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Abstra
t. A novel mi
rowave imaging (MI ) method is proposed to deal with the non-

destru
tive testing and evaluation (NDT/NDE ) of diele
tri
 stru
tures. The proposed te
hnique

exploits a probabilisti
 di�erential 
ontrast sour
e inversion (D-CSI ) formulation of the inverse

s
attering (IS ) problem, whi
h is then e�e
tively solved by means of a 
ustomized multi-task

Bayesian 
ompressive sensing (MT-BCS ) solver. Numeri
al results are shown to assess the

e�e
tiveness and robustness of the proposed NDT/NDE method, as well as to 
ompare it with

a single-task (ST -BCS ) implementation within the same framework.

1. Introdu
tion

Mi
rowave imaging (MI ) is nowadays 
onsidered a promising alternative to established

te
hnologies su
h as eddy 
urrent testing (ECT ) [1℄ and ultrasound testing (UT ) [2℄ for

NDT/NDE purposes [3℄[4℄. However, the stru
tural evaluation of low-permittivity/low-loss

media (e.g., glass �ber reinfor
ed polymers, foam, and honey
ombs) requires to 
arefully address


hallenging issues of the arising inverse s
attering (IS ) problem su
h as non-linearity and ill-

posedness [5℄[6℄.

Linear approximations (e.g., Born or Rytov [7℄[8℄) have been often exploited to restore

linearity. However, they 
an be applied only when weak s
atterers have to be imaged,

being otherwise suitable to provide only qualitative guesses, without quantitative material


hara
terization. Alternatively, multi-resolution approa
hes have been su

essfully integrated

with both deterministi
 [9℄ and sto
hasti
 solvers to mitigate the o

urren
e of lo
al minima/false

solutions by redu
ing the ratio between problem unknowns and non-redundant/informative data.

On the other hand, proper regularization strategies must be studied to deal with the ill-posedness

of the IS problem [5℄. In this 
ontext, a-priori information on the inspe
ted stru
ture and on

the 
lass of imaged targets is an e�e
tive re
ipe to yield stable solutions. When dealing with

NDT/NDE , generally-available a-priori information about the unperturbed stru
ture 
an be

pro�tably taken into a

ount to re-formulate the IS problem in a di�erential framework in

order to retrieve only di�eren
es with respe
t to a known s
enario [10℄. Moreover, knowing the

type/shape of s
atterers (e.g., 
ra
ks) 
an signi�
antly shrink the solution spa
e, allowing to

retrieve spe
i�
 des
riptors (e.g., lo
ation and dimensions), as done in re
ent works on learning-

by-examples (LBE ) parametri
 inversion methods [11℄-[13℄.

Besides all mentioned approa
hes, 
ompressive sensing (CS )-based methods 
an yield regularized

and 
omputationally-e�
ient solutions of the IS problem when the sought unknowns are sparse
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(i.e., represented by few non-null 
oe�
ients) with respe
t to a suitable expansion basis [14℄-

[18℄. A

ordingly, this work presents a novel MI te
hnique for NDT/NDE based on a multi-

task Bayesian CS (MT-BCS ) solution method [19℄ exploiting a probabilisti
 di�erential 
ontrast

sour
e inversion (D-CSI ) formulation of the IS problem.

2. D-CSI Probabilisti
 Formulation of the IS Problem and BCS Solution Method

Let us 
onsider a two-dimensional (2D) NDT/NDE s
enario in whi
h an investigation domain

Dinv is probed by V plane waves with known in
ident ele
tri
 �eld distribution ξv
i
(x, y), v =

1, ..., V 1
. The known ba
kground medium o

upyingDinv is 
hara
terized by relative permittivity

and 
ondu
tivity distributions equal to εrB (x, y) and σB (x, y), respe
tively. Moreover, the

s
attered radiation is 
olle
ted at M sampling lo
ations (xm, ym), m = 1, ..., M , uniformly

distributed over an external 
ir
ular observation domain Dobs of radius Robs.

Assuming a D-CSI formulation of theMI problem at hand, it is possible to express the di�erential

s
attered �eld

∆ξv (x, y) = ξv (x, y)− ξvB (x, y) ; v = 1, ..., V (1)

as the di�eren
e between the total �eld in presen
e of one or multiple unknown s
atterers inside

Dinv, ξ
v (x, y), and the total �eld for the unperturbed ba
kground, ξv

B
(x, y) 2

. A

ordingly, the

v-th di�erential �eld in Dobs is expressed through the following integral data equation

3

∆ξv (x, y) =

∫

Dinv

GB

(
x, y;x′, y′

)
∆Jv

(
x′, y′

)
dx′dy′; (x, y) ∈ Dobs; v = 1, ..., V (2)

where GB (x, y;x′, y′) is the inhomogeneous Green's fun
tion for the known ba
kground medium.

In (2) ∆Jv (x, y) is the v-th di�erential 
ontrast sour
e

∆Jv (x, y) = ξv (x, y)∆τ (x, y) ; v = 1, ..., V (3)

where

∆τ (x, y) = [εrB (x, y)− εr (x, y)]− j

[
σB (x, y)− σ (x, y)

ωε0

]
(4)

is the di�erential 
ontrast fun
tion mathemati
ally modeling the presen
e of unknown targets

inside Dinv with relative permittivity and 
ondu
tivity distributions equal to εr (x, y) and

σ (x, y), respe
tively.
To numeri
ally deal with the solution of the di�erential IS problem at hand, Dinv is dis
retized

into N square sub-domains by means of N pixel basis fun
tions. A

ordingly, it is possible to

rewrite (2) in 
ompa
t matrix notation as follows

∆ξv = G
B
∆Jv; v = 1, ..., V (5)

where ∆ξv = {∆ξv (xm, ym) ; m = 1, ..., M} 
ontains the di�erential s
attered �eld samples,

∆Jv = {∆Jv (xn, yn) ; n = 1, ..., N} is the unknown v-th di�erential 
ontrast sour
e in ea
h

sub-domain, while G
B
is the (M ×N) inhomogeneous Green's operator.

Under the hypothesis that the problem unknowns are sparse (i.e., represented by few non-null


oe�
ients) in the sele
ted pixel basis, it is possible to yield a regularized solution of (5) by

re-formulating the IS problem in a probabilisti
 BCS framework and looking for the maximum

a-posteriori estimate

∆Jv = arg

(
max
∆J

v

{
P
(
∆Jv|∆ξv

)})
; v = 1, ..., V. (6)

1
Subs
ript i stands for in
ident .

2
Subs
ript B stands for ba
kground .

3
A time dependen
y fa
tor exp (jωt) is assumed and omitted for notation simpli
ity.
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As a matter of fa
t, thanks to the BCS, sparseness priors 
an be imposed without the need for


he
king the 
omplian
e of the restri
ted isometry property (RIP) by the inhomogeneous Green's

operator (required by standard CS algorithms and often unfeasible from a 
omputational point

of view, even for small problems [14℄). Owing to the availability, to the authors' best knowledge,

of BCS solvers able to deal only with real linear problems, the data equation (5) is �rst rewritten

by separating the real/imaginary (ℜ/ℑ) parts as follows

∆Ev = G
B
∆J v; v = 1, ..., V (7)

where ∆Ev =
{
ℜ
(
∆ξv

)
; ℑ

(
∆ξv

)}
, ∆J v = {ℜ (∆Jv) ; ℑ (∆Jv)}, while G

B

ontains the ℜ/ℑ

parts of G
B
. Then, a 
losed form solution of (7), ∆̂J

v

=
{
∆̂J

v

n; n = 1, ..., 2N
}
, is 
omputed

a

ording to the MT-BCS theory as [19℄

∆̂J
v

=
[
diag (â) + GT

B
G
B

]
−1

GT

B
∆Ev; v = 1, ..., V (8)

where â = (ân; n = 1, ..., 2N) is the set of MT-BCS hyper-parameters, shared among all views

(v = 1, ..., V ) to enfor
e the existing physi
al 
orrelation among di�erential 
urrents under

several illuminations, 
omputed through a relevan
e ve
tor ma
hine (RVM ) solver as

â = arg

{
max
a

[
−
1

2

V∑

v=1

2 (M + β1) log
(
(∆Ev)T K−1∆Ev + 2β2

)
+ log

∣∣K
∣∣
]}

(9)

where β1 and β2 are MT-BCS 
ontrol parameters and K = I + G
B
[diag (a)]−1

(
G
B

)T

, .T and

| . | are the transpose and the determinant, respe
tively, and I is the identity matrix. Finally,

the di�erential 
ontrast is retrieved as

∆̂τ (xn, yn) =
1

V

V∑

v=1

∆̂J
v

n + j∆̂J
v

n+N

ξ̂v (xn, yn)
; n = 1, ..., N (10)

where ξ̂v (xn, yn) is the retrieved total �eld in the n-th 
ell belonging to Dinv.

3. Numeri
al Assessment

To numeri
ally assess the proposed MT-BCS methodology, a square investigation domain of

side 2λ probed by V = 18 plane waves impinging from angular dire
tions φv = (v − 1) 2π
V
,

v = 1, ..., V , has been 
onsidered as referen
e ben
hmark s
enario. The s
attered �eld has been


olle
ted over M = 18 ideal re
eivers (Robs = 2λ), while N = 400 pixel basis fun
tions have been

onsidered to solve the inverse problem.

Figure 1 shows the MT-BCS re
onstru
tion when dealing with the retrieval of a set of small


ra
ks embedded within a lossless ba
kground with relative permittivity εrB = 1.1 [∆τ = 0.1
- Fig. 1(a)℄ and pro
essing blurred data with a signal-to-noise ratio of SNR = 20 dB. As it


an be observed, all s
atterers have been 
orre
tly dete
ted, and a faithful re
onstru
tion of

their support and 
ontrast fun
tion has been yielded [Fig. 1(b) vs. Fig. 1(a)℄. Moreover,

there is a 
lear advantage of the MT-BCS over a �simpler� single-task BCS (ST-BCS ) solution

approa
h [14℄ formulated within the D-CSI framework [Fig. 1(b) vs. Fig. 1(
)℄. As a matter

of fa
t, although relying on the same probabilisti
 framework, the ST-BCS does not enfor
e

any 
orrelation among several views in solving (6), resulting in a signi�
antly worse guess of the

defe
ts inside Dinv [Fig. 1(
)℄.
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Figure 1. Numeri
al Assessment (�Random Cra
ks�, ∆τ = 0.1, SNR = 20 dB) - (a) A
tual

and retrieved di�erential 
ontrast by the (b) MT-BCS and (
) ST-BCS methods.
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Figure 2. Numeri
al Assessment (�Random Cra
ks�, ∆τ = 0.1, SNR = 5 dB) - (a) A
tual and
retrieved di�erential 
ontrast by the (b) MT-BCS and (
) ST-BCS methods.

Su
h positive out
omes are 
on�rmed when pro
essing highly blurred data, as well. Indeed, the

plot of the MT-BCS [Fig. 2(a)℄ and ST-BCS [Fig. 2(b)℄ solutions when SNR = 5 dB verify the

superior performan
e of the proposed methodology regardless of the harsh operative 
onditions.

Moreover, it is worth pointing out that the MT-BCS solutions 
ome at a higher 
omputational

e�
ien
y with respe
t to the ST-BCS ones (i.e., ∆t|
MT−BCS

= 20 [se
℄ vs. ∆t|
ST−BCS

= 37
[se
℄). This is in agreement with the referen
e literature, sin
e the MT-BCS pro
esses all multi-

view data in a single inversion stage, while multiple inversions are performed by the ST-BCS to

invert s
attered data related to V illuminations [17℄.
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To further investigate the robustness and reliability of the proposed NDT/NDE solution

approa
h, let us now 
onsider the retrieval of the verti
al 
ra
k in Fig. 3(a)

4
.
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Figure 3. Numeri
al Assessment (�Verti
al Cra
k �, ∆τ = 0.5, SNR ∈ {5, 20} dB) - (a) A
tual

and retrieved di�erential 
ontrast by the (b)(d) MT-BCS and (
)(e) ST-BCS methods when

pro
essing noisy data at (b)(
) SNR = 20 dB and (d)(e) SNR = 5 dB.

The ba
kground medium has a relative permittivity of εrB = 1.5, yielding a di�erential


ontrast of ∆τ = 0.5. As it 
an be observed, the MT-BCS over
omes the ST-BCS whatever the

level of noise on s
attered data. As a matter of fa
t, the ST-BCS under-estimates the 
ontrast

and provides less a

urate re
onstru
tions of the target support, with a larger amount of artifa
ts

in the ba
kground [e.g., Fig. 3(e) vs. Fig. 3(d) - SNR = 5 dB℄.

To 
on
lude, the plot of the total re
onstru
tion error

γtot =
1

Area (Dinv)

∫

Dinv

∣∣∣∆τ (x, y)− ∆̂τ (x, y)
∣∣∣

|∆τ (x, y) + 1|
dxdy (11)

4
It is worth pointing out that the sele
ted test 
ase is aimed at assessing the e�e
tiveness of the proposed method

also when the unknown defe
t is not a 
olle
tion of dis
onne
ted pixels randomly distributed within the imaged

domain as in the previous example.
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has been reported in Fig. 4 as a fun
tion of the ba
kground relative permittivity. As expe
ted,

there is a progressive degradation of the �quality� of both ST/MT solutions as εrB in
reases,

given the higher value of the di�erential 
ontrast. However, the reported results 
on�rm that

the MT-BCS always yields signi�
ant improvements of the retrieved images with respe
t to its

ST 
ounterpart.
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Figure 4. Numeri
al Assessment (�Verti
al Cra
k �, SNR ∈ [5, 50] dB) - Behavior of total

re
onstru
tion error as a fun
tion of the ba
kground relative permittivity for the MT-BCS and

ST-BCS methods.

4. Con
lusions

An innovative sparseness promoting approa
h to deal with the NDT/NDE of diele
tri
 stru
tures

has been presented. The proposed MT-BCS approa
h is based on a probabilisti
 D-CSI

formulation of the IS problem allowing to e�e
tively exploit (a) generally-available a-priori

information of the unperturbed/healthy s
enario, (b) sparseness priors on the 
lass of imaged

targets, as well as (
) the existing 
orrelation between di�erential 
ontrast sour
es under several

illuminations. It is worth remarking that the underlying hypothesis of the sparseness of the

unknowns with respe
t to the pixel basis may not be appropriate to model large defe
ts su
h

as delaminations. However, the approa
h is general and 
ould be in prin
iple applied exploiting

alternative (i.e., more suitable) expansion bases (e.g., wavelets [18℄). The reported results have

shown that the MT-BCS provides faithful re
onstru
tions under several operative 
onditions,

over
oming a ST implementation based on the same formulation. Future works will be aimed

at further assessing the suitability of the proposed methodology also for the NDT/NDE of

spe
imens with higher permittivity values with respe
t to those 
onsidered in this paper, whi
h

are representative of low-permittivity materials su
h as foams, honey
ombs, and glass �ber

reinfor
ed polymers [20℄. Moreover, the retrieval of non-
ra
k defe
ts (e.g., with losses as well as


hara
terized by inhomogeneous permittivity distributions) will be 
arefully investigated.
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