
MATERIALS AND MANUFACTURING PROCESSES

Morphological Evolution for Inspecting Fluid Environments Using
Robot Operating System (ROS)

Ahmed Hallawaa, Giovanni Iaccab, Cagatay Sarimana, Touhidur Rahmana, Michael
Cochezc,d, and Gerd Ascheida

a RWTH Aachen University, Kopernikusstraße 16, 52074 Aachen, Germany;
b University of Trento, Via Sommarive 9, 38123 Trento, Italy;
c Fraunhofer Institute for Applied Information Technology FIT, 52056 Aachen, Germany;
d Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

ARTICLE HISTORY
Compiled March 18, 2020

ABSTRACT
In many manufacturing processes, sensor agents specifically adapt to explore pipes
and other constrained environments filled with fluid are usually needed for moni-
toring purposes. However, in some of these environments only miniaturized agents
can be used. Furthermore, these agents might be kinetically passive, due to lim-
ited resources and size. Therefore, designing and using these agents can be difficult.
One possible solution to this problem is to change the agents’ morphology, such
that optimally-shaped agents reach target destinations simply by passively mov-
ing through the fluid. Here, we propose an evolutionary scheme for evolving the
agent’s morphology to reach a predefined desired point in a fluid environment. This
scheme includes a genotype-phenotype mapping based on Lindenmayer-Systems, as
well as custom reproduction operators, selection criterion, and fitness function. In
order to allow the simulation of irregularly-shaped bodies underwater, we develop
a simulation framework based on the Robot Operating System and the Unmanned
Underwater Vehicle package. We test the proposed method on a set of 10 target
points in a pipe inspection scenario. Results show that the evolved agents reach the
target points with a distance error smaller than 5% in the worst case, and a standard
deviation of 1.1% over 10 repeated experiments.

KEYWORDS
Morphological, Evolution, Pipe, Inspection, L-Systems, ROS, UUV, Simulator,
Conical, Frustum, Fluid, Simulation.

1. Introduction

In many manufacturing applications, such as in metallurgy plants, various kinds of wa-
ter, oil, and gas distribution systems are used. In these systems, typically continuous
monitoring of the status of pipes is needed to prevent leaks and other kinds of mal-
functioning that might completely affect or disrupt the productivity of the plant. [1] In
this regard, previous literature has already proposed various robotic systems for mon-
itoring and inspection processes. [2–5] However, most of these robots are bulky, heavy,
and expensive, and may require an interruption of the piping operation either partially
or completely in order to perform the inspection task. This makes their use extremely

CONTACT Ahmed Hallawa. Email: hallawa@ice.rwth-aachen.de



costly, or even impossible in critical operations. Furthermore, in many applications
pipe systems are difficult to access and not wide enough for these robots to function
adequately.

An alternative solution is to use centimeter-sized sensor agent(s), which are able
to inspect the pipes while they are still in operation. However, due to their scaled-
down size these agents generally are kinetically passive and as such controlling their
motion behaviour is challenging. [6] Furthermore, the environments to be inspected are
typically GPS-denied (being the pipes underground, or shielded from external signals),
which introduces further hurdles for localization and mapping. [7] One possible solution
is to design the morphological properties of the agents in a way that would meet
some predefined functional requirements, such as reaching a certain position in the
environment at a given time. However, this optimization process is extremely complex
as it is difficult to derive a mathematical representation of the problem, which involves
hard-to-model fluid dynamics. In addition, it is expected that for a single functional
objective, such as “spreading” the agents in the environment, multiple agents are needed
and each of them might require a different morphological design. Therefore, black-box
optimization techniques such as Evolutionary Algorithms (EAs) can offer a solution
to this problem. [8] For example, EAs have been used in self-organizing assembly and
adaptive multi-robot systems. [9–11] As for morphological evolution, EAs have been
adopted in a wide range of robotics applications [12–17] but, to the best of our knowledge,
the use of morphological evolution for passive miniaturized agents specifically meant
for fluid environments has never been explored so far.

In this work, we present a methodology to evolve the morphological properties of
an agent to achieve a given behavioural objective in a physics-based simulation of a
pipe inspection scenario. Furthermore, in order to simulate the evolved agents in an
efficient way, we extend an existing simulation package dubbed as Unmanned Under-
water Vehicles (UUV). [18] This package is integrated with the widely adopted Robot
Operating System (ROS)1. The combination of UUV and ROS allows the simulation
of irregularly-shaped bodies, such as those we assume in the agents evolved with our
framework, which are formed by a set of modules in the shape of a conical frustum.

To test our proposed framework, we set as objective of the evolutionary process the
design of agents capable of reaching a set of predefined points in a fluid environment,
starting from an insertion point in the pipe. It is important to highlight that in the
tested scenario the evolved agents reach their target point relying only on their mor-
phology, without any form of actuation or active interaction with the environment. As
such, these agents are extremely cost-effective and can be easily deployed in real-world
environments.

To summarize, the main contributions -and the relative challenges- of this work are:

• We hypothesize that the control of sensor agents can be attained by evolving only
their morphology. This represents a radical departure from the existing works on
morphological evolution for robotics, where usually motion control is obtained by
evolving both the morphology and the controller. As such, our problem is much
more challenging since assuming that agents are passive reduces the degrees of
freedom (due to the lack of actuation) and therefore optimizing their morphology
is much more critical than the cases where actuation is possible. As we show in
our experiments, very different morphologies are needed to reach target points
that are even very close to each other. This means that the problem (and the
search for an optimal solution) is very sensitive to the target, and suboptimal

1Available at http://www.ros.org.

2

http://www.ros.org


solutions might not solve the task at all.
• We provide a complete evolutionary-driven simulation framework that couples an

EA with physics-based simulations based on ROS and UUV. The EA is capable of
exploring a large morphological space consisting of thousands of possible variable-
length (in terms of number of modules) morphologies. Each morphology is then
simulated with a high accuracy and as such can be eventually 3D-printed and
tested in the real world. This proposed combination of ROS and UUV (and the
physical model therein) is novel and represents a major contribution w.r.t. the
existing literature.
• We show a proof-of-concept application of the proposed framework on a pipe

inspection scenario.

The remaining of the paper is structured as follows. The next section discusses the
characteristics of the agents considered in our scenario, the details of the Evolutionary
Algorithm (genotype-phenotype mapping, reproduction and selection), and the details
of the extension to the UUV simulator. Then, section 3 presents the numerical results.
Finally, we give the conclusions in section 4.

2. Materials and methods

2.1. Morphological evolution

As discussed in the previous section, our methodology for evolving the sensor agents’
morphology is based on the use of Evolutionary Computation. Following the typical
loop of an Evolutionary Algorithm, we start with initializing a population of random
solutions, in our case a population of agents with different morphology. Afterwards,
an evaluation based on a fitness function is executed on each agent. This requires
simulating the interaction of the agent with the environment, which presents a challenge
as such simulation is usually either too slow or too inaccurate. Section 2.4 is dedicated
to this aspect.

Agents’ evaluations are followed by fitness-proportionate selection, which picks the
agents that will “reproduce”, i.e. generate new solutions that will partially inherit the
parents’ traits (in our case, morphological traits). Reproduction occurs by means of
custom crossover and mutation operators, that act both on the genotype of the agents.
The latter identifies the set of the relevant geometrical parameters that affect the
morphology of the agent, thus its phenotype. In our case, the genotype-phenotype
mapping is based on an indirect genetic representation that uses a Lindenmayer-System
(L-System) [19], as discussed below.

2.2. Genotype-phenotype mapping

The representation of the genotype is an important factor in the evolutionary process.
Here, we do not use a direct binary encoding to represent the morphology of the agent.
Instead, our representation of the genotype is indirect, based on a mechanism called
Lindenmayer-System. According to this mechanism, each agent is a morphological re-
alization of its grammar rules. The grammar of such L-System is defined as a triple
G = (A,w, P ), where:

• A is an alphabet, i.e. a set of symbols containing replace, replaceable and non-
replaceable elements;

3



• w is an axiom, i.e. a symbol from which the system starts;
• P is a set of production rules, which take as an input a replaceable symbol and

replace it with a fixed sequence of symbols from V .

The system generates a string by starting from the axiom w and then repeatedly
applying one of the production rules for a fixed number of steps. In our design, the
evolved agents consists of n modules, where n is not fixed but rather is subject to the
evolutionary process. I.e., the length of the agent is evolved. Each module is a hollow
conical frustum realized as a solid of revolution, i.e. a solid figure obtained by rotating a
curve around an axis. In our case, the curve is a line defined by its length and the angle
of contact relative to one of its neighboring modules. To represent these properties in
the genotype, we set in the production rules: (1) a set of commands to allow adding
modules in both directions along the main axis of the evolved shape; (2) a set of tilting
commands to change the angle of contact of the new module; and (3) a set of possible
angles and lengths. Consequently, the adopted L-System is defined as follows:

• Each production rule in P contains 3 quintuples.
• A quintuple consists of 5 letters: an “add” command, a “tilt” command, a degree,

a block type and a move operand.
• The initial rule has an extra ’C’ at the beginning, to ensure that the core module

(the part of the agent that contains its hardware controller) is part of the evolved
agent. I.e., the axiom is ’C’.
• Three iterations are performed to generate the genome.

In our scheme, we assumed that the user has at least one shape that must be enforced
as a constraint (the core module, represented by the axiom ’C’). This is because in many
cases the developed hardware controller is designed to fit a particular volume with
predefined specifications. Table 1 summarizes the alphabet of the designed L-System
and the meaning of each symbol. It is worth mentioning that in case of repetition of a
certain action in the genome, such as “add” or “tilt”, only one is applied and the others
are discarded.

Figure 2 shows an example of the phenotype realization of an evolved agent con-
sisting of three module in addition to the core module. In this example, a core module
(a sphere) is already present, thus the reference point corresponds to the core module
itself. Let us try to read the following genotype:

addB-tiltn-1-M-moveB-addB-tiltn-2-S-moveB-addB-tiltp-1-L-moveB

The first addB command adds a new module backwards relative to the reference point at
the core module, then tiltn forces the angle to the module to be calculated clockwise.
A value of 1 sets the tilt angle to be 10, afterwards, the length of the module is given to
be medium (defined by the ’M’ symbol) and finally moveb will move the reference point
one step back to the new module. Following the same rules, one can build the three
modules, as shown in Figure 2 (top). This can be turned into a 3D shape by simply
rotating the figure with a preset thickness around the center axis (solid of revolution),
as shown in Figure 2 (bottom).

2.3. Reproduction and selection

Two possible reproduction operations are possible in the presented scheme: crossover
and mutation. Crossover is conducted by randomly picking a single point among the
rules in the genotype, and exchange the gene sequence around this random point be-

4



tween two parent solutions, thus producing two new offspring. Mutation is executed
on offspring (after crossover) by flipping any symbol in their genotype, e.g. flipping an
addF to addB, or a moveA to moveB. Both crossover and mutation are executed with
probability Pcrossover and Pmutation, which are two hyper-parameters to be selected ade-
quately to allow a proper exploration-exploitation balance. As for selection, we adopted
a roulette-wheel (fitness-proportionate) selection criterion, where the agents with bet-
ter performance are more likely to reproduce. Furthermore, we kept the population
size constant and did not use any elitism.

2.4. Simulator

As explained earlier, one important aspect of the proposed evolutionary scheme is the
evaluation of the candidate solutions. To achieve this, we defined an evolutionary-driven
simulation framework that can be summarized as in Figure 1. In this framework, the
EA loop starts with the initialization of the population of agents. To realize an agent,
the open source application openSCAD2 is used. The output of openSCAD is a 3D
model of the agent, which can be used by ROS in order to evaluate it. In this regard,
the ROS package UUV is adopted to instantiate the agent and the fluid environment
in order to conduct the simulation. After the simulation, the fitness is calculated using
the output from the agent and the environment, based on the fitness definition. For
example, if the agent fitness is defined by the velocity of the agent, then the details
of the covered distance and the time needed to cover this distance by the agent are
saved during the simulation and used afterwards by the EA loop to calculate the fitness
value. After evaluation, selection and reproduction are executed, which are followed by
the evaluation of the new generation. This is repeated until the stopping criterion is
achieved. However, the evolutionary process introduced before produces irregularly-
shaped bodies (formed by a set of modules in the shape of a conical frustum), which
are not possible to simulate using the current version of the UUV package. Therefore,
in order to evaluate (simulate) the behavior of our evolved agents, we need to extend
the UUV package. The reason for using and extending this package is mainly its ability
to simulate a wide range of sensors, such as pollution sensors, in addition to pollution
plumes. Furthermore, UUV can be easily integrated with ROS and Gazebo, which
offers a wide range of libraries essential for simulating multi-robot and/or multi-agent
systems.

We now give an overview of our extension to the UUV package. The objective is to be
able to simulate objects evolved using the evolution scheme presented in the previous
sections. What we expect as output of the evolutionary scheme is an agent with multiple
modules, each with the shape of a conical frustum, as shown in Figure 3. To simulate
the interaction of the slender body of the evolved agents with the environment, the
following attributes need to be calculated for each module: added mass coefficients,
moments of inertia (MOI), linear and quadratic damping coefficients, center of gravity
(COG), center of buoyancy (COB), and finally total mass and volume. For simplicity,
we assume that there is no damping, thus linear and quadratic damping coefficients are
set to 0. In the following, we discuss the other attributes and how they are computed.

2Available at https://www.openscad.org.

5

https://www.openscad.org


2.5. Mass coefficients

Strip theory is suited for calculating the mass coefficients for slender bodies, as it is
a widely adopted and sufficiently accurate method. [20] However, by using this method
we cannot find the added mass coefficient in the direction of the X-axis, as shown in
Figure 3. For this direction, we adopt the equivalent ellipsoid method. This method
finds 3D mass coefficients Mij , where Mij stands for the 3D added mass coefficient
in the ith direction due to a unit acceleration in the jth direction. Similarly, mkl(x)
indicates the added mass in the kth direction of a 2D cross section at location x due
to a unit acceleration in the lth direction. L1 and L2 represent the coordinates of the
agent’s two ending points along the x1-axis, while the origin is located at the agent’s
center of buoyancy (COB). Thus, based on the strip theory, the following formulas
hold:

M22 =

∫ L2

L1

m22(x)dx (1)

M33 =

∫ L2

L1

m33(x)dx (2)

M26 =

∫ L2

L1

x m22(x)dx (3)

M35 = −
∫ L2

L1

x m33(x)dx (4)

M55 =

∫ L2

L1

x2 m33(x)dx (5)

M66 =

∫ L2

L1

x2 m22(x)dx (6)

In this work, all evolved agents have rotationally symmetrical bodies with respect
to x1-axis. Therefore, the added mass matrix simplifies to:

M11 0 0 0 0 0
0 M22 0 0 0 M26

0 0 M33 0 M35 0
0 0 0 0 0 0
0 0 M35 0 M55 0
0 M26 0 0 0 M66


with M22 =M33; M26 = −M35 and M55 =M66.

On the other hand, since forces in the x1-direction cannot be determined with strip
theory as mentioned earlier, another method is needed to calculate the remaining 3D
added mass coefficient M11. Here we adopt the method of the equivalent ellipsoid, by
assuming that the evolved agents can be modelled as an elongated ellipsoid. Thus,
based on theory of hydrostatics, M11 is given as follows:

M11 =
4

3
πab2ρ k11 (7)

where ρ is the density and k11 is the hydrodynamic coefficient, defined as:

k11 =
α0

2− α0
(8)

6



where:

α0 =
2(1− β2)

β3

[
1

2
ln

(
1 + β

1− β

)
− β

]
(9) β =

√
1− b2

a2
=

√
1− d2

L2
(10)

where d and L are the maximum diameter and length for the whole object respectively.

2.6. Moment of inertia (MOI)

Hollow conical frustum is a solid of revolution, i.e. a solid figure obtained by rotating a
plane curve around an axis. Solids of revolution are defined by the generator functions
f1(x) and f2(x), where f1(x) is the inner function of the solid of revolution, while f2(x)
is the outer function, thus 0 ≤ f1(x) ≤ f2(x) must hold. What is special in our case
is that our conical frustum is obtained by rotating an inclined rectangle plane around
the X-axis. Thus f1(x) and f2(x) are simply two straight line equations.

In order to find the moment of inertia with respect to the X-axis, the total moment
of inertia in its general form can be formulated as follows [21]:

IX =

∫ xf

x0

{∫ f2(x)

f1(x)

[∫ θf

θ0

ρ(x, rx, θ)dθ

]
r3xdrx

}
dx (11)

This expression can be used for any solid of revolution. For a complete revolution of
the solid with constant density ρ = ρ(x, rx) the formula can be simplified as:

IX = 2π

∫ xf

x0

∫ f2(x)

f1(x)

[
ρ(x, rx)r

3
xdrx

]
dx (12)

and simplified further for ρ = ρ(x):

IX =
π

2

∫ xf

x0

ρ(x)
[
f2(x)

4 − f1(x)4︸ ︷︷ ︸
Mdx

]
dx (13)

As shown in Equation 13, for solids of revolution with a density depending just on x
(the height), and for homogeneous bodies, the volume integral is reduced to a simple
integral in one variable. The only required parts are the functions that generate the
solid and the limits along the X-axis. In our case, both fi(x) and fi(x) are equations
of a straight line with the same slope m. Thus, the mechanical differential Mdx can be
found as:

fi(x) = m(x− a) + ci

fi(x)
2 = m2(x− a)2 + 2mci(x− a) + c2i

fi(x)
4 = m4(x− a)4 + 4m3ci(x− a)3 + 6m2c2i (x− a)2 + 4mc3i (x− a) + c4i

As a result, Md can be defined as follows:

Mdx = f2(x)
4 − f1(x)4

= 4m3(c2 − c1)(x− a)3 + 6m2(c22 − c21)(x− a)2 + 4m(c32 − c31)(x− a) + (c42 − c41)

7



Therefore:

IX =
π

2
ρ

∫ xf

x0

Mdxdx =
π

2
ρm3(c2 − c1)(x− a)4 + 2m2(c22 − c21)(x− a)3

+ 2m(c32 − c31)(x− a)2 + (c42 − c41)x

∣∣∣∣∣
xf

x0

where x0 and xf are the start and end of each module relative to the center of mass
of the overall shape.

As for the moment of inertia with respect to the Y and Z axes, we need to consider
that all the solids evolved in this work are generated through a complete revolution and
possess a constant density. Therefore, they exhibit cylindrical symmetry. That means
that their moment of inertia with respect to the Z-axis is always equal to their moment
of inertia with respect to the Y-axis. Thus:

IZ = IY (14)

The moment of inertia in its general form for the Y-axis (and Z-axis) is given by:

IY =

∫ xf

x0

{∫ f2(x)

f1(x)

[∫ θf

θ0

ρ(x, rx, θ) sin
2 θdθ

]
r3xdrx

}
dx

+

∫ xf

x0

{∫ f2(x)

f1(x)

[∫ θf

θ0

ρ(x, rx, θ)dθ

]
rxdrx

}
x2dx (15)

For a complete revolution with ρ = ρ(x, rx) and IX as in Equation 13, this formula
can be simplified as:

IY =
1

2
IX + 2π

∫ xf

x0

x2
∫ f2(x)

f1(x)

[
ρ(x, rx)rxdrx

]
dx (16)

Finally, for ρ = ρ(x), IY can be further reduced to:

IY =
1

2
IX + π

∫ xf

x0

ρ(x)x2
[
f2(x)

2 − f1(x)2
]

︸ ︷︷ ︸
Mdy

dx (17)

Generally, this formula holds:

x2fi(x)
2 = x2m2(x− a)2 + 2mcix

2(x− a) + c2ix
2

= x2m2(x− a)2 + 2mcix
3 − 2macix

2 + c2ix
2

Therefore, similar to Mdx, Mdy is calculated as follows:

Mdy = x2f2(x)
4 − x2f1(x)4

= 2m(c2 − c1)x3 − 2ma(c2 − c1)x2 + (c22 − c21)x2

8



Finally:

IY =
1

2
IX + π

∫ xf

x0

Mdydx =
1

2
m(c2 − c1)x4 −

2

3
ma(c2 − c1)x3 +

1

3
(c22 − c21)x3

∣∣∣∣∣
xf

x0

As mentioned earlier, this formula (based on Equation 17) can be adopted for the
moment of inertia Z-axis as well.

2.7. Center of gravity (COG) and center of buoyancy (COB)

Center of gravity and center of buoyancy are paramount in order to model the evolved
shapes adequately. Firstly, for the hollow conical frustum the center of gravity (with a
constant wall thickness) can be calculated as follows:

COG = x0 +
h ∗ (Rb + 2Rt)

3 ∗ (Rb +Rt)
(18)

where Rb is the bottom radius, until the middle point of the wall, Rt is the top radius,
until the middle point of the wall, and h is the height. On the other hand, the center of
gravity of a solid conical frustum (to be used as center of buoyancy) can be calculated
as follows:

COG = x0 +
h

4
∗
R2
b + 2RbRt + 3R2

t

R2
b +RbRt +R2

t

(19)

where Rb = 0 is the bottom radius until the middle point of the wall, Rt is the top
radius until the middle point of the wall, and h is the height.

The global center of gravity for the agent can be computed from the centers of each
of the n modules as follows:

COG =

n∑
i=1

COGi ∗Massi

Massagent
(20)

where COGi is the center of gravity of module i (relative to the origin), Massi is the
mass of module i, and Massagent is total mass of the agent.

2.8. Volume and mass

Finally, we need to calculate the volume, mass and density of the shape. For the solid
conical frustum, the volume can be calculated as follows:

V =
1

3
πh(R2

b +RbRt +R2
t ) (21)

For the sphere:

V =
4

3
πR3 (22)

9



For the spherical cap:

V =
1

3
πR3(2− 3sinθ + sin3θ) (23)

Finally, the mass of all these shapes can be calculated as follows:

m = V ρ (24)

3. Results and discussion

To test our framework, we use a case study where the objective is to design agents
capable of reaching a set of predefined target points in a tube filled with flowing
water. A graphical representation of the simulated scenario is shown in Figure 4. The
environment conditions are set as follows. The length of the pipe is 9 meters, and its
diameter is 2m. The water level almost reaches the upper part of the pipe. The water
current has a velocity of 1ms−1, and the density of the water is 1024 kgm−3.

Se define 10 target points in various parts of the pipe, such that a different motion
behavior with respect to longitudinal/angular velocity and acceleration (and thus, a
resulting trajectory) is needed in order to reach each of these target points. These
points are chosen to cover a wide range of cases, including cases where that agent
requires to ascend in the pipe. Since we assume passive agents (without actuation),
their trajectory will only be determined by their morphology. Therefore, each agent
needs to be optimally shaped for each target point, such that if it is injected into the
pipe at a fixed position (insertion point), it will reach the given target point.

As discussed earlier, each evolved agent must include a spherical control unit (the
core module that hosts the agent’s hardware and sensors). This constraint is added
to minimize the reality gap, as in many applications it is required to have a specific
shape included in the overall agent structure. In this regard, we set the mass of the core
module to 0.05 kg and its radius to 0.01m. In addition, the following characteristics of
the agent are defined:

(1) Length of the small module = 0.0025m
(2) Length of the medium module = 0.005m
(3) Length of the large module = 0.01m
(4) Thickness of the shell = 0.001 25m
(5) Density of the material (Acrylonitrile Butadiene Styrene3) = 1050 kgm−3

It is worth mentioning that the number of iterations of the L-system is 3, such that
the maximum number of modules is 40. Consequently, the highest and lowest possible
length for an evolved agent is 0.4m (39 modules * 0.01m + 0.01 core radius) and
0.1075m (39 modules × 0.0025m + 0.01m core radius)

To solve this test problem, we use the evolutionary scheme and the simulation setup
presented in the previous sections. We set the fitness of an individual agent (to be
maximized) as follows:

fitness = 100×
(
1− dmin

dmax

)
(25)

3It is worth mentioning that adopting the density of Acrylonitrile Butadiene Styrene (ABS) in the evolution
process and using openSCAD facilitates the realization of the evolved agents using 3D printers.

10



where dmin is the smallest Euclidean distance between the simulated trajectory of the
agent and the target point, and dmax is the distance between the furthest possible
position in the environment and the target point. As such, we express the fitness as a
percentage (the optimal value 100% is obtained when dmin = 0).

Furthermore, we set the population size to 10 and the number of generations to 5,
i.e. in total we run 50 evaluations per evolutionary run. The crossover and mutation
probabilities, Pcrossover and Pmutation, are set to 0.9 and 0.1 respectively.

Due to the stochastic nature of the evolutionary process, for each target point we
repeat the evolutionary algorithm 10 times. All the evolutionary experiments were
conducted on a Linux PC with Intel(R) Xeon(R) CPU W3540 @ 2.93GHz and 24 GB
RAM. The total computational time for 5000 evaluations (50 evaluations per evolu-
tionary run, × 10 target points × 10 repetitions) is 20 hours.

Figure 5 shows the fitness trends in terms of mean fitness and the respective standard
deviation at every generation across the 10 repeated evolutionary runs for 8 of the 10
target points. It can be seen from the figure that the evolved agents are able to reach
the target points with a relative distance error that is smaller than 5% in the worst
case. Furthermore, the different runs display a small standard deviation (1.1% across
10 runs), thus showing the strong robustness of the proposed method.

In Figure 6, the best evolved agent’s shape obtained across the 10 different repeti-
tions for each of the 10 target points is shown. Of note, in many cases the morphological
properties of the evolved agents for two adjacent target points (see e.g. TP 6 and TP7)
are significantly different. This confirm our hypothesis that different morphologies are
really needed to reach different target points: as a consequence, a single morphology
cannot reach all the target points. We further hypothesize that this is due to the com-
plexity of the morphological space. For example, a small change in the height of the
target points (w.r.t. the bottom of the pipe) may require a change in the center of
buoyancy of the agent, such that in order to reach two adjacent targets a change in
the morphological properties is needed.

Finally, we have performed a set of experiments aimed at testing the consistency
(replicability) of the simulator. In order to do that, we have re-simulated for 10 times
each best performing agent obtained for each target point, and recorded the relative
trajectories. Figure 7 shows the mean trajectory followed by the best agents related to
8 of the 10 target points, in addition to the standard deviation of the position of the
agent along the Y-axis w.r.t. the X-axis. It should be noted that in the presented plots,
once the agent has reached the minimum distance to its target point, the trajectory is
not recorded further. Once again, it can be seen from this figure that the trajectories
followed by the agent in each experimental condition are quite robust across multiple
runs, as the standard deviation across the 10 repeated trajectories is smaller than 1%
in the worst case. Furthermore, we note that different morphologies follow completely
different trajectories, which are highly optimized in order to reach each target point:
this further confirms that a single morphology would not be able to reach all the target
points.

4. Conclusions

In this paper, we presented an evolutionary scheme to evolve scaled-down sized agents
for inspection and exploration of fluid environments. The proposed evolutionary scheme
includes an indirect genotype-phenotype mapping based on Lindenmayer-Systems, ac-
cording to which each evolved agent is constructed from a set of modules with the

11



shape of a conical frustum. This scheme allows an adequate exploration of a large mor-
phological space by means of a set of production rules. Furthermore, it allows setting
constraints on the upper and lower limits of several physical features of each module,
such as its length and radius. In addition, our scheme includes the possibility to inte-
grate a predefined module, e.g. a control unit, to be inserted in the evolved agent. To
test our scheme, we applied it on a problem where the objective was to obtain agents
capable to reach 10 target points in a given pipe environment. In our experiments, the
evolved agents, relying only on their morphology, were able to consistently reach the
target points with a relative distance error smaller than 5% in the worst case, and a
standard deviation of 1.1% across 10 repetitions of the evolutionary loop. Finally, to
test the consistency of our simulator, we repeated the simulation of the best scoring
agent for each point 10 times. Results show a standard deviation that is smaller than
1% in the worst case, highlighting a good replicability of the simulation w.r.t. the
random seed.

The present work can be extended in various ways. In particular, we plan to test the
proposed framework on more complex environments (for instance consisting of multi-
ple pipes connected through junctions) and conduct real-world tests on a controlled
experimental setup, in order to analyze the reality gap between the simulator and the
real environment under investigation. Finally, it will be interesting to test the proposed
framework on real industrial cases of monitoring of water and oil pipes.

Funding

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No: 665347.

References

[1] Srijith, B.; Thirumalai, R. Inspection tool for flexible manufacturing system. Imp. J.
Interdiscip. Res. 2017, 3 .

[2] Nishihara, T.; Osuka, K.; Tamura, I. Development of a simulation model for inner-gas-
pipe inspection robot: SPRING. Proceedings of the SICE Annual Conference. 2010; pp
902–904.

[3] Kim, J.; Sharma, G.; Boudriga, N.; Iyengar, S. S. SPAMMS: A sensor-based pipeline
autonomous monitoring and maintenance system. Proceedings of the International Con-
ference on COMmunication Systems and NETworks (COMSNETS). 2010; pp 1–10.

[4] Nayak, A.; Pradhan, S. Design of a new in-pipe inspection robot. Procedia Eng. 2014,
97, 2081–2091.

[5] Aaqib, H. S.; Fazil, A. M.; Saquib, H. Pipe Inspection Robot. Int. Res. J. Eng. Techn.
2018, 5 .

[6] Tur, M.; M., J.; Garthwaite, W. Robotic devices for water main in-pipe inspection: A
survey. J. Field Robot. 2010, 27, 491–508.

[7] Hallawa, A.; Schlupkothen, S.; Iacca, G.; Ascheid, G. Energy-efficient environment map-
ping via evolutionary algorithm optimized multi-agent localization. Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO) Companion. 2017; pp 1721–
1726.

[8] Pasemann, F. structure and function of evolved neuro-controllers for autonomous robots.
Connect. Sci. 2004, 16 .

[9] Brezocnik, M.; Balic, J. A genetic-based approach to simulation of self-organizing assem-
bly. Robot. Comp.-Int. Manuf. 2001, 17, 113–120.

12



[10] Meyers, R. A. Encyclopedia of complexity and systems science; Springer, 2009.
[11] Hrabia, C.-E.; Lützenberger, M.; Albayrak, S. Towards adaptive multi-robot systems:

self-organization and self-adaptation. Knowl. Eng. Rev. 2018, 33 .
[12] Brodbeck, L.; Hauser, S.; Iida, F. Morphological evolution of physical robots through

model-free phenotype development. PLoS ONE 2015, 10, 1–17.
[13] Doncieux, S.; Mouret, J.-B.; Bredeche, N.; Padois, V. Evolutionary Robotics: Exploring

New Horizons. In New Horizons in Evolutionary Robotics; Doncieux, S., Bredeche, N.,
Mouret, J.-B., Eds. 2011; pp 3–25.

[14] Floreano, D.; Nolfi, S. Evolutionary robotics: The biology, intelligence, and technology of
self-organizing machines; Intelligent Robotics and Autonomous Agents series; MIT Press,
2004.

[15] Silva, F.; Correia, L.; Christensen, A. Evolutionary robotics. Scholarpedia 2016, 11,
33333.

[16] Jelisavcic, M.; de Carlo, M.; Hupkes, E.; Eustratiadis, P.; Orlowski, J.; Haasdijk, E.;
Auerbach, J. E.; Eiben, A. E. Real-world evolution of robot morphologies: a proof of
concept. Artif. Life 2017, 23, 206–235.

[17] Horodinca, M.; Doroftei, I.; Mignon, E.; Preumont, A. A simple architecture for in-pipe
inspection robots. Proceedings of the International Colloquium on Autonomous and Mo-
bile Systems. 2002; pp 61–64.

[18] Manhães, M. M. M.; Scherer, S. A.; Voss, M.; Douat, L. R.; Rauschenbach, T. UUV Sim-
ulator: A Gazebo-based package for underwater intervention and multi-robot simulation.
Proceedings of OCEANS MTS/IEEE Monterey. 2016; pp 1–8.

[19] Hornby, G. S.; Pollack, J. B. Evolving L-Systems to generate virtual creatures. Comput.
Graph. 2001, 25, 1041–1048.

[20] Sen, D. T.; Vinh, T. C. Determination of added mass and inertia moment of marine ships
moving in 6 degrees of freedom. Int. J. of Transp. Eng. Techn. 2016, 2, 8–14.

[21] Diaz, R. A.; Herrera, W. J.; Martinez, R. Some powerful methods to calculate moments
of inertia. arXiv e-prints 2004, physics/0404005.

13



Figures and tables

Notation Meaning
addF Add the module forward relative to the current reference position
addB Add the module backward relative to the current reference position
tiltp Tilt positively
tiltn Tilt negatively
0 Set tilting angle to 0
1 Set tilting angle to 10
2 Set tilting angle to 20
S Set the length of the added module to small (e.g. 5cm)
M Set the length of the added module to medium (e.g. 10cm)
L Set the length of the added module to large (e.g. 15cm)

moveF Move the reference point one module forward
moveB Move the reference point one module backward
moveN Do not move the reference point

Table 1. Alphabet A of the designed L-System and meaning of each symbol.

Figure 1. Framework overview.

14



Figure 2. Phenotype realization: an example.

Figure 3. Conical frustum: hollow and solid.

Figure 4. Simulated environment with insertion point (“IP”) and target points (“TP”).

15



Target point 1 Target point 4

Target point 5 Target point 6

Target point 7 Target point 8

Target point 9 Target point 10

Figure 5. Fitness trend (mean and standard deviation at each generation, across 10 repetitions) of the
evolutionary algorithm for 8 (out of 10) target points.

16



Figure 6. Best evolved agent for each of the 10 target points (“TP”).

17



Target point 1 Target point 2

Target point 3 Target point 4

Target point 5 Target point 6

Target point 7 Target point 8

Figure 7. Trajectories (mean and standard deviation at each time step, across 10 repetitions) of the best
evolved agent for 8 (out of 10) target points.

18


	Introduction
	Materials and methods
	Morphological evolution
	Genotype-phenotype mapping
	Reproduction and selection
	Simulator
	Mass coefficients
	Moment of inertia (MOI)
	Center of gravity (COG) and center of buoyancy (COB)
	Volume and mass

	Results and discussion
	Conclusions

