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Quantum many-body systems with exact local gauge symmetries exhibit rich out-of-equilibrium
physics such as constrained dynamics and disorder-free localization. In a joint submission [J. C. Hal-
imeh and P. Hauke, arXiv:2004.07248], we present evidence of staircase prethermalization in a Z2

lattice gauge theory subjected to a small breaking of gauge invariance. Here, we consolidate this find-
ing and the associated emergent nonperturbative timescales analytically and numerically. By means
of a Magnus expansion, we demonstrate how exact resonances between different gauge-invariant
supersectors are the main reason behind the emergence of staircase prethermalization. Furthermore,
we showcase the robustness of our conclusions against various initial conditions including different
system sizes, matter fillings, and gauge-invariance sectors, in addition to various boundary conditions,
such as different maximal on-site matter occupations. We also elaborate on how our conclusions
are unique to local-symmetry models and why they break down in the case of global-symmetry
breaking. We moreover extend our results to U(1) lattice gauge theories, illustrating the generality
of our findings. Our work offers an analytic footing into the constrained dynamics of lattice gauge
theories and provides proof of a certain intrinsic robustness of gauge-theory dynamics to errors in
experimental settings.
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I. INTRODUCTION

Quantum simulators for lattice gauge theories provide
a fundamentally different viewpoint on subatomic physics
from a low-energy perspective.1–4 Not only does this ap-
proach generate new cross-fertilizations between differ-
ent physics communities, but it also promises to enable
cheaper and faster experimental investigations5–13 into
open questions from high-energy physics. One major
challenge for the low-energy experimental realization of
gauge theories is the need to ensure gauge invariance,
the local conservation law that ties charged matter and
gauge fields to each other. The requirement to engineer
the experimental system such that it respects the gauge
symmetry14,15 is in stark contrast to subatomic physics,
where—with the exception of few examples16–18—gauge
invariance is mostly accepted as a law given by nature19,20

(see Refs. 21 and 22 for examples of discussions of gauge-
invariance violations in lattice numerics). However, in
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quantum-simulator setups where both matter and gauge
fields are realized as active degrees of freedom,11–13 en-
forcing perfect gauge invariance is impossible, as it would
require unrealistic fine tuning of experimental parameters.
Despite several remedies already available to mitigate the
effect of inherent gauge invariance-breaking errors,23–31

understanding the time evolution of gauge violation in
lattice gauge theories is an open challenge.

In a joint submission,32 we demonstrate how a small
breaking of gauge invariance with strength λ drives a Z2

lattice gauge theory into the nonperturbative behavior of
staircase prethermalization (see also Fig. 1). In this phe-
nomenon, the gauge violation and local observables enter
long-lived prethermal plateaus occurring at timescales
λ−s, with s an integer in the range 0 ≤ s ≤ L/2, where L
is the (even) number of matter sites. The plateau reached
at timescale λ−L/2 is the final nonthermal steady state,
where the gauge violation is maximal. The phenomenon
of staircase prethermalization is of relevance not only for
near-future quantum simulators, but also in the quest for
understanding the real-time dynamics of gauge theories.
In particular, it complements recent works indicating slow
dynamics and many-body localization in systems with an
abundance of local constraints—but without any terms
that break gauge invariance.33–37

In this paper, we provide a substantially increased un-
derstanding of our original findings32 through several ways.
First, we provide in Sec. II a detailed analytic derivation
based on a Magnus expansion to corroborate and fur-
ther explain the aforementioned timescales arising in the
prethermal staircase. This permits a full explanation of
the timescales observed in staircase prethermalization,
and even brings about an excellent quantitative agree-
ment with exact results. Sections III to IV illuminate
this phenomenon through numerical results for various
parameters and initial conditions, as well as discrete and
continuous gauge symmetries, demonstrating that it is a
generic phenomenon for models with local symmetries. In
Secs. V and VI, we put our results into context of systems
that break a global symmetry and of recent results on
constrained dynamics in lattice gauge theories, respec-
tively. We conclude with a short discussion in Sec. VII.
Our paper also includes four Appendices. Appendix A
constitutes a glossary of terminology we repeatedly use
throughout the text that is either novel or not yet well
established in the community. Appendix B provides fur-
ther numerical results on the Magnus expansion, while
Appendix C offers more details on the exact diagonaliza-
tion (ED) numerics. Appendix D shows a derivation in
time-dependent perturbation theory (TDPT) to describe
the short-time dynamics.

II. STAIRCASE PRETHERMALIZATION: A
MAGNUS EXPANSION ANALYSIS

In this Section, we detail our analytic treatment in
Magnus expansion that fully elucidates the phenomenon

(1)
(2)

(4)

(5)

(5)

(4)
(3)

(3)

FIG. 1. (Color online). Paradigm example of staircase prether-
malization. The system is a lattice gauge theory whose gauge
invariance is slightly broken by a term of strength λ. The
key observable is the gauge-symmetry violation ε. We identify
the following typical time regimes: (1) An initial increase
ε ∝ (λt)2 follows from time-dependent perturbation theory
(see also Ref. 14). (2) First features appear at a ‘pre-onset’
timescale λ0 when fast oscillating terms—due to large energy
gaps ∆E in the unperturbed lattice gauge theory—start being
averaged away, t∆E � 1. (3) Due to resonant processes
(∆E = 0), gauge invariance continues to rise as ε ∝ (λt)2,
leading to a breakdown of time-dependent perturbation theory.
The subsequent time regimes can be described through effec-

tive Hamiltonians H
(s)
eff ∝ λs, derivable from corresponding

resonant terms Ωres
s in a Magnus expansion (see Sec. II). (4)

At a time t � τo = λ−1, the dynamics generated by H
(1)
eff

saturates to a steady state. The onset plateau is reached. (5)

At a timescale τi = λ−2, H
(2)
eff becomes dominant and drives

the system away from the onset plateau towards a new steady
state. The phenomenon repeats for higher orders in the Mag-
nus expansion until the final plateau is reached at a timescale
τf = λ−L/2. For this plot, we have used numerical data for the
Z2 LGT with L = 4 matter sites, but the buildup of staircase
prethermalization at timescales λ0, λ−1, . . . , λ−L/2 is general
for any L (see Sec. III) and is also valid in the U(1) LGT (see
Sec. IV). ME: Magnus expansion. ED: exact diagonalization.

of staircase prethermalization first observed in our joint
submission Ref. 32. The Magnus expansion explains the
observed timescales through the appearance of exact res-
onances between different gauge-invariance supersectors
(see Appendix A for precise definition) in the unperturbed
gauge theory. Even more, it provides striking quantita-
tive agreement with the corresponding ED results over
all stages of the time evolution; cf. Fig. 1.

A. Quench protocol and results

The scenario that leads to staircase prethermalization
as observed in Ref. 32 is as follows. The system of inter-
est is a gauge theory, living in a one-dimensional spatial
lattice with sites j = 1, . . . , L. The theory is described by
Hamiltonian H0 and generators of the gauge transforma-
tion Gj at each matter site j, which fulfil [H0, Gj ] = 0, ∀j.
In other words, the Gj represent a set of local symmetries
that are conserved under the dynamics of H0. For the
example of the Z2 gauge theory considered in Sec. III,
Gj assumes the two eigenvalues gj = 0, 2; see Eq. (14).
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We consider a situation where this ideal local gauge in-
variance is perturbed by a term λH1, with [H1, Gj ] 6= 0
and where λ controls the strength of the perturbation.
The initial state is chosen as a pure state from one gauge-
invariant sector (see Glossary in Appendix A) with fixed
gj values. The time evolution under the full Hamiltonian
H = H0 + λH1 will generate deviations from the initial
gj eigenvalues beyond the gauge-invariant supersector
containing the initial sector. We denote this as a gauge
violation.

As discussed in Ref. 32 and seen in Fig. 1, this scenario
leads to a sequence of plateaus in local observables such
as the gauge violation. While TDPT can cleanly explain
the short-time behavior (see Appendix D), the long evo-
lution times where these plateaus appear require more
powerful analytic methods. A Magnus expansion of the
time-evolution operator fulfils this purpose, as shown by
our detailed derivations presented in the following.

B. Magnus expansion

We start by rewriting the full time-evolution operator
U(t) = e−i(H0+λH1)t in an interaction picture with respect
to the gauge-invariant part H0,

U(t) = e−iH0tŨ(t), (1)

Ũ(t) = T
{

e−iλ
∫ t
0

dτH1(τ)
}
. (2)

In this exact rewriting, all processes that induce transi-
tions between various gauge-invariant supersectors are
contained in Ũ(t). This time-evolution operator is in
general a complicated object, being governed by the time-
dependent Hamiltonian H1(t) = eiH0tH1e−iH0t, which
rotates with frequencies generated by H0. The aim of this
Section is to derive a description of Ũ(t) = eΩ(t) through
an effective skew-Hermitian operator Ω(t), from which
the emergence of the plateaus becomes transparent.

To this end, we employ the Magnus expansion,38

which entails finding the effective skew-Hermitian op-
erator as a perturbative expansion in orders of λH1,
Ω(t) =

∑∞
n=1 Ωn(t) with

Ω1(t) = −iλ

∫ t

0

dt1H1(t1), (3)

Ω2(t) = −λ
2

2

∫ t

0

dt1

∫ t1

0

dt2
[
H1(t1), H1(t2)

]
, (4)

and so on. Each order in the Magnus expansion contains
an infinite resummation of terms from TDPT. This prop-
erty enables accurate descriptions of time evolutions far
beyond the abilities of usual TDPT, although the con-
vergence of the Magnus expansion in many-body systems
typically needs to be checked by numerical means.38 As we
will see in the following, the Magnus expansion reveals a
separation of timescales that gives a clear physical picture
for the occurrence of stable gauge-violation plateaus.

1. First-order Magnus term and onset of first plateau

From TDPT (see Appendix D), we know that at short
times the leading order in λ dominates the time evolution
of gauge violation. Thus, we first focus on Ω1(t), which
can be written as

Ω1(t) = − iλ

∫ t

0

dt1
∑
α,β

∑
q,l

ei(Eα,q−Eβ,l)t1

× 〈α, q|H1 |β, l〉 |α, q〉 〈β, l| , (5)

in a common energy eigenbasis {|α, q〉} of H0 and Gj ,
∀j, where α denotes the fixed gauge-invariant sector of
the eigenstate |α, q〉, and q represents all remaining good
quantum numbers such as the associated eigenenergy
Eα,q. The time evolution generated by Ω1(t) distinguishes
two crucially different cases, depending on whether H1

accesses an exact resonance (Eα,q = Eβ,l) or not (Eα,q 6=
Eβ,l).

In the case of Eα,q 6= Eβ,l, we get

Ωnonres
1 (t) = − λ

∑
α,β

∑
q,l

ei(Eα,q−Eβ,l)t − 1

Eα,q − Eβ,l

× 〈α, q|H1 |β, l〉 |α, q〉 〈β, l| . (6)

At short times, the oscillating phases ei(Eα,q−Eβ,l)t gen-
erate a time evolution out of the initial gauge-invariant
supersector when Ũ(t) acts on a quantum state, leading
to the increase (1) in Fig. 1. For the considered system
sizes, the gaps Eα,q −Eβ,l are, however, almost all either
0 (to a numerical precision of 10−10) or on the order of
0.01J or larger, with J > 0 the energy unit; see Tables
I and II for the Z2 LGT, as an example. Thus, at times
t� 1/J , the oscillating terms ei(Eα,q−Eβ,l)t average out,
and the nonresonant first-order contribution in the Mag-
nus expansion becomes a completely time-independent
operator. Similar arguments hold for nonresonant terms
in the higher orders of the Magnus expansion. Thus, at
a pre-onset timescale τpo = λ0 the dynamics of gauge
violation can produce a first plateau, marked as (2) in
Fig. 1. Since the norm of Ωnonres

1 (t) remains bounded, its
physics can be well captured in TDPT (see Appendix D).
Whether this plateau is realized depends on whether the
concrete microscopic parameters realize a separation of
scales from the following terms that go beyond TDPT
(see Secs. III and IV for examples).

To describe the physics beyond the first feature at τpo,
we need to treat separately the resonant contributions
where Eα,q = Eβ,l. For these, we get from Eq. (5)

Ωres
1 (t) = − itλ

∑
α,β

∑
q,l

〈α, q|H1 |β, l〉 |α, q〉 〈β, l| . (7)

In their contribution to Ũ(t), these terms act as an ef-

fective time-independent Hamiltonian H
(1)
eff = iΩres

1 (t)/t

with strength λ. The dynamics generated by H
(1)
eff induces

further gauge violations [see (3) in Fig. 1] until, at times
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TABLE I. Energy gaps of states connected by H1 in first- and second-order processes after starting in the P0 supersector
of the Z2 LGT with L = 4 matter sites. The notation is as follows: Eαβ = Eβ,l − Eα,q denotes the energy gap due to a
first-order process in H1 from a gauge-invariant sector within supersector {α} to a gauge-invariant sector within supersector {β},
such that the corresponding eigenstates |α, q〉 and |β, l〉 lead to a nonvanishing amplitude 〈α, q|H1 |β, l〉; cf. Eq. (5). Similarly,
Eαβγ = Eγ,p − Eα,q stands for the gap due to a second-order process in H1 going first from a gauge-invariant sector within
supersector {α} to a gauge-invariant sector within supersector {β}, and then from the latter to a gauge-invariant sector within
supersector {γ}, such that the amplitudes 〈α, q|H1 |β, l〉 and 〈β, l|H1 |γ, p〉 are nonvanishing; cf. Eq. (8). While there are many
exact resonances (last column), the system accesses no processes with small but nonvanishing gap (second-to-last column).
Here, we have chosen λthresh = 0.01 because when the gauge-violation strength is above this threshold some of the plateaus are
compromised in the prethermal staircase (see, e.g., Fig. 2 in Sec. III).

Gap Nonzero minimum Total number of accessible states Number of states with 0 < E < λthresh Number of states with E = 0

E02 0.039825 768 0 64 (8.33% of total)
E020 0.479219 9216 0 1152 (12.50% of total)
E022 0.039825 48384 0 4608 (9.52% of total)
E024 0.479219 9204 0 1151 (23.76% of total)

TABLE II. Same as Table I but for L = 6 matter sites. Only a few small but nonvanishing gaps play a role (second-to-last
column), while there are many more exact resonances (last column). Note that there are many additional resonances in
third-order processes (such as E0246), which give rise to the third and final prethermal plateau, but these are not shown due to
the large computational overhead required to compute them.

Gap Nonzero minimum Total number of accessible states Number of states with 0 < E < λthresh Number of states with E = 0

E02 0.003545 11502 24 (0.21% of total) 480 (4.17% of total)
E020 0.009376 459382 2304 (0.5% of total) 33386 (7.27% of total)
E022 0.000275 5171556 4104 (0.08% of total) 138216 (2.67% of total)
E024 0.000275 5035596 12094 (0.24% of total) 138176 (2.74% of total)

t� λ−1, it settles into a steady state. This leads to the
onset plateau at a timescale τo = λ−1, see (4) in Fig. 1.

Since the norm of Ωres
1 (t) increases as λt, it is at the same

scale that simple TDPT breaks down.

2. Second-order Magnus term and duration of first plateau

As we show in this Section, the second-order terms in the Magnus expansion start playing a crucial role once the
first-order terms have settled into a steady state. In the eigenbasis of H0, Eq. (4) can be rewritten as

Ω2(t) = − λ2

2

∫ t

0

dt1

∫ t1

0

dt2
∑
α,β,γ

∑
q,l,p

〈α, q|H1 |β, l〉 〈β, l|H1 |γ, p〉 |α, q〉 〈γ, p|

×
{

ei(Eα,q−Eβ,l)t1ei(Eβ,l−Eγ,p)t2 − ei(Eα,q−Eβ,l)t2ei(Eβ,l−Eγ,p)t1

}
. (8)

Terms where all energy gaps are mutually nonresonant yield the contribution

Ωnonres
2 (t) =

λ2

2

∑
α,β,γ

∑
q,l,p

(
Eα,q − 2Eβ,l + Eγ,p

)[
ei(Eα,q−Eγ,p)t − 1

]
+
(
Eα,q − Eγ,p

)[
ei(Eβ,l−Eγ,p)t − ei(Eα,q−Eβ,l)t

]
(Eα,q − Eβ,l)(Eβ,l − Eγ,p)(Eα,q − Eγ,p)

× 〈α, q|H1 |β, l〉 〈β, l|H1 |γ, p〉 |α, q〉 〈γ, p| . (9)

As is the case for Ωnonres
1 (t), the oscillating terms average away for t� 1/J , leading to a constant contribution that

adds to the pre-onset plateau [(2) in Fig. 1].

There are, however, two resonant contributions that generate further time evolution through Ωres
2 (t) = Ωres,A

2 (t) +

Ωres,B
2 (t). First, the single resonances Eα,q = Eβ,l or Eβ,l = Eγ,p give

Ωres,A
2 (t) = − λ2

2

∑
α,β,γ

∑
q,l,p

2 + i(Eβ,l − Eγ,p)t− [2− i(Eβ,l − Eγ,p)t]ei(Eβ,l−Eγ,p)t

(Eβ,l − Eγ,p)2

× 〈α, q|H1 |β, l〉 〈β, l|H1 |γ, p〉 |α, q〉 〈γ, p| −H.c., (10)
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and, second, the single resonance Eα,q = Eγ,p (with Eα,q 6= Eβ,l and Eβ,l 6= Eγ,p) leads to the term

Ωres,B
2 (t) = iλ2

∑
α,β,γ

∑
q,l,p

〈α, q|H1 |β, l〉 〈β, l|H1 |γ, p〉 |α, q〉 〈γ, p|
{

sin[(Eα,q − Eβ,l)t]
(Eα,q − Eβ,l)2

− t

Eα,q − Eβ,l

}
. (11)

We can again invoke our observations about the energy differences from the previous Section. At times t� 1/J , fast

oscillating terms will have averaged out. Furthermore, we numerically find that the effect of Ωres,A
2 (t) is insignificant,

leading us to the long-time limit

lim
t→∞

Ωres
2 (t) = −itλ2

∑
α,β

∑
q,l

1

Eα,q − Eβ,l
〈α, q|H1 |β, l〉 〈β, l|H1 |γ, p〉 |α, q〉 〈γ, p| . (12)

Again, limt→∞Ωres
2 (t) assumes the role of a time-independent effective Hamiltonian H

(2)
eff = limt→∞ iΩres

2 (t)/t ∝ λ2.
In our numerics, we find improved convergence—in particular for the extended Bose–Hubbard model (eBHM); see
Sec. V—if we absorb the diagonal terms that do not change the gauge supersector (equivalently, particle-number sector
in the case of the eBHM) into H0. In principle, we should then recompute the Magnus expansion in a self-consistent
manner. We find, however, that we obtain already excellent agreement with ED without this self-consistent adjustment.

The effective Hamiltonian H
(2)
eff becomes relevant only at times t ∝ λ−2, much after Ω1(t) has averaged to a constant.

Thus, we have a separation of scales, and a time window opens between timescales τo = λ−1 and τi = λ−2 during
which the first-order Magnus term in Ũ(t) does not invoke any dynamics anymore while the second-order Magnus term
is not yet relevant—the gauge violation halts and reaches the stable onset plateau [see (4) in Fig. 1]. At a timescale
λ−2, Ωres

2 (t) as per Eq. (12) becomes important and admixes further gauge invariance-breaking states. Once t� λ−2,
also this dynamics halts and a second plateau is reached [see (5) in Fig. 1].

3. Higher-order Magnus terms, further plateaus, and note
about the thermodynamic limit

These arguments can be repeated to lead to plateaus
for all orders of λs, 1 ≤ s ≤ L/2. The final plateau is
reached at a timescale τf = λ−L/2, at which point an equal
probability of both gauge eigenvalues has been reached
locally, corresponding to full gauge violation.

The above analytic observations are based on several
assumptions, in particular the convergence of the Magnus
expansion and the absence of small relevant gaps. Indeed,
Tables I and II show that nonzero energy gaps ∆E <
λthresh = 0.01 are quite rare, even for L = 6 matter
sites—i.e., when the system is 12 sites in total. The
predominance of gaps larger than λthresh is also reflected
in our numerical data for the time evolution. On the one
hand, the pre-onset plateau typically occurs at times t ≈
1/λthresh. On the other hand, the value of λthresh = 0.01
is the gauge invariance-breaking strength above which
we observe in the ED results that some plateaus in the
prethermal staircase begin to get compromised, since
the separation of frequencies dominant in H0 from those
generated by the gauge breaking is no longer warranted.

In addition, Tables I and II, which go up to second-
order processes in H1, show the presence of many exact
resonances that lead to the resonant Magnus-expansion
terms responsible for the successive destruction of the
prethermal plateaus. The energy gap E02 is due to a first-
order process in H1 where the initial state is being taken
out of the gauge supersector {α{0}} = α{0} into the gauge
supersector {α{2}}. The gap E020 describes a second-
order process that first takes a gauge-invariant state in

the supersector {α{0}} = α{0} into the gauge supersector
{α{2}} where two local constraints are broken, and then
back to the original supersector {α{0}} where Gauss’s
law is restored to its initial value on all matter sites (see
Glossary in Appendix A). The energy gap E024 is another
second-order process, which first takes the initial state out
of the gauge-invariant supersector {α{0}} = α{0} into the
supersector {α{2}}, and finally into the supersector {α{4}}
where four local constraints are broken with respect to the
initial state. (It is worth noting here that the spectrum of
the Z2 LGT is symmetric between supersectors {α{s}} and
{α{L−s}}. Due to this symmetry, for L = 6 matter sites
E64 provides as many zero-energy gaps as E02, E022 as
many as E644, E024 as many as E642, and so on. Similarly,
in the case of L = 4 matter sites, E42 has as many zero-
energy gaps as E02, E022 as many as E422, E024 as many
as E420, and so on.)

In a gauge theory, we naturally obtain a large number
of exact degeneracies in these processes. Configurations
where Gauss’s law with respect to the initial value is
violated at a set of sites {j1, . . . , jm} are exactly degen-
erate to a state where the violations are all shifted by
a distance δ, {j1 + δ, . . . , jm + δ}. The number of such
distinct degenerate states increases in system size. Since
[H0, Gj ] = 0, there is no process in H0 that could couple
these different configurations and lift the degeneracy. The
abundance of such zero-energy gaps and the scarcity of
nonzero energy gaps below λthresh leads to the separa-
tion of timescales that makes staircase prethermalization
possible. In Sec. V, we discuss why the phenomenon
of staircase prethermalization has not been observed in
a similar scenario where a global symmetry is slightly
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broken—the reason is the different behavior in the energy
gaps.

While we cannot prove that nonzero energy gaps ∆E <
λthresh remain rare for general many-body gauge theories,
the agreement between calculations based on the leading
terms of the Magnus expansion and full exact numerics
is striking (see Fig. 1; also compare Fig. 2 to Fig. 16).
One open question is in how far the observed phenomena
extend to the thermodynamic limit—on the one hand, in
the thermodynamic limit energy spectra become dense,
so we cannot exclude the aforementioned separation of
energy scales to break down; on the other hand, the
number of exact degeneracies increases with system size,
which may provide a balancing mechanism that retains
staircase prethermalization even in the thermodynamic
limit.

Moreover, in Ref. 39 an unusually slow fidelity decay
as a result of slightly breaking a global anti-unitary sym-
metry has been analytically discussed and numerically
corroborated in collective spin systems of as many as 400
spin-1/2 particles. In that work, it has been argued that
the effect is due to correlations between different subspec-
tra of H0, which are absent in a system with a global
unitary symmetry (such as the particle number used in
Sec. V). Since it is precisely the resonances between dif-
ferent gauge-invariant supersectors that drive staircase
prethermalization, the results of Ref. 39 give hope that
our findings can persist to large systems, notwithstanding
the conceptual and phenomenological orthogonality of
their study to ours.

It is worth adding that as the difficulty of computing
unbiased long-time dynamics of quantum many-body sys-
tems restricts our numerical studies to rather small system
sizes, it becomes an exciting prospect to use quantum-
simulator experiments in order to investigate the persis-
tence of the prethermal plateaus as system size increases.

III. STAIRCASE PRETHERMALIZATION IN
THE Z2 GAUGE THEORY

It is illustrative to compare the analytic arguments
derived in the preceding Section to exact numerical data,
which is the purpose of this and the following Sec. IV. In
the present Section, we consider a Z2 gauge theory given
by the Hamiltonian11,40–42

H0 =

L∑
j=1

[
Ja
(
a†jτ

z
j,j+1aj+1 + H.c.

)
− Jfτxj,j+1

]
, (13)

with L matter sites and periodic boundary conditions, i.e.,
also with L links, each connecting two adjacent matter
sites. The matter field on site j is represented by a hard-

core boson with creation and annihilation operators a†j and
aj , respectively, which satisfy the canonical commutation

relations [aj , al] = 0 and [aj , a
†
l ] = δj,l(1 − 2a†jaj). The

gauge (electric) field linking matters sites j and j + 1 is

represented by the Pauli matrix τ
z(x)
j,j+1. We define the

local symmetry generators of the Z2 gauge group as

Gj = 1− (−1)jτxj−1,je
iπa†jajτxj,j+1, (14)

where each Gj , living at matter site j, takes on two eigen-
values, gj = 0, 2. The Hamiltonian H0 is gauge-invariant,
i.e., [H0, Gj ] = 0, ∀j, and as such Gj are local conserved
quantities at each matter site j. We set throughout
this paper Ja = 1 and Jf = 0.54—values inspired from
Ref. 11—though we have checked that other generic values
of these parameters lead to the same qualitative picture.

We initialize the system with a single boson on every
even matter site, while the odd matter sites are empty.
The electric fields are initialized in a similar staggered
fashion such that the initial state lies in the sector gj = 0,
∀j. We refer to all deviations from the initial configuration
of gj as ‘gauge violations’ or ‘violations of Gauss’s law with
respect to the initial state’ (see Glossary in Appendix A).
At time t = 0, this state is subjected to a sudden quench
by the Hamiltonian H = H0 + λH1, where the gauge
invariance-breaking term

H1 =

L∑
j=1

[(
c1a
†
jτ

+
j,j+1aj+1 + c2a

†
jτ
−
j,j+1aj+1 + H.c.

)
+ a†jaj

(
c3τ

z
j,j+1 − c4τzj−1,j

)]
, (15)

models inherent errors in a recent ultracold-atom
experiment.11 The overall strength is given by λ > 0,
and the coefficients cn governing the relative weight of
the various terms depend on experimental parameters
(see Ref. 11 and Sec. III B for detailed information). It
is worth noting that H1 does not break any global sym-
metries in the system that are found in H0. For example,
both H0 and H1 conserve particle number. For a discus-
sion about systems with global-symmetry breaking, see
Sec. V.

Using ED,43–46 we compute the time evolution under
H0 + H1 of the gauge-invariance violation, whose spa-
tiotemporal average is given by

ε(t) =
1

L

L∑
j=1

[
〈ψ0|Gj |ψ0〉

+
eiπ2 〈ψ0|Gj |ψ0〉

t

∫ t

0

dτ 〈ψ(τ)|Gj |ψ(τ)〉
]
, (16)

and which quantifies the deviation of the expectation
value of the gauge generator from its initial value. Here,
|ψ(τ)〉 = exp[−i(H0 + λH1)τ ] |ψ0〉. In addition, we com-
pute the spatiotemporally averaged expectation values of
the projectors onto the various gauge-invariant supersec-
tors

Ps =
∑
α{s}

∑
q

|α{s}, q〉〈α{s}, q|. (17)

Here, |α{s}, q〉 are eigenstates of H0 living in the gauge-
invariant supersector {α{s}}, which is the set of all



7

gauge-invariant sectors α{s} = (α1, α2, . . . , αL) such that∑
j αj = 2s, indicating that Gauss’s law is violated at s

matter sites with respect to an initial state where gj = 0,
∀j. In the main text, and in the joint submission,32 we
present temporal averages of these quantities. However,
as we show in Appendix C, the time-resolved as well as
running maximal violations show the same qualitative
behavior.

In the following Sections, we provide in-depth compar-
isons of the influence of different system sizes (Sec. III A),
different microscopic parameters (Sec. III B), different
initial conditions (Secs. III C-III E), and of relaxing the
hard-core constraint on the matter fields (Sec. III F). As
these Sections show, the qualitative picture sketched in
Fig. 1 is generic, although some details can depend on
the specific realization (e.g., the pre-onset plateau is not
always resolved).

A. Effect of number of local constraints

We start by analyzing the effect of the number of local
constraints on staircase prethermalization. Whereas in
the joint submission32 we have mostly focused on a Z2

LGT with L = 6 matter sites, here we calculate in ED
the time evolution of the gauge-invariance violation in
Eq. (16) for L = 4 and L = 8 matter sites; see Figs. 2
and 3, respectively.

Following the early-time regime, systems of all con-
sidered sizes enter the prethermalization staircase. The
gauge violation in Fig. 2(a) displays a feature at t ≈ 10/Ja.
It is related to the ‘pre-onset’ plateau that comes about
due to nonresonant terms in the Magnus expansion, as
discussed in Sec. II and illustrated in Fig. 1. For L = 8,
the pre-onset plateau becomes fully prominent (see Fig. 3).
For L = 4 matter sites, two plateaus appear: the prether-
mal onset plateau at timescale λ−1 and the final steady-
state plateau at timescale λ−2 = λ−L/2. For L = 8, the
pre-onset and intermediate plateaus at timescales λ0 and
λ−2, respectively, are prominent. In contrast, no plateaus
are found at the timescales λ−1 and λ−3, indicating the
dependence of the precise structure of the prethermal
staircase on microscopic conditions, as also seen, e.g., in
Sec. III C. Again, the gauge violation reaches the final
steady state at the timescale λ−4 = λ−L/2, exhibiting
the same exponential-in-system-size delay we see for the
cases of L = 4 and 6 matter sites. In addition, however,
there is a penultimate plateau that has the same timescale
λ−4 = λ−L/2 as the final plateau, suggestive of a separa-
tion of scales within Ωres

L/2. This can happen when there

are several contributions to the same order of the Magnus
expansion with strongly varying constant prefactors.

To obtain further insights into the microscopic processes
governing the prethermalization staircase, it is instructive
to resolve Ps, the projectors onto different gauge supersec-
tors; see Eq. (17). Similarly to the case for L = 6 matter
sites shown in Fig. 2 of the joint submission,32 for the Z2

LGT with L = 4 matter sites we see in Fig. 2(b) that at

(a)

(b)

FIG. 2. (Color online). Quench dynamics of the Z2 gauge
theory with L = 4 matter sites, initial product state with
staggered boson occupation and electric-link orientation lying
in the sector gj = 0, ∀j, and with the same microscopic param-
eters as in the joint submission32 (also see text). Dynamics
of the spatiotemporal averages of (a) the gauge-invariance
violation of Eq. (16) for various values of breaking strength
λ (compare Fig. 1), and (b) the expectation values of the
projectors defined in Eq. (17) for λ = 10−5 (the behavior is
qualitatively the same for other values of λ). The violation
shows two (= L/2) plateaus. The first prethermal plateau
is dominated by intermediate gauge invariance-violating pro-
cesses quantified in 〈P2〉. The final plateau is dominated by
processes due to 〈P4〉, which settles to the same value as 〈P0〉
due to the spectral symmetry between gauge-invariant super-
sectors {α{s}} and {α{L−s}} in the Z2 LGT. Note that the
final plateau does not appear to be thermal despite ushering
in maximal gauge-invariance violation, i.e., it is equally likely
to have locally either generator eigenvalue gj = 0 or 2 (see
discussion in Sec. VI). Worth noting here is that 〈Ps〉 = 0
identically for all odd s since terms in H1 can only break an
even number of local constraints.

short times 〈Ps〉 ∼ (λt)s for even s, whereas 〈Ps〉 = 0 for
odd s, which is not suprising since H1 only breaks an even
number of local constraints, and thus supersectors {α{s}}
with odd s cannot be accessed. The scalings 〈Ps〉 ∼ (λt)s

for even s are derived explicitly in TDPT in Appendix D.

Each plateau in the gauge violation ε is reflected in P0

and at least one of the other supersectors, but not neces-
sarily in all of them. For example, comparing Fig. 2(b) of
the present article and Fig. 2 of the joint submission,32 one
can see that the projector P2 remains, up to the longest
computed evolution times, at the plateau preceding the
final one, both for L = 4 matter sites (where it exhibits
a single plateau at timescale λ−1) as well as for L = 6
matter sites (where it exhibits two plateaus at timescales
λ−1 and λ−2). While at timescale λ−L/2 the population
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in P2 does get perturbed, it does not settle to a distinct
new plateau; see inset of Fig. 2(b) for L = 4 matter
sites, and the more strongly visible case in the inset of,
e.g., Fig. 5(b) for L = 6 matter sites. In contrast, the
associated final plateau is clearly reflected in PL. Thus,
we conclude that here the processes that couple gauge
supersectors of increasing strength, such as 0 → 2 → 4,
play a much more dominant role than processes such as
0 → 2 → 2. For L = 4 matter sites, e.g., at the final
timescale the former shift population from P0 to PL=4

while the latter only slightly perturb the plateau of P2.

FIG. 3. (Color online). Gauge-violation dynamics as in
Fig. 2(a), but for L = 8 matter sites. Four plateaus appear,
with the pre-onset plateau exhibiting a timescale λ0 (i.e., inde-
pendent of λ), while the second (intermediate) plateau exhibits
a timescale λ−2, and the third and fourth (final) plateaus have

the same timescale λ−4 = λ−L/2 due to a separation of scales
within Ωres

L/2.

B. Effect of microscopic experimental parameters

The error term and its coefficients cn in Eq. (15) are
inspired by the Floquet platform employed in Ref. 11.
Pair tunneling with both bosonic species used in the
two-component ultracold-atom experiment dominate the
error terms in Eq. (15). The corresponding dimension-
less driving parameter χ that determines cn can thus
be used to tune the microscopic parameters of the er-
ror Hamiltonian.11 Specifically, in the double-well setup
of Ref. 11, χ = A/ω derives from the atomic species-
independent driving A cos(ωt+ φ) of the on-site poten-
tial, where A is the modulation amplitude, ω the fre-
quency, and φ a phase shift. We additionally ensure that
c1 + c2 + c3 + c4 = 1 in order to quantify the strength
of the gauge invariance-breaking error by the parameter
λ only. The explicit expressions for cn can be found in
Appendix C.

For the results of the joint submission,32 we have used
χ = 1.84, which was also used in the experiment of
Ref. 11. In order to confirm that our conclusions are not
dependent on the specific choice of the coefficients cn, we
have also checked other values of χ. As an example, we
illustrate in Fig. 5 the gauge violation and projectors onto
the different gauge-invariant supersectors for the same

quench as in Figs. 1 and 2 of the joint submission,32 but
for χ = 1.3. The qualitative picture is exactly the same.
Indeed, not only does the prethermal staircase of the gauge
violation in Fig. 5(a) persist with three distinct timescales
(onset λ−1, intermediate λ−2, and final λ−3 = λ−L/2),
but the expectation values of the projectors in Fig. 5(b)
also capture these timescales, with those of P2 and P4

exhibiting the onset and intermediate plateaus, and those
of P0 and P6 exhibiting all three timescales. In fact, P2

and P4 are perturbed at the final timescale, but since they
are already at their final steady-state values by then, the
latter do not change; cf. associated discussion in Sec. III A.

Furthermore, our choice of Ja = 1 and Jf = 0.54
is inspired by the experimental values used in Ref. 11.
However, we have checked other generic values of Jf/Ja,
and we have found that the qualitative picture remains
the same. Interestingly, the parameter pairs Jf/Ja = ±h,
with h > 0, lead to identical results.

C. Effect of initial condition within the sector
gj = 0, ∀j

(A)

(B)

(C)
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FIG. 4. (Color online). Initial states used for the quenches
in this work with L = 6 matter sites on a periodic lattice—
there are L = 6 links, each connecting two adjacent matter
sites. Periodic boundary conditions are indicated by the site
indexing at the bottom. In the joint submission of Ref. 32,
we have focused on the initial state (A). Circles with a solid
fill denote a matter site occupied by a single hard-core boson.
The orange arrows on links in between the matter sites j and
j + 1 represent eigenstates of the Pauli operator τxj,j+1, which
represents the electric field, with eigenvalues ±1 when pointing
right or left, respectively. Initial states (A), (B), (C), and (D)
are in the gauge-invariant sector Gj |ψ〉 = 0, ∀j, while the
initial state (E) lives in the sector Gj |ψ〉 = 0, for j = 1, 2, 4, 5
and Gj |ψ〉 = 2 |ψ〉 for j = 3, 6; cf. Eq. (14). All initial states
are at half filling except for (D), which is at sixth filling.

In this and the following two sections, we analyse the de-
pendence of staircase prethermalization on different initial
conditions; cf. Fig. 4. We start in this Section with states
from the sector gj = 0, ∀j. In the joint submission,32
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(a)

(b)

FIG. 5. (Color online). Same as Fig. 2, with initial state (A)
of Fig. 4 but for L = 6 matter sites and different coefficients
cn in the error Hamiltonian H1 given in Eq. (15) (χ = 1.3
instead of 1.84). (a) The gauge-invariance violation shows
plateaus at three distinct timescales τo = λ−1, τi = λ−2,
and τf = λ−3 = λ−L/2. (b) The projectors exhibit the same
plateau timescales as the violation. For short times, they scale
perturbatively as 〈Ps〉 ∼ (λt)s (for even s, whereas for odd s
they are identically zero).

our initial state is always set to the configuration (A) of
Fig. 4. When starting the quench from initial state (B)
of Fig. 4, again three plateaus emerge in the gauge viola-
tion, as shown Fig. 6(a). In this case, the onset and final
plateaus clearly appear at the usual timescales τo = λ−1

and τf = λ−3 = λ−L/2, respectively, but the intermedi-
ate plateau (green dotted line) appears at timescale λ−3

instead of τi = λ−2. Note that here the initial plateau
appears at a larger value than that in Fig. 1 of Ref. 32,
and this may suppress the true intermediate plateau that
would exhibit the timescale λ−2. Lending credence to
this explanation is the gauge violation for initial state
(C) shown in Fig. 7(a), where the initial plateau is at a
value between those for initial states (A) and (B). In this
case, an intermediate plateau appears at the intermediate
timescale τi = λ−2, while another intermediate plateau
(also marked with a green dotted line) also appears at the
final timescale τf = λ−L/2. As such, the gauge violation
for initial state (C) exhibits the features of the violations
for both initial states (A) and (B).

The spatiotemporally averaged expectation values of
the supersector projectors Ps in the case of initial states
(B) and (C) are shown in Figs. 6(b) and 7(b), respectively.
All timescales in the prethermal staircase of the gauge
violation can be found in these projectors, similarly to
what has been explained in Sec. III A.

Hence, we see that regardless of what initial state we

start in within the (super)sector of gj = 0, ∀j, a staircase
of prethermal plateaus emerges and the maximal violation
is always delayed by a timescale λ−L/2. In Sec. III E,
we will show that this also happens for initial states
where gj = 0 is not satisfied at every matter site j. But
first, we explore the effect of matter filling on staircase
prethermalization.

(a)

(b)

FIG. 6. (Color online). Same as Fig. 5, but for the initial
state (B). Even though three plateaus clearly emerge, only two

timescales appear in this case, τo = λ−1 and τf = λ−3 = λ−L/2.
Projectors in (b) computed for λ = 10−4.

D. Effect of matter filling

Initial states (A), (B), and (C) are at half filling, i.e.,
each carries three hard-core bosons on a periodic lattice
of L = 6 matter sites and L = 6 links. In contrast, the
initial state (D) of Fig. 4 hosts just a single boson in
the Z2 LGT. As shown in Fig. 8, again a prethermal
staircase of stable plateaus appears. As with all initial
states we have considered so far, the final plateau exhibits
the exponentially large timescale τf = λ−L/2. We also see
an onset plateau occurring at timescale τo = λ−1, but, in
contrast to the initial states at half filling, here we find
that its height scales as λ2. Moreover, as in the case of
initial state (B), the intermediate plateau exhibits the
final timescale τf = λ−L/2.

Here, we take advantage of the smaller number of
bosons, which eases computational demands, in order
to compute the dynamics of the gauge violation in the
case of a Z2 LGT with L = 10 matter sites (and
L = 10 links), with only a single boson on the lattice;
cf. Fig. 9. Staircase prethermalization manifests itself
in four plateaus at the respective timescales τpo = λ0
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(a)

(b)

FIG. 7. (Color online). Same as Fig. 6, but for the initial state
(C). Here, four plateaus emerge, and the same three timescales
appear as in Fig. 5.

(pre-onset), τi,1 = λ−2 (intermediate), τi,2 = λ−3 (inter-

mediate), and τf = λ−5 = λ−L/2 (final). As these results
show, even for the largest lattice sizes we can access in our
ED code, staircase prethermalization is prominent and,
importantly, the final plateau at timescale λ−L/2 is always
present even when a few of the earlier plateaus may van-
ish. Again, this indicates that at least NISQ-era quantum
simulators with small inherent gauge invariance-breaking
errors will offer reliable gauge-invariant dynamics up to
times that are exponentially long in system size.

Thus, we have shown in this Section that matter fill-
ing does not change the principal picture of staircase
prethermalization.

E. Effect of starting in a different gauge-invariant
sector

Up to now, all discussed initial states were chosen from
the sector gj = 0, ∀j, which is its own supersector (see
Glossary in Appendix A). To further corroborate the gen-
erality of our findings, we now consider the initial state (E)
from Fig. 4, in which gj 6= 0 at matter sites j = 3, 6, i.e.,
state (E) is in the gauge sector (0, 0, 2, 0, 0, 2) within the
gauge supersector {α{2}}. The gauge-invariance violation,
defined in Eq. (16) to measure the deviation from the ini-
tial gauge-invariant sector regardless of what supersector
it may be in, is displayed in Fig. 10(a). Again, it shows
three clear plateaus at the three timescales τo = λ−1,
τi = λ−2, and τf = λ−3 = λ−L/2, respectively. As seen
in Fig. 10(b), the timescales are resolved again in the
projectors from Eq. (17); see discussion in Sec. III A. The

(a)

(b)

FIG. 8. (Color online). Same as Fig. 5, but for initial state
(D). In contrast to Figs. 5-7, this state lives at sixth filling of
matter sites. The error behaves qualitatively similar to the
cases of initial states (A-C) in that we have distinct prethermal

plateaus with a final plateau at timescale τf = λ−L/2. Here,
only two timescales appear, as in the case of initial state (B)
in Fig. 5, with the intermediate plateau (marked in green

dotted line) exhibiting the final timescale τf = λ−L/2. As a
qualitative difference from the other states, the onset plateau
occurring at timescale τo = λ−1 also scales in its value as λ2.
Projectors in (b) shown for λ = 4× 10−5.
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FIG. 9. (Color online). The spatiotemporal average of the
gauge violation, given in Eq. (16), for the Z2 LGT at tenth
filling with L = 10 matter sites (and L = 10 links) for various
values of the gauge-breaking strength λ (see legend) starting
in the initial state shown on top. Staircase prethermalization
is prominent with plateaus at the pre-onset timescale λ0, the
intermediate timescales λ−2 and λ−3, and the final timescale
of λ−5 = λ−L/2 (see insets).
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(a)

(b)

FIG. 10. (Color online). Same as Fig. 6, but for initial state
(E) from Fig. 4. In contrast to initial states (A-D) in Figs. 5-8,
this state lies in the gauge sector g3 = g6 = 2, with all other
gj = 0. Nevertheless, the qualitative behavior of staircase
prethermalization in the gauge violation and projectors is
unchanged, with all timescales τo = λ−1, τi = λ−2, and
τf = λ−3 = λ−L/2 of the prethermal plateau emerging in the
spatiotemporal averages of (a) the gauge violation and (b)
the expectation values of the projectors Ps onto the gauge-
invariant supersectors.

supersectors P0 and P6 do not display a final plateau,
which instead is clearly visible in the interplay of P2 and
P4, in contrast to what we have seen for initial states
(A-D), in panels (b) of Figs. 5-8, respectively. Indeed,
P0 and P6 exhibit only two plateaus, while P2 and P4

exhibit all three timescales present in the associated gauge
violation of Fig. 10(a). The switching of roles between P2

and P4 on the one hand and P0 and P6 on the other is
not surprising. This is because the initial state now lives
in the supersector of P2 rather than P0, while supersector
P4 (P6) is still always symmetric to the former (latter)
for the case of L = 6 matter sites.

As such, we see that the phenomenology of staircase
prethermalization is independent of the initial gauge-
invariant supersector.

F. Effect of relaxing the hard-core constraint

The hard-core constraint is not a necessary require-
ment for the model in Eq. (13) to be a Z2 LGT, though
it is rather useful for experimental (and numerical)
feasibility.11 In this Section, we study the generality of
staircase prethermalization when relaxing the hard-core
constraint to allow a maximal occupation of two bosons
per matter site. We again start in initial state (A) of

Fig. 4. The numerical results are shown in Fig. 11 for the
spatiotemporal average of the gauge violation in panel (a)
and the expectation values of the supersector projectors
Ps in panel (b).

In this case, we find a clear pre-onset plateau at
timescale τpo = λ0, followed by an onset plateau at
timescale τo = λ−1. As was the case for sixth filling
(Sec. III D), the height of the onset plateau scales as λ2.
No intermediate plateau at timescale τi = λ−2 can be
discerned. Nevertheless, the final plateau at timescale
τf = λ−3 = λ−L/2 is clearly visible, as in all cases consid-
ered above.

We have also repeated this quench with a maximum
on-site occupation of three bosons per matter site, with
qualitatively identical results. Therefore, we conclude
that the maximal on-site occupation does not change the
qualitative nature of staircase prethermalization.

(a)

(b)

FIG. 11. (Color online). Same as Fig. 1 of the joint
submission32 for initial state (A) but with relaxing the hard-
core constraint to allow for a maximal occupation of two
bosons per site. (a) In the gauge violation, the pre-onset,
onset, and final plateaus at timescales τpo = λ0, τo = λ−1,
and τf = λ−L/2, respectively, emerge while the intermediate
plateau of timescale τi = λ−2 is missing. Projectors in (b) are
shown for λ = 4× 10−5.

IV. STAIRCASE PRETHERMALIZATION IN
THE U(1) GAUGE THEORY

We now show evidence for the same behavior in a U(1)
gauge theory as has been realized in a recent experiment.28
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FIG. 12. (Color online). Initial states used for the quenches
in the U(1) quantum link model, here shown for L = 6 matter
sites. Just as in Fig. 4, periodic boundary conditions are
assumed, as indicated by the site indexing at the bottom.

The model is described by the Hamiltonian

H0 = −J
L∑
j=1

(
ajs

+
j,j+1aj+1 + H.c.

)
+ µ

L∑
j=1

a†jaj , (18)

with aj , a
†
j again representing ladder operators for hard-

core bosons on site j, but where now, employing the
quantum link model (QLM) formalism,1,47 the gauge
(electric) field is represented by the spin-1/2 matrix s+

j,j+1

(szj,j+1). The local gauge operator is

Gj = szj−1,j + a†jaj + szj,j+1, (19)

and [H0, Gj ] = 0, ∀j. Unlike the Z2 LGT of Eq. (13),
which has two local gauge sectors, the U(1) LGT of
Eq. (18) hosts four local gauge-invariant sectors. We
choose again the initial gauge-invariant sector Gj |ψ〉 = 0,
∀j, which is its own supersector.

We first prepare our system in the initial state (i) of
Fig. 12. This state has zero bosons in the chain, while links
are initialized in an alternating fashion between spin-up
and spin-down (in the z basis), such that the state satisfies
Gauss’s law with Gj |ψ〉 = 0 at each matter site. We now
quench the system with the Hamiltonian H0 + λH1 with
J = 1 and µ = 0, where the gauge-invariance breaking is
now

H1 =

L∑
j=1

(
ajaj+1 + H.c.

)
. (20)

We note that we choose H1 intentionally such that it
breaks only the local symmetry of H0 and not its global
symmetry corresponding to pairing conservation. We also
remark that we have tried different forms of H1, including
one where

∑
j s
x
j,j+1 is added to Eq. (20), but this did

not alter our qualitative picture.
The corresponding time evolution of the gauge-

invariance violation, now given by

ε(t) =
1

Lt

∫ t

0

dτ

L∑
j=1

〈ψ(τ)|G2
j |ψ(τ)〉 , (21)

is shown in Fig. 13 for L = 4 and 6 matter sites in panels
(a) and (b), respectively. Just as in the case of the Z2 LGT

(a)

(b)

(c)

FIG. 13. (Color online). U(1) LGT: Time evolution of the
spatiotemporally averaged gauge-invariance violation, with
initial state (i) from Fig. 12. (a,b) Gauge violation for L = 4
and L = 6 matter sites, respectively, comparing various values
of λ (see legend). In both cases, two timescales appear as
expected, an onset timescale τo = λ−1 and a final timescale
τf = λ−L/2. (c) Direct comparison of gauge violation as a
function of the number of local gauge constraints (λ = 10−4).
Inset: the final steady state plateau for L = 6 matter sites
indeed begins at τf = λ−3 = λ−L/2.

FIG. 14. (Color online). Same as Fig. 13(b) but with initial
state (ii) from Fig. 12. Here, a pre-onset plateau at timescale
τpo = λ0 as well as plateaus at timescales τi = λ−2 and
τf = λ−3 = λ−L/2 emerge. As this shows, which intermediate
timescales are realized does depend on the initial condition
(just as in the case of the Z2 LGT), though the general phe-
nomenon of staircase prethermalization does not.
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of Fig. 2(a), when L = 4 matter sites the gauge violation
exhibits two timescales τo = λ−1 and τf = λ−2 = λ−L/2.
On the other hand, the case of L = 6 matter sites in the
case of initial state (i) is more reminiscent of that of the Z2

LGT with initial state (B) shown in Fig. 6(a), in that only
the timescales τo = λ−1 and τf = λ−3 = λ−L/2 appear,
while the intermediate timescale τi = λ−2 is absent. We
further illustrate the system size-dependence in Fig. 13(c)
by plotting the gauge violation for L = 4 and 6 matter
sites at error strength λ = 10−4. Clearly, the maximal
violation is delayed exponentially in system size.

For comparison, Fig. 14 displays the gauge violation
when initializing the system in state (ii) of Fig. 12. While
the intermediate timescale τi = λ−2 as well as the final
timescale τf = λ−3 = λ−L/2 are clearly present, the onset
timescale τo = λ−1 is absent. Instead, a pre-onset plateau
appears with a λ-independent timescale τpo = λ0 and
height ∝ λ2, similar to the case of the Z2 LGT with
L = 8 matter sites (see Fig. 3). As these results show,
the phenomenon of staircase prethermalization is not
specific to discrete gauge theories but also appears in
gauge theories with continuous symmetries.

V. CONTRAST TO GLOBAL-SYMMETRY
BREAKING

From the arguments brought forward in Sec. II, we can
also understand why we do not observe similar plateaus
when breaking a global symmetry. When H1 breaks a lo-
cal symmetry, the gauge violations gj 6= 0 are localized at
site j. This results in an abundance of degeneracies, which
can be understood by the fact that gauge violations at dif-
ferent sites are equivalent due to translational invariance.
Alternatively, the localized gauge violations can be seen as
giving rise to flat degenerate bands. These degeneracies

are what generate the series of effective Hamiltonians H
(s)
eff

that drive the transitions between the different plateaus.
When, instead, H1 breaks a global symmetry, H0 only

conserves the total charge
∑
j gj , so locally generated

violations can move through the entire system. In this
way, they acquire kinetic energy which spreads their en-
ergy into an extended band structure. Thus, in the case
of global-symmetry breaking there are much less exact
degeneracies than for local-symmetry breaking, as can
be seen in Tables III and IV. Indeed, exact degeneracies
appear only for processes where H1 is applied an even
number of times to leave a given symmetry sector and
return to it. Such diagonal processes commute with the
symmetry generator, and can thus be absorbed in a renor-
malized H0. As a consequence, in the considered scenarios
for global-symmetry breaking, we find the effective Hamil-

tonians H
(s)
eff to be completely absent. As a result, the

system stabilizes on a generic pre-onset plateau, and the
prethermalization staircase does not appear.

These discussions are consistent with results such as
those of Ref. 39. There, it has been demonstrated that
breaking an anti-unitary global symmetry—even in large

many-body systems—can lead to a slow fidelity decay,
potentially characterized by a long-lived plateau (the pre-
onset plateau in our language), which is compromised
at the timescale λ−1. In Ref. 39, it has been further
argued that this behavior is due to correlations in the
subspectra of H0, which are not present for a unitary
global symmetry such as the particle number conservation
discussed here. Analogously, we find resonances between
the gauge-symmetry supersectors of our theories to be
responsible for the staircase prethermalization. Even
though Ref. 39 comprises a study orthogonal to our own,
it nevertheless lends credence to the spectral analysis and
associated explanation carried out in our work.

FIG. 15. (Color online). Absence of (staircase) prethermal-
ization under global-symmetry breaking, illustrated for the
extended Bose–Hubbard model with L = 8 sites, subjected
to a small breaking of particle-number conservation. Shown
is the time evolution of the spatiotemporally averaged total
connected fluctuations in the particle number from half fill-
ing. The solid lines are ED results, while the dotted lines are
the corresponding results from a second-order Magnus expan-
sion. There is no trace of prethermalization or λ-dependent
timescales. Instead, we only observe the pre-onset plateau
that can be described by nonresonant contributions in TDPT
[see also (1) in Fig. 1]. We get qualitatively the same behavior
for larger and smaller lattice sizes (not shown).

To bring our above statements on a concrete footing,
let us consider the paradigmatic extended Bose–Hubbard
model48–50 (eBHM)

H0 = −
L∑
j=1

(
J1a
†
jaj+1 + J2a

†
jaj+2 + H.c.

)
+ V

L∑
j=1

njnj+1 . (22)

This model has a global U(1) symmetry that embodies
particle-number conservation. To improve comparability
with the above results, we employ a hard-core constraint
(thus, there is no on-site interaction term in Eq. (22)). For
a finite J1, J2, and V , this model is nonintegrable, while
it is integrable when J1 = J2 = 0 (atomic limit) as well as
when V = 0 (free bosons). Under the constraint of hard-
core bosons, the model is also integrable at J2 = 0 as then
it is equivalent to the XXZ model.51 To avoid prether-
malization due to small integrability breaking52 and thus
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TABLE III. Energy gaps and their properties in the extended Bose–Hubbard model of Eq. (22) with L = 8 sites up to
second-order processes in H1, which is defined in Eq. (23). For the sake of notational consistency with Tables I and II for the Z2

LGT, we denote here by a subscript 0 a filling of L/2, by a subscript 2 a filling of L/2 ± 2, and by a subscript 4 a filling of
L/2± 4. Note how only global symmetry-preserving transitions lead to any resonances. The latter processes can all be absorbed
into H0.

Gap Nonzero minimum Total number of accessible states Number of states with 0 < E < λthresh Number of states with E = 0

E02 0.044371 780 0 0
E020 0.074607 12140 0 1468 (12.09% of total)
E022 N/A 0 0 0
E024 0.145393 72 0 0

TABLE IV. Same as Table III but for L = 12 sites. Not only are the global symmetry-breaking processes without resonances,
but they also exhibit nonzero energy gaps below λthresh, which further renders impossible any possibility of nonpreturbative
prethermal plateaus emerging.

Gap Nonzero minimum Total number of accessible states Number of states with 0 < E < λthresh Number of states with E = 0

E02 0.000083 132384 294 (0.22% of total) 0
E020 0.000044 19457752 17312 (0.09% of total) 257644 (1.32% of total)
E022 N/A 0 0 0
E024 0.000168 1386558 3428 (0.25% of total) 0

to ensure that the resulting dynamics is solely due to
global-symmetry breaking, we set J1 = 1, J2 = 0.83,
and V = 0.11 (other generic values of these parameters,
exluding integrable points, yield the same qualitative
conclusions).

We initialize the system at half-filling with staggered
occupation (odd sites contain zero bosons, while every
even site has a single boson). We quench this initial state
with H = H0 + λH1, where

λH1 = λ

L∑
j=1

(ajaj+1 + H.c.), (23)

is a small global-symmetry breaking. The time evolution
of the total connected particle-number fluctuations

εBHM(t) =
1

Lt

∫ t

0

ds 〈
[ L∑
j=1

nj(s)−
L

2

]2

〉, (24)

which mimics in form the gauge violation in Eq. (16), is
presented in Fig. 15 for a chain of L = 8 sites. Here,

nj = a†jaj is the particle-number operator. There is no
signature of staircase prethermalization. Regardless of λ,
the deviation grows at small times until it saturates at a
timescale λ0. The behavior is fully captured in a leading-
order Magnus expansion with Ũ(t) = exp[Ωnonres

1 (t)] (for
consistency with the above figures, the dotted lines in
Fig. 15 also contain the second-order terms in the Magnus
expansion, which contribute subleading corrections to
the plateau height). We have also simulated the same
dynamics in larger and smaller system sizes, but the
picture remains qualitatively the same.

VI. (ABSENCE OF) THERMALIZATION

The Z2 LGT in Eq. (13) with finite nonzero Ja and
Jf is, in a broad sense, not integrable. Indeed, it maps

onto an interacting spin model for finite Ja, Jf 6= 0.42 It
has two integrable points. At Jf = 0, the gauge field
decouples and the model is that of free fermions, while
at Ja = 0, the model maps onto an effective integrable
Hamiltonian for bound states.42 Note that for Jf > 0 the
bare fermions confine into dimers. Similarly, the U(1)
QLM in Eq. (18) is not integrable for generic J and µ. As
such, the prethermalization behavior we observe for both
models in this work seems to be distinct from that due to
small integrability breaking, though this cannot be finally
confirmed until further investigations such as those based
on a Bethe-Ansatz rule out integrability for generic values
of Ja and Jf for the Z2 LGT and of J and µ for the U(1)
QLM. At any rate, the staircase of prethermal plateaus
that we show in this work and its joint submission32 is not
observed in the usual scenario of prethermalization due
to small integrability breaking,53–60 nor is the timescale
of the final (second in this case) plateau expected to
be delayed exponentially in system size.61 Also, in this
traditional setting of weak-integrability breaking, only the
first plateau is prethermal as the integrable part of the
system tries to settle into a generalized Gibbs ensemble,62

while the second is thermal and characterized by a Gibbs
ensemble. Indeed, it is known from ED studies that in
integrable systems subjected to an integrability-breaking
term, the breaking strength required to observe signatures
of nonintegrability (such as equilibration to a thermal
steady state) is inversely proportional to system size.52

Thus, the larger the system size the more prominent
are signatures of nonintegrability for a fixed integrability-
breaking strength λ, and hence a larger system is expected
to reach the onset of the final (second) plateau at times not
later than those for smaller system sizes.63 This is in stark
contrast to our findings in gauge theories with L local
constraints subjected to small gauge-invariance breaking.
In the latter case, the final—in general (L/2 + 1)th—
plateau is delayed exponentially with system size as λ−L/2.
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Such an exponential delay with system size appears in the
case of weak integrability breaking only in the case when
λ is itself exponentially small in system size.64 For such a
λ, the final plateau in the case of small gauge-invariance
breaking would lead to a final timescale that is doubly
exponential with system size.

Even more, our numerical results indicate that the fi-
nal steady-state plateau of timescale λ−L/2 may not be
thermal. In particular, the expectation values of a given
set of two or more local observables with respect to a
thermal density matrix do not agree with those obtained
from the time evolution. Of course, this may be due to
the small system sizes we can access in ED, or it can
be due to an unforeseen integrability, as mentioned in
the previous paragraph. Unfortunately, our attempts
at level statistics with the system sizes we are able to
achieve in ED could not provide a definitive answer on
whether or not there is level repulsion. Nevertheless, it
has been shown in a recent study,65 in which the extended
Z2 LGT is mapped to a transverse-field Ising model with
a random longitudinal field, that this model hosts both
ergodic and many-body localized phases, depending on
Jf/Ja. According to those results, it seems we see stair-
case prethermalization in both of these phases. A further
avenue for future work would be to simulate our dynamics
using advanced numerical methods such as the Lanczos
algorithm66 or matrix product states,67 and thus to try
and push the achievable system sizes. Another promising
route is drawing a concrete connection between our work
on one hand and disorder-free localization and many-body-
localized dynamics on the other. The latter have been
observed in gauge theories without terms that explicitly
break gauge invariance.33–37,68,69 Indeed, our results indi-
cate that constrained dynamics are a direct consequence
of an abundance of local constraints. The latter are also
the mechanism through which many-body localization
dynamics arises in lattice gauge theories.35

VII. CONCLUSION AND OUTLOOK

In the joint submission of Ref. 32, we present analytic
and numerical evidence of staircase prethermalization. In
this paper, we have provided a thorough numerical analy-
sis of the robustness of staircase prethermalization and
laid out a detailed Magnus-expansion derivation of the
nonperturbative timescales associated with the prether-
mal plateaus. In particular, we have shown that our
conclusions hold for various initial conditions, including
those in other gauge-invariance sectors, with different
matter filling, with larger maximal on-site occupation of
matter fields, and for continuous gauge groups.

The generic picture our conclusions draw is that in lat-
tice gauge theories with small gauge-invariance breaking,
local constraints enforce a sequence of local-symmetry
breaking that gives rise to staircase prethermalization. In
particular, the local constraints lead to exact degeneracies
in the spectrum of the gauge theory. In turn, these give

rise to effective Hamiltonians that we have derived in
a Magnus expansion, with excellent quantitative agree-
ment to exact numerics. The associated exponents of
these timescales are inversely proportional to powers of
the strength of gauge-invariance breaking, generating a
clear separation of timescales. Even though certain initial
conditions can lead to the vanishing of a plateau at an
intermediate timescale, the maximal violation seems to
always occur at the final timescale, which is exponentially
delayed in system size.

An open question is whether our observations in terms
of prethermalization are somehow connected to a hidden
integrability at small symmetry breaking, as discussed in
Sec. VI. We stress that the significance of our conclusions
does not hinge on this possibility. Rather, it lies in the
fact that full gauge violation is exponentially delayed in
time as a function of system size, at least for finite-size
LGTs. In traditional prethermalization subjected to weak
integrability-breaking perturbations, an onset plateau
occurs at a timescale independent of the integrability-
breaking strength, which is usually a generalized Gibbs
ensemble steady state, before rapid thermalization after
a timescale of the inverse square of the breaking strength.
In our case, instead, the system size enters in a nontrivial
way, by increasing the number of plateaus and by delaying
the full violation of gauge invariance to exponentially
large times. Furthermore, a larger system size is not
expected to lead to slower relaxation to the second (and
last) plateau in the case of weak integrability breaking
at a fixed strength, which is in stark contrast to what
we observe in our case where the timescale of the final
plateau is exponential in system size. Also, a very recent
study65 indicates that the Z2 LGT hosts an ergodic phase
for the parameters we have used in most of our results.
Nevertheless, it is to be noted that we still see staircase
prethermalization even for parameter values within the
many-body localized phase.

The conclusions of our work promise the possibility of
engineering special initial states that can altogether avoid
maximal gauge violation. As seen in Secs. III and IV,
depending on what initial state the system is prepared
in, the intermediate prethermal plateaus can be made of
shorter or longer duration, or can be eliminated altogether.
One attractive prospect is to design the initial state such
that an intermediate plateau can last indefinitely, allow-
ing the system to circumvent maximal violation. Another
intriguing avenue is to test our conclusions in the thermo-
dynamic limit. As discussed in Sec. II B 3, even though
we can ascertain from our analytics and numerics that our
conclusions hold for lattice gauge theories of finite sizes
relevant to current state-of-the-art quantum simulators
of the NISQ era, this is not guaranteed in the thermo-
dynamic limit. A promising direction to proceed further
would be to simulate our quench dynamics in the thermo-
dynamic limit using uniform matrix product states.70,71

Although with such methods the longest-accessible evolu-
tion times can be limited, it will be sufficient to reach the
onset plateau, which suffices to confirm that the delay of
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full gauge violation is still valid in the thermodynamic
limit.
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Appendix A: Glossary

With the aim of making our article as accessible as
possible, we provide here a few definitions of frequently
used terms.

Pre-onset plateau. One of the main findings of our
work is staircase prethermalization, which involves sev-
eral timescales. The very first of these is referred to as the
pre-onset timescale. It is perturbative and shows no de-
pendence on the gauge-breaking strength λ. Its associated
plateau can be fully described in TDPT. For this reason,
we prefix it with ‘pre’ in order to separate it from the later
λ-dependent timescales whose associated plateaus cannot
be described by TDPT, but rather require a Magnus ex-
pansion. As the Magnus expansion encompasses TDPT,
the pre-onset plateau can be captured by the nonresonant
terms in the Magnus expansion (see Sec. II B 1).

Onset plateau. The onset prethermal plateau is that
which occurs at the onset timescale λ−1. Even though
TDPT can predict its own breakdown at this timescale,
it cannot describe the subsequent dynamics. Instead, the
onset plateau can be captured by a first-order Magnus
expansion (see Sec. II B 1).

Intermediate plateau. An intermediate plateau in stair-
case prethermalization occurs at any of the intermediate
timescales λ−s with 1 < s < L/2 and L the number
of local constraints. These timescales and their associ-
ated plateaus require second- and higher-order Magnus
expansions to capture their dynamics (see Secs. II B 2
and II B 3).

Final plateau. The final plateau in staircase prether-
malization occurs at the final timescale λ−L/2 with L
the number of local constraints. At this plateau, the er-
ror generally reaches its maximal value, indicating equal
probability of no violation and maximal violation. This
timescale and its associated plateau can be captured by
a (L/2)th-order Magnus expansion (see Sec. II B 3).

Staircase prethermalization. The pre-onset, onset, in-
termediate, and final plateaus at the distinct timescales
λ−s—with s even and in the range 0 ≤ s ≤ L/2 in a

lattice gauge theory with L matter sites—lie at differ-
ent values of the gauge violation. These values increase
over evolution time until they reach maximal violation
at the final timescale λ−L/2. This leads to a staircase
prethermalization structure, also referred to as a prether-
mal staircase, whose steps are these prethermal plateaus.
This is the central phenomenon of this work and its joint
submission Ref. 32.

Gauge-invariant sector. A state |ψ〉 is said to be
gauge-invariant when there exist local-symmetry gener-
ators Gj of the gauge group at matter sites j such that
Gj |ψ〉 = gj |ψ〉, ∀j, where the eigenvalues gj can take on
any of a number of values, depending on the gauge sym-
metry. A gauge-invariant sector is one where the gj take
on a fixed set of values at each j. Since the generators
Gj commute with the gauge-theory Hamiltonian H0, for
an initial state within a given gauge-invariant sector, H0

drives dynamics only within that sector.

Gauge-invariant supersector. A gauge-invariant su-
persector M is the set of all gauge-invariant sectors where∑
j G

p
j |ψ〉 = M |ψ〉, with p = 1 for the Z2 LGT and p = 2

for the U(1) LGT. For the former, we can denote the

supersector as {α{s}}, which is now the set of all
(
L
s

)
unique gauge-invariant sectors α{s} = (α1, . . . , αL) satis-
fying

∑
j Gj |ψ〉 = 2s |ψ〉, i.e.,

∑
j αj = 2s, according to

the definition of the gauge-group generator Gj in Eq. (14).
The projector onto the gauge-invariant supersector {α{s}}
is Ps given in Eq. (17).

Gauge-invariance breaking. The gauge-invariance
breaking terms H1—Eq. (15) for the Z2 LGT and Eq. (20)
for the U(1) LGT—drive the dynamics out of the gauge-
invariant sector within which the initial state lives. This
is sometimes also referred to simply as gauge breaking.

Gauge-invariance violation. The gauge-invariance vi-
olation, not to be confused with gauge-invariance break-
ing (defined in the Hamiltonian H1), is the measure
of how much the system has deviated from its initial
gauge-invariant sector over evolution time, and is given
by Eq. (16) for the Z2 LGT and Eq. (21) for the U(1)
LGT. This is sometimes also referred to simply as gauge
violation.

Appendix B: Further results from the Magnus
expansion

In order to further demonstrate the accuracy and power
of the Magnus expansion employed to analytically derive
the timescales associated with staircase prethermalization,
we repeat Fig. 2 using a second-order Magnus expansion
for the time evolved state,

|ψ(t)〉 = e−iH0te[Ω1(t)+Ω2(t)]|ψ0〉, (B1)

(see Sec. II for details). The corresponding results are
shown in Fig. 16 for the spatiotemporal averages of the
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gauge violation in Eq. (16) and the projectors onto the
gauge-invariant sectors, given in Eq. (17). The similarity
to the corresponding ED results of Fig. 2 is excellent.

Appendix C: Numerics specifics

For our ED simulations, we have used the toolkits
QuSpin43,44 and QuTiP,45,46 in addition to our in-house
code in order to cross-check and verify our results. Specif-
ically, we have used our own time-evolution routine. It is
based on exact exponentiation and is thus able to reach
very large evolution times that would require a very small
time-step in methods employed by traditional toolkits, as
they usually employ a solution of an ordinary differential
equation for time evolution. The code for the Magnus
expansion is entirely built by us and is based on the
formalism presented in Sec. II.

Here, we note that we are able to achieve larger maxi-
mum system sizes in the Z2 LGT than in its U(1) counter-
part due to the former conserving particle number (even
when subjected to H1, which also conserves particle num-
ber). This further restricts the effective Hilbert space
in which our system resides, thereby facilitating larger
chains.

For the Z2 gauge theory, we use the following coefficients
in the error term H1 given in Eq. (15), inspired from the
experiment of Ref. 11:

c1 =
∑
k>0

N (χ)

k

[
J−k−1(χ)J−k−2(χ) + Jk(χ)Jk+1(χ)

− Jk−1(χ)Jk−2(χ)− J−k(χ)J−k+1(χ)
]
, (C1a)

c2 =
∑
k>0

N (χ)

k

[
J−k+1(χ)Jk−2(χ) + J−k(χ)Jk−1(χ)

− Jk+1(χ)J−k−2(χ)− Jk(χ)J−k−1(χ)
]
, (C1b)

c3 =
∑
k>0

N (χ)

k

[
J 2
k−1(χ) + J 2

k−2(χ)

− J 2
−k−1(χ)− J 2

−k−2(χ)
]
, (C1c)

c4 =
∑
k>0

N (χ)

k

[
J 2
−k+1(χ) + J 2

−k(χ)

− J 2
k+1(χ)− J 2

k (χ)
]
, (C1d)

where χ is a dimensionless driving parameter (see
Sec. III B), Jq(χ) is the qth-order Bessel function of the
first kind and N (χ) is a nonzero factor ensuring that∑4
n=1 cn = 1. In this work, we display results for χ = 1.84

and 1.3.
In the results of our paper and the joint submission,32

we show the spatiotemporal averages of observables. How-
ever, the staircase prethermalization is also just as evident
in the raw gauge violation (no temporal averaging) and
in the running maximum thereof, as shown in Fig. 17. In
the raw gauge violation, the prethermal plateau manifests
itself in persistent oscillations around a mean value.

(a)

(b)

FIG. 16. (Color online). Same as Fig. 2 but with the time
evolution carried out in terms of the second-order Magnus
expansion in Eq. (B1) instead of ED. The agreement between
both methods is excellent.

FIG. 17. (Color online). ED results for the case of the Z2

LGT for L = 6 matter sites, initial state (A) from Fig. 4, and
λ = 10−5. In the main text we only display time average of
the gauge violation ε, but exactly the same features are shared
by the raw time evolution of the gauge violation as well as its
running maximum.

Appendix D: Time-dependent perturbation theory

Even though our discussion is general for any Abelian
gauge symmetry, here we focus for concreteness on the
Z2 gauge theory. Our numerical results in panels (b) of
Figs. 2, 5–8, 10, and 11 show that for nonzero even s ≤ L
the expectation value of the projector onto supersector
{α{s}}, denoted by Ps in Eq. (17), grows ∼ (λt)s for

times t . λ−1. We recall that our Hamiltonian is H =
H0 + λH1, where [H0, Gj ] = 0 and [H1, Gj ] 6= 0, ∀j,
with Gj being a local gauge generator at position j, and
that the gauge-invariant supersector {α{s}} is the set
of all gauge-invariant sectors α{s} = (α1, . . . , αL) where∑
j Gj |ψ〉 = 2s |ψ〉, i.e.,

∑
j αj = 2s, in the case of the
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Z2 LGT (see Glossary in Appendix A). Consequently, the
gauge invariance encapsulated in H0 is violated up to a
strength λ by the gauge-noninvariant term H1. The gauge-
invariance violation grows as ∼ (λt)2 at short times t .
λ−1, as can also be shown in time-dependent pertubration
theory.14 Here, we calculate the scaling of the expectation
values of projectors Ps at short times, employing TDPT.

The gauge symmetry takes on a value of either 0 or 2
locally. If our initial state is in a given sector, H0 induces
dynamics solely within the associated sector containing it
(see Appendix A for a glossary defining gauge-invariant
sectors and supersectors), whereas H1 drives the dynam-
ics into other sectors within the total Hilbert space of
the system that are not necessarily within the initial
supersector.

Now since [H0, Gj ] = [H0, Ps] = [Gj , Ps] = [Gj , Gl] =
[Ps, Pr] = 0, ∀ spatial indices j, x and supersector indices
s, r, we can find a common eigenbasis {|α, q〉} for H0 and
all Gj and Ps, where α = (α1, α2, . . . , αL) denotes the
gauge-invariant sector defined by the unique set of local
values αj , and q stands for all remaining good quantum
numbers, i.e., we have H0 |α, q〉 = Eα,q |α, q〉, Gj |α, q〉 =
αj |α, q〉, and Ps |α, q〉 = δ∑

j αj ,2s
|α, q〉. Our initial state

|ψ0〉 at t = 0 is such that Gj |ψ0〉 = 0, ∀j, i.e., it is
in the gauge-invariant sector 0—this sector is its own
supersector, same as for the sector where Gj |ψ〉 = 2 |ψ〉,
∀j. It is to be noted that the scalings obtained in the
following analysis hold also when starting in different
sectors, albeit not for the same projectors (see Sec. III E

and Fig. 10 therein). As such, our initial state can be
written as

|ψ0〉 =
∑
q

|0, q〉 〈0, q|ψ0〉 . (D1)

The projector Ps of Eq. (17) is gauge-invariant, i.e., it
satisfies [Ps, Gj ] = 0, ∀j, s, and it also commutes with H0,
[Ps, H0] = 0, ∀s. The time evolution of H1 under H0 is

H1(t) =
∑
α,β

∑
q,l

ei(Eα,q−Eβ,l)t 〈α, q|H1 |β, l〉 |α, q〉 〈β, l| .

(D2)

The expression for the commutator of Eqs. (17) and (D2)
will be useful later on:

PsH1(τ) =
∑
α{s},β

∑
q,l

e
i
(
Eα{s},q−Eβ,l

)
τ

× 〈α{s}, q|H1|β, l〉|α{s}, q〉〈β, l|, (D3)

H1(t)Ps =
∑
α{s},β

∑
q,l

e
−i
(
Eα{s},q−Eβ,l

)
t

× 〈β, l|H1|α{s}, q〉|β, l〉〈α{s}, q|. (D4)

Within TDPT, the time-evolution operator can be writ-
ten as

U(t) = e−i(H0+λH1)t = e−iH0tT
{

e−iλ
∫ t
0

dτH1(τ)
}

= e−iH0t

{
1− iλ

∫ t

0

dt1H1(t1)− λ2

∫ t

0

dt2

∫ t2

0

dt1H1(t2)H1(t1) + iλ3

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1H1(t3)H1(t2)H1(t1)

+ λ4

∫ t

0

dt4

∫ t4

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1H1(t4)H1(t3)H1(t2)H1(t1) +O(λ5)

}
. (D5)

Using this expansion, whose validity requires t� λ−1, we
can now derive 〈ψ0|U†(t)PsU(t) |ψ0〉 up to fourth order in
TDPT. As the gauge invariance-breaking terms of Eq. (15)
act on two adjacent Gj simultaneously, a process of any
given order in H1 would allow breaking only an even
number of local constraints. As a consequence, 〈Ps〉 = 0
when s is odd. Only 〈Ps〉 with even s give nonvanishing
contributions.

The zeroth-order contribution is

〈ψ0|Ps |ψ0〉 =
∑
p,q

〈ψ0|0, p〉 〈0, q|ψ0〉 〈0, p|Ps |0, q〉

=
∑
q

| 〈0, q|ψ0〉 |2 〈0, q|Ps |0, q〉 = δs,0. (D6)

This expression is nonzero only if s = 0, since otherwise
〈0, q|Ps 6=0 |0, q〉 = 0. This is because |ψ0〉 lies in the gauge-

invariant sector 0, and thus 〈ψ0|P0 |ψ0〉 = 1. Therefore,
the zeroth-order contribution from TDPT dominates 〈P0〉
at short times.

The first-order contribution is

iλ

∫ t

0

dt1 〈ψ0| [H1(t1), Ps] |ψ0〉 = 0, (D7)

for all Ps. This makes sense because Ps is not only
gauge-invariant, but it also commutes with H0. Gauge-
invariant observables that do not commute with H0 in
the Z2 gauge theory, such as the staggered electric field,
can have nonzero linear-in-λ contributions from TDPT.14

The second-order contribution from TDPT
is of two components, with the first taking

the form −λ2
∫ t

0
dt2
∫ t2

0
dt1 〈ψ0|H1(t1)H1(t2)Ps +

PsH1(t2)H1(t1) |ψ0〉, which vanishes for s 6= 0 since
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Ps6=0 |ψ0〉 = 0, while the second component is

λ2

∫ t

0

dt1

∫ t

0

dτ1 〈ψ0|H1(t1)PsH1(τ1) |ψ0〉 (D8)

= − λ2
∑
α{s}

∑
p,q,l

e
i
(
Eα{s},q−E0,l

)
t − 1

Eα{s},q − E0,l

e
i
(
E0,p−Eα{s},q

)
t − 1

E0,p − Eα{s},q

× 〈0, p|H1|α{s}, q〉〈α{s}, q|H1|0, l〉 〈ψ0|0, p〉 〈0, l|ψ0〉 .

Here, we implied only non-resonant contributions in the
summation. At times much shorter than the relevant gaps,

t�
∣∣Eα{s},q − E0,l

∣∣−1
,
∣∣E0,p − Eα{s},q

∣∣−1
, this term can

be approximated as

λ2t2
∑
α{s}

∑
p,q,l

〈0, p|H1|α{s}, q〉〈α{s}, q|H1|0, l〉

× 〈ψ0|0, p〉 〈0, l|ψ0〉, (D9)

giving a polynomial increase [see (1) in Fig. 1]. The
error term H1 in Eq. (15) is composed of local terms
each of which acts simultaneously on two adjacent local
constraints. Moreover, H1 includes processes that do not
drive the dynamics completely out of the gauge-invariant
sector.11,14 As such, 〈0, p|H1|α{s}, q〉 and 〈α{s}, q|H1|0, l〉
in Eq. (D9) can only be nonzero for s ≤ 2. This explains
why at short times 〈P2〉 ∼ (λt)2, but 〈Ps>2〉 � (λt)2;
cf. Fig. 2(b), for example. This also shows that the
subleading contribution from TDPT to 〈P0〉 is ∝ (λt)2.

At times t�
∣∣Eα{s},q − E0,l

∣∣−1
,
∣∣E0,p − Eα{s},q

∣∣−1
the

oscillating exponentials in Eq. D9 average away, yielding
a constant contribution that can give rise to the pre-
onset plateau [see (2) in Fig. 1]. In addition, similarly
to Ω1 in Sec. II, there are resonant contributions with
Eα{s},q − E0,l = 0 or E0,p − Eα{s},q = 0. These generate
a dependence ∝ λt that—in contrast to the nonresonant
contributions—does not saturate at any time. Their in-
creasing norm eventually drives the system out of the
validity regime of TDPT, where it becomes necessary to
resort to the Magnus expansion developed in Sec. II.

The third-order contribution from TDPT in-
volves two terms, with the first term vanishing as

−iλ3
∫ t

0
dt3
∫ t3

0
dt2
∫ t2

0
dt1〈ψ0|H1(t1)H1(t2)H1(t3)Ps|ψ0〉+

c.c. = 0 for s 6= 0, because Ps 6=0 |ψ0〉 = 0, while the
second term is given by

− iλ3

∫ t

0

dt1

∫ t

0

dτ2

∫ τ2

0

dτ1

× 〈ψ0|
(
H1(t1)PsH1(τ2)H1(τ1)−H.c.

)
|ψ0〉

≈ − i

2
λ3t3

∑
α{s},β

∑
q,l,p,k

〈0, l|H1|α{s}, q〉〈α{s}, q|H1|β, p〉

× 〈β, p|H1 |0, k〉 〈0, k|ψ0〉 〈ψ0|0, l〉+ c.c., (D10)

where the approximation as in Eq. (D9) holds for times
much shorter than the relevant gaps. This expression

reduces to zero for s > 2 because then 〈0, l|H1|α{s}, q〉
!
= 0.

Nevertheless, 〈0, l|H1|α{s}, q〉 does not necessarily vanish
for s = 2, and thus 〈P2〉 can have a subleading correction
∝ (λt)3, with the leading correction at short times being
∝ (λt)2 from Eq. (D9).

Finally, the fourth-order contribution from TDPT has
three terms. The first one reads

λ4

∫ t

0

dt4

∫ t4

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1 (D11)

× 〈ψ0|
(
H1(t1)H1(t2)H1(t3)H1(t4)Ps + H.c.

)
|ψ0〉 = 0,

for s 6= 0 since Ps6=0 |ψ0〉 = 0. The second fourth-order
term can be shown to reduce to

− λ4

∫ t

0

dt1

∫ t

0

dτ3

∫ τ3

0

dτ2

∫ τ2

0

dτ1 (D12)

× 〈ψ0|H1(t1)PsH1(τ3)H1(τ2)H1(τ1)|ψ0〉+ c.c.

≈ −2

3!
λ4t4

∑
α{s},β,γ

∑
q,l,p,k,m

<
[
〈0, l|H1|α{s}, q〉〈α{s}, q|H1|β, p〉

× 〈β, p|H1 |γ, k〉 〈γ, k|H1 |0,m〉 〈0,m|ψ0〉 〈ψ0|0, l〉
]
,

with the approximation again holding for times much
shorter than the relevant gaps. This expression is always

zero for s > 2 since 〈0, l|H1|α{s>2}, q〉
!
= 0 as linear-

order processes in the terms of H1 can break only pairs
of local constraints. Nevertheless, Eq. (D12) can still
contribute to 〈P0〉 and 〈P2〉, but such a contribution will
be dominated by lower-order contributions from TDPT.

The third and final fourth-order term from TDPT can
for short times be approximated as

2λ4

∫ t

0

dt2

∫ t2

0

dt1

∫ t

0

dτ2

∫ τ2

0

dτ1

× 〈ψ0|H1(t1)H1(t2)PsH1(τ2)H1(τ1)|ψ0〉

≈ 1

2
λ4t4

∑
α{s},β,γ

∑
p,l,k,q,m

2Eα{s},q − Eγ,k − E0,m

Eγ,k − E0,m

×
2Eα{s},q − Eβ,l − E0,p

Eβ,l − E0,p
〈0,m|ψ0〉 〈ψ0|0, p〉

× 〈0, p|H1 |β, l〉 〈β, l|H1|α{s}, q〉〈α{s}, q|H1|γ, k〉
× 〈γ, k|H1 |0,m〉 , (D13)

which indeed is in general nonzero for s ≤ 4 with s even.
Specifically, Eq. (D13) contributes nondominantly to 〈P0〉
and 〈P2〉 and dominantly to 〈P4〉, explaining why the
latter scales as 〈P4〉 ∼ (λt)4 at short times; cf. Fig. 2(b).
However, Eq. (D13) is zero for s > 4.

Similarly, one can go to sixth order in TDPT to illus-
trate why 〈P6〉 ∼ (λt)6, and more generally, to sth order
in TDPT to show that 〈Ps〉 ∼ (λt)s for even s. Inspired
by the forms of Eqs. (D9) and (D13), we can deduce the
nonzero sth-order contribution from TDPT to 〈Ps〉 with
even s to be
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(λt)s
∑

α{w},β{v}

∑
p,m,lα{w} ,qβ{v}

E(α{w}, β{v}, 0; p,m, lα{w} , qβ{v})〈0,m|ψ0〉〈ψ0|0, p〉

×

s
2 terms︷ ︸︸ ︷

〈0, p|H1|α{2}, lα2
〉〈α{2}, lα2

|H1|α{4}, lα4
〉 . . . 〈α{s−2}, lα{s−2} |H1|α{s}, lα{s}〉

× 〈α{s}, lα{s} |H1|β{s−2}, qβ{s−2}〉 . . . 〈β{4}, qβ{4} |H1|β{2}, qβ{2}〉〈β{2}, qβ{2} |H1|0,m〉︸ ︷︷ ︸
s
2 terms

, (D14)

where E(α{w}, β{v}, 0; p,m, lα{w} , qβ{v}), with even 0 ≤
w, v ≤ s, are terms consisting of eigenenergies of H0;
cf. Eqs. (D8)-(D13). Even though the derivation we have

carried out in this Section has been tailored for the Z2

gauge theory, our analytic conclusions extend to the U(1)
gauge theory.
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26 S. Kühn, J. I. Cirac, and M.-C. Bañuls, Phys. Rev. A
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