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Abstract

The polynomial Pell equation is

P 2 −DQ2 = 1

where D is a given integer polynomial and the solutions P,Q must be integer polynomials.
A classical paper of Nathanson [11] solved it when D(x) = x2 + d. We show that the Rédei
polynomials can be used in a very simple and direct way for providing these solutions. More-
over, this approach allows to find all the integer polynomial solutions when D(x) = f2(x) + d,
for any f ∈ Z[X] and d ∈ Z, generalizing the result of Nathanson. We are also able to find
solutions of some generalized polynomial Pell equations introducing an extension of Rédei
polynomials to higher degrees.
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1 Introduction

The Pell equation
x2 − dy2 = 1

is one of the most famous Diophantine equations. It has infinite integer solutions when d is not
a square and they can be determined using the continued fraction’s expansion of

√
d. It is very

interesting to study the polynomial Pell equation, i.e., find polynomials P and Q in Z[X] satisfying

P 2 −DQ2 = 1 (1)

where D ∈ Z[X] is a fixed polynomial. Nathanson [11] solved the polynomial Pell equation when
D = x2 + d. In particular, he proved that it has non-trivial solutions if and only if d = ±1,±2 and
provided explicitly the polynomial solutions. Pastor [13] showed that the solutions of Nathanson
can be also expressed in terms of Chebyshev polynomials. Webb and Yokota [17] found a necessary
and sufficient condition for which the polynomial Pell equation has non-trivial solutions when
D = A2+2C monic polynomial, A/C ∈ Z[X] and degC < 2. In [18], such result is generalized when
pA/C ∈ Z[X], for some prime p, without any condition on the degree of C. In this case, the authors
also determined the solutions. Then, Yokota [19] found a necessary and sufficient condition for the
solution of the polynomial Pell equation when A/C ∈ Q[X]. Hazama [7] studied the polynomial
Pell equation using the twist of a conic by another conic. Further studies can be found in [10] and
[14]. Mc Laughlin [9] focused on the relations between polynomial solutions of the Pell equation
and fundamental units of real quadratic fields. Some authors studied polynomial solutions of (1)
in C[X], see [4], [6], [20]. Despite many studies on the polynomial Pell equation, there are no works
that highlight its connection with the Rédei polynomials, which are also classical tools in number
theory, see [15], [8]. In this paper, we show this connection and how using Rédei polynomials for
solving (1) for polynomials D more general than the polynomials studied in previous works.

The paper is structured as follows. We introduce the Rédei polynomials in section 2 where we
show that solutions of (1) are the Rédei polynomials for some kind of polynomials D. The solutions
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of Nathanson arise as particular cases. The used method, even if simple and straightforward, is
very general and allows to approach also polynomial Pell equations with higher degrees by means
of a generalization of the Rédei polynomials, as we will see in section 3.

2 Solution of the polynomial Pell equation via Rédei poly-
nomials

Rédei polynomials were introduced in [15] and they are a particular case of Dickson polynomials
[8]. They arise from the development of

(
√
α+ z)n = Dn(α, z)

√
α+Nn(α, z), n = 0, 1, . . .

where z, α ∈ Z, α not square. They can be written in the following closed form:

Nn(α, z) =

[n/2]∑
k=0

(
n

2k

)
αkzn−2k, Dn(α, z) =

[n/2]∑
k=0

(
n

2k + 1

)
αkzn−2k−1.

It will be very useful the following matricial identity that can be easily proved by induction:(
z α
1 z

)n

=

(
Nn(α, z) αDn(α, z)
Dn(α, z) Nn(α, z)

)
, (2)

from which follows

(
z α
1 z

)(
Nn−1(α, z)
Dn−1(α, z)

)
=

(
Nn(α, z)
Dn(α, z)

)
,

(
Nn−1(α, z)
Dn−1(α, z)

)
=


z

z2 − α
−

α

z2 − α
−

1

z2 − α
z

z2 − α

(Nn(α, z)
Dn(α, z)

)
(3)

From (2), it also follows that the Rèdei polynomials are linear recurrent sequences with character-
istic polynomial t2 − 2zt+ z2 − α, i.e.,{

Nn(α, z) = 2zNn−1(α, z)− (z2 − α)Nn−2(α, z), n ≥ 2

N0(α, z) = 1, N1(α, z) = z
, (4){

Dn(α, z) = 2zDn−1(α, z)− (z2 − α)Dn−2(α, z), n ≥ 2

D0(α, z) = 0, D1(α, z) = 1
(5)

Finally, we can observe that Nn(α, z) and Dn(α, z) are polynomials of degree n and n − 1 in

z, respectively. The Rédei rational functions
Nn(α, z)

Dn(α, z)
have been studied and applied in several

fields. For instance, they have been exploited to create public key cryptographic systems [3], [12]
and to generate pseudorandom sequences [16]. Moreover, in [2], the authors used the Rédei rational
functions for generating solutions of the classical Pell equation. For further properties of the Rédei
polynomials, see [8].

In the classical paper of Nathanson [11], he proved that the polynomial Pell equation

P 2 − (x2 + d)Q2 = 1,

has non-trivial solutions P (x), Q(x) ∈ Z[X] if and only if d = ±1,±2 and he gave these polynomials
explicitly: {

An =
(
2
dx

2 + 1
)
An−1 + 2

dx(x2 + d)Bn−1, A0 = 1

Bn = 2
dxAn−1 +

(
2
dx

2 + 1
)
Bn−1, B0 = 0

for any n ≥ 1, when d = 1,±2 and{
A′n = xA′n−1 + (x2 − 1)B′n−1, A′0 = 1

B′n = A′n−1 + xB′n−1, B′0 = 0

2



for any n ≥ 1, when d = −1. Using the Rédei polynomials, we can solve a more general case of
polynomial Pell equations, where we retrieve the results of Nathanson as a particular case. In the
next theorem we see that the Rédei polynomials are polynomial solutions of

P 2 − (f2(x) + d)Q2 = 1, (6)

where f(x) is any integer polynomial and d ∈ Z.

Theorem 1. Given d ∈ Z and f ∈ Z[X], consider the Rédei polynomials Nn(x) = Nn(f2(x) +
d, f(x)) and Dn(x) = Dn(f2(x) + d, f(x)), then(

Nn(x)

(−d)n/2

)2

− (f2(x) + d)

(
Dn(x)

(−d)n/2

)2

= 1.

Moreover, the solutions are integer polynomials if and only if d = 1,±2 and n even, d = −1 for
any n.

Proof. From (2) we have
N2

n(α, z)− αD2
n(α, z) = (z2 − α)n,

for any n ≥ 1. Considering z = f(x) and α = f2(x) + d we obtain

N2
n(x)− (f2(x) + d)D2

n(x) = (−d)n

i.e., (
Nn(x)

(−d)n/2

)2

− (f2(x) + d)

(
Dn(x)

(−d)n/2

)2

= 1.

Clearly, when d = −1, we have obtained solutions of the polynomial Pell equation which are integer

polynomials. When d = 1,
Nn(x)

(−d)n/2
and

Dn(x)

(−d)n/2
are integer polynomials if and only if n is even.

We complete the proof showing that d[n/2] | Nn(x) if and only if d = ±2, for any n ≥ 1. For n = 1
and n = 2, we have

N1(x) = f(x), N2(x) = 2f2(x) + d

and the statement is true. Let us observe that if d 6= ±2, then d 6| N2(x). Now, we proceed by
induction. From (4), we have

Nn(x) = 2f(x)Nn−1(x) + dNn−2(x) = 2f(x)d[(n−1)/2] · a+ d · d(n−2)/2 · b

for certain integers a and b. From the last equality, which holds by inductive hypothesis, we have
that d[n/2] | Nn(x). Similarly, we can get the same result for Dn(x).

For proving that all the integer polynomial solutions of (6) are given in the previous theorem,
we need the following lemma.

Lemma 1. Let f(x), P (x) and Q(x) be polynomials of degree m, nm and (n− 1)m, respectively,
with coefficients of the highest degree that are positive and

P 2 − (f2(x) + d)Q2 = (−d)n, (7)

with d ∈ Z∗. Given P ′(x) = −
f(x)

d
P (x) +

f2(x) + d

d
Q(x) and Q′(x) =

1

d
P (x)−

f(x)

d
Q(x) then

1. P ′2 − (f2(x) + d)Q′2 = (−d)n−1

2. degP ′ < degP and degQ′ < degQ

Proof. 1. We have

P ′2− (f2(x)+d)Q′2 =
f2(x)

d2
P 2 +

(f2(x) + d)2

d2
Q2− (f2(x)+d)

1

d2
P 2− (f2(x)+d)

f2(x)

d2
Q2 =

= −(f2(x) + d)
1

d2
(P 2 − (f2(x) + d)Q2) +

f2(x)

d2
(P 2 − (f2(x) + d)Q2) =

= −(f2(x) + d)(−d)n−2 + f2(x)(−d)n−2 = (−d)n−1.
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2. Since degP 2 = 2nm, deg f2Q2 = 2nm, degQ2 = 2nm− 2m and it holds

P 2 − f2(x)Q2 − dQ2 = (−d)n

we have that P 2 − f2Q2 has degree 2nm − 2m. Moreover, we can observe that the degree
of P + fQ is nm by the hypothesis that coefficients of the highest degree of P, f,Q are
positive. Thus, from P 2− f2Q2 = (P − fQ)(P + fQ), we have that the coefficients of degree
nm, nm − 1, . . . nm − m of the polynomial P − fQ are zero, i.e., degQ′ < degQ. Similar
considerations prove that degP ′ < degP .

Theorem 2. All the integer polynomial solutions of

P 2 − (f2(x) + d)Q2 = 1 (8)

are the polynomials Nn(x) and Dn(x) for d = −1 and any n, Nn(x)
(−d)n/2 and Dn(x)

(−d)n/2 for d = 1,±2

and n even.

Proof. Let P (x) and Q(x) be solutions of (8), if deg f = m, then must be degP = mn and
degQ = m(n − 1). Now we consider the polynomials P̃ (x) = dn/2 · P (x) and Q̃(x) = dn/2 · Q(x)
and we show that these polynomials coincide with the Rédei one’s (unless the sign). We proceed
by induction on n. The basis of the induction is straightforward to check. By Lemma 1 and the

inductive hypothesis −
f(x)

d
P̃ (x) +

f2(x) + d

d
Q̃(x) = Nn−1(x) and

1

d
P̃ (x)−

f(x)

d
Q̃(x) = Dn−1(x).

Let us observe that we have assumed the positivity of the highest coefficients because of the form
of the equation (8), in which only the squares f2, P 2, Q2 appear, hence hypotheses of Lemma 1
are satisfied. Thus, from (3), we have the thesis.

We have seen that the Rédei polynomials allow to study and solve a vast class of polynomial
Pell equations in a very simple and direct way. This also generalizes the result of Nathanson [11]
that we can retrieve when f(x) = x. Moreover, we can use the above approach for studying the
most general case of polynomial Pell equations, i.e.,

P 2 − f(x)Q2 = 1,

where f is any integer polynomial. In this case, if we consider α = f(x) and z = ±
√
f(x) + 1,

surely we obtain that
N2

n(x)− f(x)D2
n(x) = 1

for any n ≥ 0, where Nn(x) = Nn(f(x),±
√
f(x) + 1) and Dn(x) = Dn(f(x),±

√
f(x) + 1). If

f(x) is a polynomial such that f(x) + 1 is a square, then the Rédei polynomials Nn(x) and Dn(x)
are integer polynomials for any n ≥ 0.

Question 1. Are all the solutions of the polynomial Pell equation (1), for any D(x) ∈ Z[X], the
Rédei polynomials?

Example 1. In the following Table 1, we write the Rédei polynomials Nn(x4−1, x2) and Dn(x4−
1, x2), by Theorem 1 we have that they are the solutions of the polynomial Pell equation P 2− (x4−
1)Q2 = 1.

n Nn(x4 − 1, x2) Dn(x4 − 1, x2)

1 x2 1
2 2x4 − 1 2x2

3 4x6 − 3x2 4x4 − 1
4 8x8 − 8x4 + 1 8x6 − 4x2

5 16x10 − 20x6 + 5x2 16x8 − 12x4 + 1

Table 1: Polynomial solutions of P 2 − (x4 − 1)Q2 = 1
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Example 2. In Table 2, we summarize the Rèdei polynomials Nn(x4 + 2, x2) and Dn(x4 + 2, x2).
For obtaining integer polynomials that are the solutions of the polynomial Pell equation P 2− (x4 +
2)Q2 = 1, we have to consider the Rédei polynomials with even index n and divide them by −2n/2.
In this way we the following solutions

(−x4 − 1,−x2), (2x8 + 4x4 + 1, 2x6 + 2x2), (−4x12 − 12x8 − 9x4 − 1,−4x10 − 8x6 − 3x2), . . .

n Nn(x4 + 2, x2) Dn(x4 + 2, x2)

1 x2 1
2 2x4 + 2 2x2

3 4x6 + 6x2 4x4 + 2
4 8x8 + 16x4 + 4 8x6 + 8x2

5 16x10 + 40x6 + 20x2 16x8 + 24x4 + 4
6 32x12 + 96x8 + 72x4 + 8 32x10 + 64x6 + 24x2

Table 2: Rèdei polynomials Nn(x4 + 2, x2) and Dn(x4 + 2, x2)

Example 3. If we consider the Rédei polynomials Nn(x2 + 3, x) and Dn(x2 + 3, x), summarized
in Table 3, we have that Nn(x2 + 3, x)/(−d)n/2 and Dn(x2 + 3, x)/(−d)n/2 are the solutions of
the polynomial Pell equation P 2 − (x2 + 3)Q2 = 1, however, in this case, we do not have integer
polynomials as solutions.

n Nn(x2 + 3, x) Dn(x2 + 3, x)

1 x 1
2 2x2 + 3 2x
3 4x3 + 9x 4x2 + 3
4 8x4 + 24x2 + 9 8x3 + 12x
5 16x5 + 60x3 + 45x 16x4 + 36x2 + 9

Table 3: Rèdei polynomials Nn(x2 + 3, x) and Dn(x2 + 3, x)

In the next scetion, we see that the Rédei polynomials can be generalized in a natural way and
they are useful for studying polynomial Pell equations of higher degrees.

3 Polynomial Pell equation of higher degrees

The classical Pell equation can be generalized in a natural way to higher degrees. Indeed, we
can observe that the Pell equation arises considering the unitary elements of the quotient filed
Q[x]/(x2 − d), where x2 − d is an irreducible polynomial over Q. Thus, considering the unitary
elements of Q[x]/(x3 − c), where c is not a cube, we get the cubic Pell equation

x3 + cy3 + cz3 − 3cxyz = 1,

in the unknowns x, y, z. Similarly, we can construct the Pell equations of degree m that is defined
by

det


x1 rxm rxm−1 . . . rx2
x2 x1 rxm . . . rx3
...

...
. . .

. . .
...

xm−1 xm−2 . . . x1 rxm
xm xm−1 xm−2 . . . x1

 = 1 (9)

in the unknowns x1, . . . xm, where r is not a m-th power. For further details, see [1]. Thus, it is
natural generalizing the study of the polynomial Pell equation to higher degrees, considering the
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matrix

P =


P1 RPm RPm−1 . . . RP2

P2 P1 RPm . . . RP3

...
...

. . .
. . .

...
Pm−1 Pm−2 . . . P1 RPm

Pm Pm−1 Pm−2 . . . P1

 , detP = 1, (10)

where P1(x), . . . , Pm(x) are unknown polynomials and R(x) is a given integer polynomial. Gaunet
[5] studied the polynomial cubic Pell equation

P 3
1 +RP 3

2 +R2P 3
3 − 3RP1P2P3 = 1 (11)

when R(x) = x3+ax+b, characterizing when the equation admits non-trivial solutions and finding
them. Here, we study the general polynomial Pell equation of degree m, given by equation (10),
where P1, . . . Pm are unknown polynomial in Z[X] and R(x) = f(x) + r, with f(x) is any integer
polynomial and r ∈ Z. As a particular case we obtain solutions of the equation (11) for a different
class of polynomials R.

We define the generalized Rédei polynomials by means of

(z + m
√
α)n = A(0)

n (z, α) +A(1)
n (z, α) m

√
α+ . . .+A(m−1)

n (z, α)
m
√
αm−1.

In the following, when there is no confusion, we omit the dependence on z, α when we write the
generalized Rédei polynomials for the seek of simplicity. The generalized Rédei polynomials can
be obtained by the powers of a particular m×m matrix. Indeed, by definition, we have

A
(0)
n+1 +A

(1)
n+1

m
√
α+ . . .+A

(m−1)
n+1

m
√
αm−1 = (A(0)

n +A(1)
n

m
√
α+ . . .+A(m−1)

n
m
√
αm−1)(z + m

√
α)

i.e.
A

(0)
n+1 = zA(0)

n + αA(m−1)
n , A

(i)
n+1 = zAi

n +A(i−1)
n , i = 1, . . . ,m− 1.

Thus, given the matrix

M =


z 0 0 . . . α
1 z 0 . . . 0
...

. . .
. . .

...
...

0 . . . 1 z 0
0 . . . 0 1 z

 (12)

we can write

M


A

(0)
n

...

A
(m−1)
n

 =


A

(0)
n+1
...

A
(m−1)
n+1


from which

Mn =


A

(0)
n αA

(m−1)
n . . . αA

(1)
n

A
(1)
n A

(0)
n . . . αA

(2)
n

...
...

. . .
...

A
(m−1)
n A

(m−2)
n . . . A

(0)
n

 . (13)

From (12), we can observe that detMn = (zm + (−1)m−1α)n, on the other hand, from (13) we

have that detMn = detP when P1 = A
(0)
n , . . . , Pm = A

(m−1)
n and R = α. Thus, the generalized

Rédei polynomials can be exploited for solving the polynomial Pell equation of higher degrees for
convenient choices of z and α. Indeed, if z = f(x) ∈ Z[x] and α = (−f(x))m + r, with r ∈ Z,
then the Rédei polynomials satisfy the polynomial equation detP = ((−1)m−1r)n, where R(x) =

(−f(x))m + r, and the polynomials
A

(0)
n (x)

((−1)m−1r)n/m
, . . . ,

A
(m−1)
n (x)

((−1)m−1r)n/m
satisfy the polynomial

Pell equation detX = 1, for R(x) = (−f(x))m + r. However, these solutions are not ever integer
polynomials. They are integer polynomials in the following cases

1. r = −1 and any n ≥ 0,

6



2. r = 1 and any n ≡ 0 (mod m),

3. r = ±m and any n ≡ 0 (mod m), when m is a prime number.

The situations 1 and 2 are immediate to verify. Let us focus on situation 3. We can observe that

A
(0)
1 (x) = f(x), A

(0)
2 (x) = f2(x), . . . , A

(0)
m−1(x) = fm−1(x), A(0)

m (x) = ±m

Moreover, the characteristic polynomial of M is

xm +

m−1∑
i=1

(−1)i
(
m

i

)
xm−if i(x)±m,

thus if m is prime, we have

±m|A(0)
m (x),±m|A(0)

m+1(x), . . . ,±m|A(0)
2m−1(x)

and consequently m2|A(0)
2m(x). Thus we can prove by induction that the Rédei polynomials are in

Z[x] for r = ±m and any n ≡ 0 (mod m), when m is a prime number.

Question 2. Are all the integer polynomial solutions of (10), for R(x) = (−f(x))m +r, the Rédei
polynomials?
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