
A Constructivist Redesign of a Graduate-level CS Course to
Address Content Obsolescence and Student Motivation

Lorenzo Angeli
lorenzo.angeli@unitn.it

Università degli Studi di Trento
Povo, TN, Italy

Juan Josè Jara Laconich
juan.jaralaconich@unitn.it

Università degli Studi di Trento
Povo, TN, Italy

Maurizio Marchese
maurizio.marchese@unitn.it

Università degli Studi di Trento
Povo, TN, Italy

ABSTRACT
The last decade has seen a rising popularity of active learning
methodologies in Computer Science (CS), empowering students
and developing their soft skills as well as their technical knowledge.
In parallel, the speed of technological obsolescence also increased,
creating challenges for teachers to keep their course content fresh
and up to date. In this paper, we present a constructivist redesign
of a Graduate-level laboratory course in Web Service Design and
Engineering that leverages latent pockets of student knowledge
to tackle these challenges through Learning by Teaching (LbT).
We illustrate how such redesign was planned, deployed and evalu-
ated, highlighting the guiding role of teachers in the process and
discussing how this approach was able to solve the problem of
keeping content updated while broadening both content and tools
students were exposed to. Furthermore, we will discuss how the
additional motivation stemming from their empowerment allowed
students not only to perform more work compared to a lecture-
based implementation, but also to perceive it in the end as a lesser
load.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion; Software engineering education; • Applied computing
→ Collaborative learning;

KEYWORDS
active learning; learning by teaching; actor-network theory; peda-
gogy; constructivism; graduate instruction
ACM Reference Format:
Lorenzo Angeli, Juan Josè Jara Laconich, and Maurizio Marchese. 2020. A
Constructivist Redesign of a Graduate-level CS Course to Address Content
Obsolescence and StudentMotivation. In The 51st ACMTechnical Symposium
on Computer Science Education (SIGCSE ’20), March 11–14, 2020, Portland, OR,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3328778.
3366910

1 INTRODUCTION
Constructivist education has enjoyed relatively high popularity in
the past decades[4], with its applications mostly focused towards
younger learners [28]. In CS in particular, constructivist pedagogies
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6793-6/20/03.
https://doi.org/10.1145/3328778.3366910

have been deployed successfully, applyingmodels such as challenge-
based learning [27][29], team-based learning [25][18], and, in a
constructionist derivation, FabLearn [17].

A parallel phenomenon to this pedagogical evolution, however,
has been an accelerating speed in the evolution — and therefore also
obsolescence — of the technologies used in CS. The World-Wide
Web and its tools, which represent the context of our course, have
been no exception to this. As these technologies evolve, Higher
Education (HE) Institutions need to update their curricula to make
sure that what they are teaching is current, relevant, and useful for
students when they enter the jobs market.

Some technologies and programming languages have remained
in the last years relatively stable in popularity [7], and have become
the backbone of many HE courses. Nonetheless, industry constantly
asks for candidates to be trained in different technologies [31],
and not necessarily the aforementioned “evergreens”. Because of
this, it makes sense for HE Institutions to expose their students to
these trending technologies, though constantly updating courses
to use flavour-of-the-year technologies would be cumbersome and
impractical. Frequently changing programming languages taught in
courses to follow trends might also create issues where — because
of fast technological obsolescence — what students learn obsolesces
quickly, lowering the value of the educational experience.

Nonetheless, the rise of online learning platforms such as Code-
cademy1, but also edX and Coursera, shows that students and young
professionals do have an interest in keeping up to date with trends,
and are even willing to use their free time for this purpose.

In this paper, we will discuss how we redesigned a program-
ming laboratory course on “Web Service Design and Engineering”
through a constructivist framework. The course did not change its
core content, overarching structure or Learning Objectives (LOs),
but instead implemented a form of Active Learning, giving students
more freedom in implementing their final projects, while keeping
the same formal requirements as previous years. Starting from a
reflection inspired by Actor–Network Theory (ANT), we sought
to detach the course from its originally-adopted programming lan-
guage and ground it instead on students’ expertise and interests,
with the goal of making the experience more updated and engaging.

In practice, students worked in teams to teach to their peers a
laboratory class, and then formed different teams to work on the
projects. During both phases, they were able to propose whatever
tool or programming language they deemed suitable or interesting
for the tasks they wanted to tackle. In labs, they were also encour-
aged to propose additional content that they thought would be
relevant for the course and, in projects, they were asked to propose
themes that would be useful in their own workflows and daily lives.

1https://www.codecademy.com/

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1255

https://doi.org/10.1145/3328778.3366910
https://doi.org/10.1145/3328778.3366910
https://doi.org/10.1145/3328778.3366910
https://www.codecademy.com/

In the following sections, we will first provide a brief overview of
related work, focusing in particular on the theoretical grounding of
ANT and, in the practice, on active learning and LbT experiences; we
will then describe our implementation and the setup for measuring
the outcomes of this redesign; we will later illustrate the main
results, and finally provide conclusions and outline opportunities
for further exploration of the outcomes of this experience.

2 RELATEDWORK
This study is positioned at the intersection of two different segments
of the broader topic of constructivist pedagogies. Epistemologically,
we draw the grounding of our study from the understanding of
Actor–Network Theory in education, while methodologically, we
adopt the practices of Learning by Teaching.

ANT as a tool can be used to describe how the relationships
between human actors are affected and shaped by non–humans
(and their interrelations) [21]. One such key relationship is that
where humans treat technical artifacts as “black boxes” which,
when deeply nested and accumulated, require substantial effort to
be unpacked [19]. In ANT, black–boxed non–human actors are also
attributed with “agency”, as they become able to concretely affect
relationships between humans [30], as if the actions they allow or
disallow represent the actions of these non–humans. This form of
agency, it can be argued, can be traced back to the designer’s intent
embedded in technological artifacts [20].

CS classes are naturally full of tangible and intangible technolog-
ical artifacts or, in ANT terms, designed non–humans. The idea of
applying ANT to the field of education has been most thoroughly
explored by Fenwick and Edwards [12]. Of particular interest for
our discussion is that in the views of Fenwick and Edwards, the
curriculum is reified (and thus black–boxed) holistically, along with
the non–humans it employs as part of its design. In the context
of a programming course, programming languages become one of
the key tools enabling the process of translation [6] of theory into
learned practice. In this sense, technological tools in a programming
course are embedded — or rather, in–scribed [2] — in the course,
and become part of the black box.

Our action aims at carrying out a process of de–scription [1] of
languages and tools from the course, including in its stead tools
brought by the students temselves. This, we hypothesised, could
reduce the effort required by the students to unpack the black
boxes, if nothing else because tools are now familiar. The way we
enable this process is by letting students teach parts of the course,
namely the lab sessions. Empowering the students in this way puts
them on the same side as the teachers in defining the relationships
in the class’ actor–network and enables them to truly enrol the
technologies to serve their learning.

While Active Learning (AL) has been a popular concept lately,
its penetration in the STEM education field, and in particular in
CS, is still relatively low [14]. Learning by Teaching is a form of AL
originally developed for the teaching of foreign languages, which
has most recently been the focus of the research activity of Grzega
[16]. LbT has been called an effective way for students not only to
more effectively retain course content [15], but also to develop soft
skills such as communication [5].

Other forms of AL have been successfully used in universities
[13], especially with the goal of improving engagement. In CS, the
most common examples are forms of Learning by Doing (LbD) such
as Problem–Based Learning (PBL). Nonetheless, a study by Okita
[26] shows that LbT has lasting effect on student learning, even
sometimes outlasting those of LbD. In parallel, it has been noted
that students of CS are increasingly using their free time to develop
personal projects and learn new tools [24], and are drawing strong
motivation from these endeavours [23].

This last phenomenon implies that the classroom space increas-
ingly contains pockets of latent or tacit knowledge which are not
tapped by lecturing. Other contexts such as those of makerspaces
have proven to be well-suited for these purposes, with studies show-
ing how the mode of learning (formal, non-formal, informal) affects
knowledge generation and transmission [10], but this remains a
relatively inexplored topic in HE classroom teaching.

Transmission of formal and tacit knowledge, nonetheless, are
radically different matters [33]. In this sense, as it is typical for
AL processes, the role of the teacher as a guiding mentor and a
facilitator is key [5]. To illustrate this in ANT terms, we can say
that the teacher can use pedagogy (LbT) to enrol students and their
knowledge to assist the process of de–scription of the non–humans
normally embedded in courses, and achieve our design goals.

3 IMPLEMENTATION
When we started redesigning the course, we set one main overar-
ching goal: we wanted to see if a radical empowerment of students
could be used to increase the relevance of the course’s content
while promoting more active engagement at the same time. We also
defined two ancillary goals: first, we expected that the new course
structure would lend itself naturally to the development of student
soft skills; second, we wanted to guide students toward creating
content packages that would be reusable by future cohorts. These
two ancillary goals were not addressed in this first run, and instead
we wanted to observe if students also saw these opportunities.

3.1 Context
Our course involved a total of 24 students, 19 attending and 5 non-
attending. The experience we report here focuses on the attending
students, since they are the ones that were tasked to deliver the
lab session to their peers. Non-attending students were asked to
deliver the same material that went into the preparation of a lab
session in a mock presentation to the teachers during their exam,
but we will not discuss their case, since it lacks the fundamental
student-to-student peer instruction.

The course took place twice a week in lectures of two hours each
in a university in Northern Italy from September to December of
2018, and was entirely taught in English. 13 of the attending stu-
dents were Italian, and 6 were international students. The teaching
team was composed of one professor, a PhD student tasked with
developing the lab methodology and mentoring for the labs and
projects, and a post-doc researcher that was tasked mostly with
technical mentoring for the labs and projects. The course lasted a
total of 23 sessions of 2 hours each, of which 6 were dedicated to
theory; 7 to the labs; 3 to plenary mentoring sessions for the labs; 4

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1256

to plenary mentoring sessions for the projects, and 3 to the course
introduction, wrap-up and in itinere testing on the theory part.

The course’s theory lectures were divided in four blocks: (1) a
high-level introduction; (2) data representation, marshalling and ex-
change (XML and JSON); (3) service engineering techniques (REST
and an introduction to SOAP); (4) designing and deploying service
architectures. The labs sessions were partly pre-determined mirror-
ing theory lectures (XML; JSON; Testing; writing REST services)
and partly new topics proposed by students and validated with
the teaching team (virtualization and microservices2; automated
Documentation; Authentication and Authorization). For all labs,
students were able to propose not only the flow of the session (num-
ber and difficulty of exercises, instruction style, coaching method
etc.) but also, centrally, they were free to choose any programming
languages or tools that they deemed were the most appropriate or
interesting, as long as they provided adequate background infor-
mation to their peers to be able to follow the session. Similarly, for
final projects, students only had a document with loose guidelines,
and were asked to propose their own topic and architecture, as long
as it satisfied a number of given technical constraints.

For this article, we will focus on an analysis of the labs and how
their workflow was established. This is both because labs were the
centrepiece of the course and because theory was kept with no
difference from the previous implementation, and projects kept the
same guidelines, except that students were also asked with ideation
and choosing their implementation tools.

3.2 Lab Workflow
On the third lecture, students were introduced to the general work-
flow of the labs (which we will briefly present here) and the pre-
determined lab topics.

Students were given two weeks to autonomously form groups of
2–3 students and select or propose lab topics, each team bidding on
up to two topics they would be interested in preparing. Two weeks
later, the bidding phase was concluded in a plenary session where
teams negotiated together the final distribution of lab topics, and
lab slots were assigned on the course’s calendar, starting two more
weeks from that date.

From here, each team went through the same pipeline:
(1) Drafting session

• Format: Informal discussion in office hours after class time.
• Students propose a high-level session outline to the teach-
ers.

• Exchange of immediate feedback on broad changes that
need to be made.

• Scheduling of a meeting for the first mentoring session.
• Timing: At least two weeks before final lab time.

(2) First mentoring session
• Format: Ad-hoc scheduled meeting of 1 hour.
• Students present a more detailed overview of the lab ses-
sion.

• High-level presentation of theory, exercises, tools, etc.
• Discussion on session content, mode of delivery and pre-
sentation content.

2Introducing Docker as the main tool and use case.

• If major revisions are needed, a second mentoring session
is scheduled. If only incremental improvement is neces-
sary, the Dry Run is scheduled instead.

• Timing: Two weeks before final lab time.
(3) Second mentoring session (optional)

• Format: Ad-hoc scheduled meeting of 1 hour.
• Same mode as the first mentoring session, but focusing
on any necessary improvements.

• At the end of the session, the Dry Run is scheduled.
• Timing: Between two and one weeks before final lab time.

(4) Dry run
• Format: Ad-hoc scheduled meeting of 1 hour.
• Students perform a mock run of the session in front of the
teachers.

• All environments need to be ready and working, slides
need to be in a final draft state, exercises are skipped to
expedite the dry run and only discussed.

• Fine-grained feedback from the teachers both on technical
content and on presentation/delivery modes.

• Timing: At least three days before final lab time.
(5) Lab package delivery

• Format: e-mail
• Delivery of an e-mail containing the final “lab package”
(see below).

• Circulation of the lab package by the teachers.
• Students participating to the session are expected to down-
load the lab package and install the environment to be
ready at the start of the session.

• Timing: At least 24 hours before their sessions.

Each lab package was designed to be used in the class, but also as
study material to be used at home by absent peers, non-attending
students, those needing to revise and, ideally, also future cohorts.
Each team had to deliver an “environment” which was either made
of a VirtualBox VM containing all the necessary tools to perform
the exercises in the sessions or, when the lab only used web-based
tools, a document with links to those tools.

Each lab also required a set of slides that students would use
to support their in-class presentation, which could possibly be
made different between slides for attending and non-attending stu-
dents. Slides should contain all theoretical/background information
needed to follow the session — focusing especially on content not
covered during the lectures — and a set of exercises, of which one
— longer — designed as a take-at-home exercise. Finally, since stu-
dents had the option to introduce new technologies that could be
unfamiliar to their peers, they were asked to deliver a one-page
“cheat sheet” summarizing all necessary syntax and key commands
used in the session. These lab packages were published on the
course website as soon as they had been received from the teams.

During the lab, students conducted their session with no inter-
vention by the lecturers, which also followed the labs as if they
were students. Teams were given full freedom on how to teach their
class, also deciding who in the team would speak and present, and
how to support their peers.

Immediately after the class, all attending students were asked to
fill an anonymous questionnaire on Google Forms, which served as
our main way to evaluate the success of the labs. We will present

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1257

the questionnaire in more detail in section 3.3. In parallel, each
teacher also gave an evaluation of the lab for the purpose of grad-
ing. Dimensions evaluated by the teachers were the quality of (i)
background information; (ii) materials; and (iii) exercises. Each di-
mension was evaluated on a 1–10 scale, and complemented with
comments. In the week after their session, teams were finally asked
to reflect on their own experience through a non-evaluated one-
page document that we call an After–Action Report (AAR). This
will also be illustrated in 3.3.

3.3 Evaluation Tools
To evaluate the success of our redesign, we relied on three main
tools: Student Evaluation of Teaching Questionnaires (SET Ques-
tionnaires), Lab Questionnaires (LQs) and AARs.

The first, SET Questionnaires, are the standard anonymous eval-
uation of teaching questionnaires that all students have to fill at the
end of a course in Italy. The SET Questionnaire has been developed
by the Italian National Agency for the Evaluation of University
and Research (ANVUR) following the European ESG standard [11].
While similar instruments have been in the past criticised, espe-
cially for not being able to accurately evaluate faculty’s teaching
effectiveness [32], we decided to still use them for two reasons:
first, they represent our only source of constant historical data,
since they have been gathered since the course’s inception in its
previous design; second, we are using SET Questionnaires not as
a tool to directly evaluate our intervention, but to discuss their
most literal interpretation, namely student perceptions. A sample
SET Questionnaire with the same questions as the one used in this
course can be found at [8][9].

The second tool, the Lab Questionnaire, has been developed ad–
hoc for this course. It is a Google Form document with 10 mandatory
questions using a 1–5 Likert Scale, with 5 being high, plus two
optional open questions. The questions evaluated dimensions such
as engagement, quality of the presentation, quality of materials,
difficulty progression, use of class time, and perceived usefulness.
A Likert question also asked students to self-evaluate previous
knowledge on the lab’s topic to filter out potential biases. The two
open questions simply asked what was the most valuable aspect of
the lab and what were points of improvement.

Questionnaires were delivered in anonymous form, using Google
Forms’ authentication to ensure that each student would only sub-
mit one response, and a narrow opening window to reduce chances
of tampering and external influences. Students were encouraged
to fill LQs at the end of each lab session they attended, and their
presence was tracked in-person. Cross-checking the number of
questionnaire responses with the number and testimony of present
students allowed to preserve anonymity and avoid pollution of the
data from external actors. Each student had to attend at least 5 out
of 7 lab sessions (including theirs) to be considered attending.

Finally, the last tool was a written one-page group document,
called the AAR. Here, we asked students to tell us: (i) what they
think worked; (ii) what did not work; (iii) what they learned from
the experience; and (iv) what they would change if they were to do
the session again. The goal of this tool was to have a written trace
of the perspective of the student-lecturers so that, in case a session
would be controversial, we would be able to see both sides. Lastly,

the AARs also gave us a way to gather insights on the teams’ own
sensemaking of the process they participated in.

4 RESULTS
To analyse the results of our intervention, we will address sepa-
rately the three main evaluation tools that were used: the first, the
SET Questionnaires, will serve as a longitudinal tool to evaluate
how student perceived the course across the years; the second, the
LQs, allows us to observe more closely perceptions tied to each ses-
sion,; the third, the AARs, will be used to gather additional insights
on critical aspects that might have arisen, and to draw general
observations on how the students perceived their “role reversal”
from listeners to leaders in the class.

It should be noticed that, for the longitudinal element, the course
maintained the same lecture materials and project structure, with
only minimal changes from year to year. Lab sessions were roughly
equal in amount as the revised implementation, but used a com-
pletely different format. Previously, each session was a 2–hours
tutorial where the Teaching Assistant (TA) would guide students
through a set of exercises done in Java using the Eclipse IDE, along
with a number of other tools. Attendance to the laboratories was
not tracked, and labs were divided in three blocks (data process-
ing and marshalling; REST; SOAP) with a short assignment to be
delivered two weeks after the end of each block.

4.1 SET Questionnaires
SET Questionnaires have been gathered since the beginning of the
previous implementation of the course, which was run four times,
from 2014 to 2017.

As far as general appreciation of the course is concerned, the
course was generally well-received, with only 2016 being partic-
ularly critical. In the four years, student satisfaction is at 93.5%,
95.2%, 68.0%, and 92.3%.

The most critical metric in SET Questionnaires, however, is the
one related to perceived load of the course. Students feeling that
the load of the course is balanced with the number of awarded
credits is 61.3% in 2014, 76.2% in 2015, 52.0% in 2016 and 84.6% in
2017. This is consistently the lowest score the course receives in
SET Questionnaires.

Since 2016, students also started suggesting to improve the qual-
ity of teaching materials. While 2014 and 2015 had all students
satisfied about the quality of the teaching material, 2016 and 2017
report 80% and 84.6% of the students being satisfied, despite the
material remaining the same. In 2016, many students also report in
the open feedback section of the SET Questionnaires difficulties in
configuring and using the lab and project environment.

The 2018 implementation seems to have solved these issues. In
the 2018 SET Questionnaires, all students report being satisfied
with the course, all students thought the load was balanced with
the number of awarded credits, and that the teaching material was
adequate. The only critical remark received in SETQuestionnaires is
in the open feedback section, where one student states that “student-
led lab lectures need to be more consistent [sic]”.

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1258

4.2 Lab Questionnaires
In LQs, the highest measures obtained are those of the support
materials, Virtual Machines (VMs), and exercises, averaging 4.57,
4.56 and 4.53 out of 5 on the Likert scale. The lowest is the one for
engagement, which is however still at 3.99 on average.

The measure of “previous knowledge on the topic” also allows
us to identify topics where students feel stronger or weaker. Here,
JSON and XML seem to be the topics where students were most
familiar (3.36 and 2.82 respectively), and Virtualization was the
least familiar topic (1.91).

The Virtualization lab was also, overall, the lowest-rated session,
while still having an average of 3.98 across the measured metrics.
Exercises have been particularly critical, with students noting in
the open questions that the progression was at times too flat and at
times too fast. The best-rated lab was instead the one on Authen-
tication, especially on the engagement metric (4.50), with only a
remark to give more time for exercises. These evaluations, and all
overall evaluations given by students, do not significantly differ
from those given independently by the course lecturers.

Reading the answers to the open questions, students clearly ap-
preciated the variety of technologies and tools that were introduced,
with many students stating that they were seeing them for the first
time. Most requests for improvements, on the other hand, focus on
the need to have a clear difficulty progression in exercises and, in
general, stronger guidance during exercises.

Labs that introduced technologies that were unfamiliar to the
class raised division: the Virtualization, REST and Documentation
lab in particular relied more heavily on specific tools, and answers
to open questions show that students always noticed this, but were
divided in stating whether this was overall positive or negative.

4.3 After–Action Reports
In AARs, all groups evaluated positively the experience of teaching
to peers. Three groups also explicitly mention feeling like the expe-
rience was a good way to hone their presentation skills and learn
the nuances that go into preparing lectures. All groups also made
remarks correlating the pacing and progression of the exercises
they proposed with how the class appeared to receive their lecture.

We also observed during the preparation sessions that teams
introducing new technologies usually did so following the lead
of one group member that was already interested in the chosen
technology. In AARs, nonetheless, all teams that introduced new
technologies report appreciating the opportunity of having to learn
a new tool in enough depth to be able to explain it to their peers.

Three groups also say that, if it were possible, they would have
preferred to have more time in each lab session to go more in depth.

Finally, the Authentication lab team reflects on their (relatively
heavy) use of comedy in the form of “memes” as a mean to engage
the class. In their AAR, the team states that they tried to use them to
“express an opinion and improve participation”, and that “the small
number of meme [sic.] reduced the impact of the lesson”, something
which LQ data seems to disprove.

5 DISCUSSION
Different insights can be gathered, which we will present in four
parts: (i) SET Questionnaires; (ii) LQs; (iii) AARs and (iv) general.

SET Questionnaires: the measure on perceived course load is
particularly interesting. From a strictly quantitative perspective, the
redesigned implementation did not reduce student load, and indeed,
the redesigned course did not remove any topic covered in lectures
or labs in the previous implementation. Project requirements also
remained the same as the previous years, with the only difference
that students were tasked to propose their own project rather than
developing one assigned by the teachers.

With this in mind, it could be argued that the load on the student
actually increased. Before the redesign, labs were used to exemplify
theory and to learn the tools for the project. After, they acquired a
bigger role, and required extra effort from the students to ideate,
prepare teaching materials, and execute. Similarly, projects, which
before were a pre-assigned exercise, required extra effort in ideation,
which was moved from the teachers to the students and mentors.

These results can be read under the light of the fact that, in a way,
the previous implementation ended up tying the subject-matter of
the course (web services) to its implementation language, Java. In
labs, the redesigned course flow definitely represented an increase
in load both because of the added content (Virtualization introduced
Docker, Automated Documentation and Authentication were not
covered previously) and of the increase in tools and languages that
the students were exposed to. In projects, the decision of letting
students to be free to choose the implementation language and tools
allowed them to reduce their load in a customised way, as students
were encouraged to use the tools that they were the most familiar
with, focusing on making sense of the content of the course rather
than of the tools previously used by the course (Java and Eclipse).

When redesigning the course, we did not expect that students
would perceive a decrease in load compared to the previous for-
mula. If anything, we actually expected students to find the new
implementation to be heavier, and that this would be a weakness of
our model that we would need to address in the future as a point of
improvement. We knew, from discussing with students of the pre-
vious years, that the Java and Eclipse environment was perceived
as cumbersome and something that added extra complexity. What
we did not expect was that removing this constraint and turning
the choice of tools in the hands of the students would create so
much slack in terms of perceived load. We also think that the added
motivation given by the higher degree of empowerment afforded
to the students helped them in tackling the extra challenge, but we
do not have measures to help us back this claim.

Lab Questionnaires: labs have been overall evaluated positively.
Some open questions stem from the LQ’s outcomes, though. The
highest measures — those related to class materials — are also
those where, by nature, students have the least expertise to judge
whether material is of actually good quality or not, since they are
likely seeing that content for the first time. The lowest measure
being engagement — while still being high — also suggests us that
further exploration on our course model should attempt to use
different measurement tools, since engagement is by its nature a
more subjective matter, and thus something that students would
be able to reliably report on. Nonetheless, the answers to the open
questions, when given, have been constructive and shown atten-
tiveness and insight, which makes us think that the questionnaire
was taken seriously by students.

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1259

The introduction of new technologies seems to create a fine line
between generating insight and confusion in students, and exercises
appear to be the key in keeping the class engaged in the process. The
Virtualization and REST sessions both introduced new technologies,
but the comments on the Virtualization lab suggest that a non-
smooth progression in the exercises made the class unable to draw
strong conclusions on the lab content and the presented technology.

After–Action Reports: all students express a positive evaluation
of the overhauled experience. Because of this, we think that the
LbT represents a high added value of the course also from the
perspective of the students, and could have a bigger place in the
course’s LOs as well as in its promotion in the department. The
pacing of exercises also seems to be a main concern for groups
reflecting on their own sessions, and observations in the AARs
generally reflect those present in the open comments of LQs. The
observations on soft skills made by the students also suggest us that
students are aware of the importance of soft skills both in general
and in the course. In general, the AARs seem to be an insightful
yet somewhat superficial tool. A more structured template to guide
reflection might help in making the obtained information more
relevant, since the perspective of the student-lecturers is important
in gathering a full picture of each lab session.

General: We provided an example of how a laboratory program-
ming course can de-scribe programming languages from its core
content. This has the net effect of emphasising theory and program-
ming paradigms, reframing the technologies used in the laboratories
as instantiations of the paradigm rather than as self-standing tech-
niques. By leveraging the silent technical knowledge present in the
classroom through the students, the course remains relevant for a
longer time, and obsolescence becomes a matter of programming
paradigms rather than one of programming languages.

We also linked motivation with the perceived reduction in load
that the students experienced. This, however, can become poten-
tially problematic. Students report a lesser load compared to the
previous implementation, but they are objectively required to per-
form more demanding tasks. Motivation in this sense can become
a double-edged sword: it has the potential to reduce the perceived
load, but motivated students might be led to situations of burnout
[22]. To get more insight on the reduced perception of load, we can
once again use the lens of ANT to look at the course as a whole. The
design choices embedded in programming languages [20] affect
how the students carry out their task, shaping how they think, and
how subparts of a larger project interact, affecting also division of
work. Students choosing their tools empowers them to reshape the
relationships in the actor-network which the course represents, but
this is a source of extra complexity and potential additional stress
if tools are chosen unwisely.

6 CONCLUSIONS AND FUTUREWORK
In the previous sections, we illustrated how the course was re-
designed from a formula based on traditional lectures to a structure
that embraces a constructivist approach, empowering students to
become co-owners of the classroom. We now wish to draw some
conclusions from three main points of view: (i) LOs and skills; (ii)
motivation and load; and (iii) scalability.

LOs and skills: the overhauled course implements the same core
LOs, and asks the students to develop the same hard competences. A
potentially relevant opportunity and field of future work, however,
is that of using the course to explicitly address the development
of soft skills such as communication, presentation, teamwork and
leadership. From a “hard” skills perspective, instead, the assumption
that it is desirable to have a more general view of a programming
paradigm rather than specific knowledge of currently trending lan-
guages comes from informal discussion with students and compa-
nies. A systematic survey of whether this shift represents an added
value in the market for potential employers or not also represents
an opportunity for future research.

Motivation and load: we discussed how the perception of a heavy
load was reduced in the overhauled implementation, though the
load put on students was objectively higher. Empowered students
surely enjoy the process more, but teachers need to pay extra at-
tention to the consequences of the choices that students make.
Different tools and styles of teaching the lab, to name two key
choices, both affect how much time and energy students will need
to invest in order to make sure that the laboratory will be successful.

Teachers need to have a strong ethical compass and develop a fine
sense of empathy to push the students toward greater achievement
while ensuring they are not overworking. This is particularly true
for projects: if teachers misjudge the level of load of a project when
students set their own tasks and decide their own tools, motivation
might soon vanish. These reflections, here just stated as hypotheses
and more general observations, are not formally explored in this
article, and represent opportunities for further research.

Scalability: as this is a key challenge for many pedagogies alter-
native to lectures, we feel the need to draw conclusions in this sense.
We think that our methodology would have worked better with a
bigger class — around 30 students. This would have ensured that
sessions were led by teams of around 4 students, giving capacity
to the team leading the session to address questions and assist stu-
dents experiencing difficulties. Surely, our approach can not scale
indefinitely, since adding extra lab sessions also implies extra work
from the teachers. A possible solution could be to split the class in
two, so that labs are done in parallel by two teams to two subsets
of the class, or to adopt a framework similar to micro-classes [3].

Another scalability concern stems from the idea that lab sessions
should represent a package that can be reused by future cohorts
as a source of extra exercises or more content. If this were to be
adopted, we think there could be issues not only of incremental
accretion of content (leading to heavier load), but also issues in
taking questions about the material and evaluating it. In this sense,
a framework of peer evaluation could represent a solution.

In conclusion, we think that our experiment — while at a small
scale, with substantial room for improvement, and many untapped
resources — represents a good example of how teachers can take
concrete steps to lead students not as top-down managers, but
as mentors and even, in the learning of new tools, as co-learners.
As technology evolves and information spreads and decentralises,
opportunities to create knowledge in the classroom space follow a
similar path. If the role of the teacher is that of guiding students
toward knowledge, we ought to teach our students not to look far
away, but to look at their peers, and discover opportunities which
are surprisingly close and humanly rich.

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1260

ACKNOWLEDGMENTS
The authors wish to thank all students of the "Introduction to
Service Design and Engineering" course in University of Trento in
cohort 2018–2019 for enthusiastically taking part in the course’s
redesigned experience.

REFERENCES
[1] Madeleine Akrich. 1992. The De-Scription of Technical Objects. In Shaping

Technology/Building Society: Studies in Sociotechnical Change, Wiebe E. Bijker
and John Law (Eds.). https://pedropeixotoferreira.files.wordpress.com/2014/03/
akrich-the-de-scription-of-technical-objects.pdf

[2] Madeleine Akrich and Bruno Latour. 1992. A summary of a convenient vocabulary
for the semiotics of human and nonhuman assemblies. The MIT Press.

[3] Christine Alvarado, Mia Minnes, and Leo Porter. 2017. Micro-Classes: A Structure
for Improving Student Experience in Large Classes. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education - SIGCSE ’17. ACM
Press, Seattle, Washington, USA, 21–26. https://doi.org/10.1145/3017680.3017727

[4] Roya Jafari Amineh and Hanieh Davatgari Asl. 2015. Review of Constructivism
and Social Constructivism. Journal of Social Sciences, Literature and Languages 1,
1 (2015), 9–16.

[5] Safiye Aslan. 2015. Is Learning by Teaching Effective in Gaining 21st Century
Skills? The Views of Pre-Service Science Teachers. Educational Sciences: Theory
& Practice 15, 6 (Dec. 2015). https://doi.org/10.12738/estp.2016.1.0019

[6] Michel Callon. 1984. Some elements of a sociology of translation: domestication
of the scallops and the fishermen of St Brieuc Bay. The Sociological Review 32,
S1 (1984), 196–233. http://onlinelibrary.wiley.com/doi/10.1111/j.1467-954X.1984.
tb00113.x/full

[7] Pierre Carbonnelle. 2019. PYPL PopularitY of Programming Language index.
http://pypl.github.io/PYPL.html

[8] Agenzia Nazionale di Valutazione del Sistema Universitario e della Ricerca (AN-
VUR) (Italy). 2013. Proposta operativa per l’avvio delle procedure di rileva-
mento dell’opinione degli studenti per l’A.A. 2013-2014. http://www.anvur.it/
attachments/article/26/RIlevazioneOpinioneStudDef_06_11_13.pdf

[9] Agenzia Nazionale di Valutazione del Sistema Universitario e della Ricerca
(ANVUR) (Italy). 2019. Rilevazione Opinioni Studenti – ANVUR – Agenzia
Nazionale di Valutazione del Sistema Universitario e della Ricerca. https:
//www.anvur.it/attivita/ava/opinioni-studenti/

[10] Árni Már Einarsson and Morten Hertzum. 2019. Scaffolding of Learning in
Library Makerspaces. In Proceedings of the FabLearn Europe 2019 conference on
ZZZ - FabLearn Europe ’19. ACM Press, Oulu, Finland, 1–8. https://doi.org/10.
1145/3335055.3335062

[11] European Students’ Union (ESU) (Belgium), European University Association
(EUA) (Belgium), European Association of Institutions in Higher Education
(EURASHE) (Belgium), and European Association for Quality Assurance in
Higher Education (ENQA) (Belgium). 2015. Standards and Guidelines for Quality
Assurance in the EuropeanHigher Education Area (ESG). European Students’ Union.
20 Rue de la Sablonniere, 1000 Bruxelles, Belgium. Tel: +32-2-502-23-62; Fax:
+32-2-706-48-26; e-mail: secretariat@esu-online.org; Web site: http://www.esu-
online.org. OCLC: 7927262920.

[12] Tara Fenwick and Richard Edwards. 2010. Actor-Network Theory in Education.
Routledge. https://doi.org/10.4324/9780203849088

[13] Scott Freeman, David Haak, and Mary Pat Wenderoth. 2011. Increased Course
Structure Improves Performance in Introductory Biology. CBE—Life Sciences
Education 10, 2 (June 2011), 175–186. https://doi.org/10.1187/cbe.10-08-0105

[14] Scott Grissom, Renée Mccauley, and Laurie Murphy. 2017. How Student
Centered is the Computer Science Classroom? A Survey of College Faculty.
ACM Transactions on Computing Education 18, 1 (Nov. 2017), 1–27. https:
//doi.org/10.1145/3143200

[15] Joachim Grzega. 2005. Learning By Teaching: The Didactic Model LdL in Univer-
sity Classes. (2005). http://www.joachim-grzega.de/ldl-engl.pdf

[16] Joachim Grzega and Marion Schöner. 2008. The didactic model LdL (Lernen
durch Lehren) as a way of preparing students for communication in a knowledge
society. Journal of Education for Teaching 34, 3 (Aug. 2008), 167–175. https:
//doi.org/10.1080/02607470802212157

[17] Mikkel Hjorth, Ole Sejer Iversen, Rachel Charlotte Smith, Kasper Skov Chris-
tensen, and Paulo Blikstein. 2015. Digital Technology and design processes: Report
on a FabLab@School survey among Danish youth. Technical Report. Aarhus
University Library. https://doi.org/10.7146/aul.12.11

[18] Michael S. Kirkpatrick. 2017. Student Perspectives of Team-Based Learning in a CS
Course: Summary of Qualitative Findings. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education - SIGCSE ’17. ACM Press,
Seattle, Washington, USA, 327–332. https://doi.org/10.1145/3017680.3017699

[19] Bruno Latour. 1987. Science in action: How to follow scientists and engineers
through society. Harvard university press.

[20] Bruno Latour. 1992. "Where are the missing masses?". In “Where Are the Missing
Masses? The Sociology of a Few Mundane Artifacts”.

[21] Bruno Latour and others. 2005. Reassembling the social: An introduction to actor-
network-theory. Oxford university press.

[22] Shu-Hui Lin and Yun-Chen Huang. 2014. Life stress and academic burnout. Active
Learning in Higher Education 15, 1 (March 2014), 77–90. https://doi.org/10.1177/
1469787413514651

[23] Robert McCartney, Jonas Boustedt, Anna Eckerdal, Kate Sanders, Lynda Thomas,
and Carol Zander. 2016. Why Computing Students Learn on Their Own: Motiva-
tion for Self-Directed Learning of Computing. ACM Transactions on Computing
Education 16, 1 (Jan. 2016), 1–18. https://doi.org/10.1145/2747008

[24] Robert McCartney, Anna Eckerdal, Jan Erik Moström, Kate Sanders, Lynda
Thomas, and Carol Zander. 2010. Computing students learning computing
informally. In Proceedings of the 10th Koli Calling International Conference on
Computing Education Research - Koli Calling ’10. ACM Press, Berlin, Germany,
43–48. https://doi.org/10.1145/1930464.1930470

[25] Larry K Michaelsen, Arletta Bauman Knight, and L Dee Fink. 2004. Team-based
learning: A transformative use of small groups in college teaching. (2004).

[26] Sandra Y Okita and Daniel L Schwartz. 2006. When observation beats doing:
Learning by Teaching. (2006), 7.

[27] Timothy K. O’Mahony, Nancy J. Vye, John D. Bransford, Elizabeth A. Sanders,
Reed Stevens, Richard D. Stephens, Michael C. Richey, Kuen Y. Lin, and Moe K.
Soleiman. 2012. A Comparison of Lecture-Based and Challenge-Based Learning
in a Workplace Setting: Course Designs, Patterns of Interactivity, and Learning
Outcomes. Journal of the Learning Sciences 21, 1 (Jan. 2012), 182–206. https:
//doi.org/10.1080/10508406.2011.611775

[28] Jean Piaget. 2005. The psychology of intelligence. Routledge.
[29] Alan R. Santos, Afonso Sales, Paulo Fernandes, and Mark Nichols. 2015. Com-

bining Challenge-Based Learning and Scrum Framework for Mobile Application
Development. In Proceedings of the 2015 ACM Conference on Innovation and Tech-
nology in Computer Science Education - ITiCSE ’15. ACM Press, Vilnius, Lithuania,
189–194. https://doi.org/10.1145/2729094.2742602

[30] Edwin Sayes. 2014. Actor–Network Theory and methodology: Just what does it
mean to say that nonhumans have agency? Social Studies of Science 44, 1 (Feb.
2014), 134–149. https://doi.org/10.1177/0306312713511867

[31] TIOBE. 2019. Programming Languages Definition. https://www.tiobe.com/
tiobe-index//programming-languages-definition/

[32] Bob Uttl, Carmela A. White, and Daniela Wong Gonzalez. 2017. Meta-analysis
of faculty’s teaching effectiveness: Student evaluation of teaching ratings and
student learning are not related. Studies in Educational Evaluation 54 (Sept. 2017),
22–42. https://doi.org/10.1016/j.stueduc.2016.08.007

[33] Georg Von Krogh, Kazuo Ichijo, Ikujiro Nonaka, and others. 2000. Enabling
knowledge creation: How to unlock the mystery of tacit knowledge and release the
power of innovation. Oxford University Press on Demand.

Paper Session: Graduate Programs SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

1261

https://pedropeixotoferreira.files.wordpress.com/2014/03/akrich-the-de-scription-of-technical-objects.pdf
https://pedropeixotoferreira.files.wordpress.com/2014/03/akrich-the-de-scription-of-technical-objects.pdf
https://doi.org/10.1145/3017680.3017727
https://doi.org/10.12738/estp.2016.1.0019
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-954X.1984.tb00113.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-954X.1984.tb00113.x/full
http://pypl.github.io/PYPL.html
http://www.anvur.it/attachments/article/26/RIlevazioneOpinioneStudDef_06_11_13.pdf
http://www.anvur.it/attachments/article/26/RIlevazioneOpinioneStudDef_06_11_13.pdf
https://www.anvur.it/attivita/ava/opinioni-studenti/
https://www.anvur.it/attivita/ava/opinioni-studenti/
https://doi.org/10.1145/3335055.3335062
https://doi.org/10.1145/3335055.3335062
https://doi.org/10.4324/9780203849088
https://doi.org/10.1187/cbe.10-08-0105
https://doi.org/10.1145/3143200
https://doi.org/10.1145/3143200
http://www.joachim-grzega.de/ldl-engl.pdf
https://doi.org/10.1080/02607470802212157
https://doi.org/10.1080/02607470802212157
https://doi.org/10.7146/aul.12.11
https://doi.org/10.1145/3017680.3017699
https://doi.org/10.1177/1469787413514651
https://doi.org/10.1177/1469787413514651
https://doi.org/10.1145/2747008
https://doi.org/10.1145/1930464.1930470
https://doi.org/10.1080/10508406.2011.611775
https://doi.org/10.1080/10508406.2011.611775
https://doi.org/10.1145/2729094.2742602
https://doi.org/10.1177/0306312713511867
https://www.tiobe.com/tiobe-index//programming-languages-definition/
https://www.tiobe.com/tiobe-index//programming-languages-definition/
https://doi.org/10.1016/j.stueduc.2016.08.007

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Context
	3.2 Lab Workflow
	3.3 Evaluation Tools

	4 Results
	4.1 *set
	4.2 Lab Questionnaires
	4.3 After–Action Reports

	5 Discussion
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Online Resources

