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Abstract

A fully atomistic (AT) modeling of biological macromolecules at relevant length- and

time-scales is often cumbersome or not even desirable, both in terms of computa-

tional effort required and a posteriori analysis. This difficulty can be overcome with

the use of multiresolution models, in which different regions of the same system are

concurrently described at different levels of detail. In enzymes, computationally

expensive AT detail is crucial in the modeling of the active site in order to capture,

for example, the chemically subtle process of ligand binding. In contrast, important

yet more collective properties of the remainder of the protein can be reproduced

with a coarser description. In the present work, we demonstrate the effectiveness of

this approach through the calculation of the binding free energy of hen egg white

lysozyme with the inhibitor di-N-acetylchitotriose. Particular attention is payed to

the impact of the mapping, that is, the selection of AT and coarse-grained residues,

on the binding free energy. It is shown that, in spite of small variations of the binding

free energy with respect to the active site resolution, the separate contributions

coming from different energetic terms (such as electrostatic and van der Waals inter-

actions) manifest a stronger dependence on the mapping, thus pointing to the exis-

tence of an optimal level of intermediate resolution.
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1 | INTRODUCTION

One of the most relevant challenges of computational biochemistry

and biophysics is the accurate calculation of binding free energies,1-3

which represents one of the key steps in the identification of pharma-

cological targets as well as in the development of new drugs.4-6 How-

ever, the large sizes of the proteins under examination (often above the

hundreds of residues), as well as the necessity to screen through large

datasets of potential candidate drugs they can interact with, make this

effort onerous in terms of time and computational resources.

A promising way to mitigate these limitations is the use of

multiple-resolution models of the protein, that is, representations in

which different parts of the molecule are concurrently described at

different levels of accuracy.7-12 The chemically relevant part of the

protein, for example, the active site, is modeled at a higher level of

detail, typically atomistic (AT). For the remainder, on the contrary, a

simplified representation is used, where several atoms are lumped

together in effective interaction sites. The working hypothesis under-

lying these methods is that only a relatively small part of the molecule

requires an explicitly AT treatment; the remainder, in fact, is mainly
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responsible for large-scale, collective fluctuations whose function-

oriented role is well recognized and prominent,12-16 however also

prone to be accurately reproduced by lower-resolution representa-

tions.17-22 Hence, the resulting model favorably joins the accuracy of

an AT description where needed and the computational efficiency of

a coarse-grained (CG) one where possible.

In order to take full advantage of the dual-resolution approach

to protein modeling, though, one has to solve a few key open

issues: first, the definition of the appropriate CG model to employ

in the low-resolution part22-30; second, the coupling between high-

and low-resolution models, which has to be performed so as to

guarantee that the observables of interest are reproduced with

respect to the reference provided for example by a fully AT simula-

tion. This issue entails a further one, namely the identification of

observables apt to quantify the fidelity with which the behavior of

the system is reproduced by the dual-resolution model; third, the

selection of the subpart of the molecule that requires a high-

resolution modeling. In the present work, we will focus specifically

on this third aspect.

Various methods and approaches have been developed in the

past few years to describe proteins in dual resolution.8-11,31,32 In gen-

eral, the high-resolution part is modeled at the all-atom level, making

use of one of the several AT force fields available. The CG representa-

tions range from simple bead-spring elastic networks12,17,20 to more

sophisticated G�o-type models.8 Other approaches maintain the high-

resolution description for the solute while employing a simplified

model for the solvent, with varying degrees of detail depending on

the specific systems and applications33-38; among these, some treat

the solvent with an adaptive resolution approach, that is, solvent mol-

ecules are AT in proximity of the solute and smoothly blend in a CG

representation away from it.39-47

Recently, we have proposed a dual-resolution model12 where, in

the CG part, only the Cα carbons of the protein chain are retained and

connected one with the other by harmonic bonds. This model has

been employed in the present work with the aim of assessing the

accuracy of a hybrid AT/CG description of a protein for binding free

energy calculations. The system under examination is hen egg-white

lysozyme (HEWL) in explicit water, bound to a sugar substrate, di-N-

acetylchitotriose. We carried out calculations of the binding free

energy of the ligand in the active site, with a 2-fold objective. In fact,

not only we aimed at verifying that the computed quantity in the

dual-resolution model matches a reference, all-atom calculation; but

rather we also investigated the impact of different choices in the defi-

nition of the high-resolution subdomain. This aspect bears the highest

prominence, as it is becoming increasingly more evident that a crucial

component in the construction of accurate and effective low-

resolution models for biological and soft matter systems is represen-

ted by the mapping,12,29,30 that is, the particular selection of collective

variables employed to describe the system. Here, we provide novel

evidence of this general property in the context of a dual-resolution

model of a biomolecule, and describe a broadly applicable strategy to

tackle this issue.

2 | METHODS

The system under examination in the present work is HEWL in aque-

ous solution. In this model, the binding site of the enzyme and the

substrate molecule, the inhibitor di-N-acetylchitotriose, are represen-

ted with AT detail. The protein model employed is not adaptive, that

is, the resolution of a given residue is fixed—either AT or CG—and

does not change throughout a simulation. However, at difference with

other works,7,8,46 several values of the number of protein residues

treated at high resolution have been explored and employed in inde-

pendent calculations. The impact of choosing different numbers of

active site residues to model at the AT level is a central aspect of this

study. The CG model employed to describe the low-resolution part of

the protein is a simple bead-spring representation where the selected

sites (namely the Cα atoms) are connected by elastic bonds penalizing

the deviations from the distances that interacting atoms have in the

reference conformation. Two values of elastic constants are

employed, one for Cα's along the chain, and one for all other bonds.

Water molecules are described in AT detail throughout the whole sim-

ulation box: the interaction with the high-resolution part of the pro-

tein takes place through the standard all-atom force field, while the

interaction with the CG beads is mediated by a purely repulsive

potential acting on the sole oxygen atom.

Hereafter we provide a detailed description of the model. We

first discuss the calculation of the binding free energy ΔGbind, then we

outline the dual-resolution model and its coupling to the AT part, and

finally report information about the simulation setup. Further details

are made available in the Supporting Information.

2.1 | Binding free energy calculation

One of the key points of this work is the calculation of the protein-

ligand binding free energy ΔGbind, which quantifies the affinity of a

molecule toward a protein.1-3 As such, it plays a prominent role in the

investigation of the biochemical function and activity of enzymes and

similar biomolecules, and in the development of effective drugs.

ΔGbind is defined as the difference between the free energy of

the system in the configuration in which the ligand is bound to the

active site (Gb) and the corresponding value when the ligand is

absent (Gub):

ΔGbind =Gb−Gub: ð1Þ

This value, in the specific case under examination, varies

according to the number of active site residues modeled with AT reso-

lution, as we will see in Section 3.

The free energy difference between two states is here computed

by means of thermodynamic integration (TI).48 Specifically, a scalar

λ � [0, 1] is defined that parameterizes the potential energy of the sys-

tem as Uλ(r) = λUA(r) + (1 − λ)UB(r) connecting the states A and B. The

sought quantity is given by:
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ΔG=
ð1
0

∂U λð Þ
∂λ

� �
λ

dλ: ð2Þ

Since the free energy is a state function, the nature of the path is

unimportant, and one can choose a thermodynamic cycle that con-

nects the bound and unbound states through several intermediate

ones, as illustrated in Figure 1. In particular, we can identify two main

terms: the insertion of the ligand from vacuum to water ΔGlig, and the

decoupling from the protein ΔGcompl. A further step is the removal of

the restraints that keep the ligand in proximity of the protein (ΔGr_on

as shown in Figure 1) during the damping of the ligand-protein inter-

actions, that is ΔGr_off; this latter calculation can be carried out analyt-

ically without the need to run simulations. A detailed explanation of

each term and its relative alchemical changes for its calculation can be

found hereafter and, in particular, in the Supporting Information in the

section “Thermodynamic cycle for binding free energy.”

The binding free energy ΔGbind is thus the algebraic sum of the

previous three terms:

ΔGbind =ΔGcompl +ΔGlig +ΔGr_off: ð3Þ

According to the previous definitions of each term, neither ΔGlig

nor ΔGr_off changes with the protein resolution: indeed, the former

corresponds to the solvation free energy of the ligand, which is always

treated at the AT level; likewise, the calculation of the restraint

removal free energy is analytic.3 The only term that varies depending

on the number of active site residues modeled in high resolution is

the free energy change of the protein-ligand complex between the

bound state and the state where the ligand is removed, that is, the

variation of ΔGbind is equal to the variation of ΔGcompl.

The alchemical change in the calculation of ΔGcompl is performed in

three steps (in the following, the subscripts c and ℓ stand for complex

and ligand, respectively). First, one adds a set of restraints between pro-

tein and ligand (ΔGr_on) in order to avoid the problem of the ligand leav-

ing the binding pocket when interactions are removed. The presence of

restraints is indicated in the cycle scheme of Figure 1 with a red circle:

it represents the fact that the ligand is confined in a certain volume. For

this work, we use the set of restraints described by Boresch.3 Second,

Coulomb interactions are switched off (ΔGcoul, c); third, the Lennard-

Jones potentials modeling van der Waals interactions are removed

(ΔGLJ, c). Likewise, the alchemical change in the ligand free energy ΔGlig

is performed in two steps: first switching on Coulomb interaction

(ΔGcoul, ℓ), and then Lennard-Jones (ΔGLJ, ℓ). The last contribution to

the binding free energy, ΔGr_off, derives from restraint removal. These

transformations are summarized in Figure 1 and Table 1. Further details

can be found in the Supporting Information in the section relative to

the thermodynamic cycle.

The calculation of ΔGcompl can be carried out in two different

ways, namely decoupling and annihilation. Decoupling refers to turn-

ing off the interactions between the molecule and its environment,

while maintaining the potentials among atoms constituting the mole-

cule; annihilation, on the other hand, implies turning off the interac-

tion between the molecule and the environment as well as the

intramolecular interaction. Here we consider the values of ΔG

obtained through ligand decoupling, since this process is more intui-

tive with respect to annihilation; furthermore, the ligand is always

treated at fully AT detail, therefore it is not involved in the change of

free energy while varying the protein resolution. In Table 3 and

Figure 6 (and with greater detail in the Supporting Information, annihi-

lation section) we provide data showing that the values of binding free

energy obtained using decoupling and annihilation are consistent

within the error bars.

An important aspect that stems from Table 3 is that the largest

contributions to the binding free energy come from the first two

terms of Equation (3). Specifically, the insertion of the ligand in water

(ΔGlig) and the decoupling of the ligand from the protein (ΔGcompl)

F IGURE 1 Pictorial representation of the thermodynamic cycle
employed in this work. Starting from the top-right corner of the
figure, we decouple the ligand from the protein (ΔGcompl, which also
includes a set of restraints between ligand and protein) and
subsequently introduce it in water (ΔGlig). A further step is the
restraints removal (ΔGr_off) whose calculation is analytical

TABLE 1 Summary of the alchemical changes and the protein
resolution dependence for each contribute of binding free energy
ΔGbind

Alchemical changes
Protein resolution
dependence

ΔGcompl ΔGcoul,c + ΔGLJ,c + ΔGr_on Yes

ΔGlig ΔGcoul, ℓ + ΔGLJ, ℓ No

ΔGr_off Analytical No
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contribute to the total binding free energy with terms of the same

order of magnitude, as shown in the first and second column. On the

other hand, the third term of Equation (3), that is ΔGr_off, is one order

of magnitude smaller than the previous two (as shown later in Sec-

tion 3); however, it is not negligible for the calculation of the overall

binding free energy.

2.2 | Dual-resolution protein model

Proteins undergo both high frequency, localized fluctuations about

transient conformational substates, and slower, more global transi-

tions between them.49,50 In the present molecular modeling

approach, those local fluctuations that can play an important role in

the biological function of the protein of interest are allowed by the

all-atom description of the binding site. The set of these protein resi-

dues that are modeled with AT detail does not change during the

simulation, that is, the protein has a fixed, position- and time-

independent dual resolution. The rest of the protein is described

through a CG, lower-resolution model. If, on the one hand, it is rea-

sonable to expect that regions of the molecule far away from the

active site have a negligible direct impact on the latter, on the other

hand the collective fluctuations that they determine are important to

modulate the structure of those residues involved in the binding.22,51

Hence, to ensure the correct structure and conformational fluctua-

tions of the binding site, it is necessary to provide a representation

of the remainder of the molecule that, albeit lower-resolution, is

nonetheless capable of reproducing the appropriate large-scale

dynamics.

To describe the lower-resolution part we thus employ an elastic

network model (ENM),12,17 in which each residue is mapped onto a

bead whose position corresponds to the Cα atom in the AT

description. These beads are connected by harmonic springs as shown

in Figure 2.

The potential energy is given by:

E =
X
i

X
j

kij rij− r0ij

� �2
θ rc−r0ij

� �
ð4Þ

with spring constants kij, equilibrium distance r0ij , a cutoff distance rc,

i and j are the node index, and θ(r) is a Heaviside function taking value

1 if r>0 and 0 otherwise. In this model we made use of two different

elastic constants: a very stiff spring (kb) for consecutive beads, repre-

sented in blue in Figure 2; and a weaker spring knb for not consecutive

beads whose distance in the reference (native) conformation lies

below a fixed cutoff (in green).

The ENM used here is parameterized to reproduce the conforma-

tional fluctuations of the reference all-atom model, these being quan-

tified by the root mean square fluctuations (RMSF) of the all Cα atoms

of the system.12 The residues in direct contact (H-bonding or hydro-

phobic contact) with the substrate are modeled with all-atom detail; in

order to select the other binding site residues to be described at the

AT level, we sorted them by increasing distance of their center of

mass from the closest ligand atom. The solvent is treated with all-

atom detail and it surrounds the dual-resolution protein. The water-

CG protein interaction consists in a simple excluded volume term,

modeled via a Weeks-Chandler-Anderson (WCA) potential.52 The

details about the procedure followed to determine the ENM elastic

constants and the excluded volume interaction are provided in the

Supporting Information, while the numerical values of the resulting

parameters are reported hereafter.

As anticipated, the focus of the present work lies in the analysis

of the impact that a modulation of the resolution of a protein in prox-

imity of the active site can have on physical and mechanical properties

F IGURE 2 Visualization of the dual-
resolution protein.12 The residues
included in atomistic detail are shown in
red, blue, cyan, and white (O, N, C, and H
atoms). The gray spheres are elastic
network model nodes, the stiff backbone
springs are shown as dark blue lines and
all others (weaker) springs are shown in
green
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of the latter, as well as on the information that the study of this

impact can reveal. However, the multiresolution description can, in

principle, also provide a valuable computational advantage. In fact, a

dual-resolution model can be significantly faster than the equivalent

fully AT one. The speedup, which depends primarily on the fraction of

atoms retained as such,53 is about 2 for the system investigated here:

this value is relatively low, due to the fact that lysozyme, albeit a rele-

vant, nontrivial protein, is still relatively small. In this dual-resolution

model, up to 10 residues out of 129 are described at the all-atom

level, and the degree of coarse-graining of the low-resolution part is

not drastic (one interaction site per residue). Additionally, it has to be

kept in mind that a considerable fraction (actually the majority) of the

degrees of freedom of the whole setup is due to the water modeled

with all-atom detail.

A much more relevant speedup can be achieved in larger systems,

for example, high molecular weight proteins, antibodies, or viral cap-

sids, for which lower degrees of detail are allowed in the CG region.

The main advantage of a dual-resolution treatment of these macro-

molecules, possibly in combination with an adaptive resolution model

of the solvent, is indeed that the computational gain increases with

the system size, that is, precisely for those systems for which an all-

atom description becomes challenging.

2.3 | Simulation details

The reference model is given by the 2 ns equilibrated PDB struc-

ture 1HEW in the NPT ensamble (the Parrinello-Rahman barostat54

with a time constant of 2.0 ps and a pressure of 1 bar was used).

Both fully AT and dual-resolution models of HEWL are solvated in

water and placed in a cubic simulation box of 7.06 nm side. The

force field employed is Amber99SB,55 whereas the water model is

TIP3P.56 The inhibitor, which was always AT, had GLYCAM force

field parameters consistent with Amber99SB.57 The TI binding free

energy calculation consists of three different steps: ΔGcompl,

ΔGr_off, ΔGlig:

1 The protein-ligand complex free energy (ΔGcompl) calculation uses

11 λ values per ΔGrestr_on, c, 5 evenly spaced λ values per ΔGLJ, c

(with separation 0.20) and 15 λ values per ΔGcoul, c, with 600 ps of

simulation per λ in the fully AT case, and 4000 ps in the dual-

resolution case to improve the statistics.

2 The restraint removal free energy (ΔGr_off) calculation.

3 The ligand solvation free energy (ΔGlig) calculation uses 5 evenly

spaced λ values per ΔGcoul, ℓ (with separation 0.20) and 16 λ values

per ΔGLJ, ℓ, with 600 ps of simulation of each λ-value.

In the TI, we employ the soft-core potential of Reference 58 with

parameters α = 0.5 and P = 1.0 to avoid possible singularities in the

Lennard-Jones terms from atoms overlapping during the alchemical

change. The temperature is kept constant at 298 K by means of a

Langevin thermostat with a friction constant γ = 15 ps−1.

The integration step is 1 fs. The calculation of electrostatic interaction

is performed using the reaction field method with a dielectric constant

ϵ = 80 and a cutoff of 1.2 nm. These parameters are a good compro-

mise between speed and accuracy, as verified in Reference 59. The

SETTLE60 and RATTLE61 algorithms for rigid water and rigid bonds to

hydrogen have been used. Each system is prepared using fully AT min-

imization with steepest descent and 6 ns of equilibration in NVT (for

both ligand-free and ligand-bound systems). All simulations (both fully

AT and dual-resolution) are carried out with the ESPResSo++ simula-

tion package,62,63 in which we have implemented TI (except in case of

annihilation, for which all steps are performed in both ESPResSo++

and GROMACS64). Some preliminary fully AT equilibration simulations

use GROMACS. The error bars shown are calculated using the Stu-

dent t at 95% confidence limit,65 via standard deviations obtained

using block averaging in which all trajectories are divided into four

blocks of equal length.

The parameterization of the dual-resolution model is consistent with

the work in Reference 12: the spring constant between consecutive Cα

nodes along the backbone (kb) has a stiff value of 5 × 104 kJ mol−1 nm−2,

while all the other ones (knb) have a value of 160 kJ mol−1 nm−2, until

1.2 nm as cutoff, parameterized by minimizing the average root mean

square error in the Cα RMSF. Moreover, a WCA interaction is applied

between Cα nodes and all solvent molecules' center of mass. In the

WCA potential, ϵ has a value of 0.34 kJ mol−1 arbitrarily chosen as the

value for carbon in the AT force field, and σi = Rg, i � c where Rg, i is the

radius of gyration of a given residue i where c is the same for all amino

acids. The value of c is tuned to give the correct bulk water density of

reference for a protein-water system. The c value found is 0.658.

Further explanations about c can be found in the Supporting Informa-

tion. The raw data about the simulations and analyses performed in this

work are freely available on the Zenodo repository https://zenodo.org/

record/3665677.

3 | RESULTS AND DISCUSSION

We performed the calculation of ΔGbind of lysozyme modeled in dual-

resolution, varying the number of AT residues constituting the binding

site and comparing the results with a fully AT reference simulation.

Recall that the binding free energy calculation consists of three steps:

restraint removal, ligand ΔG, and ligand-complex ΔG; of these, only

the latter depends on protein resolution, that is, only ΔGcompl assumes

different values for different numbers of active site residues described

at the all-atom level.

As explained in the previous section, the contribution coming

from the restraints can be analytically computed and amounts to

ΔGr_off = − 31.3 kJ mol−1. Likewise, the Coulomb and Lennard-

Jones contributions to the ligand free energy ΔGlig are the

following:

ΔGcoul,l = −142:8�1:7 kJ mol−1

ΔGLJ,l = −9:1�6:3 kJ mol−1:
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Hence,

ΔGlig = −151:9�8:0 kJ mol−1:

The final step is the calculation of ΔGcompl, whose results, includ-

ing the comparison between dual-resolution model and fully AT refer-

ence, are shown in Table 2 and illustrated in Figure 3.

The first three columns of the table describe the Coulomb,

Lennard-Jones, restraints contributions to free energy, respectively,

while the last one corresponds to the value of the total ligand-protein

complex free energy. All the values are expressed in kJ mol−1. In

Figure 3, the AT reference is represented with a dashed black line

with its error bar. In particular, panels A-C show the three compo-

nents that contribute to the total complex free energy, reported in

panel D. Looking at these values as a function of the number of all-

atom active site residues, we notice that there are important devia-

tions of the free energy from the reference, especially in the case of

3 and 4 AT residues. On the contrary, the total value of the binding

free energy agrees with the reference within the error bar in all cases.

TABLE 2 The resulting values of the complex free energy (fourth
column) and its components (Coulomb, Lennard-Jones, and restraints,
respectively, in the first three columns) in fully atomistic system and
varying the number of atomistic residues

At res ΔGCoul,c ΔGLJ,c ΔGRestr_on, c ΔGcompl

Fully-at 145.2 ± 3.5 44.2 ± 5.2 3.6 ± 0.4 193.0 ± 9.1

aa-3 125.5 ± 7.0 50.4 ± 6.3 8.3 ± 1.1 184.2 ± 14.4

aa-4 141.4 ± 4.9 39.7 ± 9.4 7.2 ± 1.0 188.3 ± 15.3

aa-5 140.2 ± 2.8 48.7 ± 4.5 7.5 ± 1.2 196.4 ± 8.5

aa-6 147.0 ± 1.9 41.7 ± 5.4 5.1 ± 0.5 193.8 ± 7.8

aa-7 144.5 ± 0.8 38.4 ± 3.8 5.0 ± 0.2 187.9 ± 4.8

aa-8 148.0 ± 1.4 33.6 ± 1.9 6.4 ± 1.8 188.0 ± 5.1

aa-9 143.4 ± 4.7 38.1 ± 5.3 5.1 ± 0.3 186.6 ± 10.3

aa-10 145.9 ± 2.2 38.2 ± 1.0 4.4 ± 0.3 188.5 ± 3.5

Note: All the values are in kJ mol−1 and performed with thermodynamic

integration. Moreover, all simulations are carried out in ESPResSo++. In

particular, for each value of λ, the dual-resolution simulations with differ-

ent number of atomistic residues last 4 ns; the atomistic simulation,

instead, lasts 0.6 ns (600 ps).
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F IGURE 3 A, Coulomb; B, Lennard-Jones; C, restraint; and D, total free energies in the protein-ligand complex, as a function of protein's
residues number included in atomistic detail in the multiresolution setup. The heavy dashed black horizontal lines are the reference values from
fully atomistic simulations, and the lighter dotted black horizontal lines are the error bars for those values. These simulations use decoupling, not
annihilation. Y-axes do not cover the same energy range
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Furthermore, we observe that the trend of free energy values, in

comparison to the reference, is essentially the same: starting from

3 amino acids, it approaches the reference until reaching 6, both in

its components and in total. In contrast, going from 6 to 8 AT resi-

dues the free energy value deviates from the reference, even though

the total remains close to it. Finally, from 8 to 10, ΔG converges

again. Hence, increasing the number of AT residues does not intro-

duce necessarily an improvement of the computed free energy, at

least as long as the various free energy components are considered

separately.

In order to gain further, quantitative insight into these results, we

computed the quadratic deviation from the reference, δ2, defined as:

δ2i = δ
2
i-Coul + δ

2
i-LJ + δ

2
i-Restr = ΔGCoul_i−ΔGCoul-atð Þ2 + ΔGLJ_i−ΔGLJ-atð Þ2

+ ΔGRestr_i−ΔGRestr-atð Þ2,
ð5Þ

where the index i = 3, …, 10 runs over AT residues. Figure 4 reports δ2

as a function of the number of active site amino acids modeled with

AT detail.

The plot shows that the binding free energy computed in the

dual-resolution model approaches the reference as the number of AT

aa-3
aa-4

aa-5
aa-6

aa-7 aa-8
aa-9

aa-10
0

1

2

3

4

5

d
Quadratic Deviation of Free Energy Components

decoupling

F IGURE 4 Square root of the quadratic deviation δ2 vs the
number of atomistic residues chosen. The plot shows that in the case
of six atomistic residues, the value of quadratic deviation is the lowest
one and hence it means that such a number leads the best result of
free energy. Moreover, the black line shows the trend of free energy
values as discussed in Section 3

F IGURE 5 VMD representation of lysozyme and ligand in different resolution: A, 3; B, 6; C, 8; and D, 10 atomistic residues. The
complete set can be found in Supporting Information. The ligand is always atomistic and it is represented in Licorice. In green are
represented the elastic network model beads. With the other colors are represented, instead, the various atomistic residues that surround
the ligand
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active site residues increases, and most importantly, this trend persists

for each component up to 6 residues. Beyond this value, though, the

trend stops and the deviation becomes larger, peaking at 8 residues

and decreasing when further AT amino acids are added. These results

highlight a nonmonotonic dependence of the free energy on the map-

ping, that is, the number of retained AT residues. If, on the one hand,

the overall value of the binding free energy (Figure 3D) levels to the

reference with as few all-atom residues as 4, the separate compo-

nents oscillate and reach the plateau only for larger numbers. The

existence of a minimum in the standard deviation of all three contribu-

tions pinpoints a particular number of AT active site residues for

which the accuracy of the computed free energy is the highest and

the economy of the high-resolution subpart the largest. Including

more than 6 AT residues counterintuitively worsens the results -when

the various contributions are looked at- and the previous accuracy is

only recovered when more residues are included. This behavior sug-

gests that the total free energy undergoes an error cancelation that

hides the deviations of the separate terms.

A possible explanation for this nontrivial behavior is that when

6 active site residues are modeled with all-atom accuracy (Figure 5B)

the ligand is stable in the catalytic site, namely it is surrounded by a

complete shell of AT residues. The addition or deletion of other resi-

dues (Figure 5C,A, respectively) leads to a worsening of ΔG: in the

first case, the two added residues (in pink and gray) are located behind

the first shell of amino acids (far away from the ligand) and start to

form a second, incomplete shell; in the second case, only three AT

amino acids take part in the direct interaction with the ligand: there-

fore, the first layer is still incomplete and important interactions are

missing; in order to improve the free energy value one has to add fur-

ther amino acids in order to complete the second shell. We emphasize

that the impact on the deviation from the reference is inversely pro-

portional to the distance of the added/removed amino acid. Thus, the

farther the AT amino acid is from the ligand, the more negligible its

effect is. In the Supporting Information, we provide detail about the

other numbers of all-atom residues not reported here. Finally, the

values of binding free energy (also for the case of annihilation whose

calculations are reported in the Supporting Information) are summa-

rized in Table 3 and illustrated in Figure 6.

4 | CONCLUSIONS

In this work, we have shown how the dual resolution model

employed, constituted by an all-atom subregion coupled to an ENM

remainder, can be used to calculate the binding free energy of an

enzyme-substrate complex with AT accuracy. Furthermore, and most

importantly, we have highlighted the impact that different choices of

the model resolution can have. Specifically, we have computed the

total value of the binding free energy as well as that of its various

energetic components, and quantitatively inspected how these

change when different selections are performed for the subgroup of

amino acids, ranging from 3 to 10 in total, to be modeled at the fully

AT level.

At first sight, one can appreciate that the binding free energy

value rapidly converges to the AT reference when as few as 4 amino

acids constituting the active site are described all-atom. This com-

forting result, however, unveils a greater complexity when the differ-

ent terms constituting the free energy are looked at separately. These

show an oscillating behavior as the number of all-atom residues in the

active site is increased, with a decreasing difference from the

TABLE 3 Representation of free energies values computed in
ESPResSo++ and GROMACS (respectively espp and grom using a
short notation on the table) in case of annihilation and decoupling

Ligand Complex Binding

Annihilation

atom, espp −1275.3 ± 11.2 1315.2 ± 16.3 8.6 ± 27.5

atom, grom −1259.0 ± 5.9 1314.8 ± 13.2 24.5 ± 19.1

Decoupling

atom, espp −151.9 ± 8.0 193.0 ± 9.1 9.8 ± 17.1

aa-3, espp −151.9 ± 8.0 184.2 ± 14.4 1.0 ± 22.4

aa-4, espp −151.9 ± 8.0 188.3 ± 15.3 5.1 ± 23.3

aa-5, espp −151.9 ± 8.0 196.4 ± 8.5 13.2 ± 16.5

aa-6, espp −151.9 ± 8.0 193.8 ± 7.8 10.6 ± 15.8

aa-7, espp −151.9 ± 8.0 187.9 ± 4.8 4.7 ± 12.8

aa-8, espp −151.9 ± 8.0 188.0 ± 5.1 4.8 ± 13.1

aa-9, espp −151.9 ± 8.0 186.6 ± 10.3 3.4 ± 18.3

aa-10, espp −151.9 ± 8.0 188.5 ± 3.5 5.3 ± 11.5

Note: The table is divided in three column: from left to right are represen-

ted the ligand, protein-ligand complex and binding FE. The latter is the

algebraic sum of ΔGcompl, ΔGr_off, and ΔGlig. Results are in kJ mol−1.
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reference followed by a sudden jump to larger values, which dampens

upon further addition of AT amino acids. The rationale in this behavior

is identified in the structure of the active site, which is constituted by

a first shell of the six residues exposed to the solvent and closest to

the ligand; when further amino acids beyond these are modeled with

AT resolution, they interact with the substrate affecting the binding

free energy components and shifting them away from the reference,

with a steadily lowering impact as the model's resolution is

increased—as one can expect. Surprisingly, very little if no signal of

this behavior is observed in the value of the binding free energy as a

whole, rather it becomes visible only upon inspection of its separate

contributions.

The results of this work thus highlight the importance of the map-

ping in the construction of multiscale and multiresolution models, as a

higher degree of detail does not necessarily correlate with a higher

accuracy of the quantities of interest. The implications of these obser-

vations should serve as a warning in the realization of CG models con-

currently employing various levels of detail for different regions of the

same system, whose range of application spans from fundamental

understating of a molecule's properties to real-life pharmaceutical

applications.
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