
Information and Computation 272 (2020) 104502
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

SMT-based satisfiability of first-order LTL with event freezing

functions and metric operators ✩

Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri,
Stefano Tonetta ∗

FBK-irst, via Sommarive 18, Trento, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2018
Received in revised form 15 February 2019
Accepted 15 February 2019
Available online 10 December 2019

Keywords:
First-order linear-time temporal logic
Metric temporal logic
SMT-based model checking
Temporal satisfiability

In this paper, we propose to extend First-Order Linear-time Temporal Logic with Past
adding two operators “at next” and “at last”, which take in input a term and a formula
and return the value of the term at the next state in the future or last state in the
past in which the formula holds. The new logic, named LTL-EF, can be interpreted with
different models of time (including discrete, dense, and super-dense time) and with
different first-order theories (à la Satisfiability Modulo Theories (SMT)). We show that the
“at next” and “at last” can encode (first-order) MTL0,∞ with counting. We provide rewriting
procedures to reduce the satisfiability problem to the discrete-time case (to leverage
on the mature state-of-the-art corresponding verification techniques) and to remove the
extra functional symbols. We implemented these techniques in the nuXmv model checker
enabling the analysis of LTL-EF and MTL0,∞ based on SMT-based model checking. We show
the feasibility of the approach experimenting with several non-trivial valid and satisfiable
formulas.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In formal verification, the quest for a suitable formal specification language that provides the right trade-off among ex-
pressiveness, usability, and automated reasoning, is always a difficult task. In the context of real-time embedded systems, the
functional specification of input/output variables is often entangled with timing aspects. Moreover, when a system or com-
ponent is seen as a black box, the properties must be specified in terms of the observable variables or messages exchanged
with the system environment. This is, for example, the case of properties of monitors (which trigger alarms based on some
condition on the observed variables/messages) or contract-based specifications (which formalize the assumptions/guarantees
of components independently of the implementation). In these cases, the properties must be able to express the relationship
between the observable variables at different points of time, without referring to internal system variables that store the
corresponding values. It is therefore necessary to have suitable mechanisms to refer to the value of variables at different
points of time.

✩ This paper extends the work presented in [1] with a translation from MTL0,∞ with counting operators and with a more robust tool implementation
and evaluation. This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Grant Agreement No.
700665 (project CITADEL).

* Corresponding author.
E-mail addresses: cimatti@fbk.eu (A. Cimatti), griggio@fbk.eu (A. Griggio), magnago@fbk.eu (E. Magnago), roveri@fbk.eu (M. Roveri), tonettas@fbk.eu

(S. Tonetta).
https://doi.org/10.1016/j.ic.2019.104502
0890-5401/© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.ic.2019.104502
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cimatti@fbk.eu
mailto:griggio@fbk.eu
mailto:magnago@fbk.eu
mailto:roveri@fbk.eu
mailto:tonettas@fbk.eu
https://doi.org/10.1016/j.ic.2019.104502
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2019.104502&domain=pdf

2 A. Cimatti et al. / Information and Computation 272 (2020) 104502
One of the most popular logics used in computer science to specify properties for formal verification is Linear-time
Temporal Logic (LTL) [2]. The temporal domain is typically discrete and models are discrete, linear sequences of states. In
the case of real-time systems, LTL is interpreted over a dense or super-dense models of time [3]. In particular, in super-dense
time models, the temporal domain combines dense sets of real time points with (discrete) sequences of instantaneous time
points, as needed for example for asynchronous real-time systems. When considering real models of time, it becomes
natural to have constraints on the time elapsing between different events. Therefore, LTL has been extended either with
clocks/freezing operators, as in TPTL [3], or with metric operators as in [4–7]. These extensions have been combined with
first-order logic to represent message passing [8] or for monitoring specification [9].

In this paper, we consider First-Order LTL [10] with future as well as past operators [11]. The system state is described
by individual variables, and first-order functions/predicates express their relationship. In the spirit of Satisfiability Modulo
Theories (SMT) [12], the formulas are interpreted modulo a background first-order theory as in [13] (here, we restrict to a
quantifier-free fragment where all the symbols in the signature are rigid).

We propose a new logic that extends the quantifier-free fragment of First-Order Linear-Time Temporal Logic with Past
operators by adding the “at next” u@ F̃ (φ) and the “at last” u@ P̃ (φ) function symbols, which are used (resp.) to represent the
value of a term u at the next state in the future or at the last state in the past in which the formula φ holds. For example,
the formula G(alarm ↔ x@ P̃ (read) = (x@ P̃ (read))@ P̃ (read)) says that alarm is true iff in the last two points in which read
was true the variable x had the same value. We refer to this extension of LTL as LTL with Event-freezing Functions (LTL-EF).
As for LTL, it can be interpreted over different temporal domains (including discrete, dense, and super-dense time) and with
different first-order theories (à la SMT). The “at next” and “at last” functions can be seen as a generalization of Event-Clock
Temporal Logic (ECTL) operators [14,15,6] (which, in turn, are the logical counterpart of event clocks [16]) and can encode
the fragment MTL0,∞ [16] of Metric Temporal Logic (MTL) [4], also with counting [17,18].

We provide rewriting procedures to reduce the satisfiability problem of LTL-EF to the discrete-time case without the extra
function symbols. This reduction enables for the use of all the mature and state-of-the-art satisfiability checking techniques
developed for the discrete-time case (see e.g. [19,20]). We implemented these techniques in the nuXmv model checker,
which provides efficient SMT-based model checking procedures to verify temporal properties on systems described with
first-order formulas (as discussed for instance in [19,20]). This provides an effective tool support for the analysis of LTL-EF
and MTL0,∞ .

The main contributions of the paper are the following. First, we identify an extension of LTL that can express interesting
properties relating variables at different points of time. Second, we define the new operators in a very rich setting that
includes first-order constraints, past operators, dense and super-dense semantics; this gives also a uniform treatment of
LTL satisfiability modulo theories in the case of real-time models. Third, we show how MTL0,∞ formulas (extended with
counting) can be expressed in LTL-EF. Fourth, we implemented the approach in a mature model checker, showing that it
can effectively prove interesting properties, while many logics in the real-time setting lack tool support.

The rest of the paper is organized as follows: Section 2 provides an analysis of the related work. Section 3 introduces
the considered temporal domains, the logics LTL and MTL0,∞ , and their satisfiability modulo theories; Section 4 defines the
extension with the new event freezing functions; Section 5 details how to translate an MTL0,∞ formula into an equivalent
LTL-EF formula; Section 6 shows how to translate an LTL-EF formula over super-dense time into an equisatisfiable one over
discrete time; Section 7 describes how to translate an LTL-EF formula over discrete time into an equisatisfiable one in LTL;
Section 8 presents the experimental results; finally, Section 9 concludes the paper and draws directions for future work.

2. Related work

The most natural alternative to the new operators proposed in this paper would be to use registers [21] or freezing
quantifiers [3]. LTL-EF adopts a more declarative style with functions that directly return the value of variables at the
next or last state in which a formula will be/was true, resulting in a more natural specification. Despite the fact that
freezing quantifiers provide a higher expressiveness (also with respect to MTL [22]), they are not so common in industrial
applications (at least compared to LTL and MTL), either because they are less intuitive to use, or because they lack tool
support.

The “at next” and “at last” function symbols of LTL-EF can be seen as a generalization of the Event-Clock Temporal Logic
(ECTL) operators [14,15,6] and can be used to encode the fragment MTL0,∞ [16] of Metric Temporal Logic (MTL) [4] also
with counting [17,18]. We remark that the ECTL operators are the logical counterpart of event clocks [16]. Our semantics for
LTL-EF is close to the one defined in [15] for event clocks in Event-Clock Timed Automata and for the corresponding quanti-
fiers in the equally-expressive monadic logic. However, differently from [15], we do not require the use of any nonstandard
real number, which is instead used in [15] to handle operators with left-open intervals.

The rewriting we adopted to reduce the satisfiability problem for LTL-EF to the discrete time case [2] is inspired by the
one described in [23]: we also split the time evolution into a sequence of singular or open intervals in such a way that an
execution trace is fine for the input formula on such intervals. However, the considered temporal logic is different and the
discretization of formulas differs even for the common fragment: in fact, in this paper, we consider a standard semantics of
LTL where time points are quantified over a dense or super-dense temporal domain, while in [23] the semantics of temporal
operators quantifies over sequences of intervals.

A. Cimatti et al. / Information and Computation 272 (2020) 104502 3
Fig. 1. Illustration of a super-dense time model (from [29]).

Regarding tool support, we are not aware of any other tool that is able to prove the validity of MTL0,∞ with parametric
bounds in the case of dense or super-dense time, while instead our implementation in nuXmv supports also first-order
constraints. We are aware of only three related tools, namely MigthyL [24], Zot [25], and ATMOC [26,27]. However, MigthyL
uses a (discrete) pointwise semantics for MTL, while Zot and ATMOC only support bounded satisfiability of MTL properties.

3. Background

In this section, we provide the background material on which the later technical sections are based. We begin with a
formal description of the temporal domains we consider (§3.1), and then proceed to introducing the syntax and semantics
of first-order Linear Temporal Logic (§3.2 and §3.4) and Metric Temporal Logic (§3.6), making explicit the assumptions on
traces on which we rely for our results (§3.5).

3.1. Time models

R+
0 is the set of non-negative real numbers. A time interval is a convex subset of R+

0 . The left endpoint of an interval I
is denoted by l(I), while the right endpoint by r(I). Two intervals I and I ′ are almost adjacent iff r(I) = l(I ′) (so they may
overlap in at most one point). A singular interval is an interval in the form [a, a] for some a ∈R+

0 . A time interval sequence
is a sequence I0, I1, I2, . . . of time intervals such that, for all i ≥ 0, Ii and Ii+1 are almost adjacent and

⋃
i≥0 Ii =R+

0 .
We consider different models of time [28,3]. A time model is a structure τ = 〈T , <, 0, v〉 with a temporal domain T , a

total order < over T , a minimum element 0 ∈ T , and a function v : T → R+
0 that represents the real time of a time point

in T . The v function is used instead of a distance (e.g., as in [4]) to treat the weakly-monotonic case in a more uniform
way. A time point is an element of T . In particular, we consider the following models:

• discrete time model, where T = N , 0 and < are the standard zero and order over natural numbers, v(0) = 0 and
v(0), v(1), v(2), . . . is a non-decreasing divergent sequence (this is also called the pointwise semantics; we use these
models also for discrete-time LTL ignoring these real-time timestamps);

• dense (strictly-monotonic) time model, where T =R+
0 , 0 and < are the standard zero and order over the real numbers,

and v is the identity function;
• super-dense (weakly-monotonic) time model, where 1) T ⊂N ×R+

0 such that the sequence of sets I0, I1, I2, . . . where,
for all i ≥ 0, the set Ii := {r | 〈i, r〉 ∈ T }, is a time interval sequence (thus subsequent intervals can overlap in at most
one point), 2) 〈i, r〉 < 〈i′, r′〉 iff i < i′ or i = i′ and r < r′ , 3) 0 = 〈0, 0〉 ∈N ×R+

0 , and 4) v(〈i, r〉) = r.

Intuitively, super-dense time models consist of alternating discrete sequences of points in the form {〈i, r〉}, {〈i + 1, r〉, . . .
(with the same timestamp r) and dense sets (containing an uncountable number of time points with different time stamps)
of the form 〈i, r〉, 〈i, r′〉, 〈i, r′′〉, . . . (with the same counter i). This is illustrated in Fig. 1 (taken from [29]), where discrete
points are represented by circles (and are labeled with their corresponding time points), and dense sets are represented by
continuous lines.

Note that any super-dense time model where the intervals in the underlying time interval sequence are not overlapping
is isomorphic to the dense time model.

3.2. First-order linear-time temporal logic

We consider First-Order Linear-time Temporal Logic with Past Operators, which we refer to for simplicity as LTL. We use a
non-strict version of “until” and “since” operators and add a dense-time version of X and Y , denoted X̃ and Ỹ respectively.
This allows us to define a simpler discretization, since discrete-time LTL typically uses non-strict version of “until” and
“since” (although the approach can be extended to handle also the strict version of “until” and “since” as shown in [1]).
Intuitively, the semantics of the “discrete” X operator and its dense-time counterpart X̃ in the super-dense setting is the
following: Xφ is true at a time point t if and only if t is immediately followed by another time point t′ with the same
timestamp in which φ holds (e.g. if φ holds at 〈4, 6〉 in Fig. 1, then Xφ holds at 〈3, 6〉); instead, X̃φ holds at t if and only if
t is immediately followed by a dense set of time points in which φ holds (e.g. in the example of Fig. 1, X̃φ holds at 〈2, 1.5〉
if φ holds in the interval between 〈2, 1.5〉 and 〈3, 6〉).

Given a first-order signature � and a set V of variables, we define the syntax of �-formulas as follows:

φ := p(u, . . . , u) | φ ∧ φ | ¬φ | φUφ | φSφ | Xφ | X̃φ | Y φ | Ỹ φ

u := c | x | f (u, . . . , u)

4 A. Cimatti et al. / Information and Computation 272 (2020) 104502
where p is a predicate symbol in �, u is a term, f is a function symbol in �, c is a constant symbol in �, and x is a
variable in V .

�-formulas are viewed as a first-order structure interpreting the symbols in � and assignments to variables that vary
along time. More specifically, a state s = 〈M, μ〉 is given by a first-order structure M and an assignment μ of variables
of V into the domain of M . Given a state s = 〈M, μ〉 and a symbol c in � or variable x ∈ V , we use s(c) to denote the
interpretation of c in M and s(x) to denote the value μ(x) assigned by μ to x. Given M , let V M be the set of states with
first-order structure M . A trace σ = 〈M, τ , μ〉 is given by a first-order structure M , a time model τ , and a mapping μ from
the domain of τ into V M . Given a trace σ = 〈M, τ , μ〉 and t ∈ τ , we denote by σ(t) the state 〈M, μ(t)〉.

In our definition of trace, the first-order structure M is shared by all time points, meaning that the interpretation of the
symbols in the signature � is rigid, that is, it does not vary with time. However, note that the interpretation of symbols
may not be “fixed” by the background theory. These “uninterpreted” symbols are also called parameters. For example, the
signature � can include the symbols of the theory of reals (including the constants 0 and 1) and an additional constant
symbol p, whose value (i) is not determined by the theory but (ii) does not vary with time (thus, p is a parameter).

We assume a � first-order theory T to be given. Given a � first-order structure M , an assignment μ to variables of V ,
and a � first-order formula φ over V , we use the standard notion of 〈M, μ〉 |=T φ. In the rest of the paper, we omit the
first-order signature � and theory T for simplicity.

Given a trace σ = 〈M, τ , μ〉, a time point t of τ , and a � formula φ, we define σ , t |= φ recursively on the structure
of φ:

σ , t |= p(u, . . . , u) iff σ(t) |= p(u, . . . , u)

σ , t |= φ1 ∧ φ2 iff σ , t |= φ1 and σ , t |= φ2

σ , t |= ¬φ iff σ , t
|= φ

σ , t |= φ1Uφ2 iff there exists t′ ≥ t,σ , t′ |= φ2 and for all t′′, t ≤ t′′ < t′,σ , t′′ |= φ1

σ , t |= φ1 Sφ2 iff there exists t′ ≤ t,σ , t′ |= φ2 and for all t′′, t′ < t′′ ≤ t,σ , t′′ |= φ1

σ , t |= Xφ iff there exists t′ > t,σ , t′ |= φ and there exists no t′′, t < t′′ < t′

σ , t |= X̃φ iff for all t′ > t, there exists t′′, t < t′′ < t′,σ , t′′ |= φ

σ , t |= Y φ iff t > 0 and there exists t′ < t,σ , t′ |= φ and there exists no t′′, t′ < t′′ < t

σ , t |= Ỹ φ iff t > 0 and for all t′ < t, there exists t′′, t′ < t′′ < t′,σ , t′′ |= φ

Finally, σ |= φ iff σ , 0 |= φ. We say that φ is satisfiable iff there exists σ such that σ |= φ. We say that φ is valid iff, for
all σ , σ |= φ.

We say that a formula φ1 globally entails another formula φ2, denoted by φ1 |=G φ2, iff for all σ , for all t , σ , t |= φ1
implies that σ , t |= φ2. We say that two formulas φ1 and φ2 are globally equivalent, denoted by φ1 ≡G φ2 iff φ1 |=G φ2 and
φ2 |=G φ1.

3.3. Next and yesterday

As discussed at the beginning of previous section, we define the semantics of X (“next”) and Y (“yesterday”) also in the
case of dense or super-dense time. In the case of weakly-monotonic time, Xφ can be true only on a discrete step (i.e., in
〈n, t〉 if 〈n + 1, t〉 is also in T). In the case of strictly-monotonic time, Xφ is always false.

As for the “dense” counterpart of X and Y , in the super-dense time case, X̃φ is false in the discrete steps, while it is
true on right accumulation points for points satisfying φ. Thus, X̃φ is always false in the case of discrete time, while in the
case of dense time it is true in the right accumulation points of points satisfying φ.

In the discrete-time setting, we often use also the functional counterpart of X , here denoted by next , as in [10]. Given a
term u, the interpretation of next(u) in a trace σ at the time point t is equal to the value of u assigned by σ at the time
point t + 1. “next” does not typically have a counterpart in the dense time case.

3.4. Abbreviations

We use the following standard abbreviations:

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)

� := p ∨ ¬p ⊥ := ¬�
Fφ := �Uφ Gφ := ¬(F¬φ)

Pφ := �Sφ Hφ := ¬(P¬φ)

A. Cimatti et al. / Information and Computation 272 (2020) 104502 5
Zφ, which in the discrete-time setting is usually defined as ¬Y ¬φ (which is equivalent to Y � → Y φ), is a weak version
of Y that is always true in the initial point. Here, it is extended to take into account the (super-)dense time models:

Zφ := (Y � ∨ Ỹ �) → Y φ Z̃φ := (Y � ∨ Ỹ �) → Ỹ φ

Finally, we define further abbreviations to represent the strict versions of F and P also with counting:

F̃φ := X̃ Fφ|X Fφ P̃φ := Ỹ Pφ|Y Pφ

F̃ 1φ := F̃φ P̃ 1φ := P̃φ

F̃ kφ := F̃ (φ ∧ F̃ k−1φ) P̃ kφ := P̃ (φ ∧ P̃ k−1φ)

G̃ and H̃ are defined as:

G̃φ := ¬(F̃¬φ) H̃φ := ¬(P̃¬φ)

G̃kφ := ¬(F̃ k¬φ) H̃kφ := ¬(P̃ k¬φ)

3.5. Finite variability

As usual in many works on real-time temporal logics (e.g., [5,30]), we assume the “finite variability” of traces, i.e., that
the evaluation of predicates by a trace changes from true to false or vice versa only finitely-often in any finite interval of
time. This can be lifted to temporal formulas in the sense that temporal operators preserve the finite variability property
(as proved, for example, in [5]). Formally, we say that a trace σ is fine for φ in a time interval I iff for all t, t′ ∈ I , σ , t |= φ

iff σ , t′ |= φ. A trace σ has the finite variability property iff for every formula φ there exists a sequence of points t0, t1, t2 . . .

of σ such that σ is fine for φ in every interval (ti, ti+1), for i ≥ 0.
Note that, in the case of finite variability, X̃φ means that φ is true in a right neighborhood (thus coinciding with the

definition given in [1])1and that X̃φ ∨ X̃¬φ is always true in any non-discrete point. Moreover, the following equivalences
hold:

¬ X̃φ = X� ∨ X̃¬φ

¬Xφ = X̃� ∨ X¬φ.

In the following, we assume that traces have the finite variability property.

3.6. Metric temporal logic with counting operators

In this section, we define an extension of Metric Temporal Logic (MTL) [4,16] extended with first-order predicates, para-
metric intervals (intervals whose bounds are defined by expressions over parameters), and counting operators.

Metric Temporal Logic with Counting (MTLC) formulas are built with the following grammar:

φ := p(u, . . . , u) | φ ∧ φ | ¬φ | φU Iφ | φS Iφ | −→C k
<cuφ | ←−C k

<cuφ

I := [cu, cu] | (cu, cu] | [cu, cu) | (cu, cu) | [cu,∞) | (cu,∞)

cu := c | f (cu, . . . , cu)

where the terms u are defined as before and cu are terms that do not contain variables. Thus, the bounds of intervals used
in MTLC are rigid and may contain parameters. We assume here that the background first-order theory contains the theory
of reals and that the terms cu have real type.

Intuitively,
−→
C k

<cuφ is true if and only if φ holds at least k times in the interval [0, cu) (and similarly for
←−
C k

<cuφ). The
abbreviations F I , G I , P I , H I and their strict versions are defined in the usual way. Moreover, for all logics defined in this
section, we abbreviate the intervals [0, a], [0, a), [a, ∞), (a, ∞), [a, a], by respectively ≤ a, < a, ≥ a, > a, = a. Thus, for
example, F=pb is an abbreviation of F [p,p]b.

Let σ = 〈M, τ , μ〉. We give the semantics just for the metric operators:

σ , t |= φ1U Iφ2 iff there exists t′ ≥ t, v(t′) − v(t) ∈ M(I),σ , t′ |= φ2

and for all t′′, t ≤ t′′ < t′,σ , t′′ |= φ1

1 However, the definition of the semantics of X̃ given in the previous section is general, and dual to the semantics of X .

6 A. Cimatti et al. / Information and Computation 272 (2020) 104502
Fig. 2. Graphical view of different cases in which φ holds in the future. t represents “the next point in the future in which φ holds”.

σ , t |= φ1 S Iφ2 iff there exists t′ ≤ t, v(t) − v(t′) ∈ M(I),σ , t′ |= φ2

and for all t′′, t′ < t′′ ≤ t,σ , t′′ |= φ1

σ , t |= −→
C k

<cu(φ) iff there exist t1, . . . , tk,

t < t1 < t2 < . . . < tk, v(tk) − v(t) < M(cu)

such that for all i ∈ [1,k],σ , ti |= φ

σ , t |= ←−
C k

<cu(φ) iff there exist t1, . . . , tk,

tk < tk−1 < . . . < t1 < tv(t) − v(tk) < M(cu)

such that for all i ∈ [1,k],σ , ti |= φ

where M(I) is the set obtained from I by substituting the terms at the endpoints with their interpretation (thus it may be
also the empty set).

MTLC0,∞is the subset of MTLC where the intervals in metric operators are in the form [0, a], (0, a], [0, a), (0, a), [a, ∞),
(a, ∞).

We consider Event-Clock operators as abbreviations:

�I φ := (¬φ)U Iφ

�I φ := (¬φ)S Iφ

4. LTL with event freezing functions

4.1. Until next occurrence

Before introducing the new operators, we observe some subtleties of the dense-time semantics. In the discrete-time
setting, Fφ and (¬φ)Uφ are equivalent. In other words, if φ is true in the future, there exists a first point in which it is
true, while φ is false in all preceding points. This is not the case in the dense-time setting, since, for example, the third
trace of Fig. 2 satisfies Fφ but not (¬φ)Uφ: for every time in which φ holds, there exists a left open interval in which φ
holds as well.

We can instead use another variant of the until operator defined as:

φ1UC φ2 := φ1U (φ2 ∨ (φ1 ∧ X̃φ2))

Thus, with UC we are requiring that φ2 holds in a point or in every point of a right interval. In this case, we are
guaranteed that there exists a minimum point that satisfies such a condition. In fact, since we are assuming finite variability,
Fφ is equivalent to (¬φ)UC φ = (¬φ)U (φ ∨ X̃φ). In the next sections, we will use this condition to characterize the next
point in the future that satisfies φ. In particular, when we say “the next point in the future in which φ holds”, we actually
mean that φ holds in that point or in a right left-open interval (see also Fig. 2). Similarly, for the past case.

Note that this is related to the issue of U in the dense time setting raised first by Bouajjani and Lakhnech in [31]
and later by Raskin and Schobbens in [14], namely, that φ1Uφ2 is satisfied only if the time interval in which φ2 holds is
left-closed. In [31], this is solved by considering (φ1 ∨ φ2)Uφ2. However, this does not solve our issue of characterizing the
first point in which φ2 holds. In [14], the issue was solved at the semantic level, by defining the U operator on timed
state sequences that are fine for the subformulas, and quantifying over the time intervals of the sequence instead of over
the points of the time domain. We instead choose a more classical approach to define the semantics, which seems to
clarify better what we mean for “the next point in which φ holds”. Our semantics is closer to the one defined in [15] for

A. Cimatti et al. / Information and Computation 272 (2020) 104502 7
event clocks in Event-Clock Timed Automata and for the corresponding quantifiers in the equally-expressive monadic logic.
Differently from [15], however, our solution does not require the use of any nonstandard real number, which is instead used
in [15] to handle the case in which φ holds in a left-open interval.

4.2. Event freezing functions

We extend the logic with two binary operators, “at next” u@ F̃ (φ) and “at last” u@ P̃ (φ), which take in input a term u
and a formula φ and represent the value of u at the next point in the future, respectively at the last point in the past, in
which φ holds. If such point does not exist, we consider a default value represented by a variable def u@ F̃ (φ)

or def u@ P̃ (φ)
.

We also use an if-then-else operator ite(φ, u, v), extended to the temporal case, which evaluates to u or v depending on
whether φ holds or not.

The set of LTL with Event Freezing Functions (LTL-EF) formulas is therefore defined as follows:

φ := p(u, . . . , u) | φ ∧ φ | ¬φ | φUφ | φSφ | Xφ | X̃φ | Y φ | Ỹ φ

u := c | x | f (u, . . . , u) | u@ F̃ (φ) | u@ P̃ (φ) | ite(φ, u, u)

The semantics of LTL is extended as follows:

• σ(t)(u@ F̃ (φ)) = σ(t′)(u) if there exists t′ > t such that, for all t′′ , t < t′′ < t′ , σ , t′′
|= φ and σ , t′ |= φ;
σ(t)(u@ F̃ (φ)) = σ(t′)(u) if there exists t′ ≥ t such that, for all t′′ , t < t′′ ≤ t′ , σ , t′′
|= φ and σ , t′ |= X̃φ;
otherwise, σ(t)(u@ F̃ (φ)) = σ(t)(def u@ F̃ (φ))

• σ(t)(u@ P̃ (φ)) = σ(t′)(u) if there exists t′ < t such that, for all t′′ , t′ < t′′ < t , σ , t′′
|= φ and σ , t′ |= φ;
σ(t)(u@ P̃ (φ)) = σ(t′)(u) if there exists t′ ≤ t such that, for all t′′ , t′ < t′′ ≤ t , σ , t′′
|= φ and σ , t′ |= Ỹ φ;
otherwise, σ(t)(u@ P̃ (φ)) = σ(t)(def u@ P̃ (φ))

• σ(t)(ite(φ, u1, u2)) = σ(t)(u1) if σ , t |= φ, else σ(t)(ite(φ, u1, u2)) = σ(t)(u2)

where def u@ F̃ (φ) and def u@ P̃ (φ) are extra variables added for the event-freezing functions that are used to represent a default
value when there is no future/past occurrence of φ.

The “if-then-else” operator ite can be used to define the non-strict version:

u@F (φ) :=ite(φ, u, u@ F̃ (φ))

u@P (φ) :=ite(φ, u, u@ P̃ (φ)).

We define the following abbreviations:

u@ F̃ 1(φ) :=u@ F̃ (φ) u@ F̃ i+1(φ) :=(u@ F̃ (φ))@ F̃ i(φ) for i ≥ 1

u@ P̃ 1(φ) :=u@ P̃ (φ) u@ P̃ i+1(φ) :=(u@ P̃ (φ))@ P̃ i(φ) for i ≥ 1

In principle, we can also define the function next as an abbreviation: next(u) = u@ F̃ (�). This would have the standard
meaning on discrete steps, and a default value on other points.

4.3. Extension with explicit time (XLTL-EF)

In this section, we extend the language with an explicit notion of time that can be constrained using the event freezing
functions defined above. In particular, we introduce an explicit symbol time, which represents the time elapsed from the
initial state. We allow time to be compared with constant terms.

The new set of LTL-EF formulas with explicit time (XLTL-EF) is defined as follows:

φ := p(u, . . . , u) | tu �� cu | φ ∧ φ | ¬φ | φUφ | φSφ | Xφ | X̃φ | Y φ | Ỹ φ

u := c | x | f (u, . . . , u) | u@ F̃ (φ) | u@ P̃ (φ) | ite(φ, u, u)

cu := c | f (cu, . . . , cu) | cu@ F̃ (φ) | cu@ P̃ (φ) | ite(φ, cu, cu)

tu := time | time@ F̃ (φ) | time@ P̃ (φ) | time@ F̃ (φ) − time | time − time@ P̃ (φ)

�� := <|>|≤|≥|=|
=
The semantics of LTL-EF is extended by simply setting σ(t)(time) := v(t). Moreover, we define two additional abbrevia-

tions: time_until(φ) := time@ F̃ (φ) − time and time_since(φ) := time − time@ P̃ (φ).
Note that we assume that the signature � contains the real arithmetic operators and that the underlying theory contains

the theory of reals.

8 A. Cimatti et al. / Information and Computation 272 (2020) 104502
4.4. Sensor example

Consider a sensor with input y and output x and a Boolean flag correct that represents whether or not the value
reported by the sensor is correct. Let us specify that the output x is always equal to the last correct input value with
G(x = y@P (correct)). We assume that a failure is permanent: G(¬correct → G¬correct). Consider also a Boolean variable
read that represents the event of reading the variable x. Let us say that the reading happens periodically with period p:
p > 0 ∧ read ∧ G(read → �=pread). Finally, let us say that an alarm a is true if and only if the last two read values are the
same: G(a ↔ x@ P̃ (read) = x@ P̃ 2(read)).

We would like to prove that, given the above scenario, every point in which the sensor is not correct is followed within
2 ∗ p by an alarm:

(G(x = y@P (correct)) ∧ G(¬correct → G¬correct)∧
p > 0 ∧ read ∧ G(read → �=pread) ∧ G(a ↔ x@ P̃ (read) = x@ P̃ 2(read)))

→ G(¬correct → F≤2∗pa)

In the following, we show that problems of this kind can be indeed solved automatically with SMT-based techniques.

5. From MTLC0,∞ to LTL-EF

In this section, we show how MTLC0,∞formulas can be expressed in XLTL-EF.
The following equivalences show the coverage of the cases with bounded intervals (note that we are using global equiv-

alences ≡G so that MTLC0,∞formulas can be rewritten recursively into XLTL-EF formulas):

φ1U<pφ2 ≡Gφ1Uφ2 ∧ time@F (φ2) − time < p (1)

φ1 S<pφ2 ≡Gφ1 Sφ2 ∧ time − time@P (φ2) < p (2)

φ1U≤pφ2 ≡Gφ1Uφ2∧ (3)

(¬φ2Uφ2 ∧ time@F (φ2) − time ≤ p∨
¬φ2U X̃φ2 ∧ time@F (φ2) − time < p)

φ1 S≤pφ2 ≡Gφ1 Sφ2∧ (4)

(¬φ2 Sφ2 ∧ time − time@P (φ2) ≤ p∨
¬φ2 SỸ φ2 ∧ time − time@P (φ2) < p)

φ1U (0,p)φ2 ≡Gφ1U (X̃φ1Uφ2 ∧ time@ F̃ (φ2) − time < p) (5)

φ1 S(0,p)φ2 ≡Gφ1 S(Ỹ φ1 Sφ2 ∧ time − time@ P̃ (φ2) < p) (6)

φ1U (0,p]φ2 ≡Gφ1U ((X̃φ1Uφ2)∧ (7)

(((X̃¬φ2Uφ2) ∧ (time@ F̃ (φ2) − time ≤ p))∨
((X̃¬φ2U X̃φ2) ∧ (time@ F̃ (φ2) − time < p))))

φ1 S(0,p]φ2 ≡Gφ1 S((Ỹ φ1 Sφ2)∧ (8)

(((Ỹ ¬φ2 Sφ2) ∧ (time − time@ P̃ (φ2) ≤ p))∨
((Ỹ ¬φ2 SỸ φ2) ∧ (time − time@ P̃ (φ2) < p))))

−→
C k

<p(φ) ≡Gtime@ F̃ k(φ) − time < p ∧ F̃ k(φ) (9)
←−
C k

<p(φ) ≡Gtime − time@ P̃ k(φ) < p ∧ P̃ k(φ) (10)

We can reduce the remaining metric operators to the above ones with the following reduction:

φ1U>pφ2 ≡G(p = 0 ∧ φ1U
=0φ2)∨
(p > 0 ∧ G≤p(φ1 ∧ φ1U
=0φ2)) (11)

φ1 S>pφ2 ≡G(p = 0 ∧ φ1 S
=0φ2)∨
(p > 0 ∧ time > p ∧ H≤p(φ1 ∧ φ1 S
=0φ2)) (12)

A. Cimatti et al. / Information and Computation 272 (2020) 104502 9
φ1U≥pφ2 ≡G(p = 0 ∧ φ1Uφ2)∨
(p > 0 ∧ G<pφ1 ∧ G≤p P≤0(H̃≤0φ1 ∧ φ1Uφ2)) (13)

φ1 S≥pφ2 ≡G(p = 0 ∧ φ1 Sφ2)∨
(p > 0 ∧ time ≥ p ∧ H<pφ1 ∧ H≤p F≤0(G̃≤0φ1 ∧ φ1 Sφ2)) (14)

where φ1U
=0φ2 and φ1 S
=0φ2 are used here as abbreviations for φ1U X̃(φ1Uφ2) and φ1 SỸ (φ1Uφ2), respectively.
Note, in particular, the need of adding P=0φ in the case the time distance is p due to the super-dense semantics.

In case of dense time, the last two equivalences can be simplified to φ1U≥pφ2 ≡G G<pφ1 ∧ G≤pφ1Uφ2 and φ1 S≥pφ2 ≡G

H<pφ1 ∧ H≤pφ1 Sφ2.

Theorem 1. Every MTLC0,∞ formula can be rewritten into an equivalent XLTL-EF formula.

Proof. It is sufficient to prove that all above equivalences are correct. We first prove the future cases. In the following, M is
the first-order structure of the trace σ and thus M(p) is the evaluation of p in σ .
Equivalence (1)

• Case φ1U<pφ2 |=G φ1Uφ2 ∧ time@F(φ2) − time < p.
If σ , t |= φ1U<pφ2 then there exists t′ ≥ t such that v(t′) − v(t) < M(p), σ , t′ |= φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1.
Thus, σ , t |= φ1Uφ2. Moreover, there exists t′ , t ≤ t′ ≤ t′ , σ , t′ |= φ2 ∨ X̃φ2, v(t′

) − v(t) < M(p), and for all t′′ , t ≤ t′′ < t′ ,
σ , t′′ |= ¬φ2. Thus, σ , t |= time@F (φ2) − time < p.

• Case φ1Uφ2 ∧ time@F(φ2) − time < p |=G φ1U<pφ2.
If σ , t |= φ1Uφ2, then there exists t′ , t ≤ t′ , σ , t′ |= φ2 ∨ X̃φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= ¬φ2. If σ , t |=
time@F (φ2) − time < p, then v(t′) − v(t) < M(p). Thus, σ , t |= φ1U<pφ2.

Equivalence (3)

• Case φ1U≤pφ2 |=G φ2 ≡G φ1Uφ2 ∧ (¬φ2Uφ2 ∧ time@F(φ2) − time ≤ p ∨ ¬φ2UX̃φ2 ∧ time@F(φ2) − time < p).
If σ , t |= φ1U≤pφ2 then there exists t′ ≥ t such that v(t′) − v(t) ≤ M(p), σ , t′ |= φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1.
Thus, σ , t |= φ1Uφ2. Moreover, there exists t′ , t ≤ t′ ≤ t′ , σ , t′ |= φ2 ∨ X̃φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= ¬φ2.
Also, either σ , t′ |= φ2 and v(t ′

) − v(t) ≤ M(p), or σ , t′ |= X̃φ2 and v(t′
) − v(t) < M(p). Thus, σ , t |= (φ1 ∧ ¬φ2)Uφ2 ∧

time@F (φ2) − time ≤ p ∨ (φ1 ∧ ¬φ2)U (φ1 ∧ X̃φ2) ∧ time@F (φ2) − time < p.
• Case φ1Uφ2 ∧ (¬φ2Uφ2 ∧ time@F(φ2) − time ≤ p ∨ ¬φ2UX̃φ2 ∧ time@F(φ2) − time < p) |=G φ1U≤pφ2.

If σ , t |= φ1Uφ2, then there exists t′ , t ≤ t′ , σ , t′ |= φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1. If σ , t |= ¬φ2Uφ2 ∧
time@F (φ2) − time ≤ p, then there exists t′ , t ≤ t′ ≤ t′ , such that σ , t′ |= φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= ¬φ2 and
v(t′

) − v(t) ≤ M(p). Since t′ ≤ t′ , σ , t |= φ1U≤pφ2. Similarly, if σ , t |= ¬φ2U X̃φ2 ∧ time@F (φ2) − time < p, then there
exists t′ , t ≤ t′ ≤ t′ , σ , t′ |= X̃φ2, and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= ¬φ2 and v(t′

) − v(t) ≤ M(p). Thus, σ , t |= φ1U≤pφ2.

Equivalence (5)

• Case φ1U(0,p)φ2 |=G φ1U(X̃φ1Uφ2 ∧ time@F̃(φ2) − time < p).
If σ , t |= φ1U<pφ2 then there exists t′ < t such that 0 < v(t′) − v(t) < M(p), σ , t′ |= φ2, and for all t′′ , t ≤ t′′ < t′ ,
σ , t′′ |= φ1. Let t0 the greatest point such that t ≤ t0 and v(t) = v(t0). Thus, for all t′′ , t ≤ t′′ ≤ t0, σ , t |= φ1. Moreover,
there exists t′ , t0 < t′ ≤ t′ , σ , t′ |= φ2, v(t′

) − v(t0) < M(p), and for all t′′ , t0 ≤ t′′ < t′ , σ , t′′ |= ¬φ2. Thus, σ , t0 |=
X̃φ1Uφ2 ∧ time@ F̃ (φ2) − time < p. Thus, σ , t |= φ1U (X̃φ1Uφ2 ∧ time@ F̃ (φ2) − time < p).

• Case φ1U(X̃φ1Uφ2 ∧ time@F̃(φ2) − time < p) |=G φ1U(0,p)φ2.
If σ , t |= φ1U (X̃φ1Uφ2 ∧ time@ F̃ (φ2) − time < p), then there exists t′ , t ≤ t′ , σ , t′ |= X̃φ1Uφ2 ∧ time@ F̃ (φ2) − time < p)

and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1. Thus, there exists t′
> t′ , such that σ , t′ |= φ2, 0 < v(t′

) − v(t′) < M(p), and for all
t′′ , t′ < t′′ < t′ , σ , t′′ |= φ1. Thus σ , t |= φ1U (0,p)φ2.

Equivalence (7)

• Case φ1U(0,p]φ2 |=G φ1U((X̃φ1Uφ2) ∧ (((X̃¬φ2Uφ2) ∧ (time@F̃(φ2) − time ≤ p)) ∨ ((X̃¬φ2UX̃φ2) ∧ (time@F̃(φ2) − time
< p)))).
If σ , t |= φ1U (0,p]φ2 then there exists t′ > t such that 0 < v(t′) − v(t) ≤ M(p), σ , t′ |= φ2, and for all t′′ , t ≤ t′′ < t′ ,
σ , t′′ |= φ1. Let t0 be the greatest point such that t ≤ t0 and v(t) = v(t0). Thus, for all t′′ , t ≤ t′′ ≤ t0, σ , t |= φ1. Moreover,
σ , t0 |= X̃φ1Uφ2. Thus, either σ , t0 |= X̃¬φ2Uφ2 or σ , t0 |= X̃¬φ2U X̃φ2. In the first case, there exists t ′ , t0 < t′ ≤ t′ ,
σ , t′ |= φ2, and for all t′′ , t0 ≤ t′′ < t′ , σ , t′′ |= ¬φ2. Since t′ ≤ t′ , σ , t0 |= time@ F̃ (φ2) − time ≤ p. Similarly, in the second
case, there exists t′ , t0 < t′ ≤ t′ , σ , t′ |= X̃φ2, and for all t′′ , t0 ≤ t′′ < t′ , σ , t′′ |= ¬φ2. Since t′ ≤ t′ , σ , t0 |= time@ F̃ (φ2) −

10 A. Cimatti et al. / Information and Computation 272 (2020) 104502
time ≤ p. Thus, σ , t |= φ1U ((X̃φ1Uφ2) ∧ (((¬φ2Uφ2) ∧ (time@ F̃ (φ2) − time ≤ p)) ∨ ((¬φ2U X̃φ2) ∧ (time@ F̃ (φ2) − time <
p)))).

• Case φ1U((X̃φ1Uφ2) ∧ (((X̃¬φ2Uφ2) ∧ (time@F̃(φ2) − time ≤ p)) ∨ ((X̃¬φ2UX̃φ2) ∧ (time@F̃(φ2) − time < p))))

|=G φ1U(0,p]φ2.
If σ , t |= φ1U ((X̃φ1Uφ2) ∧ (((¬φ2Uφ2) ∧ (time@ F̃ (φ2) − time ≤ p)) ∨ ((¬φ2U X̃φ2) ∧ (time@ F̃ (φ2) − time < p)))) then
there exists t′ , t ≤ t′ , σ , t′ |= (X̃φ1Uφ2 ∧ (¬φ2Uφ2 ∧ time@ F̃ (φ2) − time ≤ p ∨ ¬φ2U X̃φ2 ∧ time@ F̃ (φ2) − time < p)) and
for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1. Thus, there exists t′

> t′ , such that σ , t′ |= φ2, 0 < v(t′
) − v(t′) ≤ M(p), and for all t′′ ,

t′ < t′′ < t′ , σ , t′′ |= φ1. Thus σ , t |= φ1U (0,p]φ2.

Equivalence (9)

• We prove the equivalence
−→
C k

<p(φ) ≡G F̃k(φ) ∧ time@F̃k(φ) − time < p by induction on k. If k = 1,
−→
C k

<p(φ) ≡G=
F̃<pφ ≡G F̃ k(φ) ∧ time@ F̃ k(φ) − time < p (minor variant of the case above). Suppose now that the equivalence holds
for k − 1, σ , t |= −→

C k
<p iff there exist t1, . . . , tk , t < t1 < t2 < . . . < tk , v(tk) − v(t) < M(p), such that for all i ∈ [1, k],

σ , ti |= φ. Let t′ = tk−1 and p′ = v(tk) − v(tk−1). Then σ , t |= −→
C k

<p iff there exists t′ such that v(t′) − v(t) = p′

and σ , t′ |= φ ∧ −→
C k−1

<p−p′φ. By induction, σ , t |= −→
C k

<p iff there exists t′ such that v(t′) − v(t) = p′ and σ , t′ |=
φ ∧ F̃ k−1(φ) ∧ time@ F̃ k−1(φ) − time < p − p′ , thus iff σ , t |= φ ∧ F̃ k(φ) ∧ time@ F̃ k(φ) − time < p.

Equivalence (11)

• Case φ1U>pφ2 |=G (p = 0 ∧ φ1U>0φ2) ∨ (p > 0 ∧ G≤p(φ1 ∧ φ1U>0φ2)).
If M(p) = 0, then the equivalence is trivial. Suppose instead that M(p) > 0. If σ , t |= φ1U>pφ2, then there exists t′ > t
such that σ , t′ |= φ2, v(t′) − v(t) > M(p), and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1. For all t′′ ≥ t , if v(t′′

) − v(t) ≤ M(p), then
t′ > t′′ . Thus, σ , t′′ |= φ1 ∧ φ1U>0φ2.

• Case (p = 0 ∧ φ1U>0φ2) ∨ (p > 0 ∧ G≤p(φ1 ∧ φ1U>0φ2)) |=G φ1U>pφ2.
If M(p) = 0, then the equivalence is trivial. Suppose instead that M(p) > 0. If σ , t |= G≤p(φ1 ∧ φ1U>0φ2), then there
exists t′ such that v(t′) − v(t) = M(p) and σ , t′ |= φ1U>0φ2. Moreover, for all t′′ , t ≤ t′′ ≤ t′ , σ , t′′ |= φ1. Thus, σ , t |=
φ1U>pφ2.

Equivalence (13)

• Case φ1U≥pφ2 |=G (p = 0 ∧ φ1Uφ2) ∨ (p > 0 ∧ G<pφ1 ∧ G≤pP≤0(H̃≤0φ1 ∧ φ1Uφ2)).
If M(p) = 0, then the equivalence is trivial. Suppose instead that M(p) > 0. If σ , t |= φ1U≥pφ2, then there exists t′ > t ,
such that σ , t′ |= φ2, v(t′) − v(t) ≥ M(p), and for all t′′ , t ≤ t′′ < t′ , σ , t′′ |= φ1. For all t′′ ≥ t , if v(t′′

) − v(t) < M(p),
then t′ > t′′ . Thus, σ , t′′ |= φ1. Moreover, if v(t′) − v(t) > M(p), then for all t′′ , t ≤ t′′ , if v(t′′) − v(t) ≤ M(p), then
σ , t′′ |= φ1Uφ2 and thus, σ , t′′ |= P≤0(H̃≤0φ1 ∧ φ1Uφ2). Similarly, if v(t′) − v(t) = M(p), then for all t′′ , t ≤ t′′ ≤ t′ , then
σ , t′′ |= φ1Uφ2 and thus, σ , t′′ |= P≤0(H̃≤0φ1 ∧φ1Uφ2). Finally, for all t′′ > t′ , v(t′′) = v(t′), σ , t′′ |= P≤0(H̃≤0φ1 ∧φ1Uφ2).

• Case (p = 0 ∧ φ1Uφ2) ∨ (p > 0 ∧ G<pφ1 ∧ G≤pP≤0(H̃≤0φ1 ∧ φ1Uφ2)) |=G φ1U≥pφ2.
If M(p) = 0, then the equivalence is trivial. Suppose instead that M(p) > 0 and σ , t |= G<pφ1 ∧ G≤p P≤0(H̃≤0φ1 ∧
φ1Uφ2). Let t0 be the greatest point such that t ≤ t0 and v(t0) − v(t) = M(p). σ , t0 |= P≤0(H̃≤0φ1 ∧ φ1Uφ2). Thus there
exists t′ , with v(t′) − v(t) ≥ M(p), such that σ , t′ |= φ1Uφ2, and for all t′′ < t′ , if v(t′′) − v(t) >= M(p), then σ , t′′ |= φ1.
Moreover, by hypothesis, also for all t′′ ≥ t , if v(t′′) − v(t) < M(p), then σ , t′′ |= φ1. Thus, σ , t |= φ1U≥pφ2.

All cases with past operators are analogous to the future counterpart apart from the following two cases:
Equivalence (12)

• Case (p = 0 ∧ φ1S>0φ2) ∨ (p > 0 ∧ time > p ∧ H≤p(φ1 ∧ φ1S>0φ2)) |=G φ1S>pφ2.
If M(p) = 0, then the equivalence is trivial as before. Suppose instead that M(p) > 0 and σ , t |= time > p ∧ H≤p(φ1 ∧
φ1 S>0φ2). Since M(p) > 0 and time > M(p), there exists t′ < t such that v(t) − v(t′) = M(p). Thus, σ , t′ |= φ1 S>0φ2.
Moreover, for all t′′ , t′ ≤ t′′ ≤ t , σ , t′′ |= φ1. Thus, σ , t |= φ1 S>pφ2.

Equivalence (14)

• Case (p = 0 ∧ φ1Sφ2) ∨ (p > 0 ∧ time ≥ 0 ∧ H<pφ1 ∧ H≤pF≤0(G̃≤0φ1 ∧ φ1Sφ2)) |=G φ1S≥pφ2.
If M(p) = 0, then the equivalence is trivial as before. Suppose instead that M(p) > 0 and σ , t |= time ≥ p ∧ H<pφ1 ∧
H≤p F≤0(G̃≤0φ1 ∧ φ1 Sφ2). Since M(p) > 0 and time ≥ M(p), then there exists a smallest point t0 such that t > t0

and v(t) − v(t0) = M(p). Thus, σ , t0 |= F≤0(G̃≤0φ1 ∧ φ1 Sφ2). Thus there exists t′ , with v(t) − v(t′) ≥ M(p), such that

A. Cimatti et al. / Information and Computation 272 (2020) 104502 11
σ , t′ |= φ1 Sφ2, and for all t′′ > t′ , if v(t) − v(t′′) <= M(p), then σ , t′′ |= φ1. Moreover, by hypothesis, also for all t′′ ≤ t ,
if v(t) − v(t′′) < M(p), then σ , t′′ |= φ1. Thus, σ , t |= φ1 S≥pφ2. �

6. Discretization

In this section, we show that, given a XLTL-EF formula with dense or super-dense time, we can build an equisatisfiable
XLTL-EF one with discrete time.

The discretization approach is similar to the one described in [23]. The idea is to split the time evolution into a sequence
of singular or open intervals in such a way that the trace is fine for the input formula on such intervals.

Thus, given a trace σ = 〈M, τ , μ〉 satisfying φ, we can derive a time interval sequence I0, I1, I2, . . . that is used to build a
trace σD with a discrete time model satisfying φD . This time interval sequence is obtained from the time interval sequence
of τ by splitting each interval finitely many times so that 1) σ is fine for all subformulas of φ in each interval Ii , 2) each
interval Ii in the sequence is singular or open, and 3) for every subformula of φ of the form φ1Uφ2 and for every interval Ii ,
if Ii is open and φ2 holds in Ii , then φ2 must hold in either Ii−1 or Ii+1 (this last requirement is used to have a simpler
encoding).

In order to encode the time interval sequence, we introduce an extra Boolean variable ι that holds if and only if the
current interval is singular. A constraint ψι ensures that the value of this additional variable represents a valid time interval
sequence (e.g., after an open interval there must be a singular interval).

Given a formula φ over V , we rewrite φ into φD over V ∪ {ι} defined as:

φD :=D(φ) ∧ ψι ∧ ψtime

where D, ψι , and ψtime are defined as follows.
D(φ) is defined recursively on the structure of φ and rewrites the temporal operators distinguishing the case in which

the current interval is singular (ι) from the case in which it is open (¬ι).
Let us consider first φ1Uφ2. In order to hold at a time point t , there must be a future point t′ satisfying φ2 and φ1 being

true between t and t′; however, in the discretized version, if t′ > t and it belongs to an open interval, then also φ1 must
hold in that interval. Overall:

D(φ1Uφ2) :=D(φ2) ∨D(φ1)U (D(φ2) ∧ (D(φ1) ∨ ι))

D(φ1 Sφ2) :=D(φ2) ∨D(φ1)S(D(φ2) ∧ (D(φ1) ∨ ι))

Let us consider the cases of Xφ and X̃φ. Xφ requires to be in a discrete step (i.e., ι ∧ Xι). X̃φ is true if either the current
interval is open (i.e., ¬ι) and φ holds in this interval, or the next interval is open (i.e., X¬ι) and φ holds in that interval.

D(Xφ) :=ι ∧ X(ι ∧D(φ))

D(X̃φ) :=(¬ι ∧D(φ)) ∨ X(¬ι ∧D(φ))

Let us consider now u@ F̃ (φ). If the current interval is open and φ holds in this interval or if the next interval is open
and φ holds in that interval (i.e., if X̃φ holds now), then u@ F̃ (φ) = u. Otherwise, u@ F̃ (φ) is translated into the discrete
counterpart.

D(u@ F̃ (φ)) := ite((¬ι ∧D(φ)) ∨ X(¬ι ∧D(φ)),

D(u),

D(u)@ F̃ (D(φ) ∨ X(¬ι ∧D(φ))))

D(u@ P̃ (φ)) := ite((¬ι ∧D(φ)) ∨ Y (¬ι ∧D(φ)),

D(u),

D(u)@ P̃ (D(φ) ∨ Y (¬ι ∧D(φ))))

The remaining cases can be completed trivially by observing that D is homomorphic with respect to Boolean connectives,
functions, constants, and variables.

ψι encodes the structure of the time model (to enforce for example that after an open interval there must be a singular
one and that in a discrete step time does not elapse):

ψι :=ι ∧ G((ι ∧ δ = 0 ∧ X(ι)) ∨ (ι ∧ δ > 0 ∧ X(¬ι)) ∨ (¬ι ∧ δ > 0 ∧ X(ι)))

where δ is an abbreviation for next(time) − time.

12 A. Cimatti et al. / Information and Computation 272 (2020) 104502
Finally, ψtime forces the uniformity of predicates over time in open intervals:

ψtime :=
∧

tu��cu∈Sub(φ)

G(¬ι →((D(tu ≤ cu) → XD(tu ≤ cu))∧

(D(tu ≥ cu) → YD(tu ≥ cu))))

where Sub(φ) denotes the set of subformulas of φ.
Note in particular that we require to split the time intervals in such a way that for every constant cu occurring in a time

constraint, [cu, cu] is a time interval in the sequence. Note also that cu can be in general a term built with the signature
symbols that are interpreted rigidly.

Written as above the discretization clearly produces a formula whose size is exponential in the input. However, since we
are interested in equisatisfiability, we can always use extra variables (one for subformula) to obtain a linear-size formula.

We now prove that the translation is correct, i.e., that the new formula is equisatisfiable.

Theorem 2. φ and φD are equisatisfiable.

Proof. Given a trace σ = 〈M, τ , μ〉 satisfying φ we can build a trace σD with a discrete time model satisfying φD as follows.
Let I0, I1, I2, . . . be a sequence of time intervals such that 1) σ is fine for all subformulas of φ in each interval Ii , 2) each
interval Ii in the sequence is singular or open, and 3) in case of super-dense time, for all i ≥ 0, there exists an integer ni
such that 〈ni, t〉 ∈ τ for all t ∈ Ii .

We define the discrete time model by setting the value v(i) for all i ∈N based on the time intervals sequence as follows:
v(0) := 0; v(i + 1) = v(i) if Ii is singular and Ii+1 is singular; v(i + 1) = v(i) + (r(Ii+1) − l(Ii+1))/2 if Ii is singular and Ii+1
is open; v(i + 1) = v(i) + (r(Ii) − l(Ii))/2 if Ii is open. Let ti = v(i). Note that ti ∈ Ii for every i. Moreover, notice that if
Ii = Ii+1 then δ = 0, if Ii is singular and Ii+1 is not then δ is equal to half of the length of Ii+1 and if Ii is not singular then
δ is equal to half of the length of Ii .

We build an assignment to ι also based on the time intervals sequence. The value of ι is determined by the sequence of
intervals as follows: σD(i)(ι) = � iff Ii is singular. Thus, σD |= ψι .

Let ti = ti in case σ has a dense time and ti = 〈ni, ti〉 in case of super dense time. Let us complete the definition of σD

by saying that for all i ≥ 0, σD(i)(x) := σ(ti)(x).
We now prove that, for all i ≥ 0, for all subformulas ψ of φ, σ , ti |= ψ iff σD , i |= D(ψ) and for all terms z in φ,

σ(ti)(z) = σD(i)(D(z)). The proof works by induction on the structure of ψ and z.
In the base cases, when z is equal to either a constant or a variable, σ(ti)(z) = σD(i)(z) by the definition of σD .
In the recursive cases in which D is applied to Boolean connectives and functions, the proof follows immediately from

the inductive hypothesis.
We detail the proof in the other cases focusing on the future operators, while the cases of past operators are similar.

• Case ψ = φ1Uφ2.
– If σ , ti |= φ1Uφ2, then either σ , ti |= φ2 or there exists t′ > ti such that σ , t |= φ2 and for all t′′ , ti ≤ t′′ < t′ , σ , t′′ |= φ1.

In the first case, σD(i) |=D(φ2) by induction. In the second case, t′ ∈ I j for some j. Since σ is fine, σ , t j |= φ2 and, if
I j is open then σ , t j |= φ1 too. Thus, by induction, σD , j |= (φ2 ∧ (φ1 ∨ ι), and thus σD , i |=D(φ1Uφ2).

– If σD , i |=D(φ1Uφ2), then either σD , i |=D(φ2) or there exists j > i such that σD , j |=D(φ2) ∧ (D(φ1) ∨ ι) and for all
k, i ≤ k < j, σD , k |=D(φ1). By induction, either σ , ti |= φ2 or σ , t j |= φ2 and for all k, i ≤ k < j, σ , tk |= φ1. Moreover,
if I j is open, then σ , t j |= φ1. Since σ is fine, σ , t′′ |= φ1 for all t′′ , ti ≤ t′′ < t j . Thus, σ , t |= φ1Uφ2.

• Case z = u@F̃(ψ).
– Suppose there exists t′ > ti such that σ , t′ |= ψ and for all t′′ , ti < t′′ < t′ , σ , t′′
|= ψ . Thus σ(t)(z) = σ(t′)(u). Let

t′ ∈ I j for some j ≥ i. Since σ is fine for ψ and for all t′′ , ti < t′′ < t′ , σ , t′′
|= ψ , then I j is singular and t j = t′ , thus
z = σ(t j)(u). Moreover, by induction, σD , j |= D(ψ) and σ , k
|= D(ψ) for i < k < j. Thus, σD(i)(D(u)@ F̃ (D(ψ))) =
σD(j)(D(u)) = σ(t j)(u). Moreover, for k, i ≤ k ≤ j, σD , k
|= (¬ι ∧D(ψ)). Thus, σD(i)(D(z)) = σD(i)(D(u)@ F̃ (D(ψ))) =
σ(t)(z).

– Similarly, suppose there exists t′ ≤ ti such that σ , t′ |= X̃ψ and for all t′′ , ti < t′′ < t′ , σ , t′′
|= ψ . Thus z = σ(t′)(u).
If t′ = ti and Ii is open, then, since σ is fine for ψ , σ , ti |= ψ . By induction σD , i |= D(ψ) and thus σD(i)(D(z)) =
σ(ti)(z). Similarly, if t′ = ti and Ii is singular, then Ii+1 is open σ , ti+1 |= ψ . By induction σD , i + 1 |=D(ψ) and thus
σD(i)(D(z)) = σ(ti)(z). If instead t′ > ti , let t′ ∈ I j for some j > i. Since σ is fine for ψ and for all t′′ , ti < t′′ < t′ ,
σ , t′′
|= ψ , then I j is singular, t j = t′ , thus I j+1 is open, σ , t j+1 |= ψ and σ(ti)(z) = σ(t j)(u). Moreover, by induc-
tion, σD , j |= D(X̃ψ) and σ , k
|= D(ψ) for i < k < j. Thus, σD(i)(D(u)@ F̃ (D(ψ) ∨ X(¬ι ∧ D(ψ)))) = σD(j)(D(u)) =
σ(t j)(u).

– Considering now the opposite direction, suppose σD , i |= ¬ι ∧ D(ψ). Then σD(i)(D(z)) = σD(i)(D(u)), which by in-
duction is equal to σ(ti)(u). Also by induction, σ , ti |= ψ . Since Ii is open, σ , ti |= X̃ψ and thus σ(ti)(z) = σ(ti)(u).

– Similarly, suppose σD , i |= X(¬ι ∧ D(ψ)). Then σD(i)(D(z)) = σD(i)(D(u)), which by induction is equal to σ(ti)(u).
Also by induction, σ , ti+1 |= ψ . Since Ii+1 is open, σ , ti |= X̃ψ and thus σ(ti)(z) = σ(ti)(u).

A. Cimatti et al. / Information and Computation 272 (2020) 104502 13
– Finally, suppose that we are not in the previous cases and there exists j > i such that σD , j |= D(ψ) ∨ X(ι ∧ D(ψ))

and for all k, i < k < j, σD , k
|= D(ψ). Then by induction, σ , t j |= X̃(ψ) and for all k, i < k < j, σ , tk
|= ψ . Thus,
since interval Ii is singular or ti
|= ψ (considered in the previous cases), for all t′′ , ti < t′′ < t j , σ , t′′
|= ψ . Thus
σ(ti)(z) = σ(t j)(u).

It is routine to prove the cases of X and X̃ and we can conclude that σD |=D(φ).
Finally, σD |= ψtime: in fact, σD |= time = 0 ∧ G(next(time) − time = δ) by definition of σD ; the rest of ψtime is trivially

satisfied because σ is fine for φ.

In order to prove the other direction of the theorem, suppose that there exists σ with discrete time such that σ |=D(φ).
Then, we can build a σC with super-dense time such that σC |= φ as follows. Let ti = ∑

0≤h<i δh , where δh is the value of
the variable δ in the h-th step of σ . Ii := [ti, ti] if σ , i |= ι; otherwise Ii := (ti−1, ti+1). Let σ(t)(v) = σ(i)(v) for every t ∈ Ii .

We prove that σC is fine for φ. Let M be the first-order structure of σC . Let us consider an open interval Ii = (ti−1, ti+1).
For every t, t′ ∈ Ii , M(t)(x) = M(t′)(x) and M(t)(c) = M(t′)(c), and thus, by induction, for every term in form u according
to the grammar of XLTL-EF, M(t)(u) = M(t′)(u). Thus, for every predicate in the form p(u1, . . . , un), σC , t |= p(u1, . . . , un)

iff σC , t′ |= p(u1, . . . , un). Moreover, for every term cu, the interpretation M(cu) is constant; since σ |= ψtime , if σC , ti |=
time ≤ cu then σC , ti+1 |= time ≤ cu and if σC , ti |= time ≥ cu then σC , ti−1 |= time ≥ cu; since ti−1 < ti < ti+1, then either
ti < M(cu) and so for all t ∈ Ii ti−1 < t < ti+1 ≤ M(cu), or ti > M(cu) and thus so for all t ∈ Ii M(cu) ≤ ti−1 < t < ti+1.
Thus, for every predicate in the form time �� cu, for all t, t′ , sigmaC , t |= time �� cu iff sigmaC , t′ |= time �� cu. The proof for
the remaining predicates in the form tu is similar, taking into account that time@ F̃ (φ) and time@ P̃ (φ) are either constant
within Ii (when φ does not hold in Ii) or they are equivalent to time (when φ holds in Ii).

Finally, it is routine to prove that σC |= φ. �
7. Removing event freezing functions

In the following, we assume that satisfiability is restricted to traces with discrete time. If the term u@ F̃ (φ) occurs in a
formula ψ , we can obtain a formula R(ψ, u@ F̃ (φ)) equisatisfiable to ψ , where the term u@ F̃ (φ) has been replaced with a
fresh variable pu@ F̃ (φ) . More specifically,

R(ψ, u@ F̃ (φ)) :=ψ[pu@ F̃ (φ)
/u@ F̃ (φ)]∧

G(Xφ → pu@ F̃ (φ)
= next(u))∧

G(next(pu@ F̃ (φ))
= pu@ F̃ (φ) → Xφ)

R(ψ, u@ F̃ (φ)) is a formula on an extended set of variables, namely, if φ is a formula over variables V , then
R(ψ, u@ F̃ (φ)) is a formula over V ∪ {pu@ F̃ (φ)

}, where pu@ F̃ (φ)
does not occur in ψ . However, the value of pu@ F̃ (φ)

is
uniquely determined by a trace over V . In other words, given a trace σ over V , we can define a trace R(σ , u@ F̃ (φ)) over
V ∪ {pu@ F̃ (φ)} such that σ |= φ iff R(σ , u@ F̃ (φ)) |=R(ψ, u@ F̃ (φ)). R(σ , u@ F̃ (φ)) is simply defined as follows:

R(σ , u@ F̃ (φ))(t)(x) = σ(t)(x), x ∈ V

R(σ , u@ F̃ (φ))(t)(pu@ F̃ (φ)) = σ(t)(u@ F̃ (φ))

Theorem 3. ψ and R(ψ, u@ F̃ (φ)) are equisatisfiable.

Proof. We first prove that, if σ |= ψ , then R(σ , u@ F̃ (φ)) |=R(ψ, u@ F̃ (φ)).
Let us assume that σ |= φ.
Given the definition of R(σ , u@ F̃ (φ)), the prophecy variable pu@ F̃ (φ) is given the value of the term u@ F̃ (φ), and thus

R(σ , u@ F̃ (φ)) |= ψ[pu@ F̃ (φ)/u@ F̃ (φ)].
For every t , if σ , t |= F (φ), then there exists t′ > t such that σ , t′ |= φ and for all t′′ , t < t′′ < t′ , σ , t′′
|= φ. Thus,

σ(t′)(u@ F̃ (φ)) = σ(t′′)(u@ F̃ (φ)) = σ(t′)(u). Thus σ , t |= (Xφ → pu@ F̃ (φ) = next(u)) ∧ (next(pu@ F̃ (φ))
= pu@ F̃ (φ) → Xφ).

Vice versa, let us assume that σ |= R(ψ, u@ F̃ (φ)) and prove that σ ′ |= φ, where σ ′ is obtained from σ by assigning
σ ′(def u@ F̃ (φ)) := σ(pu@ F̃ (φ)).

It is sufficient to prove that σ(t)(pu@ F̃ (φ)) = σ ′(t)(u@ F̃ (φ)).

Let us assume that there exists t′ > t such that, for all t′′ , t < t′′ < t′ , σ , t′′
|= φ and σ , t′ |= φ; thus, σ(t)(u@ F̃ (φ)) =
σ(t′)(u). Since σ , t′′ |= (Xφ → pu@ F̃ (φ)

= next(u)) ∧ (next(pu@ F̃ (φ)
)
= pu@ F̃ (φ)

→ Xφ) for all t′′ , σ(t′ − 1)(pu@ F̃ (φ)
) = σ(t′)(u)

and σ(t′′ − 1)(pu@ F̃ (φ)) = σ(t′)(pu@ F̃ (φ)) for all t′′ , t < t′′ < t′ . Thus σ(t)(pu@ F̃ (φ)) = σ(t′)(u).

If such t′ does not exist, then σ ′(t)(u@ F̃ (φ)) = σ ′(t)(def ˜) = σ(t)(p ˜). This concludes the proof. �
u@F (φ) u@F (φ)

14 A. Cimatti et al. / Information and Computation 272 (2020) 104502
We similarly remove past event freezing operator @ P̃ with the following rule:

R(ψ, u@ P̃ (φ)) :=ψ[pu@ P̃ (φ)
/u@ P̃ (φ)]∧

G(φ → next(pu@ P̃ (φ)) = u)∧
G(next(pu@ P̃ (φ))
= pu@ P̃ (φ) → φ)

8. Experimental evaluation

We have implemented the techniques described in the previous sections within nuXmv [32], a state-of-the-art symbolic
model checker for finite- and infinite-state transition systems. Our implementation supports various first-order theories
(thanks to its SMT-based verification engine) such as (combinations of) arithmetic, bit-vectors, arrays and all the models
of time mentioned above (discrete, dense and super-dense). It supports XLTL-EF as well as the fragment of MTL0,∞ that
uses only closed intervals. We remark that, as described in the previous sections, the interval bounds on MTL0,∞ formulas
are not required to be numeric constants, but we support arbitrary expressions over parameters of the model. Satisfiability
checking is reduced to the problem of checking the emptiness of the language of a symbolic transition system, which is
then solved with the algorithm that combines IC3 with Implicit Predicate Abstraction (IC3IA) [33] with k-liveness [34] or
with the k-Zeno algorithm [19]. The k-Zeno algorithm builds and extends the algorithm based on IC3IA and k-liveness. The
choice of the solving algorithm depends on whether we are interpreting the formula over discrete time (in which case we
use IC3IA and k-liveness) or dense/super-dense time (in which case we use k-Zeno). The two algorithms are combined with
Bounded Model Checking (BMC) [35] in order to detect satisfiable instances and then compute a witness trace.

In the experimental evaluation we focused on satisfiability checking over super-dense time, using both XLTL-EF and
MTL0,∞ formulas. Our benchmark set consists of 161 formulas, mostly testing the semantics of the new event freezing
operators, the bounded MTL operators and the difference of their behavior when using super-dense or dense time.2 In
the analyzed formulas we used the symbols p and q for parameters, a, b and c for Boolean variables (note that we are
using Boolean variables as atoms, writing for example a instead of a = �), x and y for real-valued variables and d for a
discrete Boolean variable (i.e., variables that can change only in discrete steps3). The benchmark set also includes some
“scalable” problems, in which the same template formula is instantiated multiple times using different numeric constants
and/or parameters. For instance, we consider six instances of the following template, in which the parameters p and q are
instantiated with different values or simply left as parameters:

(p > 0 ∧ q > 0) → ((G(a → F [0,p]b) ∧ G(b → F [0,q]c)) → G(a → F [0,p+q]c)) (15)

Finally, we also included variants of the sensor example described above.
In the experimental evaluation we analyzed all the formulas in the benchmark set with our implementation within

nuXmv, using either IC3IA k-liveness or k-Zeno, depending on whether we are interpreting the formulas over discrete or
dense/super-dense time. Both algorithms are interleaved by BMC, which is used to compute counterexample traces for
invalid properties. As discussed in §2, we are not aware of any other tool that supports the logics defined in this paper. In
particular, MigthyL [24] uses a (discrete) point-wise semantics for MTL, while Atmoc [36] and Zot [25] only support bounded
satisfiability checking.

We ran our experimental evaluation on a machine equipped with a 2.67 GHz Intel® Xeon® X5650 CPU, running Scientific
Linux 7.3. We used a timeout of 120 seconds for each run.

Our implementation within nuXmv and all the needed files to reproduce this experimental evaluation are available at
https://es .fbk.eu /people /tonetta /papers /infcomp18.

The complete set of formulas used, the corresponding verification results and the solving time (in seconds) are reported
in Tables 1 and 2. In particular, Table 1 reports the set of formulas expected to hold, while Table 2 reports the ones expected
to not hold. We remark that nuXmv could decide the satisfiability of all 161 formulas in the considered benchmark set.
Most (104 out of 161) formulas could be decided in less than one second. The hardest problem took about 18.2 seconds,
and corresponds to a valid problem instance of the template (15) in which p = 10 and q = 10. The results on the scalable
instances confirm also the intuition that the performances are largely independent from the concrete values of the numeric
constants used, thanks to the use of fully-symbolic techniques based on SMT. More interestingly, we also found that using
parametric bounds as opposed to concrete ones does not cause a significant performance impact in general (at least for
the problems we considered): the parametric instances of (15) are solved in less than 15 seconds. For the sensor example
presented in Section 4.4, the parametric and the “concrete” versions of the formulas are proved in almost the same amount
of time.

We executed our implementation within nuXmv on the invalid instances also using Bounded Model Checking alone to
search only for satisfying models. Using this configuration all instances were solved almost instantaneously. We compared

2 Note that, given a formula ϕ over super-dense time, we can obtain the equivalent one on dense time simply by conjoining ϕ with G X̃�.
3

nuXmv, like other tools (e.g. Atmoc [36]), natively support this kind of variables, although they can be derived from the normal variables in LTL-EF by
adding the constraint G(d = d@F (X�)).

https://es.fbk.eu/people/tonetta/papers/infcomp18

A. Cimatti et al. / Information and Computation 272 (2020) 104502 15
Table 1
Some valid MTL properties and their verification results.

Formula Valid Time

G((d ∧ X̃�) → X̃(Ỹ d)) Yes 0.01
(G X̃�) → ((Gd) ∨ (G¬d)) Yes 0.0
((G[0,p]d) ∧ F¬d) → (time_until(¬(H[0,p]d)) > p) Yes 2.69
((¬b ∧ ¬bUb) ∧ (time@ F̃ b) = 0) → X� Yes 0.19
G(((Xb) → (x@ F̃ b) = next(x))) Yes 0.09
G(((X�) → (x@ F̃�) = next(x))) Yes 0.0
((G(a → F b)) ∧ (G(b → F [0,1]c))) → G(a → F c) Yes 0.19
((F b) ∧ (G(b → F [0,1]c))) → (F c) Yes 0.1
((F b) ∧ (G(b → F c))) → (F c) Yes 0.0
(F [0,1]c) → (F c) Yes 0.1
(¬bUb) → F b Yes 0.0
F b → (¬bU (b ∨ X̃b)) Yes 0.0
(X̃(¬b ∧ F b)) → (time@ F̃ b)
= 0 Yes 0.2
G((time_until(b) = p ∧ time_until(time_until(b) = p) = q) → (time_until(b) = p + q ∨ time_until(b) ≤ p)) Yes 0.0
G((F [0,0]b) ↔ (X�Ub)) Yes 1.0
G(O [0,0]b ↔ (Y �Sb)) Yes 0.29
G((O [0,0] F b) ↔ (Y �S F b)) Yes 0.5
(G(a → F [0,1]b) ∧ G(b → F [0,1]c)) → G(a → F [0,2]c) Yes 12.89
(G(a → F [0,10]b) ∧ G(b → F [0,10]c)) → G(a → F [0,20]c) Yes 18.19
(G(a → F [0,100]b) ∧ G(b → F [0,10]c)) → G(a → F [0,110]c) Yes 17.09
(G(a → F [0,100]b) ∧ G(b → F [0,10000]c)) → G(a → F [0,10100]c) Yes 14.09
(p > 0) → ((G(a → F [0,p]b) ∧ G(b → F [0,p]c)) → G(a → F [0,2∗p]c)) Yes 14.49
(p > 0 ∧ q > 0) → ((G(a → F [0,p]b) ∧ G(b → F [0,q]c)) → G(a → F [0,p+q]c)) Yes 13.79
(G(a → (F b ∧ (b ∨ time_until(b) ≤ p))) ∧ G(b → (F c ∧ (c ∨ time_until(c) ≤ p)))) → G(a →

(F c ∧ (c ∨ time_until(c) ≤ 2 ∗ p)))

Yes 7.4

(G(x = (y@ P̃ c)) ∧ c ∧ G(¬c → G¬c) ∧ (b ∧ G(b → (time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔ (x@ P̃b) =
((x@ P̃b)@ P̃b))) → G(¬c → F [0,2]a)

Yes 6.79

(G(x = (y@ P̃ c)) ∧ c ∧ G(¬c → G¬c) ∧ (b ∧ G(b → (time_until(b) = 10 ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔ (x@ P̃b) =
((x@ P̃b)@ P̃b))) → G(¬c → F [0,20]a)

Yes 6.8

(G(x = (y@ P̃ c)) ∧ c ∧ G(¬c → G¬c) ∧ (b ∧ G(b → (time_until(b) = 100 ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔ (x@ P̃b) =
((x@ P̃b)@ P̃b))) → G(¬c → F [0,200]a)

Yes 6.9

(G(x = (y@ P̃ c)) ∧ c ∧ G(¬c → G¬c) ∧ (p > 0 ∧ b ∧ G(b → (time_until(b) = p ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔
(x@ P̃b) = ((x@ P̃b)@ P̃b))) → G(¬c → F [0,2∗p]a)

Yes 6.9

(G(¬c → y = 0) ∧ G(¬c → G¬c) ∧ (p > 0 ∧ b ∧ G(b → (time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔ (y@ P̃b) =
0)) → G(¬c → F [0,2]a)

Yes 1.69

(G(¬c → y = 0) ∧ G(¬c → G¬c) ∧ (p > 0 ∧ b ∧ G(b → (time_until(b) = 10 ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔
(y@ P̃b) = 0)) → G(¬c → F [0,20]a)

Yes 1.69

(G(¬c → y = 0) ∧ G(¬c → G¬c) ∧ (p > 0 ∧ b ∧ G(b → (time_until(b) = 100 ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔
(y@ P̃b) = 0)) → G(¬c → F [0,200]a)

Yes 1.69

(G(¬c → y = 0) ∧ G(¬c → G¬c) ∧ (p > 0 ∧ b ∧ G(b → (time_until(b) = p ∧ X̃(¬b ∧ ¬bUb)))) ∧ G(a ↔ (y@ P̃b) =
0)) → G(¬c → F [0,2∗p]a)

Yes 1.1

¬(Ỹ �) Yes 0.0
(X¬a) → (¬Xa) Yes 0.0
(X̃¬a) → (¬ X̃a) Yes 0.0
(a) → ((XG(time_since(a) ≥ 0)) ∨ (X̃G(time_since(a) ≥ 0))) Yes 0.29
G((Y a) → time_since(a) = 0) Yes 0.09
G((Ỹ a) → time_since(a) = 0) Yes 0.1
(G Fa) → G(time_until(a) ≥ 0) Yes 0.2
G((Xa) → time_until(a) = 0) Yes 0.1
G((X̃a) → time_until(a) = 0) Yes 0.1
G((a ∨ Xa) → (F [0,0]a)) Yes 0.1
G((F [0,0]a) → (F [0,p]a)) Yes 0.0
G((F [0,0]a) → (F [0,∞)a)) Yes 0.9
(q ≥ p) → G((F [0,p]a) → (F [0,q]a)) Yes 0.2
G((F [0,p]a) → (F [0,∞)a)) Yes 1.09
(q ≥ p) → G((F [q,∞)a) → (F [p,∞)a)) Yes 3.2
G((Fa) → (F [0,∞)a)) Yes 0.3
G((F [0,∞)a) → (Fa)) Yes 0.3
G((F [0,∞)a) → (F [0,p]a ∨ F [p,∞)a)) Yes 5.6
G((F [0,p]a ∨ F [p,∞)a) → (F [0,∞)a)) Yes 2.6
(q ≥ p) → G((G[0,q]a) → (G[0,p]a)) Yes 0.29
G((G[0,∞)a) → (G[0,p]a)) Yes 1.09
(q ≥ p) → G((G[p,∞)a) → (G[q,∞)a)) Yes 2.69
G((Ga) → (G[0,∞)a)) Yes 0.1
G((G[0,∞)a) → (Ga)) Yes 0.09
G((G[0,p]a) ∧ (G[p,∞)a) → (G[0,∞)a)) Yes 5.7
G((G[0,∞)a) → (G[0,p]a) ∧ (G[p,∞)a)) Yes 3.0
G(((G[0,p]a) ∧ (G[p,∞)¬a)) → ⊥) Yes 5.79

(continued on next page)

16 A. Cimatti et al. / Information and Computation 272 (2020) 104502
Table 1 (continued)

Formula Valid Time

G((a ∨ Y a) → (O [0,0]a)) Yes 0.1
G((O [0,0]a) → (O [0,p]a)) Yes 0.0
G((O [0,0]a) → (O [0,∞)a)) Yes 1.2
(q ≥ p) → G((O [0,p]a) → (O [0,q]a)) Yes 0.3
G((O [0,p]a) → (O [0,∞)a)) Yes 1.0
(q ≥ p) → G((O [q,∞)a) → (O [p,∞)a)) Yes 3.59
G((Oa) → (O [0,∞)a)) Yes 0.2
G((O [0,∞)a) → (O [0,p]a ∨ O [p,∞)a)) Yes 6.0
G((O [0,p]a ∨ O [p,∞)a) → (O [0,∞)a)) Yes 6.39
(q ≥ p) → G((H[0,q]a) → (H[0,p]a)) Yes 0.2
G((H[0,∞)a) → (H[0,p]a)) Yes 1.7
(q ≥ p) → G((H[p,∞)a) → (H[q,∞)a)) Yes 6.18
G((Ha) → (H[0,∞)a)) Yes 0.1
G((H[0,∞)a) → (Ha)) Yes 0.1
G((H[0,p]a) ∧ (H[p,∞)a) → (H[0,∞)a)) Yes 6.9
G((H[0,∞)a) → (H[0,p]a) ∧ (H[p,∞)a)) Yes 5.19
(Fa) ↔ (F O [0,∞)a) Yes 0.29
(q > p ∧ p ≥ 0) → ((F [0,p](Ga)) → (G[q,∞)a)) Yes 3.3
G(¬(F [0,0] O¬a) ↔ (G[0,0] Ha)) Yes 1.1
(G X̃�) → G(b ↔ F [0,0]b) Yes 0.29
(G X̃�) → G(b ↔ O [0,0]b) Yes 0.2
(G X̃�) → G(b ↔ G[0,0]b) Yes 0.3
(G X̃�) → G(b ↔ H[0,0]b) Yes 0.3

Table 2
Some invalid MTL properties and their verification results.

Formula Valid Time

IC3IA BMC only

(Ỹ �) No 0.1 0.0
(¬Xa) → (X¬a) No 0.09 0.0
(¬ X̃a) → (X̃¬a) No 0.1 0.0
G(a → time_since(a) = 0) No 0.2 0.0
G((Y a) → time_since(a) > 0) No 0.19 0.0
G((Ỹ a) → time_since(a) > 0) No 0.3 0.0
F (time_since(a) < 0) No 0.2 0.0
G(a → time_until(a) = 0) No 0.19 0.0
G((Xa) → time_until(a) > 0) No 0.2 0.0
G((X̃a) → time_until(a) > 0) No 0.19 0.0
F (time_until(a) < 0) No 0.1 0.0
G((F [0,0]a) → (a ∨ Xa)) No 0.5 0.0
G((F [0,p]a) → (F [0,0]a)) No 0.39 0.0
G((F [0,∞)a) → (F [0,0]a)) No 1.0 0.0
G((F [0,q]a) → (F [0,p]a)) No 0.7 0.0
G((F [0,∞)a) → (F [0,p]a)) No 1.4 0.0
G((F [p,∞)a) → (F [q,∞)a)) No 3.0 0.0
G((G[0,p]a) → (G[0,q]a)) No 0.79 0.0
G((G[0,p]a) → (G[0,∞)a)) No 1.7 0.0
G((G[q,∞)a) → (G[p,∞)a)) No 2.8 0.0
G((O [0,0]a) → (a ∨ Y a)) No 0.4 0.0
G((O [0,p]a) → (O [0,0]a)) No 0.39 0.0
G((O [0,∞)a) → (O [0,0]a)) No 1.1 0.0
G((O [0,q]a) → (O [0,p]a)) No 0.39 0.0
G((O [0,∞)a) → (O [0,p]a)) No 1.0 0.0
G((O [p,∞)a) → (O [q,∞)a)) No 6.1 0.09
G((O [0,0]a) → ¬(O [0,0]¬a)) No 1.29 0.0
G((H[0,p]a) → (H[0,q]a)) No 0.5 0.0
G((H[0,p]a) → (H[0,∞)a)) No 1.49 0.0
G((H[q,∞)a) → (H[p,∞)a)) No 1.9 0.09
(G[q,∞)a) → (F [0,p]Ga) No 1.6 0.0
(time_until(¬(H[0,p]a)) > p) → ((G[0,p]a) ∧ F¬a) No 2.8 0.0
(¬Xb) → (X¬b) No 0.09 0.0
(¬ X̃b) → (X̃¬b) No 0.1 0.0
F [0,∞)(b) No 0.29 0.0
F [0,4](b) No 0.29 0.0
G(((F b) ∧ (x@ F̃ b) = 0) → X�) No 0.2 0.0
G(((F b) ∧ (time@ F̃ b) = 0) → X�) No 0.29 0.0

A. Cimatti et al. / Information and Computation 272 (2020) 104502 17
Table 2 (continued)

Formula Valid Time

IC3IA BMC only

G(((¬b ∧ F b) ∧ (time@ F̃ b) = 0) → X�) No 0.2 0.0
G(¬((F b) ∧ ((x@ F̃ b) = 0))) No 0.2 0.0
G(¬((F b))) No 0.09 0.0
¬((F b) ∧ ((x@ F̃ b) = 0)) No 0.1 0.0
¬F (b ∧ time = 10) No 0.1 0.0
¬(G(x = (y@ P̃b)) ∧ G F (b ∧ y = 1) ∧ G F (¬b ∧ y = 0) ∧ G F y
= x) No 0.49 0.0
F b → (¬bUb) No 0.1 0.0
G(a → (F c ∧ (c ∨ (time@ F̃ c) ≤ 2 ∗ p))) No 0.3 0.0
X̃((b ∨ a) → (F c)) No 0.1 0.0
F [3,∞)(b) No 0.89 0.0
¬(G[0,3](((time@ P̃b)) ≤ 0)) No 0.19 0.0
((F [0,0]b)) No 0.09 0.0
((O [0,0]b)) No 0.1 0.0
¬(G[0,3](F [0,1]b)) No 0.49 0.0
¬(G[0,3](O [0,0]b)) No 1.09 0.0
¬(G[0,3](Y �S F b)) No 2.4 0.0
¬(G[0,3](O [0,0] F b)) No 0.4 0.0
¬(G[0,3](Y �S F b) ∧ F¬b) No 13.0 0.1
¬F [3,∞)(b) No 0.4 0.0
time_until(b) = 1 No 0.19 0.0
(time_until(time_until(b) = 1)) = 2 No 0.29 0.0
¬(F [2,∞)b ∧ time_until(time_until(b) = 1) = 1 ∧ (time@ F̃ b) = 2) No 3.09 0.1
¬(b ∧ (time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb))) No 0.39 0.0
¬(b ∧ time_until(b) = 1 ∧ X̃(¬b ∧ ¬bU (b ∧ time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb)))) No 0.59 0.0
G(((time_until(b) = p ∧ time_until(time_until(b) = p) = q)) → (time_until(b) = p + q ∨ time_until(b) < p)) No 1.2 0.0
¬(G F b ∧ G(b → (time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb)))) No 0.3 0.0
¬(b ∧ G(b → (time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb)))) No 0.29 0.0
¬(G F b ∧ G(b → (time_until(b) = 1))) No 0.29 0.0
¬(b ∧ G(b → (time_until(b) = 1 ∧ X̃(¬b ∧ ¬bUb)))) No 0.3 0.0
¬(G(O [0,0]b)) No 0.3 0.0
((G F b) → G(time_until(b) > 0)) No 0.2 0.0
(G X̃�) → ((G F b) → G(time_until(b) > 0)) No 0.19 0.0
G(¬b → ¬F [0,0]b) No 0.3 0.0
G(¬b → ¬O [0,0]b) No 0.5 0.0
G((O [0,0]b) → (F [0,0]b)) No 0.7 0.0
G((F [0,0]b) → (O [0,0]b)) No 1.0 0.0
G((H[0,0]b) → (G[0,0]b)) No 0.69 0.06
G((G[0,0]b) → (H[0,0]b)) No 0.7 0.0
G((a ∧ X̃�) → X̃(Ỹ a)) No 0.09 0.0
(G X̃�) → ((Ga) ∨ (G¬a)) No 0.1 0.0
((G[0,p]a) ∧ F¬a) → (time_until(¬(H[0,p]a)) > p) No 3.09 0.0

this result with the time required by Atmoc, which also uses Bounded Model Checking, to find the satisfying model of
13 problem instances expressible in the input languages of both tools. Since Atmoc does not support parameters all MTL
bounds in these formulas are “concrete” values. Also in these cases the Bounded Model Checking based techniques were
able to find the satisfying model almost instantaneously.

9. Conclusions and future work

In this paper, we considered an extension of first-order linear-time temporal logic with two new event freezing func-
tional symbols, which represent the value of a term at the next state in the future or last state in the past in which a
formula holds. We defined the semantics in different temporal domains considering discrete time with real timestamps,
dense, and super-dense (weakly-monotonic) time. We precisely characterized what we mean for “next point in the future
in which φ holds” so that, assuming finite variability, such a point always exists also in the dense time setting. We showed
that, using these event-freezing functions and an explicit variable that represents time, we can express all MTL0,∞ formu-
las, also including counting operators and parametric intervals. We provided a reduction to equisatisfiable discrete-time
formulas without event freezing functions and we solved the satisfiability of the latter by SMT-based model checking. We
implemented the approach in nuXmv and showed that it can effectively prove interesting properties, while many logics in
the real-time setting lack of tool support.

The directions for future works are manifold. We want to integrate these techniques in OCRA [37] for contract-based
reasoning; we want to extend them to encompass variables with continuous function evolution and constraints on their
derivatives as in HRELTL [23]; finally, we want to apply the new logic in industrial use cases within the CITADEL project
(http://citadel -project .org/) to specify complex properties of monitoring components.

http://citadel-project.org/

18 A. Cimatti et al. / Information and Computation 272 (2020) 104502
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] S. Tonetta, Linear-time temporal logic with event freezing functions, in: GandALF, 2017, pp. 195–209.
[2] A. Pnueli, The temporal logic of programs, in: FOCS, 1977, pp. 46–57.
[3] R. Alur, T. Henzinger, Real-time logics: complexity and expressiveness, Inf. Comput. 104 (1) (1993) 35–77.
[4] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Syst. (4) (1990) 255–299.
[5] R. Alur, T. Feder, T. Henzinger, The benefits of relaxing punctuality, J. ACM 43 (1) (1996) 116–146.
[6] J. Raskin, P. Schobbens, The logic of event clocks - decidability, complexity and expressiveness, J. Autom. Lang. Comb. 4 (3) (1999) 247–286.
[7] O. Maler, D. Nickovic, Monitoring temporal properties of continuous signals, in: FORMATS-FTRTFT, 2004, pp. 152–166.
[8] R. Koymans, Specifying Message Passing and Time-Critical Systems with Temporal Logic, Lecture Notes in Computer Science, vol. 651, Springer, 1992.
[9] D. Basin, F. Klaedtke, S. Müller, Policy monitoring in first-order temporal logic, in: CAV, 2010, pp. 1–18.

[10] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems - Specification, Springer, 1992.
[11] O. Lichtenstein, A. Pnueli, L. Zuck, The glory of the past, in: Logics of Programs, 1985, pp. 196–218.
[12] C. Barrett, R. Sebastiani, S. Seshia, C. Tinelli, Satisfiability modulo theories, in: Handbook of Satisfiability, 2009, pp. 825–885.
[13] S. Ghilardi, E. Nicolini, S. Ranise, D. Zucchelli, Combination methods for satisfiability and model-checking of infinite-state systems, in: CADE, 2007,

pp. 362–378.
[14] J. Raskin, P. Schobbens, State clock logic: a decidable real-time logic, in: HART, 1997, pp. 33–47.
[15] T.A. Henzinger, J. Raskin, P. Schobbens, The regular real-time languages, in: ICALP, 1998, pp. 580–591.
[16] R. Alur, L. Fix, T. Henzinger, Event-clock automata: a determinizable class of timed automata, Theor. Comput. Sci. 211 (1–2) (1999) 253–273.
[17] Y. Hirshfeld, A. Rabinovich, An expressive temporal logic for real time, in: MFCS, 2006, pp. 492–504.
[18] J. Ortiz, A. Legay, P. Schobbens, Memory event clocks, in: FORMATS, 2010, pp. 198–212.
[19] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, Verifying LTL properties of hybrid systems with K-liveness, in: CAV, in: LNCS, vol. 8559, Springer, 2014,

pp. 424–440.
[20] J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, S. Mover, Infinite-state liveness-to-safety via implicit abstraction and well-founded relations, in: CAV, 2016,

pp. 271–291.
[21] S. Demri, R. Lazic, LTL with the freeze quantifier and register automata, ACM Trans. Comput. Log. 10 (3) (2009) 1–30.
[22] P. Bouyer, F. Chevalier, N. Markey, On the expressiveness of TPTL and MTL, Inf. Comput. 208 (2) (2010) 97–116.
[23] A. Cimatti, M. Roveri, S. Tonetta, Requirements validation for hybrid systems, in: CAV, 2009, pp. 188–203.
[24] T. Brihaye, G. Geeraerts, H. Ho, B. Monmege, MightyL: a compositional translation from MITL to timed automata, in: R. Majumdar, V. Kuncak (Eds.),

Computer Aided Verification - Proceedings of the 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Part I, in: Lecture
Notes in Computer Science, vol. 10426, Springer, 2017, pp. 421–440.

[25] M.M. Bersani, M. Rossi, P.S. Pietro, An SMT-based approach to satisfiability checking of MITL, Inf. Comput. 245 (2015) 72–97.
[26] R. Kindermann, T.A. Junttila, I. Niemelä, SMT-based induction methods for timed systems, in: M. Jurdzinski, D. Nickovic (Eds.), Formal Modeling and

Analysis of Timed Systems – Proceedings of the 10th International Conference, FORMATS 2012, London, UK, September 18-20, 2012, in: Lecture Notes
in Computer Science, vol. 7595, Springer, 2012, pp. 171–187.

[27] R. Kindermann, T.A. Junttila, I. Niemelä, Bounded model checking of an MITL fragment for timed automata, in: J. Carmona, M.T. Lazarescu, M.
Pietkiewicz-Koutny (Eds.), 13th International Conference on Application of Concurrency to System Design, ACSD 2013, Barcelona, Spain, 8-10 July,
2013, IEEE Computer Society, 2013, pp. 216–225.

[28] R. Alur, T. Henzinger, Logics and models of real time: a survey, in: REX Workshop, 1991, pp. 74–106.
[29] O. Maler, Z. Manna, A. Pnueli, From timed to hybrid systems, in: J.W. de Bakker, C. Huizing, W.P. de Roever, G. Rozenberg (Eds.), Real-Time: Theory

in Practice, Proceedings of REX Workshop, Mook, The Netherlands, June 3-7, 1991, in: Lecture Notes in Computer Science, vol. 600, Springer, 1991,
pp. 447–484.

[30] A. Rabinovich, On the decidability of continuous time specification formalisms, J. Log. Comput. 8 (5) (1998) 669–678.
[31] A. Bouajjani, Y. Lakhnech, Temporal logic + timed automata: expressiveness and decidability, in: CONCUR, 1995, pp. 531–545.
[32] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri, S. Tonetta, The nuXmv symbolic model checker, in: CAV,

2014, pp. 334–342.
[33] A. Cimatti, A. Griggio, S. Mover, S. Tonetta, IC3 modulo theories via implicit predicate abstraction, in: TACAS, in: LNCS, vol. 8413, Springer, 2014,

pp. 46–61.
[34] K. Claessen, N. Sörensson, A liveness checking algorithm that counts, in: FMCAD, IEEE, 2012, pp. 52–59.
[35] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, Bounded model checking, Adv. Comput. 58 (2003) 117–148.
[36] R. Kindermann, T.A. Junttila, I. Niemelä, Bounded model checking of an MITL fragment for timed automata, in: ACSD, 2013, pp. 216–225.
[37] A. Cimatti, M. Dorigatti, S. Tonetta, OCRA: a tool for checking the refinement of temporal contracts, in: ASE, 2013, pp. 702–705.

http://refhub.elsevier.com/S0890-5401(19)30118-X/bib546F6E657474613137s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib506E753737s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib416C7572483933s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4B6F796D616E733930s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4146483936s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib5261736B696E533939s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4D616C65724E3034s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4B6F796D616E733932s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib426173696E4B6C616564746B654D756C6C6572s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4D503932s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4C69636874656E737465696E505A3835s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib426172726574745353543039s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4768696C617264694E525A3037s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4768696C617264694E525A3037s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib5261736B696E533937s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib48656E7A696E67657252533938s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib416C757246483939s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib486972736866656C64523036s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4F7274697A4C533130s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib43696D61747469474D543134s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib43696D61747469474D543134s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44616E69656C4347544D3136s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44616E69656C4347544D3136s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44656D72694C3039s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib42434D3130s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4341563039s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F6361762F4272696861796547484D3137s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F6361762F4272696861796547484D3137s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F6361762F4272696861796547484D3137s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A6A6F75726E616C732F69616E64632F42657273616E6952503135s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F666F726D6174732F4B696E6465726D616E6E4A4E3132s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F666F726D6174732F4B696E6465726D616E6E4A4E3132s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F666F726D6174732F4B696E6465726D616E6E4A4E3132s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F616373642F4B696E6465726D616E6E4A4E3133s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F616373642F4B696E6465726D616E6E4A4E3133s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F616373642F4B696E6465726D616E6E4A4E3133s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib41483931s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F7265782F4D616C65724D503931s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F7265782F4D616C65724D503931s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib44424C503A636F6E662F7265782F4D616C65724D503931s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib5261622D4C6F67436F6D703938s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib426F75616A6A616E694C3935s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4361766164614344474D4D4D52543134s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4361766164614344474D4D4D52543134s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib6963336961s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib6963336961s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib6B6C6976656E657373s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib626D63s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4B4A4E2D414353443133s1
http://refhub.elsevier.com/S0890-5401(19)30118-X/bib4344543133s1

	SMT-based satisﬁability of ﬁrst-order LTL with event freezing functions and metric operators
	1 Introduction
	2 Related work
	3 Background
	3.1 Time models
	3.2 First-order linear-time temporal logic
	3.3 Next and yesterday
	3.4 Abbreviations
	3.5 Finite variability
	3.6 Metric temporal logic with counting operators

	4 LTL with event freezing functions
	4.1 Until next occurrence
	4.2 Event freezing functions
	4.3 Extension with explicit time (XLTL-EF)
	4.4 Sensor example

	5 From MTLC0,∞ to LTL-EF
	6 Discretization
	7 Removing event freezing functions
	8 Experimental evaluation
	9 Conclusions and future work
	References

