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Abstract

Based on Smirnov’s decomposition theorem we prove that every rectifiable 1-current T with finite
mass M(T ) and finite mass M(∂T ) of its boundary ∂T can be approximated in mass by a sequence
of rectifiable 1-currents Tn with polyhedral boundary ∂Tn and M(∂Tn) no larger than M(∂T ). Using
this result we can compute the relaxation of the h-mass for polyhedral 1-currents with respect to the
joint weak-∗ convergence of currents and their boundaries. We obtain that this relaxation coincides with
the usual h-mass for normal currents. This shows that the concepts of so-called generalized branched
transport and the h-mass are equivalent.

1 Introduction

Variational models for ramified transportation networks have recently attracted lots of interest (see for
instance [17, 1, 11, 12, 3, 6] and the references therein). They are closely related to the measure-geometric
concept of the h-mass of normal currents (as for instance introduced in [8], where h plays the role of a group
metric). The main difference is that the transportation network models are defined via relaxation with
respect to weak-∗ convergence of currents and their boundaries, while the h-mass is defined via relaxation
with respect to the weaker notion of flat convergence. In [3, Prop. 2.32] the equivalence between both models
was used without proof. In this note we prove the equivalence between generalized branched transport and the
h-mass in full generality in theorem 5. The main tool will be a recent relaxation result by Chambolle, Ferrari,
and Merlet [4] for currents with polyhedral boundary, combined with a new strong approximation result of
rectifiable 1-currents by currents with polyhedral boundary and equibounded boundary mass (lemmas 7
to 9). In the remainder of the introduction we describe the above-mentioned models and corresponding
notions in more detail.

Following [17] or its generalization [3], the generalized branched transport model can be introduced as
follows (where our notation is chosen slightly differently to emphasize the correspondence to the h-mass
later). Throughout the article we consider Ω ⊂ Rd to be the closure of an open bounded connected domain,
and we denote byM(Ω) the set of Radon measures, byM+(Ω) ⊂M(Ω) the subset of nonnegative measures,
and by M(Ω;Rd) the set of Rd-valued Radon measures on Ω. The total variation measure will be indicated

by | · |, the total variation of a measure by ‖ · ‖M, and weak-∗ convergence by
∗
⇀. The notation Hm denotes

the m-dimensional Hausdorff measure and x the restriction of measures to Borel sets.

Definition 1 (Generalized branched transport). 1. A unit line flux along e is a measure ρ ∈ M(Ω;Rd)
of the form ρ = ~eH1xe, where e ⊂ Ω is a straight line segment with unit tangent ~e.

2. A polyhedral flux in Ω is a measure ρ ∈M(Ω;Rd) of the form ρ =
∑n
i=1 aiρi for n ∈ N, a1, . . . , an ∈ R,

and ρ1, . . . , ρn unit line fluxes.

3. If the distributional divergence in Rd of ρ ∈ M(Ω;Rd) is a Radon measure, then ρ is called a mass
flux, and its negative divergence is called the boundary of ρ, denoted by ∂ρ = −divρ. The set of mass
fluxes on Ω is denoted F(Ω).
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4. Let ρ1, ρ2, . . . be a sequence of mass fluxes. We say ρn converges weakly to mass flux ρ and write

ρn
f
⇀ρ as n → ∞, if ρn

∗
⇀ρ and ∂ρn

∗
⇀∂ρ. We say ρn converges strongly to mass flux ρ and write

ρn → ρ as n→∞, if ‖ρn − ρ‖M → 0

5. A transportation cost is a subadditive, nondecreasing, lower semi-continuous function h : [0,∞) →
[0,∞) with h(0) = 0.

6. Given a transportation cost h, the corresponding generalized branched transport cost of a polyhedral
flux ρ =

∑n
i=1 ai~eiH1xei with non-overlapping line segments ei is

Jh(ρ) =

n∑
i=1

h(|ai|)H1(ei) .

The generalized branched transport cost of a mass flux ρ is

Jh(ρ) = inf
{

lim inf
n→∞

Jh(ρn)
∣∣∣ ρn ∈ F(Ω) polyhedral, ρn

f
⇀ρ as n→∞

}
,

the relaxation of the generalized branched transport cost on polyhedral fluxes with respect to weak con-
vergence of mass fluxes.

The variational problem of finding optimal mass transportation schemes between a given mass source
µ+ ∈M+(Ω) and a sink µ− ∈M+(Ω) then is

min {Jh(ρ) | ρ is mass flux with ∂ρ = µ− − µ+} .

The existence of minimizers and their properties are discussed in [3]. Note that mass fluxes are also known
as divergence measure vector fields [14] or vector charges [13] or 1-dimensional normal currents [7].

The definition of the h-mass of a flat chain follows the same strategy.

Definition 2 (h-mass of a flat chain). 1. An m-dimensional polyhedron in Ω is an oriented polyhedral
subset of an m-dimensional plane H ⊂ Ω with nonempty relative interior.

2. A polyhedral m-chain in Ω is a linear combination T =
∑n
i=1 aiei with n ∈ N, a1, . . . , an ∈ R, and

e1, . . . , en m-dimensional polyhedra in Ω. A refinement of T is a polyhedral m-chain of the form∑n
i=1

∑Ki
k=1 aie

k
i , where ei = e1

i ∪ . . . ∪ e
Ki
i represents a disjoint partition of ei. Two polyhedral m-

chains are equivalent and identified with each other, if they have a joint refinement. When writing
a polyhedral m-chain as T =

∑n
i=1 aiei we shall always tacitly assume the ei to be pairwise disjoint

(which can always be achieved).

3. The boundary of a polyhedral m-chain T =
∑n
i=1 aiei is the polyhedral (m−1)-chain ∂T =

∑n
i=1 ai∂ei,

where ∂ei is the sum of the oriented faces in the relative boundary of ei.

4. The mass of a polyhedral m-chain T =
∑n
i=1 aiei is M(T ) =

∑n
i=1 |ai|Hm(ei).

5. The flat norm of a polyhedral m-chain reads

F(T ) = inf{M(T − ∂D) + M(D) |D is polyhedral (m+ 1)-chain} .

6. The Banach space Fm(Ω) of flat m-chains is the completion of the vector space of polyhedral m-chains
in Ω under the flat norm. The linear boundary operator ∂ is extended continuously with respect to the
flat norm onto all of Fm(Ω). The mass functional M(·) is extended onto Fm(Ω) via relaxation with
respect to the flat norm. The subspace of flat m-chains of finite mass and with finite mass boundary is
denoted Fm(Ω) ⊂ Fm(Ω).

7. Let T1, T2, . . . be a sequence of flat m-chains. We say Tn converges in mass to the flat m-chain T and

write Tn → T , if M(Tn−T )→ 0. We say Tn converges flatly to T and write Tn
[
⇀T , if F(Tn−T )→ 0.
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8. Given a transportation cost h, the corresponding h-mass of a polyhedral 1-chain T =
∑n
i=1 aiei is

Mh(T ) =

n∑
i=1

h(|ai|)H1(ei) .

The h-mass of a flat 1-chain T is

Mh(T ) = inf
{

lim inf
n→∞

Mh(Tn)
∣∣∣Tn ∈ F1(Ω) polyhedral, Tn

[
⇀T as n→∞

}
,

the relaxation of the h-mass on polyhedral fluxes with respect to flat convergence.

Note that flat m-chains with finite mass and boundary mass are also known as normal m-currents [7,
4.1.23 & 4.2.23],[3, Rem. 2.29(2)].

The following remark details how mass fluxes and flat 1-chains relate to each other. In particular, flat
convergence of flat 1-chains is a strictly weaker notion than weak convergence of mass fluxes, which is why
in general the h-mass must be less than or equal to the generalized branched transport cost.

Remark 3 (Flat 1-chains and mass fluxes). 1. Polyhedral fluxes ρ =
∑n
i=1 ai~eiH1xei and polyhedral 1-

chains T =
∑n
i=1 aiei can naturally be identified with each other. Analogously, there is an obvious

natural identification between polyhedral 0-chains and finite discrete measures on Ω.

2. The identification between polyhedral 0-chains and discrete measures can be extended to an isomorphism
ι0 : F0(Ω)→M(Ω). Likewise, the identification between polyhedral 1-chains and polyhedral fluxes can
be extended to an isomorphism ι1 : F1(Ω)→ F(Ω).

The isomorphisms are consistent with the notions of boundary and convergence in the following sense.

(a) For any T ∈ F1(Ω) and ρ ∈ F(Ω) with ι1(T ) = ρ we have ι0(∂T ) = ∂ρ.

(b) Let µ, µ1, µ2, . . . ∈M(Ω) and ρ, ρ1, ρ2, . . . ∈ F(Ω), then

µn →
n→∞

µ strongly in M(Ω) is equivalent to ι−1
0 (µn) →

n→∞
ι−1
0 (µ) in mass, and

ρn →
n→∞

ρ strongly in F(Ω) is equivalent to ι−1
1 (ρn) →

n→∞
ι−1
1 (ρ) in mass.

(c) Let ρ ∈ F(Ω) and ρ1, ρ2, . . . be a sequence in F(Ω), then

ρn
f
⇀

n→∞
ρ implies ι−1

1 (ρn)
[
⇀

n→∞
ι−1
1 (ρ) .

Vice versa, let T1, T2, . . . ∈ F1(Ω) have equibounded mass and boundary mass and let T ∈ F1(Ω),
then

Tn
[
⇀

n→∞
T implies ι1(Tn)

f
⇀

n→∞
ι1(T ) .

Analogously, µn
∗
⇀µ in M(Ω) as n → ∞ implies ι−1

0 (µn)
[
⇀ι−1

0 (µ), while Tn
[
⇀T in F0(Ω) as

n → ∞ implies ι0(Tn)
∗
⇀ι0(T ) under the condition that the flat 0-chains Tn have equibounded

mass.

The proof of the above essentially relies on weak-∗ compactness of measures with bounded mass and
classical deformation theorems such as [16]; for more details see the brief summary in [3, Rem. 2.29]
and the references therein.

3. Example sequences of flat (polyhedral) 1-chains in [−1, 1]2 that converge flatly to 0, while the corre-
sponding mass fluxes do not converge weakly, are

Tn =

n−1∑
k=−n

[(
k
n , 0
)
,
(
k
n + 1

n2 , 0
)]

and

Sn = n[c1, c2] + n[c2, c3] + n[c3, c4] + n[c4, c1]

− n[αc1, αc2]− n[αc2, αc3]− n[αc3, αc4]− n[αc4, αc1] with α = 1− 1
n2 ,
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where [a, b] denotes the line segment from a to b and c1, . . . , c4 denote the four corners of [−1, 1]2.
While ι1(Tn) → 0 strongly in M([−1, 1]2;R2), ∂(ι1(Tn)) diverges in M([−1, 1]2). On the other hand,
∂(ι1(Sn)) = 0 for all n, but ι1(Sn) diverges in M([−1, 1]2;R2).

Corollary 4 (Bound of h-mass by branched transport cost). Let T ∈ F1(Ω) and h be a transportation cost,
then Mh(T ) ≤ Jh(ι1(T )).

In this note we show equality.

Theorem 5 (Equivalence of h-mass and branched transport cost). Let T ∈ F1(Ω) and h be a transportation
cost, then Mh(T ) = Jh(ι1(T )).

The proof will be provided in section 3. It will be based on the following lemmas for 1-rectifiable flat
chains, whose statement requires the notion of rectifiability and acyclicity introduced below.

Definition 6 (Rectifiable and acyclic mass fluxes and flat chains). 1. Let m ∈ {0, 1}. Given a Borel set
A ⊂ Ω and a flat m-chain T ∈ Fm(Ω) with ιm(T )xA ∈ F(Ω), the restriction of T to A is defined as
TxA = ι−1

m (ιm(T )xA). The restriction to A can be extended to all flat m-chains of finite mass by
continuity with respect to flat convergence.

2. A subset Σ ⊂ Rd is called m-rectifiable if it is contained in the countable union of m-dimensional
C1-submanifolds, up to an Hm-negligible set.

3. A (vector-valued) Radon measure ρ or a flat m-chain T are called m-rectifiable if there exists an m-
rectifiable set Σ ⊂ Rd with ρ = ρxΣ or T = TxΣ, respectively. It is known that for a rectifiable Radon
measure ρ ∈ F(Ω) supported on the 1-rectifiable set Σ the Radon-Nikodym derivative dρ/d|ρ| spans
the approximate tangent line to Σ at |ρ|-a.e. point. Similarly for a rectifiable flat chain T ∈ F1(Ω)
supported on the 1-rectifiable set Σ the Radon-Nikodym derivative dι1(T )/d|ι1(T )| spans the approximate
tangent line to Σ at |ι1(T )|-a.e. point

4. A mass flux ρ ∈ F(Ω) is called acyclic if it cannot be decomposed into ρ = ρa+ρb with ρb 6= 0, ∂ρb = 0,
and ‖ρ‖M = ‖ρa‖M + ‖ρb‖M. A flat 1-chain T ∈ F1(Ω) is acyclic if ι1(T ) is.

Note that the restriction for flat chains can also be defined without reference to mass fluxes as in [8].

Lemma 7 (Approximation of rectifiable mass fluxes by mass fluxes with rectifiable boundary). Let ρ ∈ F(Ω)
be 1-rectifiable and acyclic, then there exists a monotonically increasing sequence of ρ-measurable functions
λ1, λ2, . . . : Ω → [0, 1] and associated 1-rectifiable acyclic mass fluxes ρ1 = λ1ρ, ρ2 = λ2ρ, . . . with ρn → ρ
strongly as n→∞, where ∂ρn is 0-rectifiable with ‖∂ρn‖M ≤ ‖∂ρ‖M for all n ∈ N.

Lemma 8 (Approximation of mass fluxes by fluxes with finite discrete boundary). Let ρ ∈ F(Ω) be acyclic
with 0-rectifiable boundary ∂ρ, then there exists a monotonically increasing sequence of ρ-measurable functions
κ1, κ2, . . . : Ω → [0, 1] and associated acyclic mass fluxes ρ1 = κ1ρ, ρ2 = κ2ρ, . . . with ρn → ρ strongly as
n→∞, where ∂ρn has finite support and ‖∂ρn‖M ≤ ‖∂ρ‖M for all n ∈ N.

The proof of both lemmas will be provided in section 2. A direct consequence is the following lemma.

Lemma 9 (Approximation of rectifiable 1-chains by 1-chains with polyhedral boundary). Let h be a trans-
portation cost. For any rectifiable T ∈ F1(Ω) there exists a sequence T1, T2, . . . ∈ F1(Ω) with Tn → T in mass
as n → ∞ such that Mh(Tn) → Mh(T ) as n → ∞ and such that ∂Tn is polyhedral with M(∂Tn) ≤ M(∂T )
as well as Mh̃(Tn) ≤Mh̃(T ) for all n ∈ N and transportation costs h̃.

Proof. First note that by White’s structure theorem [16, Sec. 6] one can identify any 1-rectifiable flat chain
T ∈ F1(Ω) with a triple [Σ, θ,m] of a 1-rectifiable set Σ ⊂ Ω with approximate tangent θ : Σ→ Sd−1 and a
measurable function m : Σ→ R such that

ι1(T ) = mθH1xΣ .
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Again by [16, Sec. 6], its h-mass in this case can be expressed as

Mh(T ) =

∫
Σ

h(|m|) dH1 .

Now consider ρ = ι1(T ) = mθH1xΣ. By Smirnov’s decomposition theorem [13, Thm. C] we can de-
compose ρ = ρa + ρb, where ρa = maθH1xΣ ∈ F(Ω) is rectifiable and acyclic with ∂ρa = ∂ρ and ρb =
mbθH1xΣ ∈ F(Ω) (with mb having the same sign as ma pointwise) satisfies ∂ρb = 0. By lemma 7 there is a
monotonically increasing sequence λ1, λ2, . . . : Ω→ [0, 1] of ρa-measurable functions such that λn → 1 mono-
tonically ρa-almost everywhere and such that ∂(λnρ

a) is 0-rectifiable with ‖∂(λnρ
a)‖M ≤ ‖∂ρa‖M = ‖∂ρ‖M

for all n ∈ N. Denote the flat 1-chains corresponding to ρan+ρb by T̃n = [Σ, θ, λnm
a+mb]. By the Monotone

Convergence Theorem

Mh(T̃n) =

∫
Σ

h(|λnma +mb|) dH1 →
∫

Σ

h(|ma +mb|) dH1 = Mh(T )

as n→∞ so that (potentially after passing to a subsequence) we may assume

M(T̃n − T ) = ‖ρan − ρa‖M ≤
1

n
and

∣∣∣Mh(T̃n)−Mh(T )
∣∣∣ ≤ 1

n
.

Similarly, appealing to lemma 8 instead of lemma 7, for each n ∈ N there is some sequence Tn,k =

[Σ, θ, κkλnm
a +mb], k = 1, 2, . . ., with ∂Tn,k polyhedral, M(∂Tn,k) ≤M(∂T̃n) ≤M(T ), and

M(Tn,k − T̃n) = ‖κkρan − ρan‖M ≤
1

k
and

∣∣∣Mh(Tk,n)−Mh(T̃n)
∣∣∣ ≤ 1

k
.

Thus, the sequence Tn = Tn,n has all desired properties.

2 Proof of main lemmas

The proof uses Smirnov’s decomposition theorem, part of which we restate for convenience.

Definition 10 (Simple oriented curve). A simple oriented curve of finite length in Ω is a mass flux of the
form

ρ̃ = γ#γ̇H1x[0, 1] ,

where γ#µ denotes the pushforward of a measure µ under a function f and γ : [0, 1] → Ω is an injective
Lipschitz curve. Note that, writing δx for the Dirac mass at x,

∂ρ̃ = δγ(1) − δγ(0) .

Theorem 11 (Smirnov’s decomposition theorem, [13, Thm. B-C]). For any acyclic ρ ∈ F(Ω) there is a set
J of simple oriented curves of finite length and a nonnegative measure µ on J such that

ρ =

∫
J

ρ̃dµ(ρ̃) ,

‖ρ‖M =

∫
J

‖ρ̃‖M dµ(ρ̃) ,

‖∂ρ‖M =

∫
J

‖∂ρ̃‖M dµ(ρ̃) .

Above, the first line means

〈ρ, v〉 =

∫
J

〈ρ̃, v〉dµ(ρ̃)

for every smooth test vector field v : Ω → Rd, where 〈·, ·〉 denotes the dual pairing between vector-valued
Radon measures and continuous vector fields on Ω.
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We will furthermore use the following two simple results about the generic intersection between a regular
grid and a rectifiable set and a rectifiable mass flux.

Lemma 12 (Rectifiable set and grid). Let Σ ⊂ Ω be 1-rectifiable and define the rectilinear grid

Gn =
{
y ∈ Rd

∣∣ yi = m
n for some m ∈ Z and i ∈ {1, . . . , d}

}
of grid width 1

n . Then for almost every x ∈ Rd the set Σ ∩ (x+ Gn) is countable for all n ∈ N.

Proof. Since Gn =
⋃d
i=1 Sin for

Sin =
{
y ∈ Rd

∣∣ yi = m
n for some m ∈ N

}
,

it suffices to show for fixed 1 ≤ i ≤ d that for almost every s ∈ R the set Σ ∩ (sei + Sin) is countable for
all n ∈ N (here ei denotes the ith Cartesian unit vector). To this end it suffices to show that for almost all
r ∈ R the intersection of Σ with the hyperplane

Pir =
{
y ∈ Rd

∣∣ yi = r
}

is countable. Indeed, S =
⋃∞
n=1 Sin can be expressed as a countable union

⋃∞
j=1 Pirj of such hyperplanes;

thus the set of s ∈ R for which Σ ∩ (sei + S) is uncountable is given by
⋃∞
j=1Rj with

Rj =
{
s ∈ R

∣∣∣Σ ∩ Pis+rj is uncountable
}
,

which we show to be a nullset below. Consequently, Σ ∩ (sei + S) is countable for almost all s ∈ R.
To show that Σ ∩Pir is countable for almost all r ∈ R it suffices to cite the coarea formula for rectifiable

sets [7, 3.2.22(2) with W = Σ, f(x) = xi] which states that Σ ∩ Pir is H0-measurable and H0-rectifiable for
almost all r ∈ R.

Lemma 13 (Smirnov curves and grid). Let ρ ∈ F(Ω) be acyclic and 1-rectifiable so that ρ = ρxΣ for a
1-rectifiable set Σ ⊂ Ω and there exists a decomposition

ρ =

∫
J

ρ̃ dµ(ρ̃)

into simple oriented curves by Smirnov’s decomposition theorem. Then for almost all x ∈ Rd, µ(Jnx ) = 0 for
all n ∈ N with

Jnx =
{
ρ̃ = γ#γ̇H1x[0, 1] ∈ J

∣∣ γ([0, 1]) ∩ (x+ Gn) 6⊂ Σ
}
,

that is, for any n ∈ N the intersection of µ-almost every Smirnov curve with (x+ Gn) lies in Σ.

Proof. Obviously it suffices to prove the statement for fixed n ∈ N, which we shall assume in the following.
Below, we will denote the Lipschitz curve associated with a simple oriented curve ρ̃ ∈ J by γρ̃ and the
complement of Σ by Σc.

Step 1. We first show for any Lipschitz curve γ : [0, 1]→ Ω that

Hd(Aγ) > 0 implies H1(γ([0, 1]) \ Σ) > 0 ,

where
Aγ = {x ∈ Rd | γ([0, 1]) ∩ (x+ Gn) 6⊂ Σ} .

To prove it, assume by contradiction that H1(γ([0, 1]) \ Σ) = 0. For i = 1, . . . , d, denote

Gin =
{
y ∈ Rd

∣∣ yi = m
n for some m ∈ Z

}
and let

Aγ,i = {x ∈ Rd | γ([0, 1]) ∩ (x+ Gin) 6⊂ Σ} .
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Since Gn = ∪iGin, then Aγ ⊂ ∪iAγ,i. Hence the assumption Hd(Aγ) > 0 implies the existence of an index i
such that Hd(Aγ,i) > 0. Applying for every m ∈ Z the coarea formula [7, 3.2.22(3)] with W = γ([0, 1]), Z =
R, f(x) = xi + m

n , g = 1Σc , we deduce from the equality H1(γ([0, 1]) \ Σ) = 0 that for H1-a.e z ∈ R the set
Aγ,i ∩ {xi = z} is empty, which contradicts Hd(Aγ,i) > 0.

Step 2. We show Hd(Aγρ̃) = 0 for µ-almost every ρ̃ ∈ J . Indeed, we have

0 = ‖ρ‖M − ‖ρxΣ‖M ≥
∫
J

‖ρ̃‖M dµ(ρ̃)−
∫
J

‖ρ̃xΣ‖M dµ(ρ̃) =

∫
J

‖ρ̃xΣc‖M dµ(ρ̃) ,

thus µ-almost every ρ̃ ∈ J satisfies

H1(γρ̃([0, 1]) \ Σ) =

∫ 1

0

1Σc(γρ̃)|γ̇ρ̃|dH1 =

∫
Σc

d|ρ̃| = ‖ρ̃xΣc‖M = 0 .

By the previous step this implies the desired result.
Step 3. Finally we show Hd({x ∈ Rd |µ(Jnx ) > 0}) = 0, which concludes the proof. Indeed, let us

introduce the function

h : Rd × J → {0, 1} , h(x, ρ̃) =

{
1 if ρ̃ ∈ Jnx ,
0 otherwise,

then by Fubini’s theorem we have∫
Rd
µ(Jnx ) dx =

∫
J

∫
Rd
h(x, ρ̃) dxdµ(ρ̃) =

∫
J

Hd(Aγρ̃) dµ(ρ̃) ,

which is zero by the previous step. Thus, µ(Jnx ) = 0 for almost all x ∈ Rd, as desired.

Proof of lemma 7. Since ρ is rectifiable, there is a 1-rectifiable set Σ ⊂ Ω with ρ = ρxΣ. Using Smirnov’s
decomposition theorem we decompose ρ into simple oriented curves,

ρ =

∫
J

ρ̃ dµ(ρ̃) .

Now, for n ∈ N consider the rectilinear grids G2n from lemma 12 with grid size 2−n and note G2n ⊂ G2m

for m ≥ n. Since Σ is 1-rectifiable, by lemmas 12 and 13 there exists x ∈ Ω such that for all n ∈ N the
intersection (x + G2n) ∩ Σ is countable and µ-almost all ρ̃ intersect (x + G2n) in points which belong to Σ.
Now define for each simple oriented curve ρ̃ = γ#γ̇H1x[0, 1] the pruned curve

ρ̃n = γ#γ̇H1x[tγ,ln , tγ,rn ] with tγ,ln = min{t ∈ [0, 1] | γ(t) ∈ x+G2n} , tγ,rn = max{t ∈ [0, 1] | γ(t) ∈ x+G2n}

(if γ does not intersect x+ G2n we shall define ρ̃n = 0 by convention). Next set

ρn =

∫
J

ρ̃n dµ(ρ̃) .

Using the properties of the Smirnov decomposition we obtain

‖ρ‖M =

∫
J

‖ρ̃‖M dµ(ρ̃) =

∫
J

‖ρ̃n‖M + ‖ρ̃− ρ̃n‖M dµ(ρ̃) ≥ ‖ρn‖M + ‖ρ− ρn‖M .

Together with the triangle inequality this implies ‖ρ‖M = ‖ρn‖M+‖ρ−ρn‖M, which in turn implies equality
of the total variation measures, |ρ| = |ρn|+ |ρ−ρn|, as well as parallelism of the Radon–Nikodym derivatives
dρ

d|ρ| and dρn
d|ρn| , ρn-a.e. Consequently,

ρn = λnρ
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for some ρ-measurable λn : Ω → [0, 1]. Replacing ρ with ρm for m > n in the above argument implies
ρn = λn,mρm for some ρ-measurable λn,m : Ω→ [0, 1] so that λn = λn,mλm ≤ λm. Furthermore,

‖ρ− ρn‖M =

∥∥∥∥∫
J

ρ̃− ρ̃n dµ(ρ̃)

∥∥∥∥
M
≤
∫
J

‖ρ̃− ρ̃n‖M dµ(ρ̃)→ 0

by the Monotone Convergence Theorem. Finally, using that ∂ρ̃n = (∂ρ̃n)x(Σ ∩ (x+ G2n)) for µ almost all
ρ̃ due to our choice of x, we can compute

∂ρnx(Σ∩(x+G2n)) =

(∫
J

∂ρ̃n dµ(ρ̃)

)
x(Σ∩(x+G2n)) =

∫
J

(∂ρ̃n)x(Σ∩(x+G2n)) dµ(ρ̃) =

∫
J

∂ρ̃n dµ(ρ̃) = ∂ρn

so that ∂ρn is 0-rectifiable, and

‖∂ρ‖M =

∫
J

‖∂ρ̃‖M dµ(ρ̃) ≥
∫
J

‖∂ρ̃n‖M dµ(ρ̃) ≥ ‖∂ρn‖M .

Proof of lemma 8. Again use Smirnov’s decomposition theorem to decompose ρ into simple oriented curves,

ρ =

∫
J

ρ̃dµ(ρ̃) with ‖∂ρ‖M =

∫
J

‖∂ρ̃‖M dµ(ρ̃) .

Denote the parameterization associated with a simple oriented curve ρ̃ by γρ̃ : [0, 1] → Ω. Since ∂ρ is
rectifiable by assumption, there is a countable set S of points with ∂ρ = ∂ρxS. This implies γρ̃(0), γρ̃(1) ∈ S
for µ-almost all ρ̃. For each x ∈ S and t = 0, 1 we now introduce the set

J tx = {ρ̃ ∈ J |x = γρ̃(t)} ,

which due to t ∈ {0, 1} does not depend on the particular choice of parameterizations γρ̃ for curves ρ̃. Note
that each J tx is µ-measurable (indeed, it is the preimage of x under the mapping ρ̃ 7→ γρ̃(t) with t = 0, 1,
which is continuous with respect to the underlying topology on the space of simple oriented curves, the
weak-∗ topology, for instance because the map ρ 7→ divρ is continuous). Also note that J0

x ∩ J1
y is disjoint

from J0
z ∩ J1

w whenever (x, y) 6= (z, w) so that∑
(x,y)∈S×S

µ(J0
x ∩ J1

y ) =

∫
⋃

(x,y)∈S×S J
0
x∩J1

y

dµ(ρ̃) =

∫
J

dµ(ρ̃) =
1

2

∫
J

‖∂ρ̃‖M dµ(ρ̃) =
1

2
‖∂ρ‖M <∞ .

Thus, since S×S is countable, it is straightforward to see that we can arrange all its elements (x, y) ∈ S×S
in decreasing order with respect to µ(J0

x ∩ J1
y ). Denote by (xi, yi) the ith element of S × S and define

ρn =

n∑
i=1

∫
J0
xi
∩J1

yi

ρ̃dµ(ρ̃)

for n ∈ N. In the same manner as in the previous proof we obtain ρn = κnρ for a monotonically increasing
sequence of ρ-measurable functions κn : Ω → [0, 1] as well as ‖ρ − ρn‖M → 0. Furthermore, ∂ρn =
∂ρnx{x1, . . . , xn, y1, . . . , yn} and

‖∂ρn‖M ≤
n∑
i=1

∫
J0
xi
∩J1

yi

‖∂ρ̃‖M dµ(ρ̃) ≤ ‖∂ρ‖M .

3 Weak-∗ relaxation of the polyhedral h-mass

The strategy to prove theorem 5 is to first restrict to transportation costs h with h(m) ≥ αm for some
α > 0 and all m > 0 and to separately consider two cases: If the right derivative h′(0) of the transportation
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cost h in 0 is finite, then one can prove equivalence of both relaxations directly by construction. Otherwise
[5, Prop. 2.8] implies that Mh(·) is only finite on 1-rectifiable flat chains. In that case we employ our new
approximation lemma for 1-rectifiable flat chains to reduce theorem 5 to the case of chains with polyhedral
boundary. This case in turn has already been solved by Chambolle, Ferrari, and Merlet [4] (under the above
condition on h). The proof for general transportation cost h can then be reduced to costs with h(m) ≥ αm
using a representation theorem for Mh(T ).

Proof of theorem 5 for h(m) ≥ αm. First consider the case h′(0) < ∞. Let T̃n
[
⇀T be a sequence of poly-

hedral 1-chains with limn→∞Mh(T̃n) = Mh(T ) <∞ (if Mh(T ) =∞ there is nothing to prove). Due to our
growth condition on h we have αM(T̃n) ≤ Mh(T̃n)→ Mh(T ) so that the T̃n have equibounded mass. If the

boundaries ∂T̃n also have equibounded mass, then ι1(T̃n)
f
⇀ι1(T ) and thus

Jh(ι1(T )) ≤ lim inf
n→∞

Jh(ι1(T̃n)) = lim inf
n→∞

Mh(T̃n) = Mh(T )

as desired. Otherwise, let µ1
±, µ

2
±, . . . ∈ M+(Ω) be finite linear combinations of Dirac masses such that

µn− − µn+
∗
⇀ι0(∂T ). Since T̃n converges flatly, also ∂T̃n

[
⇀∂T and thus

ι−1
0 (µn− − µn+)− ∂T̃n

[
⇀ 0 as n→∞ .

Consequently, and as this null sequence in F0(Ω) is polyhedral, there exist polyhedral 1-chains Dn with
Dn → 0 in mass such that

M(ι−1
0 (µn− − µn+)− ∂T̃n − ∂Dn)→ 0 as n→∞ .

Now define Tn = T̃n +Dn, then both M(Tn) and M(∂Tn) are equibounded, and Tn
[
⇀T . Therefore, we have

ι1(Tn)
f
⇀ι1(T ) and

Jh(ι1(T )) ≤ lim inf
n→∞

Jh(ι1(Tn)) = lim inf
n→∞

Mh(T̃n +Dn)

≤ lim inf
n→∞

Mh(T̃n) + Mh(Dn) ≤ lim inf
n→∞

Mh(T̃n) + h′(0)M(Dn) = lim
n→∞

Mh(T̃n) = Mh(T ) ,

where we have used that the transportation cost h is subadditive (so that the h-mass is subadditive).
Now assume h′(0) = ∞. By [5, Prop. 2.8], Mh(·) is only finite on 1-rectifiable flat 1-chains so that it

suffices to show Jh(ι1(T )) ≤ Mh(T ) for a 1-rectifiable T ∈ F1(Ω). By lemma 9 there is a sequence Tn
converging in mass to T such that Mh(Tn)→Mh(T ) and ∂Tn is polyhedral with equibounded mass. Due to

the equibounded mass and boundary mass we have ι1(Tn)
f
⇀ι1(T ) and thus, by definition of the relaxation,

Jh(ι1(T )) ≤ lim inf
n→∞

Jh(ι1(Tn)) .

Since Tn has polyhedral boundary, by Chambolle, Ferrari, and Merlet [4, Thm. 1.2] we know that

Mh(Tn) = lim
j→∞

Mh(T jn)

for a sequence T 1
n , T

2
n , . . . of polyhedral flat 1-chains converging to Tn in flat norm, with equibounded mass

and ∂T jn = ∂Tn for all j ∈ N. Thus we have ι1(T jn)
f
⇀ι1(Tn) so that

Jh(ι1(T )) ≤ lim inf
n→∞

Jh(ι1(Tn)) ≤ lim inf
n→∞

lim inf
j→∞

Jh(ι1(T jn)) = lim inf
n→∞

lim
j→∞

Mh(T jn) = lim inf
n→∞

Mh(Tn) = Mh(T )

as desired.
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To also cover the case of general transportation costs h, let us first note that h can be approximated
by a sequence of superlinear transportation costs. To this end, define the indicator function of a set A as
χA(m) = 0 if m ∈ A and χA(m) =∞ else and recall that the lower semi-continuous subadditive envelope of
a function ψ : [0,∞)→ [0,∞] is the lower semi-continuous subadditive function [2, Def. 5.16 and Prop. 5.17]
defined as

m 7→ sup{φ(m) |φ : [0,∞)→ [0,∞) is lower semi-continuous subadditive with φ ≤ ψ} .

Lemma 14 (Superlinear approximation of transportation costs). Let h be a transportation cost. For M > 0
define the transportation cost hM : [0,∞) → [0,∞) to be the lower semi-continuous subadditive envelope of
the function m 7→ h(m) + χ[0,M ](m). Then there exists some α > 0 such that

αm ≤ hM (m) for all m ≥ 0,

h(m) ≤ hM (m) for all m ≥ 0,

hM (m) ≤ 2h(M)
M m for all m ≥M,

hM (m) = h(M) for all m ≤M.

Proof. That hM is a transportation cost with hM ≥ h as well as hM (m) = h(m) for m ≤M follows directly
from the properties of the lower semi-continuous subadditive envelope (see [2, Prop. 5.17]). Furthermore,
for m ≥M let k ∈ N and r ∈ [0,M) such that m = kM + r. Then by the subadditivity of hM we obtain

hM (m) ≤ khM (M) + hM (r) = kh(M) + h(r) ≤ (k + 1)h(M) ≤ 2kh(M) ≤ 2h(M)
M (kM + r) = 2h(M)

M m.

Finally, by [10, Thm. 5 and its proof] we have h(m) ≥ αm for all m ∈ [0,M ] with

α = inf
{
h(m)
m

∣∣∣m ∈ (M2 ,M]} > 0

so that hM (m) ≥ αm for all m ≥ 0.

We further require the representation theorem for Mh(T ) from [3, Prop. 2.32, last three bullet points of
the proof]. To state it, we use that by [15, Thm. 4.2] any T ∈ F1(Ω) can be uniquely decomposed into

T = T rec + T diff

with T rec, T diff ∈ F1(Ω) a rectifiable and a diffuse flat chain, that is, there exists a triple [Σ, θ,m] of a
1-rectifiable set Σ ⊂ Ω with approximate tangent θ : Σ→ Sd−1 and a measurable function m : Σ→ R such
that

ι1(T rec) = mθH1xΣ ,

while |ι1(T diff)|(S) = 0 for any 1-rectifiable set S ⊂ Ω.

Theorem 15 (Representation of Mh(T ) [3]). Let T ∈ F1(Ω) have the decomposition T = T rec +T diff , where
T rec is associated with the triple [Σ, θ,m]. Then

Mh(T ) =

∫
Σ

h(|m|) dH1 + h′(0)M(T diff) ,

where h′(0) ∈ [0,∞] denotes the right derivative of h in 0.

Now we are prepared to finish the proof of theorem 5.

Proof of theorem 5. The case of a transportation cost h with h(m) ≥ αm for some α > 0 and all m > 0 has
already been treated before. Thus it remains to show the result for transportation costs h with h(m)/m→ 0
as m→∞ Indeed if there is no α > 0 such that h(m) ≥ αm, then the only possibility is that h(m)/m→ 0

as m→∞, because we showed that h(m) ≤ hM (m) ≤ 2h(M)
M m for all m ≥ M . Let T ∈ F1(Ω), and let hM
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denote the transportation cost from lemma 14 for arbitrary M > 0. By hM ≥ h and the definition of the
branched transport cost we have Jh(ι1(T )) ≤ JhM (ι1(T )). On the other hand, by theorem 15 we have

MhM (T ) = h′M (0)M(T diff) +

∫
Σ

hM (|m|) dH1

= h′(0)M(T diff) +

∫
Σ

h(|m|) dH1 +

∫
{x∈Σ | |m(x)|>M}

hM (|m|)− h(|m|) dH1

= Mh(T ) +

∫
{x∈Σ | |m(x)|>M}

hM (|m|)− h(|m|) dH1

≤Mh(T ) + 2h(M)
M

∫
{x∈Σ | |m(x)|>M}

|m|dH1 ≤Mh(T ) + 2h(M)
M M(T ),

where the first inequality follows from the fact that 2h(M)|m|/M ≥ hM (|m|) ≥ h(|m|) ≥ 0 on the set
{|m| ≥ M}. Furthermore, hM satisfies the growth condition for which we have already proved equality
between the h-mass and the branched transport cost. Thus we can summarize

Jh(ι1(T )) ≤ JhM (ι1(T )) = MhM (T ) ≤Mh(T ) + 2h(M)
M M(T ) ,

and the result follows from letting M →∞.

4 Consequences

Here we briefly mention a few implications of the previous results on generalized branched transport models.
We concentrate on models (which we call admissible below) in which the generalized branched transport
cost metrizes weak-∗ convergence.

Definition 16 (Admissible transportation cost). A transportation cost h is admissible if there exists a

concave function β : [0,∞)→ [0,∞) with h(m) ≤ β(m) for all m and
∫ 1

0
β(m)
m2−1/d dm <∞.

Remark 17 (Metrization property). By [3, Cor. 2.24] the admissibility condition on h implies that the
generalized branched transport cost

dJh(µ+, µ−) = min {Jh(ρ) | ρ is mass flux with ∂ρ = µ− − µ+}

between two measures µ+, µ− ∈M+(Ω) metrizes weak-∗ convergence on the set of probability measures.

Similarly to [4] we now show that one may also prescribe the boundary during the relaxation.

Theorem 18 (Relaxation under prescribed boundary). Let µ+, µ− ∈ M+(Ω) with equal mass and fix
arbitrary sequences µ1

±, µ
2
±, . . . ∈M+(Ω) of finite linear combinations of Dirac masses with µn+(Ω) = µn−(Ω)

and µn±
∗
⇀µ± as n → ∞. For any flat 1-chain T ∈ F1(Ω) with ι0(∂T ) = µ− − µ+ and an admissible

transportation cost h we have Mh(T ) = Jh(ι1(T )) = M(µn±)

h (T ) = J(µn±)

h (ι1(T )) for

J(µn±)

h (ρ) = inf
{

lim inf
n→∞

Jh(ρn)
∣∣∣ ρn ∈ F(Ω) polyhedral, ρn

∗
⇀ρ as n→∞, ∂ρn = µn− − µn+

}
,

M(µn±)

h (T ) = inf
{

lim inf
n→∞

Mh(Tn)
∣∣∣Tn ∈ F1(Ω) polyhedral, Tn

[
⇀T as n→∞, ∂Tn = ι−1

0 (µn− − µn+)
}
.

Proof. By definition we have

Mh(T ) = Jh(ι1(T )) ≤M(µn±)

h (T ) ≤ J(µn±)

h (ι1(T )) ,

so it suffices to show J(µn±)

h (ι1(T )) ≤ Jh(ι1(T )). Abbreviate ρ = ι1(T ) and consider a sequence ρ̄1, ρ̄2, . . . of

polyhedral fluxes with ρ̄n
f
⇀ρ and Jh(ρ̄n)→ Jh(ρ) as n→∞. Next, by the Jordan Decomposition Theorem

11



we can decompose ∂ρ̄n − µn− + µn+ = νn+ − νn− with νn± ∈ M+(Ω). Obviously, νn− − νn+
∗
⇀ 0 as n → ∞ so

that, since h is admissible, by [3, Cor. 2.24] there exists a sequence ρ̂1, ρ̂2, . . . of equibounded mass fluxes
with ∂ρ̂n = νn− − νn+ and Jh(ρ̂n) → 0. Since νn+ and νn− are finite linear combinations of Dirac masses,
the ρ̂n can be chosen as polyhedral fluxes, by [4, Theorem 1.2]. Finally define the sequence ρn = ρ̄n + ρ̂n,

n ∈ N, of polyhedral fluxes, then ∂ρn = µn− − µn+ as well as ρn
f
⇀ρ (because ρ̄n

f
⇀ρ while ρ̂n

f
⇀ 0 by lower

semi-continuity of Jh()) and Jh(ρn) ≤ Jh(ρ̄n) + Jh(ρ̂n)→ Jh(ρ) as n→∞, as desired.

As also emphasized in [4], the latter result is particularly useful for the development of phasefield approxi-
mations of generalized branched transport or minimal h-mass problems. Indeed, when proving Γ-convergence
of a phasefield functional to the minimal h-mass problem with prescribed boundary, a recovery sequence can
typically only be constructed for polyhedral fluxes, in particular with polyhedral boundary. The above result
implies that this is indeed sufficient.

Finally we state that the generalized branched transport problem and the problem of minimizing the
h-mass are equivalent.

Theorem 19 (Branched transport problem and minimal h-mass). Let h be an admissible transportation
cost and µ+, µ− ∈M+(Ω) with equal mass, then

min {Jh(ρ) | ρ ∈ F(Ω), ∂ρ = µ− − µ+} = min
{
Mh(T )

∣∣T ∈ F1(Ω), ∂T = ι−1
0 (µ− − µ+)

}
,

and the minimizers of both problems are related by ι1.

Proof. Let us abbreviate

dJh(µ+, µ−) = inf {Jh(ρ) | ρ ∈ F(Ω), ∂ρ = µ− − µ+} ,
dMh(µ+, µ−) = inf

{
Mh(T )

∣∣T ∈ F1(Ω), ∂T = ι−1
0 (µ− − µ+)

}
.

The existence of minimizers for dJh(µ+, µ−) is shown in [3, Cor. 2.20], and since each minimizer ρ for
dJh(µ+, µ−) induces a competitor ι−1

1 (ρ) for dMh(µ+, µ−) with Mh(ι−1
1 (ρ)) = Jh(ρ), we have dJh(µ+, µ−) ≥

dMh(µ+, µ−) and only need to show the opposite inequality. To this end consider two sequences µ1
±, µ

2
±, . . .

of nonnegative finite linear combinations of Dirac masses such that µn+(Ω) = µn−(Ω) = µ+(Ω) and µn±
∗
⇀µ±

as n→∞, and abbreviate M = µ+(Ω).
Let us first restrict ourselves to the case where h′(0) <∞. By the triangle inequality (which follows from

the subadditivity of Mh(·)) we have

dMh(µ+, µ−) ≥ dMh(µn+, µ
n
−)− dMh(µn+, µ+)− dMh(µ−, µ

n
−) ,

where without loss of generality we may assume F(ι−1
0 (µn+ − µ+)) + F(ι−1

0 (µ− − µn−)) ≤ 1
n as well as

dMh(µn+, µ+)+dMh(µ−, µ
n
−) < 1

n due to the admissibility of h. Now let Tn ∈ F1(Ω) with ∂Tn = ι−1
0 (µn−−µn+)

and Mh(Tn) ≤ dMh(µn+, µ
n
−) + 1

n . By definition of Mh(·) there exists a polyhedral 1-chain T̄n with Mh(T̄n) ≤
Mh(Tn)+ 1

n and F(T̄n−Tn) ≤ 1
n as well as F(∂T̄n−∂Tn) ≤ 1

n . The latter implies F(∂T̄n−ι−1
0 (µ−−µ+)) ≤ 2

n

and thus the existence of a flat 1-chain Sn ∈ F1(Ω) with M(∂(T̄n + Sn) − ι−1
0 (µ− − µ+)) + M(Sn) ≤ 2

n .
Letting µ̄n+, µ̄

n
− ∈M+(Ω) be the positive and the negative part of ι0(∂(T̄n + Sn)), we can summarize

dMh(µ+, µ−) ≥ dMh(µn+, µ
n
−)− 1

n ≥Mh(Tn)− 2
n ≥Mh(T̄n)− 3

n ≥Mh(T̄n) + h′(0)M(Sn)− 3+2h′(0)
n

≥Mh(T̄n + Sn)− 3+2h′(0)
n = Jh(ι−1

1 (T̄n + Sn))− 3+2h′(0)
n ≥ dJh(µ̄n+, µ̄

n
−)− 3+2h′(0)

n .

where in the fifth inequality we used that Mh ≤ h′(0)M. This follows directly from the fact that h(m) ≤
mh′(0), which can be found in [9, Theorem 16.3.3].

For n → ∞ we obtain the desired inequality if we can show limn→∞ dJh(µ̄n+, µ̄
n
−) ≥ dJh(µ+, µ−). Note

that µ̄n± → µ± strongly and let µ̂n+, µ̂
n
− ∈M+(Ω) be the positive and the negative part of µ+− µ̄n+−µ−+ µ̄n−.

Then, using again Mh ≤ h′(0)M, we get dJh(µ̂n+, µ̂
n
−) ≤ h′(0)W1(µ̂n+, µ̂

n
−) ≤ h′(0)diam(Ω)‖µ̂n+‖M → 0 as
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n→∞, where W1 denotes the Wasserstein-1 distance and diam(Ω) denotes the intrinsic diameter of Ω (the
largest geodesic distance between two points in Ω). Thus, taking the limit n→∞ in

dJh(µ+, µ−) ≤ dJh(µ̄n+, µ̄
n
−) + dJh(µ̂n+, µ̂

n
−)

yields the desired result.
Now consider the case h′(0) =∞. For any N ∈ N define hN to be the lower semi-continuous subadditive

envelope of m 7→ min{h(m), Nm}. Using (hN )′(0) <∞ we thus obtain

dMh(µ+, µ−) ≥ dMhN (µ+, µ−) = dJhN (µ+, µ−) .

Let further ρN ∈ F(Ω) denote a minimizer for the right-hand side (which exists by [3, Cor. 2.20])should we
maybe explain why hN is admissible? so that via theorem 18 we have

dMh(µ+, µ−) ≥ dJhN (µ+, µ−) = JhN (ρN ) = J(µn±)

hN
(ρN ) = lim

n→∞
JhN (ρnN ) ,

where ρnN is a polyhedral flux with ∂ρnN = µn−−µn+. By [3, Lem. 2.5] we can reduce the right-hand side even
further by replacing ρnN with an acyclic flux ρ̃nN of the same boundary, which by [3, Lem. 2.9] has multiplicity
bounded by M . Since by [10, Thm. 5 and its proof] we have hN (m) ≥ αNm ≥ α1m for all m ∈ [0,M ] with

αN = inf
{
hN (m)
m

∣∣∣m ∈ (M2 ,M]} > 0 ,

we see dMh(µ+, µ−) ≥ limn→∞ JhN (ρ̃nN ) ≥ limn→∞ α1‖ρ̃nN‖M. Hence, the ρ̃nN have equibounded mass
and converge weakly as mass fluxes (up to a subsequence) to some ρ̃N with ‖ρ̃N‖M ≤ dMh(µ+, µ−)/α1.
Summarizing, we obtain

dMh(µ+, µ−) ≥ lim
n→∞

JhN (ρ̃nN ) ≥ JhN (ρ̃N )

for all N ∈ N, where ρ̃N with ∂ρ̃N = µ+ − µ− has mass bounded by dMh(µ+, µ−)/α1. Again restricting to

a subsequence (still indexed by N) we have ρ̃N
f
⇀ρ for some ρ ∈ F(Ω) and thus

dMh(µ+, µ−) ≥ lim
N→∞

JhN (ρ̃N ) ≥ lim inf
N→∞

JhL(ρ̃N ) ≥ JhL(ρ) = MhL(ι−1
1 (ρ))

for any L ∈ N. Using the representation theorem 15 and the Monotone Convergence Theorem as L→∞ we
arrive at

dMh(µ+, µ−) ≥Mh(ι−1
1 (ρ)) = Jh(ρ) ≥ dJh(µ+, µ−)

as desired.
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