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Abstract. A novel microwave imaging (MI) method is proposed to deal with the non-
destructive testing and evaluation (NDT/NDE) of dielectric structures. The proposed technique
exploits a probabilistic differential contrast source inversion (D-CSI) formulation of the inverse
scattering (IS) problem, which is then effectively solved by means of a customized multi-task
Bayesian compressive sensing (MT-BCS) solver. Numerical results are shown to assess the
effectiveness and robustness of the proposed NDT/NDE method, as well as to compare it with
a single-task (ST-BCS) implementation within the same framework.

1. Introduction

Microwave imaging (MI) is nowadays considered a promising alternative to established
technologies such as eddy current testing (ECT) [1] and ultrasound testing (UT) [2]| for
NDT/NDE purposes [3|[4]. However, the structural evaluation of low-permittivity/low-loss
media (e.g., glass fiber reinforced polymers, foam, and honeycombs) requires to carefully address
challenging issues of the arising inverse scattering (IS) problem such as non-linearity and ill-
posedness [5][6].

Linear approximations (e.g., Born or Rytov [7][8]) have been often exploited to restore
linearity. However, they can be applied only when weak scatterers have to be imaged,
being otherwise suitable to provide only gqualitative guesses, without quantitative material
characterization. Alternatively, multi-resolution approaches have been successfully integrated
with both deterministic [9] and stochastic solvers to mitigate the occurrence of local minima /false
solutions by reducing the ratio between problem unknowns and non-redundant /informative data.
On the other hand, proper regularization strategies must be studied to deal with the #ll-posedness
of the IS problem [5|. In this context, a-priori information on the inspected structure and on
the class of imaged targets is an effective recipe to yield stable solutions. When dealing with
NDT/NDE, generally-available a-priori information about the unperturbed structure can be
profitably taken into account to re-formulate the IS problem in a differential framework in
order to retrieve only differences with respect to a known scenario [10]. Moreover, knowing the
type/shape of scatterers (e.g., cracks) can significantly shrink the solution space, allowing to
retrieve specific descriptors (e.g., location and dimensions), as done in recent works on learning-
by-examples (LBE) parametric inversion methods [11]-[13].

Besides all mentioned approaches, compressive sensing (CS)-based methods can yield regularized
and computationally-efficient solutions of the IS problem when the sought unknowns are sparse
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(i.e., represented by few non-null coefficients) with respect to a suitable expansion basis [14]-
[18]. Accordingly, this work presents a novel MI technique for NDT/NDFE based on a multi-
task Bayesian CS (MT-BCS) solution method [19] exploiting a probabilistic differential contrast
source inversion (D-CSI) formulation of the IS problem.

2. D-CSI Probabilistic Formulation of the IS Problem and BCS Solution Method
Let us consider a two-dimensional (2D) NDT/NDE scenario in which an investigation domain
Diny is probed by V plane waves with known incident electric field distribution & (x, y), v =
1,..., V1. The known background medium occupying D, is characterized by relative permittivity
and conductivity distributions equal to &,5 (z, y) and op (z, y), respectively. Moreover, the
scattered radiation is collected at M sampling locations (x,, ym), m = 1, ..., M, uniformly
distributed over an external circular observation domain D, of radius Rps.
Assuming a D-CST formulation of the MT problem at hand, it is possible to express the differential
scattered field

AE (2, y) = € (2, y) = €h (0 y): v=1,.0 V (1)
as the difference between the total field in presence of one or multiple unknown scatterers inside
Dinw, £ (z, y), and the total field for the unperturbed background, &% (z, y) 2. Accordingly, the
v-th differential field in Dy, is expressed through the following integral data equation 3

ALY (z, y) =/ Gp (z, y; 2,y ) AJY (o, ) da'dy’s  (x,y) €D v =1, ..., V. (2)

inv

where Gp (z, y; 2, y') is the inhomogeneous Green’s function for the known background medium.
In (2) AJY (z, y) is the v-th differential contrast source

AT (z,y) =& (x, y) AT (2, y); v=1,..,V (3)

where

A (2, 9) = [eon (o, ) — & ()] — | 222U 02 0) (@)
weo

is the differential contrast function mathematically modeling the presence of unknown targets
inside Dy, with relative permittivity and conductivity distributions equal to &, (x, y) and
o (x, y), respectively.

To numerically deal with the solution of the differential IS problem at hand, Dj,,, is discretized
into N square sub-domains by means of N pixel basis functions. Accordingly, it is possible to
rewrite (2) in compact matrix notation as follows

AL =G AT v=1,..,V (5)

where ALY = {ALY (¢, Ym); m =1, ..., M} contains the differential scattered field samples,
AJY = {AJY (2, yu); n =1, ..., N} is the unknown v-th differential contrast source in each
sub-domain, while G  is the (M x N) inhomogeneous Green’s operator.

Under the hypothesis that the problem unknowns are sparse (i.e., represented by few non-null
coefficients) in the selected pixel basis, it is possible to yield a regularized solution of (5) by
re-formulating the IS problem in a probabilistic BCS framework and looking for the maximum
a-posterior: estimate

8" = arg (s (P (AL'1AE)} )+ 0= 1, V- )

! Subscript 4 stands for incident.
2 Subscript B stands for background.
3 A time dependency factor exp (jwt) is assumed and omitted for notation simplicity.
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As a matter of fact, thanks to the BCS, sparseness priors can be imposed without the need for
checking the compliance of the restricted isometry property (RIP) by the inhomogeneous Green’s
operator (required by standard CS algorithms and often unfeasible from a computational point
of view, even for small problems [14]). Owing to the availability, to the authors’ best knowledge,
of BCS solvers able to deal only with real linear problems, the data equation (5) is first rewritten
by separating the real/imaginary (R/S) parts as follows

ALY = gBMU; v=1, ..,V (7)

where AEY = {R (A"); S (ALY}, ATV = {R(AJY); S(AJY)}, while G, contains the R/

parts of gB. Then, a closed form solution of (7), Z\_jv = {@27 n=1, .., QN}, is computed
according to the MT-BCS theory as [19]

——0 1
AT = |diag (@) +97g,| GTAE" v=1,..V (8)

where a = (a,; n =1, ..., 2N) is the set of MT-BCS hyper-parameters, shared among all views
(v = 1, ..., V) to enforce the existing physical correlation among differential currents under
several illuminations, computed through a relevance vector machine (RVM) solver as

a=arg {max [—— 22 (M + () log ((AEU) fIMU + 2ﬂ2) + log ‘g‘] } (9)

v=1

T
where 81 and [y are MT-BCS control parameters and K = I+G [diag (a)] " <QB> ,.T"and

|.| are the transpose and the determinant, respectively, and I 1s_ the identity matrix. Finally,
the differential contrast is retrieved as

V —
AT
AT (Tny Yn) = Z j +‘7 jn+N, n=1,.., N (10)

xn, yn)

where é\” (Zn, ypn) is the retrieved total field in the n-th cell belonging to Djp,.

3. Numerical Assessment

To numerically assess the proposed MT-BCS methodology, a square investigation domain of
side 2\ probed by V = 18 plane waves impinging from angular directions ¢ = (v — 1) 27”
v =1, ..., V, has been considered as reference benchmark scenario. The scattered field has been
collected over M = 18 ideal receivers (Ryps = 2A), while N = 400 pixel basis functions have been
considered to solve the inverse problem.

Figure 1 shows the MT-BCS reconstruction when dealing with the retrieval of a set of small
cracks embedded within a lossless background with relative permittivity e,5 = 1.1 [A7 = 0.1
- Fig. 1(a)] and processing blurred data with a signal-to-noise ratio of SNR = 20 dB. As it
can be observed, all scatterers have been correctly detected, and a faithful reconstruction of
their support and contrast function has been yielded [Fig. 1(b) vs. Fig. 1(a)]. Moreover,
there is a clear advantage of the MT-BCS over a “simpler” single-task BCS (ST-BCS) solution
approach [14] formulated within the D-CSI framework [Fig. 1(b) vs. Fig. 1(c)]. As a matter
of fact, although relying on the same probabilistic framework, the ST-BCS does not enforce

any correlation among several views in solving (6), resulting in a significantly worse guess of the
defects inside Djy, [Fig. 1(c)].
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Figure 1. Numerical Assessment (“Random Cracks”, AT = 0.1, SNR = 20 dB) - (a) Actual
and retrieved differential contrast by the (b) MT-BCS and (c¢) ST-BCS methods.
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Figure 2. Numerical Assessment (“Random Cracks”, AT =0.1, SNR =5 dB) - (a) Actual and
retrieved differential contrast by the (b) MT-BCS and (¢) ST-BCS methods.

Such positive outcomes are confirmed when processing highly blurred data, as well. Indeed, the
plot of the MT-BCS [Fig. 2(a)|] and ST-BCS |Fig. 2(b)] solutions when SN R =5 dB verify the
superior performance of the proposed methodology regardless of the harsh operative conditions.
Moreover, it is worth pointing out that the MT-BCS solutions come at a higher computational
efficiency with respect to the ST-BCS ones (i.e., At|yr_peg = 20 [sec] vs. At|gp_pog = 37
[sec]). This is in agreement with the reference literature, since the MT-BCS processes all multi-
view data in a single inversion stage, while multiple inversions are performed by the ST-BCS to
invert scattered data related to V' illuminations [17].
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To further investigate the robustness and reliability of the proposed NDT/NDE solution
approach, let us now consider the retrieval of the vertical crack in Fig. 3(a) *.
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Figure 3. Numerical Assessment (“ Vertical Crack”, AT = 0.5, SNR € {5, 20} dB) - (a) Actual
and retrieved differential contrast by the (b)(d) MT-BCS and (c)(e) ST-BCS methods when
processing noisy data at (b)(c) SNR =20 dB and (d)(e) SNR =5 dB.

The background medium has a relative permittivity of €,5 = 1.5, yielding a differential
contrast of A7 = 0.5. As it can be observed, the MT-BCS overcomes the ST-BCS whatever the
level of noise on scattered data. As a matter of fact, the ST-BCS under-estimates the contrast
and provides less accurate reconstructions of the target support, with a larger amount of artifacts
in the background [e.g., Fig. 3(e) vs. Fig. 3(d) - SNR =5 dB].

To conclude, the plot of the total reconstruction error

S pre -S| "

Ttot = %~ N
Area (Diny) |AT (2, y) + 1]
4 Tt is worth pointing out that the selected test case is aimed at assessing the effectiveness of the proposed method

also when the unknown defect is not a collection of disconnected pixels randomly distributed within the imaged
domain as in the previous example.
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has been reported in Fig. 4 as a function of the background relative permittivity. As expected,
there is a progressive degradation of the “quality” of both ST/MT solutions as &,p increases,
given the higher value of the differential contrast. However, the reported results confirm that
the MT-BCS always yields significant improvements of the retrieved images with respect to its
ST counterpart.
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Figure 4. Numerical Assessment (“Vertical Crack”, SNR € [5, 50] dB) - Behavior of total
reconstruction error as a function of the background relative permittivity for the MT-BCS and
ST-BCS methods.

4. Conclusions

An innovative sparseness promoting approach to deal with the NDT/NDE of dielectric structures
has been presented. The proposed MT-BCS approach is based on a probabilistic D-CSI
formulation of the IS problem allowing to effectively exploit (a) generally-available a-priori
information of the unperturbed/healthy scenario, (b) sparseness priors on the class of imaged
targets, as well as (¢) the existing correlation between differential contrast sources under several
illuminations. It is worth remarking that the underlying hypothesis of the sparseness of the
unknowns with respect to the pixel basis may not be appropriate to model large defects such
as delaminations. However, the approach is general and could be in principle applied exploiting
alternative (i.e., more suitable) expansion bases (e.g., wavelets [18]). The reported results have
shown that the MT-BCS provides faithful reconstructions under several operative conditions,
overcoming a ST implementation based on the same formulation. Future works will be aimed
at further assessing the suitability of the proposed methodology also for the NDT/NDE of
specimens with higher permittivity values with respect to those considered in this paper, which
are representative of low-permittivity materials such as foams, honeycombs, and glass fiber
reinforced polymers [20]. Moreover, the retrieval of non-crack defects (e.g., with losses as well as
characterized by inhomogeneous permittivity distributions) will be carefully investigated.
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