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ABSTRACT
We propose an open-boundary molecular dynamics method in which an atomistic system is in contact with an infinite particle reservoir
at constant temperature, volume, and chemical potential. In practice, following the Hamiltonian adaptive resolution strategy, the system
is partitioned into a domain of interest and a reservoir of non-interacting, ideal gas particles. An external potential, applied only in the
interfacial region, balances the excess chemical potential of the system. To ensure that the size of the reservoir is infinite, we introduce a
particle insertion/deletion algorithm to control the density in the ideal gas region. We show that it is possible to study non-equilibrium
phenomena with this open-boundary molecular dynamics method. To this aim, we consider a prototypical confined liquid under the influence
of an external constant density gradient. The resulting pressure-driven flow across the atomistic system exhibits a velocity profile consistent
with the corresponding solution of the Navier–Stokes equation. This method conserves, on average, linear momentum and closely resembles
experimental conditions. Moreover, it can be used to study various direct and indirect out-of-equilibrium conditions in complex molecular
systems.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143268., s

I. INTRODUCTION

Computational and experimental communities routinely coop-
erate by comparing the results obtained from their respective
methods. However, such comparisons are intrinsically limited in
scope because real systems approach the thermodynamic limit,
whereas model systems usually have a finite number of parti-
cles. Indeed, standard computer simulations frequently consider
closed systems whose fixed number of particles introduces finite-size
effects due to the de facto simultaneous use of different statistical
ensembles.1–3

With the computational power nowadays available, it is tempt-
ing to ask whether it is possible to increase the size of the sys-
tem and safely ignor ensemble finite-size effects, i.e., reach the
thermodynamic limit. In particular, for a system of total num-
ber of particles N0 at temperature T in a volume V0, it is pos-
sible to consider a subdomain of volume V with an average
number of particles ⟨N⟩. The system can be considered in the
grand canonical ensemble if V is of the order of 1% of the total
volume V0.4 This size constraint implies using huge simulation
boxes which, in most cases, demand tremendous computational
effort.
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A simplification of the physical representation of the particles
in the reservoir alleviates this computational load. This idea is the
essence of the adaptive resolution method: an atomistic (AT) sub-
domain of volume V, defined within the simulation box, is in con-
tact with a reservoir of coarse-grained (CG) particles.5–9 A smooth
interpolation between atomistic and coarse-grained forces, acting on
molecules present at the interface between the two regions, ensures
a consistent description of the whole system. Indeed, the adaptive
resolution framework is a robust method to perform simulations
in the grand canonical ensemble.10–15 To build upon these results,
we discuss two components that one should consider to make
use of the adaptive resolution method to perform well-controlled
open-boundary molecular dynamics simulations.

First, a simulation in the μVT ensemble requires beforehand
knowledge of the chemical potential μ of the bath. This condition
is analogous to the situation in the NVT ensemble in which one
first requires to fix the number of particles N. In the original adap-
tive resolution framework, it is possible to obtain the difference in
chemical potential between atomistic and coarse-grained represen-
tations of the system.16 If one knows the chemical potential of the
coarse-grained model, then it is straightforward to obtain and con-
trol μ for the atomistic one. It is thus convenient to use the sim-
plest possible coarse-grained representation such that the calculation
of the chemical potential does not involve an additional external
computation.

Second, a system is in the grand canonical ensemble if it is in
thermal and chemical equilibrium with an infinite particle reservoir.
Computer memory limitations prevent the possibility to consider
an infinite number of particles. Instead, a particle insertion/deletion
algorithm coupled to the simulation setup effectively ensures this
requirement by allowing the interchange of particles with an infi-
nite ideal gas (IG) reservoir. In the context of the adaptive resolution
method, a semi-grand canonical method was proposed to illustrate
this point.12 The idea to interpret the adaptive resolution method-
ology in terms of a simulation with a particle reservoir was first for-
mulated in Ref. 11. This identification of the coarse-grained system is
completely general as illustrated in the case of atomistic/mesoscopic
continuum adaptive resolution models17,18 in which open bound-
ary conditions can be readily enforced.19–21 Nevertheless, the sam-
pling resulting from particle insertion/deletion events, even if only
applied in the coarse-grained region, becomes less representative as
the density, concentration, and complexity of the system increase.

To consider these points, here we present a method that com-
bines a particle insertion/deletion algorithm with the Hamilto-
nian adaptive resolution framework (H-AdResS).22,23 Following the
method suggested in Ref. 24, we replace the coarse-grained model
by a reservoir of non-interacting thermalized particles (ideal gas).
In this case, the applied external potential used to ensure a uniform
density through the simulation box balances the excess chemical
potential of the atomistic model. Therefore, the atomistic system is at
constant chemical potential with a reservoir of ideal gas particles. We
introduce the particle insertion/deletion algorithm, operating on the
ideal gas reservoir, to overcome the limitations existing on available
methods due to high density/concentration and system complex-
ity conditions. The method is thus capable of performing constant
μ molecular dynamics simulations without the necessity to include
external forces and to compensate for depletion of particles in the
reservoir.25–27

FIG. 1. Hamiltonian adaptive resolution setup used to simulate a liquid confined
between parallel plates. Upper panel: the simulation box is partitioned into atom-
istic (AT), hybrid (HY), and two unconnected left and right reservoirs of ideal gas
(IGL/R) particles. The identity of the molecules is defined by the switching function
λ(x) that takes values between 0 and 1. Lower panel: simulation snapshot explicitly
showing the confined liquid in the various subdomains. For this particular example,
the number density is lower in the IGL than in the IGR region.

There is a permanent and ongoing interest in simulating non-
equilibrium phenomena in inhomogeneous fluids.28–42 With the
open-boundary molecular dynamics method proposed here, it is
possible to investigate such phenomena. In particular, we consider a
confined liquid such that its ideal gas reservoir is under the influence
of a constant density gradient. Initially, a uniform density profile is
enforced parallel to the surfaces (see Fig. 1). Upon equilibration, a
density gradient imposed in the reservoir induces a pressure-driven
flow in the system with a velocity profile consistent with the cor-
responding solution of the Navier–Stokes equation. The method
closely resembles experimental conditions and conserves, on aver-
age, linear momentum. Furthermore, the intrinsic arbitrariness of
the ideal gas reservoir opens the possibility to study various direct
and indirect non-equilibrium conditions.

The paper is organized as follows: In Sec. II, we validate the use
of H-AdResS to study confined liquids and introduce the particle
insertion/deletion algorithm. We present the results for pressure-
driven flow in Sec. III, and finally, discuss, conclude, and outline
research directions in Sec. IV.

II. MODEL
In adaptive resolution simulations, it is possible to couple a tar-

get system with an ideal gas reservoir of particles at constant chemi-
cal potential.24,43 Particularly, it is possible to set the chemical poten-
tial of the target system by controlling the number density in the
ideal gas reservoir. In this work, we implement a particle insertion
algorithm that operates on the ideal gas region and permits fluctua-
tions in the number density around a target value. Consequently, the
standard H-AdResS setup now allows one to perform open-system
molecular dynamics simulations in equilibrium and, more impor-
tantly, nonequilibrium conditions. As an illustration, we study the
prototypical example of liquid flow across a narrow channel. All
simulations are performed with the LAMMPS simulation package,44,45

where the method is implemented.
Before introducing the particle insertion algorithm, we validate

H-AdResS to study a confined liquid between parallel walls.
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A. H-AdResS for a confined liquid
Let us consider a single component liquid confined between

parallel walls with normal perpendicular to the x-axis and separated
by a distance D. In the adaptive resolution method (AdResS),5–7

atomistic (AT) and coarse grained (CG) representations of the sys-
tem are concurrently present in the simulation box and coexist in
thermodynamic equilibrium.5–7 In particular, by using a position-
dependent switching field λ(x) (see Fig. 1), it is possible to write a
Hamiltonian (H-AdResS)22,23 for the whole system. Since AT and
CG representations of the system follow different equations of state,
an additional term is included in the Hamiltonian to guarantee a
constant density (implying constant chemical potential) across the
simulation box. Finally, the choice of the coarse grained represen-
tation is rather arbitrary and can even be reduced to a reservoir
of noninteracting—ideal gas (IG)—particles.24,43 In this context, we
write the Hamiltonian for a system composed of N = Ns + Nw solvent
(s) and wall (w) molecules as46

H[λ](r, p) = K + Vw
(r) + V[λ](r), (1)

with (r, p) being the positions and momenta and K = ∑N
i=1 p

2
i /2mi

being the total kinetic energy of the system. The term

Vw
(r) =

κ
2

Nw

∑
j≠j′

j,j′∈w

(rj,j′ − r0)
2

is a harmonic, nearest-neighbour Vw(r > rcut) = 0 potential used to
restrain the position of the wall molecules. κ is the spring constant, r0
is the equilibrium length, and rj ,j′ is the distance between a given pair
of wall particles. The wall particles are located on a fcc lattice of den-
sity 0.9 σ−3 with parameters κ = 1000 ϵσ−2 and r0 = 1.1626 σ. Vw(r)
is only applied during the initial equilibration. For production runs,
the surface particles are frozen in their final equilibrium positions.
We impose this constraint to solve a technical problem, namely, due
to the pressure imbalance present between the AT and IG regions,
the wall might deform and its elastic response could affect the behav-
ior of the solvent. Moreover, this constraint enforces no-slip con-
ditions in the system. Indeed, thermal fluctuations of wall particles
enhance the decoupling of wall–fluid interactions, thus increasing
the slip length.30

The last term in the Hamiltonian (1) is written as

V[λ](r) =
Ns

∑
i=1
i∈s

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λi

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
2

Ns

∑
i′=1
i′≠i

Us, s
(ri,i′) +

Nw

∑
j=1
j∈w

Us, w
(ri,j)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

+(1 − λi)
Nw

∑
j=1
j∈w

U ig, w
(ri,j) − ΔHs

(λi)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(2)

The solvent molecules i interact via an intermolecular potential
modulated by a switching field λi ≡ λ(xi) (see Fig. 1). The switch-
ing field takes values 0 in the IG region where solvent particles only
interact repulsively with wall particles and 1 in the AT region where
solvent particles fully interact with both solvent and wall particles.
A smooth interpolation between 0 and 1 is defined in the hybrid

(HY) region. The free energy compensation (FEC) term, ΔHs, is
introduced in the Hamiltonian to compensate non-physical, drift
forces due to gradients of the switching field. Moreover, it ensures
momentum conservation on average and guarantees a uniform den-
sity throughout the simulation box. Note that the FEC is only applied
to confined liquid particles instantaneously present in the hybrid
region. The starting point of the simulations corresponds to a fully
atomistic case. Once these simulations are equilibrated, the adap-
tive resolution setup is turned on and ΔHs is computed on-the-fly
following the procedure described in Ref. 45 included in the equi-
libration of the H-AdResS run. Finally, for homogeneous systems,
ΔHs(λ = 1) corresponds to the system’s excess chemical potential
μexc. This procedure has been identified with a thermodynamic inte-
gration in space, i.e., spatially resolved thermodynamic integration
(SPARTIAN).24

We model all the solvent–wall interactions with the truncated
and shifted Lennard-Jones potential,

Uα,β
(r) = 4ϵα,β[(

σα,β

r
)

12
− (

σα,β

r
)

6
], (3)

where the units of length, energy, and mass are defined by the
parameters σ, ϵ, and m, respectively. In the following, we report the
results in Lennard-Jones (LJ) units with time τ = σ(m/ϵ)1/2, temper-
ature ϵ/kB, and pressure ϵ/σ3. For a given cutoff radius rcut, the value
Uα ,β(rcut) is evaluated and subtracted from Eq. (3). The parameters
used to describe all interactions between species (α, β) for different
regions within the simulation box are presented in Table I with fixed
solvent–solvent (s,s) and ideal gas–wall (ig,w) values. For solvent–
wall (s,w) interactions in the AT region, we consider the purely
repulsive Lennard-Jones potential (WCA) as well as the truncated
and shifted Lennard-Jones potential with rcut = 2.5 σ with varying
interaction strength modulated by the parameter η with η = 0.5, 1.0,
1.5, 2.0, and 2.5.

In this example, the number of solvent and wall particles is fixed
with Ns = 97 020 and Nw = 48 000, respectively. The size of the box is
set by Lx = 164.41 σ and Ly = 49.32 σ, while Lz is fixed by the system’s
pressure with variations in the range of Lz = 24.75 σ, . . ., 25.61 σ.
For the case of homogeneous liquid, i.e., no confining walls,
Lz = 18.74 σ. The initial fully atomistic equilibration is carried out in
the NPT ensemble using the Nose–Hoover thermostat and barostat
for 5000 τ with time step size of δt = 10−3 τ. The temperature is fixed
at kBT = 2.0 ϵ with damping coefficient 10 τ and the pressure is fixed
anisotropically at P = 2.65 ϵσ−3 with damping coefficient 100 τ by
applying a force normal to the walls. The final equilibrium density,
which is defined as the ratio of number of liquid particles to the total

TABLE I. Lennard-Jones parameters used to describe solvent–solvent and solvent–
wall interactions. Additionally, to the purely repulsive case (not included in this table),
the latter interactions are modulated in the AT region by the parameter η, whereas in
the IG region is defined as purely repulsive.

(α, β) ϵα ,β σα ,β rcut
α,β

(s,s) ϵ σ 2.5 σ
(s,w) ηϵ σ 2.5 σ
(ig,w) ϵ σ 21/6 σ
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FIG. 2. The convergence of compensating energies of the LJ fluid for different
fluid–wall interactions as obtained by the method outlined in Ref. 24. In all cases,
the initial configuration is equilibrated at the same pressure P = 2.65 ϵσ−3 and
temperature kBT = 2.0 ϵ. Inset shows the final equilibrium densities obtained from
fully atomistic simulations of the systems.

volume of the simulation box (ρ∗eq = NS/V), is reported in the inset
of Fig. 2 for different fluid–wall interactions. This definition of den-
sity is useful, however, arbitrary. The volume accessible to the fluid
cannot be uniquely determined because the definition of the contact
surface between the fluid and the walls is somewhat unclear.31

To validate the reliability of H-AdResS to study confined liq-
uids, we verify that the FEC terms, ΔHs, converge. The size of AT
and HY regions is 50 σ and 15 σ and the H-AdResS parameters are
listed in Table II. As mentioned before, the application of the FEC
on the system leads to a constant density profile across the simu-
lation box. In this case, the system reaches an equilibrium state in
which atomistic and ideal gas particles have equal chemical poten-
tial. The evolution of the FEC as a function of time is plotted in
Fig. 2. After 200 iterations, which corresponds to 2000 τ simula-
tion time (see Table II for more detail), the algorithm converges
to μ = 2.33 ± 0.008 ϵ for the bulk liquid (no confinement), in
a good agreement with the previously reported value for LJ fluid
(μ = 2.33 ± 0.01 ϵ24).

TABLE II. H-AdResS parameters for LJ and WCA fluids. The first two rows cor-
respond to the parameters being used in time sampling of drift and thermodynamic
forces (tdr

smp and tth
smp) as well as their averaging process (tdr

ave and tth
ave). The values

are presented in a number of time steps. The second two rows enlist the size of the
bins in discretization of the HY region to obtain the drift force (Δλ) and thermodynamic
force (ΔX ). The parameters being used in the convolution of the density profile with
the Gaussian function are the thermodynamic scaling factor (c), reference number
density (ρ∗), the standard deviation of the Gaussian function (σρ), and the domain
of convolution integration (l). Details about the precise meaning of these parameters
can be found in Ref. 24.

Δtdr
smp Δtth

smp Δtdr
ave Δtth

ave δt Iterations

100 100 5 × 104 5 × 104 10−3 τ 200
Δλ ΔX[σ] c[ϵ] ρ∗[σ−3] σρ[σ] l[σ]
0.005 0.5 1.0 0.5 2.0 4.0

To investigate the structure of the liquid inside the AT region,
we calculate the equilibrium particle distribution function normal to
the wall, g(z), and compare it with the results obtained from the fully
atomistic simulation. The distribution function is obtained by bin-
ning the atomistic region along the z-axis and time averaging over
all bins with equal z-coordinate. As shown in Fig. 3, the surface-
induced layering structure is well reproduced by the H-AdResS sim-
ulation. Moreover, the comparison of the bulk particle distribution
[g(z); for ∣z∣ < 5σ] shows that the density of the atomistic region in
the adaptive setup has converged to the atomistic reference density.
These results confirm the suitability of our method to study confined
liquids under the conditions here specified.

It has been demonstrated that for a liquid in equilibrium at a
given temperature T and composed of N molecules inside a con-
tainer of volume V, the chemical potential equals the chemical
potential of the uniform system.47 However, as mentioned before,
the definition of the volume available to the fluid is ambiguous.31

For such a reason, we avoid identifying the free energy compensa-
tion ΔHs with the excess chemical potential of the uniform system.
Hence, in Sec. II B, to precisely enforce a constant chemical potential
in an open system, we introduce and validate the particle insertion
algorithm for a bulk liquid system.

B. Particle insertion algorithm
The proposed grand canonical molecular dynamics method

consist of two parts: first, the AT/IG constant chemical potential
coupling that has been already discussed in Sec. II A, as well as in
Ref. 24. Second, we allow particle exchange between the IG region
and an ideal gas reservoir used to control the chemical potential of
the system. The details of the particle insertion algorithm applied on
the IG region are the subject of this section.

We start by assuming that the IG region is in the grand canon-
ical ensemble. The probability that the IG region, at temperature T,
volume V0, and chemical potential μ, has exactly N particles follows
the Poisson distribution48

P(N) =
(N∗)N e−N∗

N!
, (4)

with N∗ being the mean number of particles in the volume V0. In the
ideal gas case, N∗ can be written in terms of the chemical potential
of the system,

N∗ =
V0eβμ

λ3 , (5)

with β = 1/kBT and λ being the mean thermal wavelength. In the
limit N, N∗ ≫ 1 with |(N − N∗)/N∗|≪ 1, we obtain

P(N) =
e−(N−N∗)2

/2N∗

√
2πN∗

. (6)

This is a normal distribution with mean value N∗ and standard
deviation

√
N∗. In physical terms, this corresponds to the well-

known result for the isothermal compressibility κ of the ideal gas,
i.e., κ = 1/ρkBT with ρ∗ = N∗/V0. We are interested in fluctua-
tions around a target density ρ∗; therefore, we rewrite P(N) in terms
of ρ = N/V0 as

P(ρ) ∼ e−kμ(ρ−ρ∗)2
/2, (7)
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FIG. 3. Particle density profiles normal
to the wall surface obtained for the LJ
fluid with different wall interactions. The
results are presented for the fully atom-
istic simulation and H-AdResS.

where, in principle, kμ = V0/ρ∗, but in the following, we treat it as
a free parameter related to the width of the distribution of possible
values for the target density ρ∗. With this probability distribution,
we introduce the Metropolis algorithm used for particle insertion.
The probability to accept a move that the present density ρ increases
by ν is given by

acc(ρ→ ρ + ν) = min[1, exp(−kμν(ν + 2(ρ − ρ∗)))], (8)

and correspondingly,

acc(ρ→ ρ − ν) = min[1, exp(−kμν(ν − 2(ρ − ρ∗)))]. (9)

Concerning the fluctuations around the target density, we select
values of ν according to the normal distribution

P(ν) =

√
kμ
2π

e−
kμν2

2 . (10)

Finally, the particle insertion Monte Carlo moves are performed
every ΔTexch time steps during which the number of particles is
averaged.

In conventional grand canonical simulations, the target sys-
tem can interchange particles with an infinite ideal gas reservoir at
constant chemical potential.49 Alternatively, the atomistic/coarse-
grained coupling present in adaptive resolution simulations pro-
vides a suitable playground to sample the grand canonical ensem-
ble.10–15 In our particular case, the size of the reservoir can be
substantially increased since particles in the IG region are non-
interacting.24,43 Alternatively, by introducing density fluctuations in
the IG region, we also ensure interchange of particles with an infinite
reservoir of ideal gas particles at constant chemical potential.

To verify grand canonical conditions, we run an equilibrium
simulation for a bulk LJ liquid, i.e., with the confining walls removed,
at a given pressure P = 2.65 ϵσ−3 and temperature kBT = 2 ϵ. These

conditions define the target density ρ∗eq = 0.647 σ−3 and the corre-
sponding chemical potential. Upon obtaining the equilibrated all-
atom configuration, “ghost” particles are placed in each reservoir,
and then, H-AdResS is performed using the Hamiltonian of Eq. (1)
and the obtained FEC terms corresponding to the target density. The
velocity and force of the ghost particles are set to zero, so they do not
move during the H-AdResS parameterization runs. The on the fly
calculation of compensation of the drift and thermodynamic forces
are updated every 5 × 104 time steps, during 10 × 106 time steps
(200 iterations). The resolution interval is divided into 200 bins of
size Δλ = 0.005 and the length of the simulation box is uniformly
discretized into slabs of size Δx = 0.5 σ. We employed values of c = 1
ϵ, σρ = 2 σ, and ł = 4 σ for smoothing and scaling the thermodynamic
force.

To verify that the particle insertion protocol drives the system
to a target density, ρ∗, we start with two versions of the system at
the same temperature, but one at lower, ρ < ρ∗, and the other at
higher, ρ > ρ∗, density.50,51 In both cases, we apply the FEC obtained
from the target system to set the target chemical potential and run
the open boundary simulation using ρ∗ as an input for the particle
insertion protocol. In Fig. 4, the evolution of density as a function
of simulation time is presented in both cases, ρIG

L,R < ρ∗ (a) and
ρIG

L,R > ρ
∗ (b).

It is apparent from Fig. 4 that the density in the three regions,
left, right, and AT, converges to the reference density in all cases,
independently of the choice of insertion frequency kμ. In general,
this result verifies that the open simulation setup described corre-
sponds to a constant chemical potential molecular dynamics simu-
lation. The behavior at short times indicates that the FEC works to
restore the density in the atomistic region (dashed lines) by deplet-
ing (a)/increasing (b) the number of particles in the reservoir. The
effect of the particle insertion algorithm is thus to bring the density
of the reservoir (solid and dotted lines) to the target value and equate
the chemical potential across different simulation regions. Finally,
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FIG. 4. Evolution of the density in the left (ρIG
L ) and right (ρIG

R ) ideal gas regions
and atomistic (ρAT ) regions when the system has initially lower (a) or higher (b)
density than the equilibrium reference density (ρ∗eq).

the behavior of the system as a function of kμ is consistent with the
interpretation given in terms of the width of the distribution of ρ∗.

In the final section, we return to the confined liquid problem
and use the particle insertion algorithm in a nonequilibrium molec-
ular dynamics setup to induce a density gradient throughout the
system.

III. INDUCED DENSITY GRADIENT AND PLANE
POISEUILLE FLOW

In this section, we start with the equilibrated configurations for
the confined liquid considered in Sec. II A. We remove the peri-
odic boundary conditions along the x direction to decouple left and
right reservoirs and introduce repulsive walls to confine the ideal
gas particles. We use the Langevin thermostat to control the tem-
perature in all regions at kBT = 2 ϵ with damping coefficient 10 τ.
The time step is δt = 10−3 τ, and for each case, the total simulation
run is 14 × 106 time steps. To induce the density gradient between
the atomistic region and ideal gas reservoirs, the particle exchange
algorithm is applied independently in each reservoir. The reference
number densities of particles in the left reservoir is set as the equilib-
rium number density ρ∗L = ρ∗eq. The reference number density in the
right reservoir is increased with respect to the equilibrium number
density. We use kμ = 0.1 ϵ and ΔTexch = 100 δt for all simulation sets.
The reservoir (frozen) particles are also exchanged between the two
reservoirs every 100 time steps to balance the number of particles in
the reservoirs.

The combination of inducing a density gradient and enforc-
ing a reference density generates an excess of frozen particles in the

left reservoir. To keep the simulation running, we periodically relo-
cate these frozen particles from left to right reservoirs. This technical
aspect does not affect our results since frozen particles have zero
momentum.

As both reservoirs are confined by repulsive walls, the num-
ber density of each reservoir is calculated over a smaller control
volume than V IG, which does not contain the depletion layer close
to the right and left repulsive walls. Additionally, the width of the
depletion layers changes when the solvent changes from LJ fluid
(fully atomistic simulation) to ideal gas particles (H-AdResS), which
changes the total available volume. This difference in volume can
be compensated by increasing the hard core size of the repulsive
LJ potential between the walls and ideal gas particle such that the
number density far from the depletion zone equals the one in fully
atomistic simulations. In our study, however, such difference is
negligible.

Concerning statistics, all values are reported using the block
averaging method. For each case, we divide the total simulation run
into seven uniform blocks of 2 × 106 time steps each. To remove
the effect of the transient behavior, we do not consider the results
of the first block (see the inset of Fig. 5). The average values of each
block are calculated, and then, we report the average and standard
deviation values of all blocks.

Figure 5 shows the number density profile of particles when
the system reaches the steady state (as shown in the inset). It is
apparent that the induced density gradient in the atomistic region
and the ripples observed there are generated by the interaction with
the surface. As expected, the difference in densities between the
right and left reservoirs is equal to the actual nominal difference.
The density profile at the IGL/HY interface exhibits bumps that
become more distinct upon increasing the density gradient. These
can be attributed to a mismatch in mobility due to particles chang-
ing identity from atomistic to non-interacting. Thus, particles accu-
mulate before entering the left reservoir, and once there, the par-
ticle insertion algorithm flattens the profile to reach the reference
density.

FIG. 5. Number density profiles shown for different reference values ρ∗R . In all
cases, the reference number density in the left reservoir is set to the equilibrium ref-
erence number density ρ∗eq. Inset shows the time evolution of the number density
in the right reservoir.
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FIG. 6. Temperature profiles of the system when the fluid–wall interaction strength
is ϵw = 2 ϵ. For clarity, the profiles have been shifted by a constant quantity.

To effectively isolate the effect of the induced density gradient
in the atomistic region, it is necessary to guarantee that the tempera-
ture is constant throughout the simulation box. This is presented in
Fig. 6, clearly indicating a uniform temperature of the entire system.
As a matter of fact, the maximum deviation of temperature from the
mean value occurs in the case of induction of the largest density gra-
dient and it is 0.015 ϵ (less than 1% of the mean temperature). This is
found to be in the middle of the hybrid region where the resolution
of the ideal gas changes effectively into LJ fluid.

At this point, we are in the position to compare our simulation
results with hydrodynamics, namely, the Poiseuille flow equation.52

A simple dimensional analysis justifies such a comparison. To this
end, we employ the Knudsen number, defined as Kn = λ/Dh with
λ = 1/

√
2ρπσ2 being the mean free path of the fluid particles and

Dh = 20 σ being the height of the channel. Knudsen numbers for
the system under consideration vary between Kn = 0.014, . . ., 0.016,
indicating that a parallel can be drawn between continuum fluid
dynamics and our simulation results.53

A plane Poiseuille flow is created in a fluid with density ρ and
dynamic viscosity η confined between infinitely long parallel plates,
separated by a distance Dh, when a constant pressure gradient is
applied along the axis of the channel x. The resulting flow is uni-
directional. At low Reynolds number, the Navier–Stokes equation
can be written as

d2ux(z)
dz2 =

1
η
Δp
Δx

, (11)

where the axial velocity ux(z) is only a function of the z-coordinate
and the applied pressure gradient Δp/Δx is constant. Using the

boundary conditions ux(z = ±Dh/2) = 0 (no-slip condition), we
obtain

ux(z) =
1
η
Δp
Δx
[z2
−

D2
h

4
]. (12)

Before comparing this result with the velocity profile obtained
from simulations, we emphasize two aspects. First, to obtain the
result in Eq. (12), one assumes that the fluid is incompressible and
the LJ system under consideration is not. However, the Navier–
Stokes equation for a compressible fluid contains a term propor-
tional to ∇ ⋅ u that in our case is equal to zero because the flow
is unidirectional along the x-direction and the magnitude of the
flow velocity does not change along this axis. Second, the result in
Eq. (12) was obtained by assuming that Δp/Δx is constant. In our
model, we need to verify that the constant pressure gradient induced
in between the right and left reservoirs creates a constant pressure
gradient across the AT region.

To compute the pressure, we discretize the simulation box in
cubic cells of linear size 1 σ and build the pressure profile by con-
sidering a sequence of cells aligned along the x-axis and located at
a distance 5 σ from the rigid surface. Hence, the structured layers
of fluid close to the wall are not taken into account, which results
in effectively counting the bulk contribution to the pressure. We
compute the stress tensor per-atom S for particles instantaneously
present in the cell. Finally, based on the Irvin–Kirkwood deriva-
tion,54 we obtain the pressure tensor for every cell of volume V as
P =−(Sxx + Syy + Szz)/3V55 and average contributions along the y and
z directions to obtain the pressure as a function of x. We emphasize
here that in case one requires a more precise calculation of the pres-
sure tensor, especially close to inhomogeneous regions, it is essential
to use the method of planes introduced in Ref. 31.

Plot of pressure profiles [Fig. 7(a)] for different induced densi-
ties, in the case of purely repulsive interaction with the walls, indi-
cates that the pressure gradient is indeed constant. As a matter of
fact, we find that there is a linear relation between the pressure dif-
ference measured across the AT region pAT

R − pAT
L and the nominal

pressure difference pIG
R − pIG

L for different values of the induced den-
sity, as indicated in Fig. 7(b). The slope of the line is 0.47. This value
coincides with the constant pressure gradient across the resolution,
namely, LAT

LAT +2LHY +Lcorr
= 5

10 . The quantity LCorr = 20 σ measures the
distance from the interface of the HY region to the left reservoir up
to the point at which the pressure reaches the equilibrium pressure.
The constant pressure gradient obtained in the AT region can be
understood in terms of the virial expansion of the pressure in terms
of the density for a LJ system, namely, relatively small gradients in
density (of maximum 0.08 σ−4 here) induce ideal-gas-like response
in the atomistic system.

FIG. 7. (a) Difference of pressure profiles
of the systems with respect to the equi-
librium pressure profile p(x) − peq(x).
(b) Comparison between pressure differ-
ence of reservoirs pIG

R −pIG
L and the pres-

sure difference calculated at the bound-
ary of atomistic region pAT

R − pAT
L .
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FIG. 8. Velocity profiles of the pressure
driven flow are shown for different den-
sity gradients induced by controlling the
density at the right reservoir (ρ∗R ). The
density at the left reservoir is set to equi-
librium density ρ∗L = ρeq. The solid lines
are the parabolic fitting to each set of
data points.

To compare with the result expected from Eq. (12), we calcu-
late the corresponding average of ux(z) in the atomistic region and
obtain the velocity profiles plotted in Fig. 8 for all liquid–wall inter-
actions. The solid lines represent the parabolic functions fitted to
the data points. In all cases and apart from relatively small statis-
tic fluctuations, the simulated velocities follow closely the expected
parabolic profile.

The resulting velocity profile implies that the maximum veloc-
ity occurs at the center of the channel −umax = ux(z = 0). This
maximum velocity is linearly proportional to the nominal density
difference, i.e., umax ∝ (ρ∗R − ρ∗L), as presented in Fig. 9.

Finally, we can use umax to compute the viscosity η as

η =
ΔP
Δx

D2
h

4
u−1

max.

For the WCA case, we use all the values of ΔP/Δx (Fig. 7) and umax
(Fig. 9), corresponding to the density imbalances considered in our
study. We estimate Dh = 19 σ from the density profiles in Fig. 3.
Finally, we obtain η = 6.3 ± 0.6 ϵσ−3τ. This result is comparable
with the value obtained using Müller–Plathe’s method56 (η = 5.2

FIG. 9. Maximum velocity of the Poiseuille flow vs different relative densities
between the reservoirs (ρ∗R − ρ∗L ). The density at the left reservoir is set to
equilibrium density ρ∗L = ρ

eq. The solid lines are linear fits to the data points.

± 0.3 ϵσ−3τ). The discrepancy might be due to lack of statistics and
the uncertainty related to the ambiguous definition of the volume
accessible to the fluid, counted in the value of Dh.

IV. DISCUSSION AND CONCLUSIONS
In computer simulations, the investigation of a large closed

system allows one to sample the grand canonical ensemble. A sub-
domain of volume V and an average number of particles ⟨N⟩ inside
a system with a fixed number of particles N0 and volume V0 is
considered to be in the grand canonical ensemble provided that
the condition V/V0 ≈ 0.01 holds.4 For the Lennard-Jones systems
investigated here, a subdomain of volume V ∼ (10 σ)3, with the esti-
mate for the correlation length of the system as 10 σ, would require
V0 ∼ 100 V. With a density ρ = 0.647 σ−3, the simulation would need
N0 ∼ 106. This number is one order of magnitude larger than the
number of particles considered here, which already highlights the
advantage of using the proposed method. Additionally, we empha-
size that a detailed assessment of the relative atomistic, hybrid, and
ideal gas region sizes might suggest that we could further reduce the
size of the system without affecting our main results.

Instead of the direct approach discussed above, it is perhaps
more convenient to use one of the available grand canonical molec-
ular dynamics methods.49–51,57–63 A common ingredient in most
approaches consists of inserting particles with a given system-
dependent probability. In general, when the system under consid-
eration is simple in terms of the force field used for its description,
or if the system is at low density/concentration conditions, this is the
method of choice. Far away from such conditions, the particle inser-
tion protocol becomes highly inefficient. In this respect, the adaptive
resolution framework constitutes an alternative for existing meth-
ods. In particular, for the Hamiltonian adaptive resolution discussed
in Ref. 24, the target system is in contact with a reservoir of ideal
gas particles at constant temperature, volume, and by ensuring a
uniform density across the simulation box, also at constant chem-
ical potential. The combination with a particle insertion algorithm
operating in the ideal gas region guarantees a reservoir of infinite
size, thus completing the definition of grand canonical ensemble.
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Therefore, the method proposed here is a robust strategy to perform
open-boundary molecular dynamics simulations, mainly when the
system under consideration is dense, or highly concentrated in the
case of mixtures, and regardless of the complexity introduced by the
force field description.

A straightforward change in the geometry and periodic bound-
ary conditions in the simulation box allows one to decouple the ideal
gas reservoir. Hence, it is possible to simultaneously impose different
temperature, density, and concentration conditions on the system.
In the particular case of induced density gradients,29,53,64–66 cur-
rent non-equilibrium molecular dynamics methods include external
forces that might introduce artifacts in the simulation resulting from
non-conservation of linear momentum.67 Instead, the method pro-
posed here conserves, on average, momentum. Moreover, the sim-
plicity of the reservoir gives the possibility to study different out-of-
equilibrium conditions for complex molecular systems, which con-
stitutes a significant improvement over state-of-the-art simulation
methods.

In summary, in this work, we presented a method to per-
form open-boundary molecular dynamics simulations. We used
the H-AdResS framework where the atomistic target system is in
physical contact with a reservoir of non-interacting particles at
constant temperature, volume, and chemical potential. In addi-
tion to the straightforward calculation of the chemical potential,
the use of H-AdResS allows one to study liquid mixtures directly.
In this context, we introduced a particle insertion/deletion algo-
rithm that operates, at minimal computational expenses, on the
ideal gas reservoir. Approaches exploiting similar ideas are available
in the literature;58,68 however, they lack the flexibility provided by
the coupling to the ideal gas system. The proposed method allows
one to perform constant chemical potential simulations under
various conditions. More importantly, by studying the pressure-
driven flow through a channel, we showed that it is also possi-
ble to perform well-controlled non-equilibrium molecular dynamics
simulations.
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