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1    Introduction

During the last decade, the manufacturing industry has gone through a 
deep transformation with the digitalization of processes, the arrival of the 
Internet of Things, the spread of artificial intelligence (AI) in daily prac-
tices, and the ubiquitous presence of data—thanks to the cloud technolo-
gies lifting the efficiency of manufacturing systems to a new level. 
Notwithstanding these radical changes, the manufacturing industry still 
has a strong dependence on maintenance, a field that is still considered to 
be a necessary evil by most managers, but without which plants and 
equipment will not remain safe and reliable. The importance of 
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maintenance-management as part of tangible asset-management is clearly 
inscribed within modern international industry standards [1], where asset-
management is defined as “the coordinated activity of an organization to 
realize value from assets”. Maintenance-management takes care of physi-
cal assets with the aim of minimizing their life-cycle cost and achieving 
stated business objectives. Depending on the specific sector of industry, 
maintenance takes different forms—its most elementary form involves 
simple operations and inspections of and on machines, while the most 
cutting-edge applications include intelligent maintenance control-systems 
capable of predicting the remaining useful life (RUL) of components and 
triggering maintenance activities automatically when needed. Moreover, 
some companies are adopting more holistic approaches to maintenance, 
aimed at improving the efficiency of the whole productive unit. Such 
approaches are called total productive maintenance (TPM) [2] and they 
aim at improving the quality of products, developing corporate culture, 
and enhancing the attention to safety and environment.

The popularization of Industry 4.0 paradigm around the year 2011 
represented a new starting point for the manufacturing industry after the 
financial crisis of 2008. Asset-management and maintenance-management 
of physical equipment underwent a transformation: real-time monitoring 
of working conditions became very common due to decreasing cost of 
sensor technology (IoT devices), thus making possible the development of 
new technologies such as Virtual Factories and Digital Twins (DTs) of 
machines and processes. The digital replication of the physical environ-
ment allows the optimization of processes already during the design phase 
and the optimization of running processes during the production phase. 
Real-time monitoring of assets and the direct control of processes remotely 
has became a part of the new paradigm of manufacturing; with respect to 
maintenance, diagnostics and prognostics of equipment are spreading into 
daily practices and a new stream of research is contributing to the develop-
ment of these technologies.

In this chapter we illustrate some of the connections between modern 
manufacturing (Manufacturing 4.0) and maintenance-management, pres-
ent shortly the evolution of maintenance-methodologies starting from 
early models until today and summarizing the most important concepts 
relevant to the field including a discussion of how the digital twin concept 
may become an important issue for maintenance-management.
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2    Maintenance-Management: An Overview

Maintenance-management is nowadays a fundamental function in most 
industry. In its traditional form, maintenance is aimed at ensuring that a 
system performs its function in a safe and efficient manner. Due to infor-
mation technology (IT) development, maintenance-management has seen 
a significant evolution within its best practices: the classical methods for 
maintenance-planning and scheduling have been integrated and improved 
by technologies such as the Internet of Things, cloud computing, and 
artificial intelligence.

Engineering systems often have a complex structure, with a limited 
number of dedicated resources and strict requirements on safety and on 
performance—under these circumstances maintenance is an issue that 
needs to be handled in a systematic way. A clear strategy for maintenance 
must be defined, where components of a system to be maintained should 
be documented and listed according to priority, then a set of rules for the 
daily management of operations must be drafted. The set of rules that are 
used to coordinate maintenance tasks are typically called a maintenance-
policy. As basic example, maintenance-policies for lifts and elevators that 
typically depend on country-wise regulations and that state that mainte-
nance must be carried out on regular intervals, such as “every twelve 
months”, which is then the rule that triggers a maintenance intervention 
that is aimed at avoiding sudden failures of the system. The above dis-
cussed types of interventions that are carried out before a failure has taken 
place are called preventive and they may range from simple inspections to 
the replacement of broken components. Maintenance actions undertaken 
after a failure are called corrective and they typically consist of the replace-
ment and/or the repair of failed components. Usually corrective actions 
are more expensive than preventive, but when this is not the case it is 
sometimes possible to let a system run to failure that is, a system is left 
un-serviced until it fails, or until its fails and its failure is detected. Non-
critical system components with a steady failure rate are often let run to 
failure.

Implementing preventive maintenance-policy typically requires more in 
terms of analysis, than a corrective policy—it requires information about 
the state of the maintained system such as information about the degrada-
tion level of system components. Depending on the information available, 
preventive maintenance-policies can be time-, or condition-based.
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Time-Based Maintenance

Time-based or predetermined, as they are also called, maintenance-policies 
were the first approach adopted to effectively manage maintenance. In 
these types of policies maintenance actions are scheduled to take place on 
predefined times, according to set intervals of duration tM, or upon failure 
(whichever occurs first). The aim of the policies is to preventively maintain 
the asset through shorter, but planned downtimes and by doing so avoid-
ing longer and more expensive corrective maintenance actions. In this way 
the asset availability increases and consequences of failure can most often 
be avoided.

Scheduling of activities can be organized according to block-based- or 
age-based approaches. Block-based approaches schedule maintenance 
actions at constant time intervals, regardless of the asset operating time. 
The block-based approach is commonly used, when several assets of the 
same class (a block) are in (constant) use simultaneously. Age-based, or 
runtime, models are applied, when asset degradation and failures depend 
on the cumulative load exposure. Since the active age of a mechanical 
component has a strong correlation with the physical wear, or fatigue, of 
a component the maintenance of mechanical systems is often managed 
according to the age of system components. Asset age can be measured by 
using the working time of a machine as proxy, or in other ways, such as by 
observing the number of kilometres travelled or by the number of take-
offs or landings, as can be done with aircraft. Approaches that combine 
more than one proxy for component states are also possible. Literature is 
ripe with research on time-based approaches for maintenance-optimization, 
we refer the interested reader to see the review by Wang [3]. It is worth to 
mention that time-based maintenance-policies carry a risk of over-
maintenance, as some of the performed actions may not be necessary, on 
the other hand, time-based policies cannot weed-out failures, when 
component-deterioration happens at a non-standard pace—these are clear 
handicaps, when compared to condition-based policies. In fact, when the 
cost-risks of a time-based policy, or the costs of over-maintenance, are too 
high, condition-based maintenance may represent a feasible alternative.

Condition-Based Maintenance

Experience shows that failures can occur independently of the asset age, 
but at the same time most of these undesired events give some sort of 
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warning about the fact that they are about to occurring—thanks to the 
presence of such symptoms an early detection of fault occurrence is pos-
sible. This means that preventive actions can be taken, if the signals and 
symptoms of impending failures are understood, this is the fundamental 
concept that underpins condition-based maintenance. According to 
condition-based maintenance-policies maintenance actions are initiated by 
performance of a system reaching a trigger-level, typically determined by 
monitoring one or more indicators (sensors) of the maintained system. 
This means that maintenance is not done based on a predetermined sched-
ule, but actions are taken based on observed, evidence-based deterioration 
of system performance that signals impending (component) failure and as 
such on only-when-needed basis.

A prerequisite for condition-based maintenance-policies (CBM) is that 
the there is objective monitoring of the system state in place—the moni-
toring should be carried out in a non-invasive way and it is typically 
achieved by using sensors. Monitoring can be scheduled or continuous 
and the output from monitoring is a set of observations (indicators, failure 
precursors) that describe the capacity of a system to perform its function. 
A typical example of a failure precursor is the vibration frequency of a 
rotating machine—shift in the frequency is a clear indication of a change 
in the working conditions. As a rule of thumb used in CBM, once enough 
data has been gathered, thresholds on the monitored feature-values are 
established to more reliably identify degraded asset performance—a com-
parison between the system-state and the thresholds is used to track the 
system health. With knowledge about the system health and history-based 
thresholds a decision about maintenance-scheduling can be made in a way 
that actions are performed only when needed and as a result both the 
probability of failure and the overall cost of maintenance can be optimized.

3    More About Condition-Based Maintenance

Setting up condition-based maintenance is a process and it can be divided 
roughly into three main steps. Condition-based maintenance assumes that 
objective monitoring of the system is possible, which means that acquisi-
tion of data about the system state is in place. Sensors that measure issues 
such as material cracking, corrosion, vibration, and change in electrical 
resistance are the types of information that are usable from the point of 
view of understanding the system state—one must also remember that 
these issues depend on the operating and the environmental conditions, 
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such as the frequency of use, ambient temperature, and humidity. It is 
typical that a monitored system must be equipped with sensors, signal 
conditioning and digitizing components that are typically already embed-
ded in new modern machines. We emphasize the importance of sensors, 
because they are a core technology needed for the implementation of the 
Manufacturing 4.0 paradigm in maintenance—they are the bond that 
connects machines into networks and they allow the realization of the 
Internet of Things.

Based on the data collected the features that explain and describe the 
state of the system and allow determining whether maintenance is neces-
sary must be estimated. Features can be difficult to observe directly (by 
observing the system), but by exploiting data and a priori knowledge of 
the system feature extraction can be made easier. The quality of a feature 
is determined by its capacity to represent the system state, in order to 
achieve a better state representation, usually a set of features is used—the 
more clearly different system states can be distinguished from each other 
the better the condition of the system can be described. In practice finding 
the correct features or sets of features that allow high failure detection 
capability and a low false alarm probability are problems that can be solved 
by specific methods created for feature-selection and for information 
fusion. Improvement in feature-selection methods has been fuelled by the 
great interest analytics and AI have received in recent times. One must 
remember that sudden changes in the operative and environmental condi-
tions may render features that work well under normal conditions impre-
cise—this is why the best modern systems may use different sets of features 
for different operating conditions and are able to change the feature sets 
used “on the fly”, when conditions change.

Once the data acquisition and feature extraction processes are ready 
condition monitoring can be effectively performed. Monitoring is the last 
step prior to the definition of the maintenance-strategy that is forming the 
set of rules that aids managers in taking maintenance decisions.

The main goal of condition monitoring is to provide fault-recognition, 
which typically foresees three sub-goals: (1) fault detection, aimed at iden-
tifying if a fault or the degradation of a component occurred; (2) fault 
isolation, that identifies the damaged component among many others; and 
(3) fault identification, aimed at determining the nature, extent, and sever-
ity of the isolated fault. In the following we look at these issues in 
more detail.
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Fault Detection

The task of fault detection is to identify the presence of abnormal working 
conditions in a system by leveraging the information from the system his-
tory and information that can be learned from actual data. Typically a 
benchmark that defines the “normal” working conditions of the system is 
needed—the normal conditions depend on the task that the system is car-
rying out and on the environment surrounding the system. Because of 
different environments a system may have several normals—each normal 
will have a “profile” that is a set of features that defines it. Another thing 
is the extraction of profiles for different fault-states, such as “healthy”, 
“degraded”, and “faulty”. The state of the system can be compared to the 
different profiles and this allows one to understand the state of the system 
and to predict the failure. Typically one will want to see several system 
states that precede the “failed” state, because the more states there are the 
finer is the information about the system state and better one can predict 
what will happen next. The comparison of the observed system state and 
the normal state can be done by different means, two examples of usable 
modelling techniques for this purpose are the auto associative kernel 
regression (AAKR) [4] and principal component analysis (PCA) [5] for 
the identification of the state and subsequently a statistical test is applied 
to identify the extent to which the state of the system differs from a nor-
mal condition. Typically used tests include the threshold based approach, 
Q statistics, and the Sequential Probability Ratio Test (SPRT) [6]. When 
the state of the system is known an action is taken (not taken) depending 
on the recommendations described for each state—the recommendations 
are drafted by using fault diagnosis techniques.

In order to clarify how fault detection works, we provide a simple 
example of condition monitoring. We assume that the state of a system is 
represented by a single feature x(t). We define two thresholds considered 
important for the component. In Figure 1, the first threshold xW identifies 
a warning-level, while threshold xF identifies the failure of the component. 
When the value of x(t) surpasses level xW, an alarm is triggered, and a pre-
ventive action can be undertaken to prolong the life of the component, or 
to change it, to avoid incurring a sudden failure. The curve representing 
the behaviour of x(t) is known as the Performance/Failure curve and it 
expresses the evolution of the system-feature as a function of either calen-
dar time or system age time. A realistic mathematical model of x(t) will 
also include the uncertainty related to the estimated quantity, which in 
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Fig. 1 is represented by a generic probability distribution. The importance 
of modelling the degradation of a component using a random variable is 
represented by the possibility to express the result using a probability that 
is, a degree of belief about the triggering event.

Fault Diagnosis

Fault diagnosis is isolating and identifying the fault and typically means 
identifying the cause, this means identifying which component in a system 
is degrading among many possible components and to determine the 
nature, the extent, and the severity of the fault. Isolating and identifying 
the fault are sometimes overlapping and not always clearly separable. Fault 
diagnostics means most often solving a classification problem—any given 
set of measurements from the system can be matched to a single compo-
nent if sufficient data is available for training a machine learning classifica-
tion algorithm. In cases where data is abundant algorithms can even spot 
specific conditions within components and provide a credible probability 
of a failure event. Many techniques are good for this task, the interested 
reader may find an extensive review about modern fault diagnostics tech-
niques applied to rotatory machines in [7], where the authors describe 
both the fundamental principles behind adopted AI algorithms and pres-
ent numerous application examples. As a caveat about AI-based tech-
niques one must observe that where there is no data, or data is very 
incomplete, machine learning algorithms cannot be used—in such cases 
suitable data must first be collected. In the cases of very rare faults diagno-
sis is difficult and diagnostics performance for them is typically poor.

The performance of condition-based maintenance systems is only as 
good as the system in place and there is uncertainty associated with the 

Fig. 1  A performance/
failure curve for a 
generic system

  M. URBANI ET AL.



105

outputs (alarms) from these systems. Uncertainty is caused by a number of 
things, some were already mentioned above such as the operating condi-
tions and the environment, but others like production tolerances also 
affect the reliability of CBM system—because of tolerances two nominally 
identical machines may have a different wear. Due to this inherent inac-
curacy the output from CBM systems is most often expressed as a proba-
bility or an interval. We refer the reader interested in deepening their 
knowledge in maintenance and maintenance optimization to read the 
review by De Jonge and Scarf [8].

4    Prognostics and Health Management—Towards 
Industry 4.0

Thanks to the availability of cheap networked sensors the monitoring and 
maintenance of systems is undergoing a fast and deep change. In the past, 
manual collection of maintenance-relevant data made the processing slow 
and unreliable—today technology allows abundant collection of data 
often in real-time. This profound change has caused the attention of main-
tenance systems development to move towards maintenance process-
optimization. The new generation of production systems that are “smart” 
and networked has been labelled as Cyber Physical Production Systems 
(CPPS)—important to maintenance, they offer the possibility to perform 
real-time monitoring and accurate analysis of the degradation of critical 
components. This means that the long stream of research carried out on 
condition-based maintenance can now be exploited for its full potential—
this change has given rise to the term Prognostics and Health Management 
(PHM), which can be said to be the cutting-edge approaches to predictive 
maintenance born within the last two decades. Keeping in mind that PHM 
is part of the same continuum with CBM and that the two cannot be 
sharply separated, it can be said that PHM aims higher than the “tradi-
tional CBM” and uses more advanced tools to get there.

The higher goals of PHM include, for example, optimization of 
maintenance-planning, reduction of downtimes, just in time spare parts 
provision, energy consumption optimization, minimization of raw mate-
rial use and of pollution—all in all the focus is on increasing profitability 
through “better maintenance”. PHM means effectively the same thing 
that is meant when the term Predictive Maintenance is used in common 
parlance. A fundamental prerequisite for a well-functioning predictive 

  MAINTENANCE-MANAGEMENT IN LIGHT OF MANUFACTURING 4.0 



106

maintenance system is the high quality of information that is used as an 
input into the system. This is true for both the real-time operation of the 
system as it is true for the information that is needed to construct or teach 
the system to be able to operate reliably—the information needed typically 
includes operating and maintenance histories, prior knowledge about sys-
tem failure modes, resource constraints, and mission requirements. The 
information is used in tuning complex models the architecture of which 
may include numerous machine learning sub-systems and that require top 
of the line know-how. This means that these systems are expensive and 
they can be constructed only for systems that either merit such costs from 
the point of view of safety or that are business-critical and can economi-
cally justify the expenses.

In prognostics and health-management systems the system status 
received as input from condition monitoring is used to create an estimate 
of the system degradation state, which is used together with the P/F 
curve, or by using a classification-based architecture, to determine the 
distance between the current degradation level and a failure threshold 
(health-margin). The idea of the modern systems is to not only identify 
the cause of the fault but also to predict any secondary failures that may 
occur and to forecast the system health evolution as reliably as possible. 
Prognostics is considered the “holy grail” of PHM systems [9], because 
diagnostics has a retrospective approach to failure that consists of identify-
ing and quantifying failures that have already occurred, while prognostics 
is about forecasting and as such, if successful means that the remaining 
useful life (RUL) of components can be accurately predicted. This will 
happen simply by being able to accurately estimate the end of life of a 
component and calculating the time to the end of life—the more accurate 
this ability is, the more precise can any optimizations performed based on 
it, including just in time deliveries of spare parts and maintenance schedul-
ing become. The difference between high accuracy and medium accuracy 
can mean great savings in cases, where multiple systems are maintained 
and costs associated with maintenance are high. Another important issue 
is to know how much in advance a prognostics system can (accurately) 
predict the failure time—in fact, the relative RUL estimation accuracy and 
the prognostic horizon are key performance parameters of PHM systems.

In the literature, three types of approaches to prognostics have been 
identified, namely (1) experience-based approaches, which exploit histori-
cal information of a similar components; (2) model-based approaches, 
which make use of a physical fault model, and; (3) data-driven approaches, 
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which are mainly based on AI-techniques. We propose the interested 
reader to explore model-based and data-driven approaches by reading the 
book by Kim et al. [10].

Digital Twins and Their Connection to Maintenance

According to recent literature on maintenance and industrial management 
[11, 12] prognostics and health management systems be viewed as an 
examples of cyber-physical systems (CPS). The idea of CPS started to 
spread in the beginning of the 2010’s, when NASA published their 
Modelling, Simulation, Information Technology & Processing Roadmap 
[13]—the document delineated the intention to integrating all the avail-
able physical and virtual technologies, the context back then was aeronau-
tics. In essence the idea is that of a digital replica of a physical asset and it 
was called a Digital Twin (DT) and defined as “an integrated multi-physics, 
multi-scale, probabilistic simulation of a vehicle or system that uses the best 
available physical models, sensor updates, fleet history, etc. to mirror the life of 
its flying (sic) twin. It is ultra-realistic and may consider one or more impor-
tant and independent vehicle systems”. What makes this interesting from 
the point of maintenance is that predictive maintenance was one of the 
first fields of application of the DT concept, together with the check of 
mission requirements and a more transparent life-cycle view. The DT con-
cept was subsequently extended to the manufacturing industry and the 
term Cyber-Physical Production System (CPPS) was coined to indicate 
the specific application area. A CPPS is composed of a physical part, a 
virtual part (the DT), and a stream of data between the two [14]. The DT 
strives to hold a perfect real-time synchronization between the physical 
and the virtual worlds, the physical part sends data to the virtual model, 
and the virtual part reproduces the physical system with ultra-high fidelity. 
As this is the case, historical data stored can be used together with real-
time sensory information from the physical system in order to run, e.g., 
simulations and to optimize the production process virtually and then 
transmit “orders” to the physical system in order to optimize the way it 
functions. Theoretically the CPPS can harness the interaction between the 
virtual and the physical parts in order to create a continuously improving 
system. Digital twins are a clear way to remedy the typical problems of 
data collection, organization, and exploitation widespread in the context 
of production systems.
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In fact, digital twins start to look like the key to reaching solutions for 
the problems of fitting together the best practices in engineering design 
and in process control. The advantages of adopting the DT concept seem 
cover the whole of product lifecycle that is, production design, manufac-
turing, and service providing are all immersed in the realm of DT [14]. In 
the design phase, if realized with a sophisticated digital model, issues that 
have to do with the maintainability of the production system can perhaps 
be addressed already on the drawing board—this may include the instru-
mentation of the system for best possible diagnostics and prognostics. 
During the production life of the production system the DT can perhaps 
assist in production planning, resource management, and procurement 
that can be optimized also with regards to predicted downtimes due to 
maintenance. The DT may run failure prediction algorithms in real-time 
so that users can be notified when the system state changes and in cases of 
imminent failure. It seems feasible to say that there is clear potential for 
maintenance systems development based on the digital twin concept.

5    Conclusion

Maintenance has always been a part of the management of production 
systems and it has become a craft of its own, the early mathematical mod-
els for maintenance management were based on the notion of optimizing 
the interval between maintenance activities in order to minimize down-
time and the maintenance related costs. This type of maintenance manage-
ment systems may still exist in cases, where preventive maintenance is the 
norm and the systems maintained are “old school” and not instrumented 
with sensors.

The modern approach of maintenance management is based on 
condition-based maintenance, which in the early days was more expensive 
than time-based maintenance management and thus reserved to high-risk 
and high-cost applications. Today the price of sensors and instrumentation 
is considerably low, which has made condition-based maintenance the 
leading way of handling maintenance management. Improvement of 
maintenance policies has created competitive advantages for companies 
that have been able to adopt them successfully and therefore a shift to 
modern maintenance management approaches is occurring in many com-
panies. Automation of industrial facilities, such as the increasing use of 
robotics, improves productivity and safety, but it also increases the techno-
logical complexity of industrial assets and means a higher dependence on 
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production systems—this accentuates the role of effective and efficient 
maintenance.

Key Industry 4.0 technologies, such as artificial intelligence and 
Internet-of-Things, enable the implementation of very effective mainte-
nance policies at an affordable cost and have paved the way for better 
diagnostic and prognostic systems, which can be said to be the backbone 
of what is typically called predictive maintenance. These systems are able 
to make fault-prediction even more accurate than what is possible with 
traditional condition-based maintenance methods and therefore offer a 
possibility for even further savings through better optimization. Predictive 
maintenance most importantly is a forward looking approach to mainte-
nance, where traditionally the policies have been based on after-the-fact 
optimization.

The concept of digital twin is interesting from the point of view of 
maintenance management, as it is based on the idea of having a highly 
accurate real-time virtual model of a physical system that are “conversing” 
with one another. In effect, this is a concept that is not very far away from 
the ideal maintenance management system in terms of the information 
exchange between a production system and the maintenance management 
system. The digital twin, as it is used in the lifecycle management of prod-
ucts today is already opening avenues for many issues that are relevant to 
making maintenance better—looking forward there is potential for much 
more, specifically in terms of using digital twins in a maintenance 
focused way.

Getting back to the real-world, one must observe that the choice of 
maintenance management systems and policies is always constrained by 
the economic and technical realities surrounding the maintained systems. 
In this respect, predictive maintenance is at the start of a road that may 
lead at some point to something that resembles a digital twin—one thing 
is for sure, the Industry 4.0 paradigm and what we already can see beyond 
it will change maintenance management.
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