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Abstract. The constant growth of vehicles circulating in urban envi-
ronments poses a number of challenges in terms of city planning and
traffic regulation. A key aspect that affects the safety and efficiency of
urban traffic is the configuration of traffic lights and junctions. Here,
we propose a general framework, based on a realistic urban traffic sim-
ulator, SUMO, to aid city planners to optimize traffic lights, based on
a customized version of NSGA-II. We show how different metrics -such
as number of accidents, average speed of vehicles, and number of traffic
jams- can be taken into account in a multi-objective fashion to obtain
a number of Pareto-optimal light configurations. Our experiments, con-
ducted on two city scenarios in Italy and different combinations of fitness
functions, demonstrate the validity of this approach and show how evo-
lutionary optimization is an effective tool for traffic light optimization.

Keywords: Traffic light optimization · simulation of urban mobility ·
multi-objective evolutionary algorithm.

1 Introduction

Almost every day, we experience long waits at traffic lights or, even worse, we
get stuck in traffic jams. In fact, the ever growing number of cars has made
road congestion a phenomenon that is almost impossible to control, especially
in larger cities where, even in the presence of efficient public transport, cars are
still the preferred choice for private mobility. A recent study from the European
Union reported that congestion in the EU costs nearly 100 billion EUR, or 1%
of the EU’s GDP, annually1. It has been estimated that in 2017 in Europe,
where over 60% of the population lives in urban areas of over 10,000 inhabitants
and urban mobility accounts for 40% of all CO2 emissions of road transport, an
average driver spent in congestion, over a period of 220 working days, a number
of hours ranging between 45.73 (UK) and 18.13 (Finland)2.

These numbers speak for themselves: road congestion is a substantial problem
in terms of economy, safety and drivers’ comfort, which makes the question of

1 Source: https://ec.europa.eu/transport/themes/urban/urban_mobility_en
2 Data collected by TomTom: https://ec.europa.eu/transport/facts-fundings/
scoreboard/compare/energy-union-innovation/road-congestion_en

https://ec.europa.eu/transport/themes/urban/urban_mobility_en
https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en
https://ec.europa.eu/transport/facts-fundings/scoreboard/compare/energy-union-innovation/road-congestion_en
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how to enhance urban mobility, while at the same time reducing congestion,
accidents and pollution, one of the greatest challenges of our time.

To handle this problem, the traditional approach is to use decentralized (self-
regulated) traffic lights, or queue-based models based on traffic statistics. In this
sense, the traffic light timing settings are usually tested live, and then adjusted
a posteriori based on the traffic statistics. However, not only this way of man-
aging the problem is expensive and time consuming, but also it can also create
confusion in drivers, who would find that the road configurations change over
time. Thus, this solution might cause even more congestion and accidents, exac-
erbating the problem or jeopardizing the safety on the streets.

Here, we tackle this problem by performing computer simulations coupled
with numerical optimization. In particular, we focus on how to define the optimal
traffic light configuration for controlling the crossroads (in the following, we will
refer to them interchangeably also as junctions, or intersections) in a certain area
of interest, taking into account different traffic densities (to model time-variant
traffic conditions) and different contrasting goals. We model this problem in
terms of multi-objective optimization, that we solve in silico by means of a realis-
tic mobility simulator, SUMO [1,2], coupled with the well-known multi-objective
evolutionary algorithm NSGA-II [3]. The latter is configured with custom mu-
tation/crossover operators capable to handle our solution representation, which
encompasses various parameters of traffic junctions and traffic lights timings.

Our approach continues a research path initially opened in [4], a seminal
paper where a (single-objective) evolutionary algorithm (EA) was tested for the
first time -although in a limited experimental setup- in connection with the
microscopic traffic simulator FLEXSYT-II [5], to optimize traffic light timings.

Later research has further investigated the use of Evolutionary Algorithms
for traffic optimization, with most of the existing studies being limited to single-
junction optimization, and differing mainly for the kind of traffic simulation
adopted. For instance, a microscopic simulation approach base on Cellular Au-
tomata was proposed in [6,7,8], coupled with a standard Genetic Algorithm
(GA). A custom Matlab simulator was implemented instead in [9], where a GA
was used to optimally control in “real-time” (i.e., during the traffic light op-
erations) the light timings. A simplified, custom simulator was also used with
a GA in [10], while a more realistic traffic simulator called Traffic Simulator
Framework (TSF) was used in [11].

More recently, two works by Nguyen et al. [12] and Bravo et al. [13] used for
the first time SUMO in connection with EAs to perform traffic light optimiza-
tion. In fact, these two papers inspired our work. In particular, in [12] SUMO was
coupled with a memetic version of NSGA-II (including a local search algorithm)
to improve the anytime behavior of the evolutionary algorithm. The main differ-
ence w.r.t. our work is that in [12] only one objective (the no. of vehicles entering
and leaving the simulation scenario) was related to a specific domain goal, being
the other simply the simulation time: in other words, there was no actual do-
main multi-objective optimization. Furthermore, in [12] the experimental setup
consisted of a single urban map, where the traffic lights in only one junction were
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tuned by the EA. Here, we instead tune the traffic lights of all the junctions in
a certain area of interest (potentially, an entire city), which makes the problem
space much larger and more difficult to explore. This kind of holistic approach
is indeed more similar to the one -named HITUL- proposed by Bravo et al. [13],
who for the first time called for a shift from traditional junction-local control
to global control approaches based on advanced computational resources and
techniques. This concept was implemented in [13] by connecting SUMO with a
single and multi-objective EA, and tested it on a large-scale scenario in Málaga.

Our work here follows a similar approach: despite the increased computa-
tional complexity, as shown in [13] optimizing simultaneously all the junctions
in a certain area of interest -thus leveraging synergistic effects between multiple
junctions’ traffic lights- makes it possible to provide high-quality solutions even
in the most complex traffic scenarios that characterize modern urban mobility.
However, while our work shares a several similarities with the paper by Bravo
et al. [13], we further improve upon their work in at least two main aspects:

– We consider multiple traffic densities at the same time, i.e. we look for so-
lutions that are robust against multiple traffic conditions (while in [13] one
traffic profile at a time is considered: this feature represents a major novelty
of our framework w.r.t. previous works).

– We implement a fully customizable mechanism to combine multiple objec-
tives in a robust optimization fashion: with our framework, the user can for
instance decide to optimize w.r.t. the worst or average traffic conditions,
reducing the variance of the objectives across various conditions, etc. This
feature -that we deem as crucial in practical contexts- is not present in [13].

Finally, we conduct an extensive experimental analysis on two areas of Trento
and Milan, Italy, having very different topologies and sizes, thus showing the
flexibility of our framework to different city scenarios.

The rest of the paper is organized as follows. Section 2 describes the proposed
framework. Section 3 presents the experimental setup and the numerical results.
Finally, section 4 concludes this work.

2 Proposed framework

The impact of traffic lights on road performance is strongly related to the specific
road network configuration. For instance, different speed limits, lane directions,
potential reservations etc. may heavily influence the traffic flow. Furthermore,
performance indicators can also be specific, depending on the scenario road types
(i.e., arterial, urban, suburban roads) and on particular needs (e.g. reduce inci-
dents or emissions in a certain area).

The fundamental idea of our framework is to account for these aspects by
using a microscopic traffic simulator, namely SUMO [1,2], and connect it to a
multi-objective evolutionary algorithm, NSGA-II [3], in order to optimize the
traffic junction and light configurations in a certain area of interest w.r.t. user-
defined fitness functions (and combinations thereof). In the next sections, we
describe the details of the proposed framework.
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Fig. 1. The framework architecture. The TJS module manages the batch-execution
of multiple SUMO simulation instances and provides the data needed for the fitness
evaluations. The TJT module acts as an interface between NSGA-II and the simulator.

2.1 Framework architecture

An overview of the architecture is shown in Figure 1, where the main components
are represented:

– Traffic Junction Tuner (TJT): builds the initial generation, translates each
candidate solution generated by the NSGA-II module to make it available
in SUMO, collects the fitness values to allow user-defined combinations, and
provides the combined fitness functions to the NSGA-II module.

– Traffic Junction Tuner - SUMO tools (TJS): provides a batch-execution in-
terface for the SUMO simulator, abstracting the TraCI [14] APIs to launch
and advance simulations, and gathering all the performance information
needed for the fitness evaluation of a scenario. Moreover, it exposes the NET-
CONVERT and randomTrips SUMO tools, needed to prepare the scenario
and generate synthetic traffic, respectively.
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– SUMO [1,2]: the microscopic traffic scenario simulator.
– NSGA-II [3]: the algorithm module, based on the inspyred Python library [15].

Gene 0

type: t

grtime: gr0

ytime: y0

Gene 1

type: p

grtime: gr1

ytime: y1

...

Gene Jmax

type: t

grtime: gr0

ytime: y0

...

Gene n

type: Tn

grtime: grn

ytime: yn

Fig. 2. Graphical representation of the genome. The type Tn of a gene can either be p
or t. Genes with type p maintain the traffic light timings values inactive. The length
of the genome corresponds to the total number of junctions in the scenario.

2.2 Solution representation

The individuals composing the population that NSGA-II optimizes are particular
instances of the input map. Specifically, each traffic junction corresponds to a
specific gene in the genome of an individual, which can either be of type p or t : in
the former case, the corresponding junction is based on standard priority3, in the
latter case the gene corresponds to a traffic light. This solution representation
is based on some fundamental simplifications, which considerably reduce the
overall complexity of the optimization process:

– A traffic junction can only be of type t or p. Roundabouts, zip merges and
other junction types are not considered, being converted to an allowed type
during the initialization.

– Traffic light phases apply to an entire edge incoming to a junction, meaning
that dedicated light phases for specific lanes are not possible (e.g. no right-
turn preferential lanes).

– Each edge incoming to a junction has a dedicated traffic light phase. Each
edge has its own phase and no combinations are allowed (e.g. the classic
four-way 2-phases traffic light cannot be modeled).

Additionally, a t gene carries additional parameters, namely grtime and ytime,
corresponding to the traffic light timings for green and yellow lights. A graphical
representation of the genome is shown in Figure 2.

2.3 Mutation and crossover operators

At the first generation, individuals are randomly generated with randomized
junction types and random timings within the allowed boundaries. Subsequent
generations are manipulated via ad-hoc mutation and crossover operators. When
an individual is randomly selected for mutation, each of its genes is subject to
mutation with a certain probability mr, to generate an offspring Ii as follows:

3 Vehicles on a low-priority edge have to wait until vehicles on a high-priority edge
have passed the junction.
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– The junction type may switch from t to p (or vice versa) if:

σIi × ρIi > 1, ρIi ∼ N (0, 1) (1)

where σIi (initialized to 1) is a hyper-parameter that adaptively decreases
over the generations until it reaches a threshold ε = 0.01 (see [16]).

– The traffic light timings can change by a random amount (even in the case
of a junction type p, where they will be ignored) as follows:

grtime′Ii = grtimeIi + 10× τgIi , τgIi ∼ N (0, 1) (2)
ytime′Ii = ytimeIi + 10× τyIi , τyIi ∼ N (0, 1) (3)

As for crossover, it is applied with probability cr on two randomly selected
individuals (Ii and Ij), to generate two offspring Ik obtained as follows:

– For each junction, the type is randomly inherited from one of the parents,
with an equal probability;

– The traffic light timings are computed as a randomized weighted average of
the parents’ values:

grtimeIk = wg
Ik
× grtimeIi + (1− wg

Ik
)× grtimeIj , wg

Ik
∼ U(0, 1) (4)

ytimeIk = wy
Ik
× ytimeIi + (1− wy

Ik
)× ytimeIj , wy

Ik
∼ U(0, 1) (5)

A summary of the algorithm parameters is reported in Table 1.

Table 1. Main parameters of the evolutionary algorithm.

Parameter Description

mr Probability of a mutation happening on a selected individual (0.5).

cr Probability of crossover happening on two selected individuals (0.5).

[grmin, grmax]
Time boundaries for the green light, enforced in initialization,
mutations and crossover ([1, 40] sec).

[ymin, ymax]
Time boundaries for the yellow light, enforced in initialization,
mutations and crossover ([1, 10] sec).

Npop Population size (50).

Ngen Number of generations (50).

2.4 Simulations and data collection

In order to evaluate each individual in SUMO, its genome is decoded into a pair
of .nod and .tll files, containing respectively the junctions types and the traffic
light logics (i.e., phases definitions). These files are then loaded by the TJS mod-
ule in order to generate a .net scenario file, along with the necessary amount
of .rou files, containing synthetic traffic routes with a given period4. Further in-
formation about SUMO files can be found in the SUMO documentation [17]. In

4 By default, this generates vehicles with a constant period and arrival rate of 1/period
per second. By using values below 1, multiple arrivals per second can be achieved.
Routes are generates such that a new vehicle with a random path and destination
is inserted at a certain starting position every period seconds, determining a certain
average traffic density.
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our framework, every individual is then simulated in SUMO with various traffic
densities, and for each density multiple times with different seeds (every time
with randomly generated vehicle routes). For what concerns the vehicle model,
only a standard automobile model has been considered, as per the SUMO de-
fault vehicle controller carFollowing-Krauss, a modification of the original Krauß
controller [18], please refer to the SUMO documentation for further details.

The simulation flow is represented in Figure 3, while Table 2 describes the
main parameters of the simulation process.

random seeds

static scenario files

decoding
genome

tll file

nod file

edg file

net file

routes

con file

routes
rou file

simulation

traffic density n

routes
routes

rou file
...

traffic density 1

seed

TraCI

Fig. 3. Simulation flow of a single individual. The genome is decoded into a .tll and a
.nod file, which are then combined with a .con connection file and a .edg file, represent-
ing how the road segments are connected to junctions. The simulations are therefore
performed on an individual final scenario file .net.

Table 2. Main parameters of the simulation process.

Parameter Description

traffic-rates

List of traffic periods for the synthetic traffic generation.
These values are representative of the expected traffic on
the scenario (e.g. at different times of the day) (1.5 sec,
2 sec, 2.5 sec).

random-routes
No. of random vehicle routes sets (i.e. .rou files) to generate
and simulate on the scenario, for each value of traffic-rates
(5).

single-route-
repetition

No. of simulation repetitions to perform for each value of
traffic-rates, with different random seeds (3).

end Simulation duration, used also for routes generation (1 h).

step-size Simulation time-step (1 sec).

2.5 Optimization objectives

The fitness evaluation is based on information gathered via the TraCI API avail-
able in SUMO: information about simulation events are retrieved at every sim-
ulation step by TJS, to be later combined into the final individual fitness vector
considering all traffic densities, routes sets and seed repetitions. Specifically,
simple objectives (SO) can be defined as:
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fitidk ∈ {arrived, accidents, teleported, avg speed, var speed}
TRR
k ∈ {H,L,M, V }
TTR
k ∈ {H,L,M, V }
SOk = TTR

k TRR
k fitidk

(6)

with fitid being the original value collected via TraCI (see Table 3), and TRR

and TTR specifying how to combine the information from the different repeti-
tions (Highest, Lowest, Mean, Variance), respectively for routes sets and traffic
densities. Additionally, some of the TraCI-collected values can be normalized
prior to be combined, according to the rules in Table 3. It should be noted that
the framework can be easily extended to collect further TraCI data, for instance
about fuel consumption or emissions.

Simple objectives are then combined into an objective definition Oj , which
consists of an identifier φj and a valid reverse polish notation (RPN) expression
of SO, operators in RPNops, and real numbers:

RPNops = {+,−,×, /,min,Max}
tkij ∈ {SO0 SO1 . . . SOs} ∪RPNops ∪ IR

φj ∈ {+,−, ∗}
Oj = φj [tk

0
j tk

1
j . . . tknj ]

(7)

An objective (as handled by NSGA-II) is then given by the evaluation of the
corresponding RPN expression on the SO values of the individuals. The φ symbol
specifies whether the objective has to be maximized, minimized, or just saved
without using it as fitness, respectively with +,− and ∗. An example of valid
notation of (semicolon separated) objectives is as follows:

+[MMarrived 2 ∗] ; −[HMteleported MMaccidents ∗ 10 /] ; −[HHaccidents].

3 Numerical results

We have extensively tested the proposed framework on two different maps, re-
spectively of Trento and Milan city center. These map files have been obtained
from OpenStreetMap [19] and automatically converted to the SUMO compatible
XML files via the NETCONVERT tool. The objective configurations are shown
in Table 4. The main difference between the two scenarios are the number of
traffic junction to optimize, and the map complexity: Trento has 998 junctions
in a smaller space, with many curves and links, while Milan has 3776 junc-
tions that are farther apart, along mostly straight perpendicular roads. Trento
is more challenging from in terms of synergy across junctions, whereas on Milan
the algorithm must explore a much larger search space.

All the experiments have been executed on an Intel R© i9-7940X@3.10 GHz
14 cores-28 threads CPU with 64 GB RAM, running Ubuntu 18.10. The SUMO
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Table 3. Fitness request identifiers available in TJS.

Identifier
(fitid)

Description Normalization

arrived
Number of vehicles which were able to
complete their entire route and arrive at their
final destination.

Arrived over
departed vehicles
ratio.

accidents

Number of vehicles which were involved in an
accident. Note that crashed vehicles are
removed from the simulation according to
SUMO standard logic.

Crashed over
departed vehicles
ratio.

teleported

As specified in the SUMO documentation [17],
the default behavior for a vehicle in a traffic
jam is to “teleport” to the next edge of its
route (as such, it can be used as a proxy to
measure congestion). The teleported identifier
keeps track of the number of teleports that
happened during the execution. Note that a
vehicle may teleport multiple times in the
same simulation.

Number of
teleports over 10
times the
departed
vehicles.

avg speed
Average speed of all the vehicles in the scenario
throughout all the simulation duration.

Average speed
over 2 times the
maximum speed
limit of the
scenario.

var speed
Speed variance of all the vehicles in the
scenario throughout all the simulation
duration.

N.A.

simulations has been performed in parallel, to take advantage of the proces-
sor multi-threading capabilities. All code and numerical results are available as
Supplementary Information online5.

For both the scenarios, first we ran 50 test simulations on the original junction
configuration, in order to compare the results of the individuals fitness with this
reference scenario. It should be noted that the simplifications made in Section 2.2
for the genome encoding does not apply to these original maps, so in this case
the traffic is able to exploit preferential lanes and dedicated light phases, making
the comparison biased against the evolving individuals. In the next two sections
we will see the details results of the evolutionary algorithm on the two scenarios.

3.1 Trento optimization runs

The TN0 boxplots (Figure 5), matrix plots (Figure 6) and parallel coordinates
plot (Figure 7) clearly show how the fitness improves over the generations, even-
tually reaching a performance similar to the reference scenario (shown in gray

5 https://github.com/alecacco/Traffic-Junction-Tuner

https://github.com/alecacco/Traffic-Junction-Tuner
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Fig. 4. Urban maps used in the experiments: Trento (left), Milan (right).

Table 4. Objective configurations used in the experiments.

id Scenario Objectives Normalization

TN0 Trento -[MMteleported];-[HHaccidents];+[MMarrived] Yes

TN1 Trento
-[MMteleported];-[HHaccidents];+[MMarrived];

*[VMarrived];*[VMteleported]
No

TN2 Trento
-[MMteleported 2 *];-[HHaccidents];+[MMarrived];

-[VMarrived];-[VMteleported]
Yes

MI0 Milan
-[MMteleported];-[HHaccidents];+[MMarrived];

*[VMarrived];*[VMteleported]
Yes

MI1 Milan
-[MMteleported];-[HHaccidents 20 *];+[MMarrived];

*[VMarrived];*[VMteleported]
Yes

in the matrix and parallel coordinate plots). Similar results (not shown here
for brevity) have been achieved with TN1 and TN2, with even better results in
the former. Interestingly, an improvement over the non-fitness data (i.e., met-
rics that are not explicitly optimized by the evolutionary algorithm), *[VMar-
rived];*[VMteleported], has also been observed in TN1: this highlights how the
optimization collaterally reduced the performance difference across different traf-
fic densities. On the other hand, while TN2 objectives included explicitly the
optimization of these parameters, the best individuals didn’t perform as well
as the best ones of TN1 (this might be due to a more difficult identification of
Pareto-optimal solutions with an increased number of objectives). Additionally,
TN2 progress was slower, also probably due to the higher number of objectives.

Overall, the TN experiments can be considered successful, especially consid-
ering the complexity of the Trento scenario, our simplifications in the model,
and their direct impact on traffic junction synergies.

3.2 Milan optimization runs

Due to the characteristics of the Milan scenario, individuals are expected to
evolve slower than the ones in the case of Trento. In fact, this behavior has been
observed in the MI0 and MI1 runs, still achieving interesting results: the boxplots
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in Figure 8 show how the fitness values improve over the generations, while the
matrix plot in Figure 9 gives more insights on the progress w.r.t. the reference
scenario (shown in gray). As it can be observed in the latter the reference is
almost outperformed by the best evolved individuals. The parallel coordinates
plot (Figure 10) also show how the evolution progressed towards the reference
fitness, reaching it and outdoing at the last generation.

The difference between MI0 and MI1 runs is the second objective (as stated
in Table 4), which in the former case caused the decrease of accidents to be less
significant, while in the latter the 20 * factor better guided the optimization,
reaching the reference HHaccidents fitness.

Overall, the MI runs achieved satisfying results, in particular considering the
scale of the scenario and, again, the simplification that has been made on the
genome encoding.

4 Conclusions

In this paper we presented a general framework for traffic light optimization. The
framework couples a realistic simulator for urban mobility, SUMO, with a multi-
objective Evolutionary Algorithm based on NSGA-II. We tested the framework
on two city maps with various combinations of optimization goals, taking into
account the robustness of each solution (i.e., a traffic light configuration gen-
erated by NSGA-II) w.r.t. different levels of traffic density. This latter aspect
shows how the tool can be applied in practical urban scenarios with time-variant
traffic density, giving the user the possibility to optimize e.g. w.r.t. the worst or
the average density scenarios.

Our results provided a number of interesting insights on the possible trade-off
solutions that can be obtained on the two maps, taking into account conflicting
goals. Furthermore, they showed the flexibility of the proposed framework, that
has been designed such that it can be easily extended to additional goals and
arbitrary combinations thereof.

In future works, we will include into our framework the possibility to take
into account different types of vehicles (such as buses, trams, bicycles, etc.),
each with its own traffic behavior and density. In addition to that, we will focus
our attention on more detailed intersection models, and test the framework on
larger and more complex city maps. As for what concerns the algorithmic details,
we will try to investigate alternative mutation/crossover operators, in order to
characterize their behavior, and compare single vs multi-objective evolutionary
algorithms as well as incremental local search methods.

Finally, we will consider the possibility to provide our framework as a Software-
as-a-Service, available to the general public and the local administrators in order
to make better informed city plan choices.
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Fig. 5. TN0 scenario: generational plot. Each boxplot represents the distribution of the
objective function value within a generation.
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Fig. 6. TN0 scenario: matrix plot. The labels on the diagonal indicate the x axis of the
plots in the same column and the y axis of the plots in the same row. The diamond
markers indicate the final Pareto-optimal solutions.
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Fig. 7. TN0 scenario: parallel coordinates plot. The vertical axes indicate the optimiza-
tion objectives, while the connected lines represent the fitness of each individual. The
Pareto-optimal solution (at each generation) and the reference solutions are highlighted
with thicker lines.
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Fig. 8. MI1 scenario: generational plot. Each boxplot represents the distribution of the
objective function value within a generation.
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Fig. 9. MI1 scenario: matrix plot. The labels on the diagonal indicate the x axis of the
plots in the same column and the y axis of the plots in the same row. The diamond
markers indicate the final Pareto-optimal solutions.
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Fig. 10. MI1 scenario: parallel coordinates plot. The vertical axes indicate the optimiza-
tion objectives, while the connected lines represent the fitness of each individual.The
Pareto-optimal solution (at each generation) and the reference solutions are highlighted
with thicker lines.


	Simulation-driven multi-objective evolutionfor traffic light optimization

