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Abstract

Multidimensional continued fractions (MCFs) were introduced by Jacobi and Perron in
order to obtain periodic representations for algebraic irrationals, as it is for continued fractions
and quadratic irrationals. Since continued fractions have been studied in the field of p–adic
numbers Qp, also MCFs have been recently introduced in Qp together to a p–adic Jacobi–
Perron algorithm. In this paper, we address the study of two main features of this algorithm,
i.e., finiteness and periodicity. In particular, regarding the finiteness of the p–adic Jacobi–
Perron algorithm our results are obtained by exploiting properties of some auxiliary integer
sequences. Moreover, it is known that a finite p–adic MCF represents Q–linearly dependent
numbers. We see that the viceversa is not always true and we prove that in this case infinite
partial quotients of the MCF have p–adic valuations equal to −1. Finally, we show that a
periodic MCF of dimension m converges to algebraic irrationals of degree less or equal than
m + 1 and for the case m = 2 we are able to give some more detailed results.

Keywords: continued fractions, finiteness, Jacobi–Perron algorithm, multidimensional continued
fractions, p–adic numbers, periodicity
2010 Mathematics Subject Classification: 11J70, 12J25, 11J61.

1 Introduction

Multidimensional continued fractions (MCFs) were introduced by Jacobi [20] in order to answer
to a question posed by Hermite [19], namely the existence of an algorithm defined over the real
numbers that becomes eventually periodic when it processes algebraic irrationalities. In other
words, Hermite asked for a generalization of the classical continued fraction algorithm that produces
a periodic expansion if and only if the input is a quadratic irrational. The Jacobi algorithm deals
with cubic irrationals and it was generalized to higher dimensions by Perron [28]. However, the
Jacobi–Perron algorithm does not solve the Hermite problem, since it has never been proved that
it becomes eventually periodic when processing algebraic irrationals. Many studies have been
conducted on MCFs and their modifications, see, e.g., [1], [2], [5], [13], [14], [18], [21], [24], [25],
[32], [33], [34].

In the 1970s, some authors started to study one–dimensional continued fractions over the p–adic
numbers [7], [30], [31]. From these studies, it appeared difficult to find an algorithm working on
the p–adic numbers that produces continued fractions having the same properties holding true over
the real numbers (regarding approximation, finiteness and periodicity). In particular, no algorithm
which provides a periodic expansion for all quadratic irrationalities has been found. Continued
fractions over the p–adic numbers have been also studied recently in several works, like [3], [4], [8],
[9], [17], [22], [23], [27], [29], [35], [36].

Motivated by the above researches, in [26], the authors started the study of MCFs in Qp,
providing some results about convergence and finiteness. In particular, they gave a sufficient
condition on the partial quotients of a MCF that ensures the convergence in Qp. Moreover,
they presented an algorithm that terminates in a finite number of steps when rational numbers
are processed. The scope of that work was introducing the subject and providing some general
properties; the terminating input of this algorithm was not fully characterized and the periodicity
properties were not studied at all. This paper represents a continuation of the previous work,
extending the investigation in these two directions. In particular, in Section 2, we fix the notation
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and we show some properties that can also be of general interest for MCFs. Section 3 is devoted
to the finiteness of the p-adic Jacobi–Perron algorithm, providing some results that improves a
previous work [26] and showing also some differences with the real case. In R, it is known that the
Jacobi–Perron of dimension 2 detects rational dependence, i.e., it terminates in a finite number
of steps if and only if it processes rational linearly dependent inputs. On the contrary we show
that this is not always true in Qp and we also prove that in this case infinite partial quotients
of the MCF have p–adic valuations equal to −1. Moreover, we give a condition that ensures the
finiteness of the p–adic Jacobi–Perron algorithm in any dimension in terms of the p–adic valuation
of the partial quotient. In Section 4, we study the periodicity of MCF in Qp. Specifically, we
introduce the characteristic polynomial related to a purely periodic p–adic MCF and we see that,
as in the real case, it admits a p–adic dominant root which generates a field containing the limits
of the MCF. Consequently, we see that a periodic MCF of dimension m converges to algebraic
irrationalities of degree less or equal than m + 1 as in the real case. A further investigation on
the characteristic polynomial allows to characterize some cases where the degree is maximum. We
conclude our work with a conjecture which, if proved to be true, would give a characterization of
the MCFs arising by applying the p-adic Jacobi-Perron algorithm to m-tuples consisting of Q-linear
dependent numbers.

2 Preliminaries and notation

The classical Jacobi–Perron algorithm processes a m–tuple of real numbers α0 = (α
(1)
0 , . . . , α

(m)
0 )

and represents them by means of am–tuple of integer sequences (a(1), . . . ,a(m)) = ((a
(1)
n )n≥0, . . . , (a

(m)
n )n≥0)

(finite or infinite) determined by the following iterative equations:

a
(i)
n = [α

(i)
n ], i = 1, ...,m,

α
(1)
n+1 =

1

α
(m)
n − a(m)

n

,

α
(i)
n+1 =

α
(i−1)
n − a(i−1)n

α
(m)
n − a(m)

n

, i = 2, ...,m,

n = 0, 1, 2, ...

The integer numbers a
(i)
n and the real numbers α

(i)
n , for i = 1, . . .m and n = 0, 1, . . ., are called

partial quotients and complete quotients, respectively. The sequences of the partial quotients
represent the starting vector α0 by means of the equations

α
(i−1)
n = a

(i−1)
n +

α
(i)
n+1

α
(1)
n+1

, i = 2, ...,m

α
(m)
n = a

(m)
n +

1

α
(1)
n+1

n = 0, 1, 2, ... (1)

which produce objects that generalize the classical continued fractions and are usually called mul-
tidimensional continued fractions (MCFs).

The Jacobi–Perron algorithm has been translated into the p–adic field in [26], using the function
s defined below that will play the role of the floor function. We define the set

Y = Z
[

1

p

]
∩
(
−p

2
,
p

2

)
.

Definition 1. The Browkin s-function s : Qp −→ Y is defined by

s(α) =

0∑
j=k

xjp
j ,

for every α ∈ Qp written as α =
∑∞
j=k xjp

j ,with k, xj ∈ Z and xj ∈
(
−p2 ,

p
2

)
.

Hence, the p–adic Jacobi–Perron algorithm processes a m–tuple of p–adic numbers α0 =
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(α
(1)
0 , . . . , α

(m)
0 ) by the following iterative equations

a
(i)
n = s(α

(i)
n )

α
(1)
n+1 =

1

α
(m)
n − a(m)

n

α
(i)
n+1 = α

(1)
n+1 · (α

(i−1)
n − a(i−1)n ) =

α
(i−1)
n − a(i−1)n

α
(m)
n − a(m)

n

, i = 2, ...,m

(2)

for n = 0, 1, 2, . . ., which define a p–adic MCF [(a
(1)
0 , a

(1)
1 , . . .), . . . , (a

(m)
0 , a

(m)
1 , . . .)] representing the

starting m–tuple α0 in the following way:

α(i)
n = a(i)n +

α
(i+1)
n+1

α
(1)
n+1

, α(m)
n = a(m)

n +
1

α
(1)
n+1

for i = 1, . . . ,m− 1 and any n ≥ 0. The partial quotients satisfy the following conditions:{
|a(1)n | > 1

|a(i)n | < |a(1)n |, i = 2, . . . ,m
(3)

for any n ≥ 1, where in the following |·| will always denote the p–adic norm. Moreover, for any
n ≥ 1, we have

|a(1)n | = |α(1)
n |, and for i = 2, . . . ,m

|a(i)n | =

{
|α(i)
n | if |α(i)

n | ≥ 1

0 if |α(i)
n | < 1

(4)

|α(i)
n | < |α(1)

n | .

Remark 1. In [26], the authors showed that equations (3) ensure the convergence of a MCF in
Qp, i.e., given a sequence of partial quotients satisfying (3) (even if they are not obtained by a
specific algorithm), then the corresponding MCF converges to a m–tuple of p–adic numbers.

Similarly to the real case, we have the n–th convergents of a multidimensional continued fraction
defined by

Q(i)
n =

A
(i)
n

A
(m+1)
n

,

for i = 1, . . . ,m and n ∈ N, where

A
(i)
−j = δij , A

(i)
0 = a

(i)
0 , A(i)

n =

m∑
j=1

a(j)n A
(i)
n−j +A

(i)
n−m−1 (5)

for i = 1, . . . ,m + 1, j = 1, . . . ,m and any n ≥ 1, where δij is the Kronecker delta. It can be
proved by induction that for every n ≥ 1 and i = 1, . . . ,m, we have

α
(i)
0 =

α
(1)
n A

(i)
n−1 + α

(2)
n A

(i)
n−2 + . . .+ α

(m+1)
n A

(i)
n−m−1

α
(1)
n A

(m+1)
n−1 + α

(2)
n A

(m+1)
n−2 + . . .+ α

(m+1)
n A

(m+1)
n−m−1

(6)

We can also use the following matrices for evaluating numerators and denominators of the conver-
gents:

An =


a
(1)
n 1 0 . . . 0

a
(2)
n 0 1 . . . 0
...

...
...

...
...

a
(m)
n 0 0 . . . 1
1 0 0 . . . 0

 (7)
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for any n ≥ 0. Indeed, if we put

Bn =


A

(1)
n A

(1)
n−1 . . . A

(1)
n−m

A
(2)
n A

(2)
n−1 . . . A

(2)
n−m

...
...

...
...

A
(m+1)
n A

(m+1)
n−1 . . . A

(m+1)
n−m


we have

Bn = Bn−1An = A0A1 . . .An, detBn = (−1)m(n+1).

We also recall some properties proved in [26].

Proposition 1. With the notation above, we have

|A(m+1)
n | =

n∏
h=1

|a(1)h |.

for any n ≥ 1.

Proposition 2. Given the sequences (Vn)n≥−m, i = 1, . . . ,m, defined by

V (i)
n = A(i)

n − α
(i)
0 A(m+1)

n

we have

1. lim
n→+∞

|V (i)
n | = 0

2. V
(i)
n =

∑m+1
j=1 a

(j)
n V

(i)
n−j

3.
∑m+1
j=1 α

(j)
n V

(i)
n−j = 0.

Finally, we prove the following propositions that will be useful in the next sections.

Proposition 3. For n ≥ 1, we have

m+1∑
i=1

α(i)
n A

(m+1)
n−i =

n∏
j=1

α
(1)
j .

Proof. We proceed by induction on n. If n = 1 the left-hand side is equal to α
(1)
1 A

(m+1)
0 = α

(1)
1 .

For n > 1 we can use the inductive hypothesis and write

n−1∏
j=1

α
(1)
j =

m+1∑
i=1

α
(i)
n−1A

(m+1)
n−1−i

= A
(m+1)
n−m−2 +

m∑
i=1

α
(i)
n−1A

(m+1)
n−1−i

= A
(m+1)
n−m−2 +

m∑
i=1

(
a
(i)
n−1 +

α
(i+1)
n

α
(1)
n

)
A

(m+1)
n−1−i

= (

m∑
i=1

a
(i)
n−1A

(m+1)
n−1−i +A

(m+1)
n−m−2) +

m∑
i=1

(
α
(i+1)
n

α
(1)
n

)
A

(m+1)
n−1−i

= A
(m+1)
n−1 +

m∑
i=1

(
α
(i+1)
n

α
(1)
n

)
A

(m+1)
n−1−i

=
1

α
(1)
n

(
α(1)
n A

(m+1)
n−1 +

m∑
i=1

α(i+1)
n A

(m+1)
n−1−i

)

=
1

α
(1)
n

m+1∑
i=1

α(i)
n A

(m+1)
n−i .

proving the claim.
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Proposition 4. For i = 1, . . . ,m and n ∈ N we have

|A(i)
n |∞ <

pn+1

2
,

where | · |∞ denotes the Euclidean norm.

Proof. We prove the thesis by induction. For n = 0,

|A(i)
0 |∞ = |a(i)0 |∞ <

p

2
;

for n ≤ m
A(i)
n = a(1)n A

(i)
n−1 + . . .+ a(n)n A

(i)
0 + a(n−i)

By induction hypothesis, and since |a(i)k |∞ < p
2 for every k,

|A(i)
n |∞ <

pn+1

4
+
pn

4
+ . . .+

p2

4
+
p

2
=
p2

4

(
pn − 1

p− 1

)
+
p

2
<
pn+1

2
.

For n > m , we have

A(i)
n = a(1)n A

(i)
n−1 + . . .+ a(m)

n A
(i)
n−m +A

(i)
n−m−1.

Again by induction hypothesis, and since |a(i)k |∞ < p
2 for every k,

|A(i)
n |∞ <

pn+1

4
+
pn

4
+ . . .+

pn−m+2

4
+
pn−m

2
=
pn−m+2

4

(
pm − 1

p− 1

)
+
pn−m

2
<
pn+1

2
.

Proposition 5. Given the MCF [(a
(1)
0 , a

(1)
1 , . . .), . . . , (a

(m)
0 , a

(m)
1 , . . .)]

a) every minor of Bn is a polynomial in Z[a
(i)
j , i = 1, . . . ,m, j = 0, . . . n] and each monomial

has the form
λc0c1 . . . cn

where λ ∈ Z and cj = 1 or cj = a
(i)
j for some i = 1, . . .m.

b) The summand λa
(1)
0 . . . a

(1)
n does not appear in any principal minor of Bn except for the 1×1

minor obtained by removing all rows and columns indexed by 2, . . . ,m+1; in this case λ = ±1.

Proof.
a) We prove the thesis by induction on n. For n = 0, we have Bn = A0 and the thesis immediately
follows. Suppose now that the statement holds for n and consider Bn+1. Let M be a square
submatrix of Bn+1. If M = Bn+1 then det(M) = ±1 and we are done. So we suppose that some
rows and columns miss in M . If M does not contain the first column, then M is a square submatrix
of Bn and the result holds by inductive hypothesis. Therefore we suppose that M contains the
first column of Bn+1 which is

A
(1)
n+1

A
(2)
n+1
...

A
(m+1)
n+1

 =


a
(1)
n+1A

(1)
n + a

(2)
n+1A

(1)
n−1 + . . .+ a

(m)
n+1A

(1)
n−m+1 +A

(1)
n−m

a
(1)
n+1A

(2)
n + a

(2)
n+1A

(2)
n−1 + . . .+ a

(m)
n+1A

(2)
n−m+1 +A

(2)
n−m

...

a
(1)
n+1A

(m+1)
n + a

(2)
n+1A

(m+1)
n−1 + . . .+ a

(m)
n+1A

(m+1)
n−m+1 +A

(m+1)
n−m

 (8)

By the properties of the determinant, det(M) is the sum for i = 1, . . . ,m+ 1 of the determinants
of all matrices Mi where Mi is obtained from M by replacing the first column by a subvector of

a
(i)
n+1


A

(1)
n+1−i

A
(2)
n+1−i

...

A
(m+1)
n+1−i



5



(to get an uniform notation, we put a
(m+1)
k = 1, for every k ∈ N ). Then we see that either two

columns of Mi are proportional, so that det(Mi) = 0, or det(Mi) = ±a(i)n+1 det(M ′i) where M ′i is a
submatrix of Bn. Then the claim holds by inductive hypothesis.
b) Let M be the square submatrix obtained from Bn by removing all rows and columns indexed

by I ⊆ {1, . . . ,m + 1}, and suppose that the summand λa
(1)
0 . . . a

(1)
n appears in M . Then by a),

M must contain the first column of Bn, so that it must contain also the first row. Moreover,
since det(Bn) = ±1, at least one row and the corresponding column are missing. We argue again
by induction on n. If n = 0, then the last row must miss, (otherwise det(M) ∈ {1, 0}) so that

the last column too must miss; then the row indexed by m has the form (a
(m)
0 , 0, . . . , 0) and this

implied that it must miss, unless m = 1, so that column m is missing and so on. It follows that
I = 2, . . . ,m+ 1, λ = 1. Now suppose that the result holds for Bn. The first column of Bn+1

being as in (8), wee deduce by a) that λa
(1)
0 . . . a

(1)
n must be a summand of det(M1), where M1 is

obtained from M by replacing the first column by a subvector of

a
(1)
n+1


A

(1)
n

A
(2)
n

...

A
(m+1)
n

 .

Then we see that the second column (and the second row) must miss in M (otherwise det(M) = 0).

Therefore det(M1) = a
(1)
n+1 det(M ′1) where M ′1 is a square submatrix of Bn giving rise to a principal

minor. Since λa
(1)
0 . . . a

(1)
n is a summand in det(M ′1), by inductive hypothesis I = {2, . . . ,m + 1}

and λ = 1.

3 On the finiteness of the p–adic Jacobi–Perron algorithm

In [26], the authors gave some results about the finiteness of the p-adic Jacobi–Perron algorithm.
We recall these results below.

Proposition 6. If the p–adic Jacobi–Perron algorithm stops in a finite number of steps when
processing the m–tuple (α(1), . . . , α(m)) ∈ Qmp , then 1, α(1), . . . , α(m) are Q-linearly dependent.

Proposition 7. For an input (α
(1)
0 , . . . , α

(m)
0 ) ∈ Qm, the p–adic Jacobi–Perron algorithm termi-

nates in a finite number of steps.

Thus, a full characterization of the input vectors which lead to a finite Jacobi–Perron expansion
is still missing in the p–adic case. On the other hand, in the real field it is known that the Jacobi–
Perron algorithm stops in a finite number of steps if and only if 1, α(1), . . . , α(m) are Q-linearly
dependent for m = 2, whereas this is not true for m ≥ 3, see [32, Theorem 44] and [11, 12].
Counterexamples in the latter case are provided by m-tuples of algebraic numbers belonging to a
finite extension of Q of degree < m + 1 and giving rise to a periodic MCF. This shows that the
finiteness an the periodicity of the Jacobi–Perron algorithm are in some way interrelated.

In this section we shall assume that 1, α(1), . . . , α(m) are linearly dependent over Q, and associate
to every linear dependence relation a sequence of integers (Sn)n≥0, which will be useful in the
investigation of the finiteness of the p–adic Jacobi–Perron algorithm. In particular, in the case
m = 2, we shall provide a condition that must be satisfied by the partial quotients of an infinite
MCF obtained by the p-adic Jacobi–Perron algorithm processing a couple (α, β), where 1, α, β are
Q-linearly dependent. We shall show in next section that, unlike the real case, even for m = 2
there exist some input vectors α such that 1, α(1), . . . , α(m) are Q-linearly dependent but their
p-adic Jacobi–Perron expansion is periodic (and hence not finite).

Let us consider α0 = (α
(1)
0 , . . . , α

(m)
0 ) ∈ Qmp and assume that there is a linear dependence relation

x1α
(1)
0 + . . .+ xmα

(m)
0 + xm+1 = 0 (9)

with x1, . . . , xm+1 ∈ Z coprime. Then we can associate to it the sequence

Sn = x1A
(1)
n−1 + . . .+ xmA

(m)
n−1 + xm+1A

(m+1)
n−1 (10)
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for any n ≥ −m, where A
(i)
n are, as usual, the numerators and denominators of the convergents of

the MCF of α0 defined by (5). It is straightforward to see that the following identities hold:

Snα
(1)
n + . . .+ Sn−m+1α

(m)
n + Sn−m = 0, for any n ≥ 0; (11)

Sn = a
(1)
n−1Sn−1 + . . .+ a

(m)
n−1Sn−m + Sn−m−1, for any n ≥ 1; (12)

Sn = (a
(1)
n−1 − α

(1)
n−1)Sn−1 + . . .+ (a

(m)
n−1 − α

(m)
n−1)Sn−m, for any n ≥ 1; (13)

Sn = x1V
(1)
n−1 + . . .+ xmV

(m)
n−1 , for any n ≥ −m+ 1. (14)

Sn
Sn−1

...
Sn−m

 = BTn−1


x1
x2
...

xm+1

 (15)

where the superscript T denotes transposition.

Proposition 8. Given the sequence (Sn)n≥−m defined by (10), we have that Sn ∈ Z, for any
n ≥ −m and the gcd of Sn, . . . , Sn−m is a power of p. Moreover,

|Sn| < max
1≤i≤m

{|Sn−i|}

so that if the MCF for (α
(1)
0 , . . . , α

(m)
0 ) is infinite, then

lim
n→+∞

Sn = 0 in Qp.

Proof. By definition Sn ∈ Z

[
1

p

]
, for any n ≥ −m, and S−m+1, . . . S0 ∈ Z. Then, using formula

(13), and observing that vp(a
(i)
n−1−α

(i)
n−1) > 0, for i = 1, . . . ,m, where vp(·) is the p-adic valuation,

we get Sn ∈ Z. The assertion about the gcd is easily proved by induction, using formula (12).

Since |a(i)n − α(i)
n | < 1, from (13), we have

|Sn| ≤ max
1≤i≤m

{|a(i)n − α(i)
n ||Sn−1|} < max

1≤j≤m
{|Sn−i|}.

Finally, by Proposition 2 and formula (14) we see that limn→+∞ Sn = 0 in Qp.

An immediate consequence of Proposition 8 is the following

Corollary 1. For n ≥ 0, write n = qm + r with q, r ∈ Z and 0 ≤ r < m; then vp(Sn) > q. In
particular vp(Sn) >

[
n
m

]
for every n ≥ 0.

Proposition 8 and Corollary 1 describe the behaviour of the sequence (Sn) with respect to the
p-adic norm. We study now its behaviour with respect to the euclidean norm. We start by a
general result.

Proposition 9. Let (Tn)n≥−m be any sequence in R satisfying

Tn = y(1)n Tn−1 + . . .+ y(m)
n Tn−m + Tn−m−1, n ≥ 1

where (y
(1)
n )n≥1, . . . (y

(m)
n )n≥1 are sequences of elements in Y; then

lim
n→+∞

Tn

pn
= 0

in R.

Proof. In the following |·|∞ stands for the Euclidean norm. We have∣∣∣∣Tnpn
∣∣∣∣
∞
<

1

2

∣∣∣∣Tn−1pn−1

∣∣∣∣
∞

+
1

2p

∣∣∣∣Tn−2pn−2

∣∣∣∣
∞

+ . . .+
1

2pm−1

∣∣∣∣Tn−mpn−m

∣∣∣∣
∞

+
1

pm+1

∣∣∣∣Tn−m−1pn−m−1

∣∣∣∣
∞

≤ Kp max

{∣∣∣∣Tn−1pn−1

∣∣∣∣
∞
,

∣∣∣∣Tn−2pn−2

∣∣∣∣
∞
, . . . ,

∣∣∣∣Tn−mpn−m

∣∣∣∣
∞
,

∣∣∣∣Tn−m−1pn−m−1

∣∣∣∣
∞

}
,
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where Kp =
1

pm+1
+

1

2

∑m−1
k=0

1

pk
< 1. Therefore

∣∣∣∣Tnpn
∣∣∣∣
∞
< Kn−2

p max

{∣∣∣∣Tmpm
∣∣∣∣
∞
,

∣∣∣∣Tm−1pm−1

∣∣∣∣
∞
, . . . ,

∣∣∣∣T1p
∣∣∣∣
∞
, |T0|∞

}
and the claim follows.

Corollary 2. For the sequence (Sn)n≥−m+1, we have

lim
n→+∞

Sn

pn
= 0

in R.

Proof. By formula (12), the sequence (Sn)n≥−m satisfies the hypothesis of Proposition 9.

We shall use the properties stated above to establish some partial converse of Proposition 6. The

case (α
(1)
0 , . . . , α

(m)
0 ) ∈ Qm is dealt by Proposition 7, so that we can assume that (α

(1)
0 , . . . , α

(m)
0 ) ∈

Qmp \ Qm. Notice that in the case m = 2 under this hypothesis there can be only one linear

dependence relation (9), so that the sequence Sn depends only on the sequence (α
(1)
0 , α

(2)
0 ) ∈ Q2

p.

Proposition 10. Assume that the sequence

(
Sn

pn

)
has bounded denominator, i.e. there exist

k ∈ Z such that vp(Sn) ≥ n + k, for every n. Then the Jacobi–Perron algorithm stops in finitely

many steps when processing the input (α
(1)
0 , . . . , α

(m)
0 ).

Proof. Assume that the Jacobi–Perron algorithm does not stop. Put zn = pk
Sn

pn
; then zn ∈ Z and

the sequence (zn) tends to 0 in the euclidean norm, by Corollary 2. It follows that zn (and hence
Sn) is 0 for n� 0, and this is impossible by formula (11).

The following theorem is the main result of this section. To get an uniform notation, we shall

put α
(m+1)
n = a

(m+1)
n = 1 for every n.

Theorem 1. Assume that 1, α
(1)
0 , . . . , α

(m)
0 are Q-linearly dependent and

vp(a
(j)
n )− vp(a(1)n ) ≥ j − 1 for j = 3, . . . ,m+ 1 and any n sufficiently large. (16)

Then the Jacobi–Perron algorithm stops in finitely many steps when processing the input (α
(1)
0 , . . . , α

(m)
0 ).

Notice that the condition vp(a
(2)
n )− vp(a(1)n ) ≥ 1 is always true by conditions (3).

Proof. By (11) we get
Sn
pn

= −Sn−1
pn−1

γ(1)n − . . .−
Sn−m
pn−m

γ(m)
n ,

where for j = 1, . . . ,m

γ(j)n =
α
(j+1)
n

pjα
(1)
n

.

By equations (3), (4) and hypotheses (16) we have vp(γ
(j)
n ) ≥ 0 for n sufficiently large. Therefore

vp

(
Sn

pn

)
≥ min

{
vp

(
Sn−1

pn−1

)
, . . . , vp

(
Sn−m

pn−m

)}
for n sufficiently large, so that vp

(
Sn

pn

)
≥ K for some

K ∈ Z. Then we conclude by Proposition 10.

In the case m = 2, Theorem 1 assumes the following simple form.

Corollary 3. For m = 2, if 1, α
(1)
0 , α

(2)
0 are linearly dependent over Q and the p-adic Jacobi–

Perron algorithm does not stop then vp(a
(1)
n ) = −1 for infinitely many n ∈ N.

In the next section we shall present some examples where the hypotheses of Corollary 3 are
satisfied.
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Remark 2. In the classical real case, for m = 2, it is possible to prove that the Jacobi–Perron

algorithm detects rational dependence because the sequences (V
(1)
n ) and (V

(2)
n ) are bounded with

respect to the euclidean norm. In fact, this implies that the set of triples (Sn, Sn−1, Sn−2) is finite
and consequently the corresponding MCF is finite or periodic. Moreover it is possible to show
that a periodic expansion can not occur and consequently the Jacobi–Perron algorithm stops when
processes two real numbers α, β such that 1, α, β are Q-linearly dependent, see [32] for details. In

the p-adic case, the sequences (V
(i)
n ) are bounded (because they approach zero in Qp, see Proposition

2); but the argument above does not apply, because the p-adic norm is non-archimedean. However,
considering that vp(Sn) > n

2 by Corollary 1, it could be interesting to focus on the sequence of

integers

(
Sn

pn/2

)
. When this sequence is bounded with respect to the euclidean norm, it is possible

to argue similarly to the real case and deduce the finiteness of the p-adic Jacobi–Perron algorithm
on the given input.

4 On the characteristic polynomial of periodic multidimen-
sional continued fractions

The classical Jacobi–Perron algorithm was introduced over the real numbers with the aim of
providing periodic representations for algebraic irrationalities. However, the problem regarding
the periodicity of MCFs is still open, since it is not known if every algebraic irrational of degree
m+1 belongs to a real input vector of lenght m for which the Jacobi–Perron algorithm is eventually
periodic. On the contrary, periodic MCFs have been fully studied over the real numbers. Indeed,
it is known that a periodic MCF represents real numbers belonging to an algebraic number field of
degree less or equal than m+ 1, see [6] for a survey on this topic. Moreover, for m = 2, Coleman
[10] gave also a criterion for establishing when the periodic MCF converges to cubic irrationalities.
In this section, we start the study of the periodicity of MCFs over Qp. In particular, we shall
see that, analogously to the real case, a periodic p-adic m-dimesional MCF represents algebraic
irrationalities of degree less or equal than m+ 1.

Let us consider a purely periodic MCF of period N :

(α
(1)
0 , . . . , α

(m)
0 ) =

[(
a
(1)
0 , . . . , a

(1)
N−1

)
, . . . ,

(
a
(m)
0 , . . . , a

(m)
N−1

)]
, (17)

i.e., a
(i)
k+N = a

(i)
k for every k ∈ N and i = 1, . . . ,m. By (1), we also have α

(i)
k+N = α

(i)
k for every

k ∈ N and i = 1, . . . ,m, from which, follows

α
(i)
0 =

α
(1)
0 A

(i)
N−1 + . . .+ α

(m)
0 A

(i)
N−m +A

(i)
N−m−1

α
(1)
0 A

(m+1)
n−1 + . . .+ α

(m)
0 A

(m+1)
n−m +A

(m+1)
N−m−1

(18)

using (6). We define the matrix

M := BN−1 =

N−1∏
j=0

Aj =


A

(1)
N−1 A

(1)
N−2 . . . A

(1)
N−m−1

A
(2)
N−1 A

(2)
N−2 . . . A

(2)
N−m−1

...
...

...
...

A
(m+1)
N−1 A

(m+1)
N−2 . . . A

(m+1)
N−m−1


whose characteristic polynomial P (X) will be also called the characteristic polynomial of the
periodic MCF (17). From equation (18), we have

M


α
(1)
0
...

α
(m)
0

1

 =
(
α
(1)
0 A

(m+1)
N−1 + α

(2)
0 A

(m+1)
N−2 + . . .+ α

(m)
0 A

(m+1)
N−m +A

(m+1)
N−m−1

)
α
(1)
0
...

α
(m)
0

1

 .

Moreover, by Proposition 3 we know that
∑m+1
i=1 α

(i)
N A

(m+1)
N−i = α

(1)
1 · · ·α

(1)
N and, since α

(1)
0 = α

(1)
N ,

9



we have

M


α
(1)
0
...

α
(m)
0

1

 = α
(1)
0 . . . α

(1)
N−1


α(1)

...
α(m)

1

 .

Therefore µ := α
(1)
0 . . . α

(1)
N−1 is an eigenvalue of M and a root of the characteristic polynomial

P (X). In the next theorems, we shall see that µ is the p-adic dominant eigenvalue, that is the root
greatest in p-adic norm of P (X) and that the limits of the periodic MCF (17) are strictly related
to µ. Note that it is not a loss of generality to consider purely periodic MCFs, since the algebraic
properties of the complete quotients of a MCF coincide with those of the input vector.

Theorem 2. Given the purely periodic MCF

(α
(1)
0 , . . . , α

(m)
0 ) =

[(
a
(1)
0 , . . . , a

(1)
N−1

)
, . . . ,

(
a
(m)
0 , . . . , a

(m)
N−1

)]
and its characteristic polynomial P (X), then µ = α

(1)
0 . . . α

(1)
N−1 is the greatest root in p-adic norm.

Proof. We consider a
(1)
n =

ã
(1)
n

pkn
, for any n ≥ 0, where kn ≥ 0 (kn > 0, for n > 0). We define the

quantity k = k0 + . . .+ kN−1 and the matrix

M′ := pkM = A′0 . . .A′N−1

where

A′i = pkiAi =


ã
(1)
i pki 0 . . . 0

pkia
(2)
i 0 pki . . . 0

...
...

...
...

...

pkia
(m)
i 0 0 . . . pki

pki 0 0 . . . 0

 ≡

ã
(1)
i 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
0 0 0 . . . 0

 (mod p).

Therefore

M′ ≡


ã
(1)
0 . . . ã

(1)
N−1 0 0 . . . 0

0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
0 0 0 . . . 0

 (mod p). (19)

Let Q(X) be the characteristic polynomial of M′. Then, λ is an eigenvalue of M if and only if
pkλ is an eigenvalue of M′. If λ1, . . . , λm+1 are the eigenvalues of M, then

Q(X) =

m+1∏
i=1

(X − pkλi) = pk(m+1)
m+1∏
i=1

(
x

pk
− λi

)
= pk(m+1)P

(
X

pk

)
so that

P (X) =
1

pk(m+1)
Q(pkX).

From (19) we have

Q(X) ≡ Xm(X − ã(1)0 . . . ã
(1)
N−1) (mod p).

Thus
Q(X) = Xm+1 + δmX

m + . . .+ δ0

with

δm ≡ ã(1)0 . . . ã
(1)
N−1 (mod p), δi ≡ 0 (mod p) for i = 0, . . . ,m− 1, δ0 = ±pk(m+1).
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It follows

Pµ(X) =
1

pk(m+1)
Q(pkX)

=
1

pk(m+1)
(pk(m+1)Xm+1 + δmp

kmXm + . . .+ δip
kiXi + . . .+ δ0)

= X(m+1) +
δm
pk
Xm + . . .+

δi
pk(m+1−i)X

i + . . .± 1

= Xm+1 + γmX
m + . . .+ γ0,

where

γi =
δi

pk(m+1−i) for i = 0, . . . ,m, (γ0 = ±1).

Now, we put µi = vp(δi)for i = 1, . . . ,m and observe that

µm = 0, µi > 0 for i = 1, . . . ,m− 1, µ0 = k(m+ 1).

We can see that

vp(γm) = vp(a
(1)
0 . . . a

(1)
N−1) =

N−1∑
i=0

vp(a
(1)
i ) = −k

vp(γi) = vp(δi)− k(m+ 1− i)
= µi + ik − (m+ 1)k for i = 0, . . . ,m.

Now we want to study the Newton polygon (see [16]) of P (X) for proving that µ is the root greatest
in p-adic norm.

The line, in the real plane, passing through the points (i, vp(γi)) and (m+ 1, 0) has equation

y =
vp(γi)

m+ 1− i
(−x+m+ 1), (20)

for any i = 1, . . . ,m− 1. We will denote with si the slope of this line. From the fact that

vp(γi) = µi − k(m+ 1− i) and µi = vp(δi) > 0,

we get
vp(γi)

m+ 1− i
=

µi
m+ 1− i

− k > −k,

i.e., the point in the real plane with coordinates (m, vp(γm)) = (m,−k) lies strictly under the line
(20), for any i = 1, . . . ,m− 1.

Thus, the Newton polygon associated to the polynomial P (X) has slopes (s1, . . . , sm), which
is a strictly increasing sequence, where the last slope sm is equal to k. Hence, the claim of the
theorem follows from [16, Theorem 6.4.7] and the fact that the sequence (s1, . . . , sm) of slopes is
strictly increasing.

Theorem 3. Given the purely periodic MCF

(α
(1)
0 , . . . , α

(m)
0 ) =

[(
a
(1)
0 , . . . , a

(1)
N−1

)
, . . . ,

(
a
(m)
0 , . . . , a

(m)
N−1

)]
and its characteristic polynomial P (X), then

a) Q(µ) = Q(α
(1)
0 , . . . , α

(m)
0 )

b) µ 6∈ Q

where µ is the greatest root in p-adic norm of P (X).
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Proof.

a) Since µ = α
(1)
0 . . . α

(1)
N−1, obviously µ ∈ Q(α

(1)
0 , . . . , α

(m)
0 ); conversely by Theorem 2 the nullspace

of BN−1 − µIm+1 ∈ Mm+1(Q(µ)) is 1-dimensional (where Im+1 is the (m+ 1)× (m+ 1) identity
matrix and Mm+1(Q(µ)) denotes the set of (m + 1) × (m + 1) matrices with entries in Q(µ)).
Therefore it is generated by a vector β = (β1, . . . , βm+1) with entries in Q(µ), which must be

proportional to (α
(1)
0 , . . . , α

(m)
0 , 1). It follows that α(i) = βi

βm+1
∈ Q(µ) for i = 1, . . . ,m.

b) Assume that µ ∈ Q, then α
(1)
0 , . . . , α

(m)
0 ∈ Q. But in this case the MCF corresponding to

(α
(1)
0 , . . . , α

(m)
0 ) is finite (see [26]), so that it cannot be periodic.

From the previous theorems, we have that a periodic MCF converges to a m–tuple of algebraic
irrationalities of degree less or equal than m+ 1,belonging to the field generated over Q by the the
root greatest in p-adic norm of the characteristic polynomial. In the characteristic polynomial is
irreducible, then the algebraic irrationalities are of the maximum degree. In the following, we see
some further properties of the roots of the characteristic polynomial and then we focus on the case
m = 2 for some specific considerations.

Lemma 1. Let P (X) = Xm+1+γmX
m+. . .+γ1X+(−1)m(N+1)+1 be the characteristic polynomial

of the purely periodic MCF (α
(1)
0 , . . . , α

(m)
0 ) =

[(
a
(1)
0 , . . . , a

(1)
N−1

)
, . . . ,

(
a
(m)
0 , . . . , a

(m)
N−1

)]
. We have

that

a) every γi is a polynomial in Z[a
(i)
j , i = 1, . . . ,m, j = 0, . . . N − 1] and each monomial has the

form λc0c1 . . . cN−1 where λ ∈ Z and cj = 1 or cj = a
(i)
j for some i = 1, . . . ,m;

b) the monomial a
(1)
0 · · · a

(1)
N−1 appears only in γm.

Proof. Let us observe that any coefficient γi is the sum of the principal minors of the matrix BN−1
of order m+ 1− i, for i = 1, . . . ,m. Hence the thesis follows from Proposition 5.

Theorem 4. Given the purely periodic MCF

(α
(1)
0 , . . . , α

(m)
0 ) =

[(
a
(1)
0 , . . . , a

(1)
N−1

)
, . . . ,

(
a
(m)
0 , . . . , a

(m)
N−1

)]
,

every root of its characteristic polynomial P (X) = Xm+1 + γmX
m + . . . + γ1X + (−1)m(N+1)+1

has p-adic norm less than 1, except for the root greatest in p-adic norm µ = α
(1)
0 · · ·α

(1)
N−1.

Proof. By Lemma 1 and |a(1)n | > 1, |a(1)n | > |a(j)n | for n ∈ N, j = 2, . . . ,m + 1, we have |γi| ≤
|a(1)0 · · · a

(1)
N−1|, for any i = 1, . . . ,m. Moreover, this inequality becomes equality if and only if

i = m. If λ1 = µ, λ2, . . . , λk are the roots of P (X) with p-adic norm ≥ 1, then γm+1−k ≥ |µ| =

|a(1)0 · · · a
(1)
N−1|. Recalling that γm+1−k is also the k-th elementary symmetric function of the roots,

this implies k = 1 and the thesis follows.

Theorem 5. Let z be a complex root of the characteristic polynomial P (X) of the purely periodic

MCF
[(
a
(1)
0 , . . . , a

(1)
N−1

)
, . . . ,

(
a
(m)
0 , . . . , a

(m)
N−1

)]
. Then

|z|∞ < pN .

Proof. By Gershgorin theorem [15] there esists a row j = 1, . . . ,m+ 1 in BN−1 such that

|z −A(j)
N−j |∞ ≤

∑
k=1,...,m+1, k 6=j

|A(j)
N−k|∞.

In particular

|z|∞ ≤
m+1∑
k=1

|A(j)
N−k|∞ <

1

2

m+1∑
k=1

pN−k+1

by Proposition 4. Moreover,

1

2

m+1∑
k=1

pN−k+1 =
1

2
pN−m

m∑
k=0

pk =
1

2
pN−m

pm+1 − 1

p− 1
≤ pN .
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The previous theorems are useful in order to give some further information about the algebraic
properties of the limits of a periodic MCF. We firstly consider the case N = 1:

Proposition 11. The characteristic polynomial of a purely periodic MCF with period N = 1 does
not have any rational root. In particular when m = 2 the characteristic polynomial is irreducible
over Q, and the limits of the MCF generate a cubic field.

Proof. Let z be a rational root of the characteristic polynomial; by the rational root theorem it
must be (up to a sign) a power of p. By Theorem 3 b), we know that z 6= µ, and this implies that
vp(z) ≥ 1 by Theorem 4. But |z|∞ < p by Theorem 5, a contradiction.

In general, a rational root of a MCF with period of length N must satisfy |z|∞ < pN and
vp(z) ≥ 1, so that for the rational root theorem it must be of the kind ±pk, with k ≤ N − 1. The
next proposition gives a necessary condition for the existence of such a root, in the case m = 2
and N = 2.

Proposition 12. Let us consider the purely periodic MCF
[
(a0, a1) ,

(
b0, b1

)]
. Then its charac-

teristic polynomial P (X) is irreducible over Q unless the following condition is verified, possibly
interchanging the indices 0 and 1:

• a0 is of the form ± 1
p + w with w ∈ Z, |w|∞ ≤ p−1

2 , w 6= 0; and

• either vp(a1p+ 1) = vp(a1) + 1 (which implies vp(b1) = vp(a1) + 1, vp(b0) = 0)

or a1 is of the form ± 1
p + u with u ∈ Z, |u| ≤ p−1

2 , u 6= 0;

in the latter case one between b0 and b1 is zero and the other one is equal to −wu± p.

(21)

Proof. Write
P (X) = X3 + γ2X

2 + γ1X − 1,

then
γ2 = −(a0a1 + b0 + b1), γ1 = b1b0 − a0 − a1

so that
P (X) = X(X − b0)(X − b1)− (a0X + 1)(a1X + 1).

We put k1 = −vp(a1), k2 = −vp(a2), k = k1 + k2. By Theorems 4 and 5 the only possible rational
roots of P (X) are ±p. So assume

P (±p) = ±p(±p− b0)(±p− b1)− (±a0p+ 1)(±a1p+ 1) = 0. (22)

Notice that the valuation of the first summand is ≥ −k + 3 and that of the second summand is
≥ −k + 2. Therefore, the valuation of the second summand must be ≥ −k + 3. This implies that
at least one between a0 and a1, say a0, must satisfy v(±a0p + 1) > −k0 + 1, that is a0p ≡ ∓1
(mod p). Since a0 ∈ Y this implies a0 = ∓ 1

p + w with w ∈ Z, |w|∞ ≤ p−1
2 and (22) becomes

± (±p− b0)(±p− b1)− w(±a1p+ 1) = 0. (23)

We show that w 6= 0: otherwise one between b0 and b1 should be equal to ±p, which is a contra-
diction because b0, b1 ∈ Y.
The right-hand side of (23) has valuation ≥ −k1 + 1; and vp(±p− b0) ≥ 0, vp(±p− b1) ≥ −k1 + 1.
If the valuation of the right side is exactly −k1 + 1 then it must be v(b0) = 0, v(b1) = −k1 + 1. On
the other hand, if the valuation of the right side is > −k1 + 1 then a1p ≡ ∓1 (mod p). As above
this implies a0 = ∓ 1

p + u with u ∈ Z, |u|∞ ≤ p−1
2 , u 6= 0 and (23) becomes

± (±p− b0)(±p− b1)− wup = 0. (24)

This implies that one between b0 and b1 is 0, the other one (say bi) has valuation 0, and satisfies
±p− bi = wu.

In order to provide numerical examples, the following proposition will be useful.

Proposition 13. Let us consider the purely periodic 2-dimensional MCF (α, β) =
[
(a0, . . . , aN−1) ,

(
b0, . . . , bN−1

)]
and suppose that its characteristic polynomial P (X) is reducible. Let z = ±pk be the (unique) ra-
tional root of P (X), then the 1-dimensional eigenspace L ⊆ Q3 of the transpose of BN−1 associated
to z coincides with the space L′ of rational vectors (x, y, z) such that xα+ yβ + z = 0.
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Proof. Notice firstly that the space L′ is one-dimensional, because Theorem 3 and the reducibility
of P (X) imply that [Q(α, β) : Q] = 2. Therefore there is a linear dependence relation

x1α+ x2β + x3 = 0

with coprime x1, x2, x3 ∈ Z, and (x1, x2, x3) generates L′. Since αN = α, βN = β, by property (11)
of the sequence (Sn) defined by (10), the vector (SN , SN−1, SN−2) must be a rational multiple of
(x1, x2, x3); then by (14) (x0, y0, z0) is an eigenvector associated to a rational eigenvalue, so that
it belongs to L.

Example 1. Condition (21) is essential. Consider the following examples.

• For p = 5, the periodic MCF (α, β) =
[(

4
5 ,

11
5

)
,
(
1, 2
)]

has characteristic polynomial

P (X) = X3 − 119

25
X2 −X − 1

and

P (X) = (X − 5)

(
X2 − 6

25
X +

1

5

)
.

Moreover by using Proposition 13 we find the linear dependence relation between α, β and 1:

20α+ 5β + 4 = 0.

• For p = 3, the periodic MCF (α, β) =
[(

2
3 ,

5
3

)
,
(
1, 0
)]

has characteristic polynomial

P (X) = X3 − 19

9
X2 − 7

3
X − 1 = (X − 3)

(
X2 +

8

9
X +

1

3

)
.

and
6α+ 3β + 2 = 0.

• For p = 3, the periodic MCF (α, β) =
[(

2
3 ,

13
9

)
,
(

1, 13

)]
has characteristic polynomial

P (X) = X3 − 62

27
X2 − 16

9
X − 1 = (X − 3)

(
X2 +

19

27
X +

1

3

)
.

The linear dependence relation between α, β, 1 is the same as in the previous case:

6α+ 3β + 2 = 0.

The above examples also show Q-linearly dependent numbers having a periodic (hence not
finite) expansion by the p-adic Jacobi–Perron algorithm.
At the present time we were not able to find examples of m-tuples of Q-linearly dependent p-adic
numbers whose MCF is infinite and not periodic. Therefore, we state the following

Conjecture 1. Let α = (α(1), . . . , α(m)) ∈ Qmp be such that 1, α(1), . . . , α(m) are Q-linearly depen-
dent. Then the p-adic Jacobi-Perron algorithm for α is finite or periodic.
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