X is not linearly normal. Thus there is
anon-degenerate curve Y C P"! such that X is an isomorphic linear projection
of Y from some o € P"*1\ Y. Set b := by (0). Each secant variety of a curve has
the expected dimension ([1, Remark 1.6]). Thus ry,gen = [(r + 2)/2]. Hence
b<[(r+2)/2]. Let £: P ™1\ {o} — P" denote the linear projection from o.
By assumption o ¢ Y and £}y is an embedding with /(Y) = X. Let W C YV
be any zero-dimensional scheme. Since {|y : ¥ — X is an isomorphism, W
is smoothable in Y if and only if ¢(W) is smoothable in X and any degree b
smoothable zero-dimensional subcheme of X is the image of a unique degree
b zero-dimensional subcheme of Y. Thus p(Y)” > p(X)”. The image in P"
of a linear subspace V C P"*! has either dimension dimV (case o ¢ V) or
dimension dim V' —1 (case 0 € V). Since p(Y)" > p(X)" > [(r+2)/2] = ry,gen
and b < Ty gen, there is a smoothable zero-dimensional scheme W C Y such
that o € (W) and deg(W) = b (Remark 2.1). Since (W) is not linearly
independent, we have p(X)” < b — 1, a contradiction. O

Proof of Proposition 1.2. Assume that X is not linearly normal. Thus there is a
non-degenerate variety Y C P"+! such that X is an isomorphic linear projection
of Y from some 0 € P"T1\Y. Set b := by (0) and a := 7x gen = [(r+1)/(n+1)].
Let £ : P"t1\ {0} — P" denote the linear projection from o. By assumption
o ¢ Y and /}y is an embedding with £(Y') = X. As in the proof of Proposition
1.1 we have p(Y)” > p(X)” and to get a contradiction it is sufficient to prove
that b < p(X)”. Assume b > p(X)”, i.e., assume b > a + 2. Since b > a,
we have o ¢ 0,(Y). Hence £, vy : 04(Y) — P is a finite map. Since
04(Y)) = 04(X), we get dimo,(Y) = r. Since dimo,41(Y) > dimo,(Y) ([1,
Proposition 1.3]), we get 0441(Y) = P"*1. Thus b < a+ 1, a contradiction. [

Lemma 3.1. Assume p(X) > 2[(r +1)/(n+1)]. Then X is not defective,
r+1=0 (mod n+ 1) and for a general ¢ € P" we have |S(X,q)| = 1.

Proof. Set a := [(r +1)/(n + 1)]. Fix any ¢ € P" such that rx(q) < a.
Remark 2.3 gives |S(X,q)| = 1 if p(X)’ > 2rx(q). In particular |S(X,q)| =1
for a general ¢ € 0,(X). Thus a dimensional count shows that dimo,(X) =
a(n 4+ 1) — 1. Since dimo,(X) < 7, we get a € Z, P" = 0,(X) and that X
is not defective. Since P" = 0,(X), we have rx(q) = a for a general ¢ € P".
Hence |S(X, q)| =1 for a general g € PT.

O

The (smooth) n-dimensional varieties X C P2"*! such that o9(X) = P27 +1
and |S(X,q)| = 1 are classically called OADP (or varieties with only one ap-
parent double point), because projecting them from a general point of X one
gets a variety with a unique singular point ([17]). They are always linearly
normal ([17, Remark 1.2]). In [17] there are also older references and the
classification of the smooth ones with dimension up to 3 ([26], [17, Theorem
7.1]). Thus the thesis of Lemma 3.1 is a generalization of this concept to
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the case in which (r + 1)/(n + 1) is an integer > 2. But the assumption
“p(X) =2[(r+1)/(n+1)] 7 of the lemma is too strong to be interesting for
the classification of extremal varieties. Just assuming p(X)" > 2 excludes all
X containing lines and hence all smooth OADP’s of dimension 2 and 3.

Corollary 3.2. Assume n := dimX > 2, p(X)” > [(r +1)/(n + 1)] and
p(X) > 2[(r+1)/(n+1)]. Then X is linearly normal, non-defective, r+1 =0
(mod n+ 1) and |S(X,q)| =1 for a general g € P".

Proof of Corollary 3.2. Apply Lemma 3.1 and Proposition 1.2. ([

Proof of Theorem 1.3. Assume the existence of X with p(X)" > 2[(r+1)/(n+
1)]. We may assume n < r, i.e., X #P".

First assume n = 1. Lemma 2.4 gives that X is a rational normal curve,
that 7 is odd and that p(X) = p(X) =r+ 1.

Now assume n > 2. By Lemma 3.1, a := (r+1)/(n+ 1) is an integer. Since
r > n, we have a > 2. Fix a general S C X such that |S| = a — 1. Since S is
general, each p € S is a smooth point of X. We saw in the proof of Proposition
1.2 that V := (UpesT,p X) has dimension (a —1)(n+1) — 1. Fix o€ X \ S.

Claim 1. 0 ¢ V.

Proof of Claim 1. Assume o € V. We saw in the proof of Proposition 1.2
that there are connected degree 2 zero-dimensional schemes v, C X such that
(vp)rea = {p} and o € (Z), where Z := Upecsv,. Since o ¢ S, we have o € Z.
Thus the scheme Z U {0} is linearly dependent. Since deg(ZU {o}) =2a—1 <
p(X)"” and Z U {o} is smoothable, we got a contradiction. O

Let ¢ : P"\V — P™ denote the linear projection from V. By Claim 1 we have
S = XNV and hence pp = £;x\g : X \ S — P" is a morphism. Fix 0o € X'\ S
and assume the existence of o’ € X\ S such that o # o’ and u(o) = p(o’). Thus
o' € ({o} U Z). Hence {0,0'} U Z is linearly dependent. The zero-dimensional
scheme {0, 0'}UZ is smoothable and it has degree 2a < p(X)”, a contradiction.

Thus p: X\ S — P" is an injective morphism between two quasi-projective
varieties. Since P” is smooth (it would be sufficient to assume that the target,
X, is normal or even less (weakly normal)) and we are in characteristic zero,
p is an open map which is an isomorphism onto its image ([20]). Since X is
smooth at each point of S, X is smooth. Since S is finite, the étale cohomology
of X'\ S in dimension n — 1 shows that P \ u(X \ S) is finite with cardinality
£(S). Thus p extends to an isomorphism u : X — P". However, by the
definition of linear projection from V = (UpesT,X), the linear independence
of the linear spaces Tj,, € S, and the smoothness of X, ;1 extends to some
non-empty open subset of the exceptional divisor of the blowing-up of X at the
points of S. Since S # (0, this is absurd. O
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4. Elementary examples

By Proposition 1.1 to complete the picture for curves we need to describe
the linearly normal curves with very high p(X)’, p(X) and p(X)”. We also
gives examples of smooth curves X with prescribed p(X) or prescribed p(X)'.

Remark 4.1. Let X be an integral projective curve. To compute p(X)"” we recall
that every Cartier divisor of X is smoothable. Let F be any torsion free sheaf
of X. Duality gives h!(F) = dim Hom(F,wx), ([2, 1.1 at p. 5]). Thus for any
zero-dimensional scheme Z C X we have h'(Zz(1)) = dim Hom(Zz,wx (1)). If
d > 39 — 2 we have p(X) = d — 29 + 2. We have p(X) =d—2g + 2 if and
only if X is Gorenstein, i.e., wx is locally free. For lower d the integers p(X),
p(X)" and p(X)"” depends both from the Brill-Noether theory of the special
line bundles on X and the choice of the very ample line bundle Ox (1), not just
the integers d and g.

Example 4.2. Fix integers r,a such that 2 < a < r + 1. Here we prove the
existence of a smooth and non-degenerate curve X C P" such that p(X) =
p(X) =a and, if a <r — 1 and 2a > r 4 2, another example X with p(X)" >
p(f() =a. If a =7+ 1 we know that X is a rational normal curve. The case
g=1,d=r+1 covers the the case a = r. Now assume 2 < a <r —1.

(a) We first cover the case 2a < r + 1. In this range we construct a smooth
rational curve X with p(X) = p(X)" = a, but of course X is not linearly
normal. Let Y C P™! be a rational normal curve. Fix a set S C X such that
S| = a+ 1 and take any o € (S) such that o ¢ (S’) for any S’ C S. Let
¢ : P\ {0} — P" denote the linear projection from o. Since a > 2 and
p(Y) =17 +2, we have o ¢ Y. Hence /|y is a morphism. Set X := {(Y).

Claim 1. {}y is an embedding.

Proof of Claim 1. 1t is sufficient to prove that for any zero-dimensional scheme
A CY with deg(A) < 2 we have o ¢ (A). Assume the existence of a zero-
dimensional scheme A C Y with deg(A) < 2 and o € (A4). Since 0 ¢ Y, we
have deg(A) = 2. Since o ¢ (S’) for any S” C S and |S| = a + 1 > 2, we have
A ¢ S. Since o € (A)N(S), AUS is linearly dependent. Since deg(AUS) < a+3
and p(Y) =r+ 1, we get a contradiction. O

By Claim 1 X is a smooth rational curve and deg(X) = r + 1.
Claim 2. We have p(X) = p(X)' = a.

Proof of Claim 2. Since {|x is an embedding, we have [((S)| = a + 1. Since
o € (S), £(S) is linear dependent and hence p(X)' < a. Assume p(X) < a
and take a zero-dimensional scheme Z C X such that deg(Z) < @ and Z is
linearly dependent. Let W C Y be the only scheme such that £(W) = Z. Since
Z is linearly dependent, we have o € (W). Since deg(W) < a and o ¢ (5’)
for any S" C S, we have W ¢ S. Thus S U W is linearly dependent. Hence
2a 4+ 1 > r 4+ 2, a contradiction. (I
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(b) Now assume 2 < a <r—1and 2a¢ >r+2. Set g:=r+1—a. Fixa
smooth curve C of genus g and a zero-dimensional scheme A C X such that
deg(A) = a+ 1. Since deg(wc(A)) =29+a+1—-2> 29+ 1, we(A) is very
ample. By Riemann-Roch we have h°(wc(A)) = g+a =r+1. Let f: C — P",
be the embedding induced by |wx(A)]. Set X := f(C) and Z := f(A). By
Rieman-Roch Z is linearly dependent and Z is the only linearly dependent
zero-dimensional scheme W C X such that deg(W) < a + 1. Thus p(X) = a.
We have p(X)' = a if and only if A is a reduced set. If A is not reduced we get
the promised curve X.
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