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Abstract. This work presents a novel inverse scattering (IS) methodology to deal with the
retrieval of the electromagnetic (EM) properties of unknown scatterers. The proposed technique
is based on the effective combination of a customized Bayesian compressive sensing (BCS) solver
with the iterative multi-scaling approach (IMSA). Accordingly, a-prior: information on the class
of imaged targets as well as progressively acquired information on their location and size is
exploited to yield accurate and robust reconstructions. Moreover, a contrast source inversion
(CSI) formulation is adopted in order to enable the retrieval of non-Born scatterers. Numerical
results are shown to verify the effectiveness of the proposed IMSA-BCS-CST method, as well as
to compare it with state-of-the-art alternatives.

1. Introduction

Non-invasively retrieving qualitative (i.e., location and shape) and quantitative (i.e., material
composition) information on unknown targets starting from scattered field measurements requires
to solve an inverse scattering (IS) problem. As it is well-known, such a problem is highly non-
linear and ill-posed [1][2]. For such a reason, many techniques have been proposed to tackle these
issues and yield robust and accurate reconstructions in many applicative scenarios including
subsurface imaging [3]-[5], biomedical imaging [6][7], and non-destructive testing and evaluation
[2]. Within this context, the Born approximation (BA) has been often invoked to restore the
linearity of the IS problem [8]-[11]. However, its range of applicability is limited to weak scatterers
or to scenarios in which the estimation of qualitative information is enough. Higher-order
approximations (e.g., the second-order Born approximation, SOBA [3]), Born iterative methods
(BIMs), and distorted Born iterative methods (DBIMs [12]) have been explored, as well, to deal
with the microwave imaging (M) of stronger scatterers. Alternatively, the iterative multi-scaling
approach (IMSA) proved to be a valid countermeasure to both non-linearity and ill-posedness,
allowing to (i) reduce the ratio between unknowns and informative data, (47) adaptively increase
the resolution only within the regions of interest (Rols), and (7i) exploit progressively acquired
information on the imaged scenario in successive (higher-resolution) inversions [3][4][9].

Dealing with the ill-posedness of the IS problem, it is well-known that exploiting a-priori
information on the class of imaged targets is an effective recipe to restore the solution stability in
presence of noise [1]. Within this framework, compressive sensing (CS) methodologies [13]-[16]
are effective regularizers, allowing to enforce sparseness priors with respect to a suitably-chosen
representation (e.g., pixel [9], wavelet [15], total variation [8]). Moreover, those based on a
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Bayesian formulation (BCS) [17] attracted articular attention since they do not require that the
involved kernel operator satisfies the restricted isometry property (RIP) [13].

However, standard CS and BCS methods do not allow to exploit additional information besides
that on the solution sparsity. To overcome such a limitation, this work presents an innovate IS
method based on the effective integration of a customized BCS solver with the IMSA. Thanks
to the exploitation of a constrained relevance vector machine (C-RVM), progressively acquired
information through successive IMSA steps on the target location and size can be exploited to
guide and improve the BCS solution. Moreover (as verified in Sect. 3) thanks to the formulation
of the IS problem within a contrast source inversion (CSI) framework [18]|[19], the proposed
method overcomes a state-of-the-art solution based on the BA [9], being able to accurately
image non-Born targets, as well.

2. Mathematical Formulation

With reference to a 2D transverse magnetic (7M) IS scenario, let us consider an investigation
domain D inside an homogeneous lossless medium having permittivity g and permeability .
The presence of a target within D is mathematically described by means of the so-called object

function
co(r

1) = [er (1)~ 1 - 1)
where ¢, (r) and o (r) are the relative permittivity and conductivity at position r € D,
respectively, f being the frequency, and r = (z, y). In order to retrieve an image of D, a set of
V' z-polarized plane waves impinging from angular directions ¢, = 27 (v —1) /V],v =1, ..., V,
is exploited. Adopting a CSI formulation [18][19], the scattered field under the v-th illumination
complies with the following data integral equation

E{(r)=[E"(r)—E} (r)] = /DXU ()G (r,x)dr'; v=1, ..,V (2)

where EY (r) and EV (r) are the incident and total field, respectively, and G (r,1’) is the free-space
Green’s function. Moreover, x" (r) is the v-th contrast source, defined as

X'(r)=E"(r)7(r); reD;v=1,..,V. (3)

Under these assumptions, the IS problem at hand is aimed at retrieving a guess of the object
function inside D starting from the knowledge of EY (r), v =1, ..., V, and of the corresponding
scattered field samples collected by M ideal field probes located in rp,, € ¥, m =1, ..., M, ¥
being an external observation domain not intersecting D.

The solution of such a problem is found numerically by means of an hybrid inversion methodology
based on the integration of a customized BCS solver with the IMSA. More in detail, the proposed
IMSA-BCS-CSI method iteratively solves (2), updating at each s-th inversion step (s =1, ..., S)
the Rol Dy C Ds_1 C ... C Dy = D and increasing the resolution within such a region for the
successive reconstruction. Towards this end, the following multi-resolution representation of the
unknown contrast sources is exploited at the s-th zooming stage

S Nt
X;} (I‘) - Z ng,n(bt,n (I‘) ;o v=1,.,V (4)
t=1n=1
where Ny is the number of pixels at the ¢-th resolution level (¢ = 1, ..., s), while X}, = x* (rn),
r;, being the barycenter of the n-th pixel at the t-th resolution level (i.e., Dy, € D;). Moreover,
{®p(r);n=1, .., Ny t=1, .., s} are multi-resolution pixel basis functions defined as

1 ifreD;y,andr ¢ Dy
0 otherwise

Oy, (r) = { ;o n=1, .., Nyt=1, .. s (5)



NCMIP 2019 IOP Publishing
Journal of Physics: Conference Series 1476 (2020) 012013  doi:10.1088/1742-6596/1476/1/012013

Accordingly, (2) is rewritten at the s-th inversion step in compact matrix notation as
v __ v
E'=G X! (6)

where EV € R?M*1 contains the real/imaginary parts of the scattered field, X, € R2Lsx1
contains the real/imaginary parts of the Ly = Y ; ;| N; unknown contrast source coefficients
in (4), while G, € R2Mx2Ls ig the corresponding multi-resolution Green’s operator. According
to the BCS theory, the solution of (6) is computed in closed form without the need to perform
computationally-unaffordable checks of the RIP compliance by gs as follows

-1

e ,
G E" v=1 .,V (7)
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where .T is the transpose, while nY and a, = {d;’l; =1, ..., 2LS} are the BCS estimated noise
variance and hyper-parameters, computed as

it 23) = { mx £ (216,008 ) | ®)

(n¢,a?)

where £ EY|G , nY, a?) is the BCS logarithmic likelihood function [17][20]. It is worth
G s g

-S

observing that according to (7) each hyper-parameter directly influences the corresponding entry
of X5 Accordingly, in order to exploit progressively acquired information on the solution from
previous iterations, (8) is solved by means of a customized constrained relevance vector machine
(C-RVM), enforcing that only the 2N, < 2L entries of a; associated to pixels falling within the
Rol at the s-th step are updated by the maximization procedure '. Once the contrast sources
have been estimated through (7), the object function in each pixel is computed by averaging over
different views (v = 1, ..., V') the ratio between retrieved currents and the corresponding total
electric field. To summarize, the IMSA-BCS-CSI method consists in the following procedural
steps

(i) Low-Resolution (LR) Inversion. Set s = 1 and partition the Rol D; = D into N sub-
domains. Solve the LR inverse problem (7)-(8), then compute the estimated LR object
function.

(ii) Rol Updating. Set s < (s+ 1) then apply the IMSA filtering and clustering procedure [9]
on the previous solution to update the Rol at the s-th step, Dy C Ds_1, by computing its
barycenter ry = (xg, ys) and its side Ly according to the procedure described in [9];

(iii) High-Resolution (HR) Inversion. Partition Dy into N sub-domains and solve the HR inverse
problem (7)-(8) enforcing that only hyperparameters corresponding to pixels inside Dy
are affected by the C-RVM search procedure. Finally, compute the estimated HR object
function.

(iv) Termination. Stop if s = S or if a stationary condition on the Rol size and location is met
[9]. Otherwise, go to Step (ii).

! It is worth pointing out that all (2Ls — 2N5) remaining entries are forced to infinity by the C-RVM, such that
corresponding entries of XZ are set to zero [20].
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3. Numerical Results

This Section is aimed at numerically assessing the proposed IMSA-BCS-CSI methodology.
Towards this end, some representative results are shown dealing with the imaging of a square
investigation domain D of side 6, which has been probed by means of V' = 60 incident plane
waves. A set of M = 60 probes uniformly distributed over an external circular observation
domain V¥ of radius p = 4.5\ has been used to collect scattered data. Concerning the settings of
the IMSA-BCS-CSI, N = 100 cells have been considered to discretize the Rol at each zooming
step, the maximum number of IMSA steps being fixed to S = 4. To test the robustness of the
method against noise, an additive white Gaussian noise has been superimposed on the scattered
field, while the total integral error, defined as in [9], has been computed to give a quantitative
measure of the obtained solution “quality”.
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Figure 1. Numerical Assessment (“Concentric Square” Profile, 7 = 0.1, SNR = 20 dB) - (a)
Actual and intermediate IMSA-BCS-CSI reconstructions at intermediate steps (b) s = 1, (¢)
s=2,(d) s=3,and (e) s= 5 =4.

Figure 1 deals with the retrieval of the “Concentric Square” profile, whose actual dielectric
profile is shown in Fig. 1(a) (7 = 0.1 2). More in detail, the evolution of the IMSA-BCS-CSI
solution through successive multi-scaling steps (s = 1, ..., S) has been reported when processing

2 Tt should be pointed out that such a preliminary benchmark is aimed at assessing the effectiveness of the
developed multi-scaling approach independently on the considered contrast value.
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noisy data at SNR = 20 dB. As it can be observed, there is a progressive refinement of the
reconstruction accuracy going from the LR inversion, in which the target location has been
roughly detected [s = 1 - Fig. 1(b)], to the last HR step [s = S =4 - Fig. 1(e)|. A dashed line
has been plotted to indicate the extension of the Rol at each step. It can be inferred that the Rol
has been progressively shrunk starting from Dy = D [Fig. 1(b)], perfectly matching the target
support at the end of the multi-scaling process [Fig. 1(e)|. Moreover, thanks to the exploitation
of the C-RVM solver, progressively acquired information on the target location and size has been
successfully exploited, allowing to remove artifacts in the background and to achieve a faithful
estimation of the object function [Fig. 1(e) vs. Fig. 1(a)]. For completeness, the actual and
retrieved imaginary part of the contrast function at the last step have been reported in Fig. 2,
confirming the accuracy of the developed approach.
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Figure 2. Numerical Assessment (“Concentric Square” Profile, 7 = 0.1, SNR = 20 dB) - (a)
Actual and (b) IMSA-BCS-CSI reconstruction (s = S = 4) of the imaginary part of the contrast
function.

To further prove the effectiveness and robustness of the proposed method, Figure 3(b) shows the
IMSA-BCS-CSI outcome when dealing with the retrieval of the “Inhomogeneous Square” profile
[Fig. 3(a)], having a maximum object function equal to Tyax = 0.6, and processing highly-
blurred data (SNR =5 dB). As it can be seen, the target location and size have been correctly
identified, with a good estimation of the object function [Fig. 3(b) vs. Fig. 3(a)], regardless
of the very harsh imaging conditions. Even more interestingly, there is a clear advantage of the
IMSA-BCS-CSI over a state-of-the-art multi-scaling BCS method based on the first order Born
approximation (IMSA-BCS-BA [9]). Indeed, the plot in Fig. 3(c¢), showing the IMSA-BCS-BA
result for the same test case, indicates that such method is only able to detect the presence of
the target and to roughly estimate its location, being however incapable of correctly detecting

its actual support and object function.

To complete the comparative assessment, the result yielded by the BARE-BCS-CSI method,
based on a standard non-iterative single-resolution BCS solver working in the CSI framework,
has been reported in Fig. 3(d) (N = 400). Although the CSI formulation allowed to detect
the presence of the inner core of the target with higher contrast, overall the reconstruction
quality is significantly lower with respect to the IMSA method, with many artifacts arising in
the background region, as well [Fig. 3(b) vs. Fig. 3(d)|. Quantitatively, the behavior of the total
reconstruction error has been reported in Fig. 4 as a function of 7.5 for both IMSA-BCS-CSI
and BARE-BCS-CSI, confirming the superior performance of the proposed method whatever
the level of noise and the actual contrast.
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Figure 3. Numerical Assessment (“Inhomogeneous Square” Profile, 7. = 0.6, SNR = 5 dB)

- (a) Actual and retrieved contrast distribution by the () IMSA-BCS-CSI, (¢) IMSA-BCS-BA,
and (d) BARE-BCS-CSI methods.
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Figure 4. Numerical Assessment (“Inhomogeneous Square” Profile, SNR € [5,20] dB) -
Behavior of the total reconstruction error as a function of 7. for the IMSA-BCS-CSI and

BARE-BCS-CSI methods.

4. Conclusions

This work presented an innovative IS method able to jointly exploit a-priori information on the
class of imaged targets and progressively acquired information of their position and size. More in
detail, sparseness priors have been exploited to regularize the solution thanks to a probabilistic
formulation of the IS problem within the CSI framework. Furthermore, the integration of the
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BCS solver with the IMSA, enabled thanks to the exploitation of a C-RVM solver, allowed to
adaptively increase the resolution within the Rol and yield significant improvements in terms
of reconstruction accuracy. Numerical results verified the effectiveness of the IMSA-BCS-CSI
method, as well as its superior performance with respect to state-of-the-art alternatives.
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