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Abstra
t. This work presents a novel inverse s
attering (IS) methodology to deal with the

retrieval of the ele
tromagneti
 (EM ) properties of unknown s
atterers. The proposed te
hnique

is based on the e�e
tive 
ombination of a 
ustomized Bayesian 
ompressive sensing (BCS) solver

with the iterative multi-s
aling approa
h (IMSA). A

ordingly, a-priori information on the 
lass

of imaged targets as well as progressively a
quired information on their lo
ation and size is

exploited to yield a

urate and robust re
onstru
tions. Moreover, a 
ontrast sour
e inversion

(CSI ) formulation is adopted in order to enable the retrieval of non-Born s
atterers. Numeri
al

results are shown to verify the e�e
tiveness of the proposed IMSA-BCS-CSI method, as well as

to 
ompare it with state-of-the-art alternatives.

1. Introdu
tion

Non-invasively retrieving qualitative (i.e., lo
ation and shape) and quantitative (i.e., material


omposition) information on unknown targets starting from s
attered �eld measurements requires

to solve an inverse s
attering (IS ) problem. As it is well-known, su
h a problem is highly non-

linear and ill-posed [1℄[2℄. For su
h a reason, many te
hniques have been proposed to ta
kle these

issues and yield robust and a

urate re
onstru
tions in many appli
ative s
enarios in
luding

subsurfa
e imaging [3℄-[5℄, biomedi
al imaging [6℄[7℄, and non-destru
tive testing and evaluation

[2℄. Within this 
ontext, the Born approximation (BA) has been often invoked to restore the

linearity of the IS problem [8℄-[11℄. However, its range of appli
ability is limited to weak s
atterers

or to s
enarios in whi
h the estimation of qualitative information is enough. Higher-order

approximations (e.g., the se
ond-order Born approximation, SOBA [3℄), Born iterative methods

(BIM s), and distorted Born iterative methods (DBIM s [12℄) have been explored, as well, to deal

with the mi
rowave imaging (MI ) of stronger s
atterers. Alternatively, the iterative multi-s
aling

approa
h (IMSA) proved to be a valid 
ountermeasure to both non-linearity and ill-posedness,

allowing to (i) redu
e the ratio between unknowns and informative data, (ii) adaptively in
rease

the resolution only within the regions of interest (RoI s), and (iii) exploit progressively a
quired

information on the imaged s
enario in su

essive (higher-resolution) inversions [3℄[4℄[9℄.

Dealing with the ill-posedness of the IS problem, it is well-known that exploiting a-priori

information on the 
lass of imaged targets is an e�e
tive re
ipe to restore the solution stability in

presen
e of noise [1℄. Within this framework, 
ompressive sensing (CS ) methodologies [13℄-[16℄

are e�e
tive regularizers, allowing to enfor
e sparseness priors with respe
t to a suitably-
hosen

representation (e.g., pixel [9℄, wavelet [15℄, total variation [8℄). Moreover, those based on a
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Bayesian formulation (BCS ) [17℄ attra
ted arti
ular attention sin
e they do not require that the

involved kernel operator satis�es the restri
ted isometry property (RIP) [13℄.

However, standard CS and BCS methods do not allow to exploit additional information besides

that on the solution sparsity. To over
ome su
h a limitation, this work presents an innovate IS

method based on the e�e
tive integration of a 
ustomized BCS solver with the IMSA. Thanks

to the exploitation of a 
onstrained relevan
e ve
tor ma
hine (C-RVM ), progressively a
quired

information through su

essive IMSA steps on the target lo
ation and size 
an be exploited to

guide and improve the BCS solution. Moreover (as veri�ed in Se
t. 3) thanks to the formulation

of the IS problem within a 
ontrast sour
e inversion (CSI ) framework [18℄[19℄, the proposed

method over
omes a state-of-the-art solution based on the BA [9℄, being able to a

urately

image non-Born targets, as well.

2. Mathemati
al Formulation

With referen
e to a 2D transverse magneti
 (TM ) IS s
enario, let us 
onsider an investigation

domain D inside an homogeneous lossless medium having permittivity ε0 and permeability µ0.

The presen
e of a target within D is mathemati
ally des
ribed by means of the so-
alled obje
t

fun
tion

τ (r) = [εr (r)− 1]− j
σ (r)

2πfε0
(1)

where εr (r) and σ (r) are the relative permittivity and 
ondu
tivity at position r ∈ D,
respe
tively, f being the frequen
y, and r = (x, y). In order to retrieve an image of D, a set of

V z-polarized plane waves impinging from angular dire
tions φv = [2π (v − 1) /V ], v = 1, ..., V ,

is exploited. Adopting a CSI formulation [18℄[19℄, the s
attered �eld under the v-th illumination


omplies with the following data integral equation

Ev
s (r) = [Ev (r)−Ev

i (r)] =

∫

D

χv
(

r
′
)

G
(

r, r′
)

dr′; v = 1, ..., V (2)

where Ev
i (r) and Ev (r) are the in
ident and total �eld, respe
tively, and G (r, r′) is the free-spa
e

Green's fun
tion. Moreover, χv (r) is the v-th 
ontrast sour
e, de�ned as

χv (r) = Ev (r) τ (r) ; r ∈ D; v = 1, ..., V. (3)

Under these assumptions, the IS problem at hand is aimed at retrieving a guess of the obje
t

fun
tion inside D starting from the knowledge of Ev
i (r), v = 1, ..., V , and of the 
orresponding

s
attered �eld samples 
olle
ted by M ideal �eld probes lo
ated in rm ∈ Ψ, m = 1, ..., M , Ψ
being an external observation domain not interse
ting D.
The solution of su
h a problem is found numeri
ally by means of an hybrid inversion methodology

based on the integration of a 
ustomized BCS solver with the IMSA. More in detail, the proposed

IMSA-BCS-CSI method iteratively solves (2), updating at ea
h s-th inversion step (s = 1, ..., S)
the RoI Ds ⊂ Ds−1 ⊂ ... ⊂ D1 = D and in
reasing the resolution within su
h a region for the

su

essive re
onstru
tion. Towards this end, the following multi-resolution representation of the

unknown 
ontrast sour
es is exploited at the s-th zooming stage

χv
s (r) =

s
∑

t=1

Nt
∑

n=1

χv
t,nΦt,n (r) ; v = 1, ..., V (4)

where Nt is the number of pixels at the t-th resolution level (t = 1, ..., s), while χv
t,n = χv (rt,n),

rt,n being the bary
enter of the n-th pixel at the t-th resolution level (i.e., Dt,n ∈ Dt). Moreover,

{Φt,n (r) ; n = 1, ..., Nt; t = 1, ..., s} are multi-resolution pixel basis fun
tions de�ned as

Φt,n (r) =

{

1 if r ∈ Dt,n and r /∈ Dt+1

0 otherwise
; n = 1, ..., Nt; t = 1, ..., s. (5)
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A

ordingly, (2) is rewritten at the s-th inversion step in 
ompa
t matrix notation as

Ev = G
s
χv

s
(6)

where Ev ∈ R
2M×1


ontains the real/imaginary parts of the s
attered �eld, χv
s
∈ R

2Ls×1


ontains the real/imaginary parts of the Ls =
∑s

t=1 Nt unknown 
ontrast sour
e 
oe�
ients

in (4), while G
s
∈ R

2M×2Ls
is the 
orresponding multi-resolution Green's operator. A

ording

to the BCS theory, the solution of (6) is 
omputed in 
losed form without the need to perform


omputationally-una�ordable 
he
ks of the RIP 
omplian
e by G
s
as follows

χ̂v

s
=

1

η̂vs

[

GT

s
G

s

η̂vs
+ diag (âvs)

]−1

GT

s
Ev; v = 1, ..., V (7)

where .T is the transpose, while η̂vs and âvs =
{

âvs,l; l = 1, ..., 2Ls

}

are the BCS estimated noise

varian
e and hyper-parameters, 
omputed as

(η̂vs , â
v
s) = arg

{

max
(ηv

s
, av

s
)
L
(

Ev|G
s
, ηvs , a

v
s

)

}

(8)

where L
(

Ev|G
s
, ηvs , a

v
s

)

is the BCS logarithmi
 likelihood fun
tion [17℄[20℄. It is worth

observing that a

ording to (7) ea
h hyper-parameter dire
tly in�uen
es the 
orresponding entry

of χv
s
. A

ordingly, in order to exploit progressively a
quired information on the solution from

previous iterations, (8) is solved by means of a 
ustomized 
onstrained relevan
e ve
tor ma
hine

(C-RVM ), enfor
ing that only the 2Ns < 2Ls entries of â
v
s asso
iated to pixels falling within the

RoI at the s-th step are updated by the maximization pro
edure

1
. On
e the 
ontrast sour
es

have been estimated through (7), the obje
t fun
tion in ea
h pixel is 
omputed by averaging over

di�erent views (v = 1, ..., V ) the ratio between retrieved 
urrents and the 
orresponding total

ele
tri
 �eld. To summarize, the IMSA-BCS-CSI method 
onsists in the following pro
edural

steps

(i) Low-Resolution (LR) Inversion. Set s = 1 and partition the RoI D1 = D into N sub-

domains. Solve the LR inverse problem (7)-(8), then 
ompute the estimated LR obje
t

fun
tion.

(ii) RoI Updating. Set s ← (s+ 1) then apply the IMSA �ltering and 
lustering pro
edure [9℄

on the previous solution to update the RoI at the s-th step, Ds ⊂ Ds−1, by 
omputing its

bary
enter rs = (xs, ys) and its side Ls a

ording to the pro
edure des
ribed in [9℄;

(iii) High-Resolution (HR) Inversion. Partition Ds into N sub-domains and solve the HR inverse

problem (7)-(8) enfor
ing that only hyperparameters 
orresponding to pixels inside Ds

are a�e
ted by the C-RVM sear
h pro
edure. Finally, 
ompute the estimated HR obje
t

fun
tion.

(iv) Termination. Stop if s = S or if a stationary 
ondition on the RoI size and lo
ation is met

[9℄. Otherwise, go to Step (ii).

1
It is worth pointing out that all (2Ls − 2Ns) remaining entries are for
ed to in�nity by the C-RVM, su
h that


orresponding entries of χv

s
are set to zero [20℄.
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3. Numeri
al Results

This Se
tion is aimed at numeri
ally assessing the proposed IMSA-BCS-CSI methodology.

Towards this end, some representative results are shown dealing with the imaging of a square

investigation domain D of side 6λ, whi
h has been probed by means of V = 60 in
ident plane

waves. A set of M = 60 probes uniformly distributed over an external 
ir
ular observation

domain Ψ of radius ρ = 4.5λ has been used to 
olle
t s
attered data. Con
erning the settings of

the IMSA-BCS-CSI, N = 100 
ells have been 
onsidered to dis
retize the RoI at ea
h zooming

step, the maximum number of IMSA steps being �xed to S = 4. To test the robustness of the

method against noise, an additive white Gaussian noise has been superimposed on the s
attered

�eld, while the total integral error, de�ned as in [9℄, has been 
omputed to give a quantitative

measure of the obtained solution �quality�.
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Figure 1. Numeri
al Assessment (�Con
entri
 Square� Pro�le, τ = 0.1, SNR = 20 dB) - (a)

A
tual and intermediate IMSA-BCS-CSI re
onstru
tions at intermediate steps (b) s = 1, (
)
s = 2, (d) s = 3, and (e) s = S = 4.

Figure 1 deals with the retrieval of the �Con
entri
 Square� pro�le, whose a
tual diele
tri


pro�le is shown in Fig. 1(a) (τ = 0.1 2
). More in detail, the evolution of the IMSA-BCS-CSI

solution through su

essive multi-s
aling steps (s = 1, ..., S) has been reported when pro
essing

2
It should be pointed out that su
h a preliminary ben
hmark is aimed at assessing the e�e
tiveness of the

developed multi-s
aling approa
h independently on the 
onsidered 
ontrast value.
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noisy data at SNR = 20 dB. As it 
an be observed, there is a progressive re�nement of the

re
onstru
tion a

ura
y going from the LR inversion, in whi
h the target lo
ation has been

roughly dete
ted [s = 1 - Fig. 1(b)℄, to the last HR step [s = S = 4 - Fig. 1(e)℄. A dashed line

has been plotted to indi
ate the extension of the RoI at ea
h step. It 
an be inferred that the RoI

has been progressively shrunk starting from D1 = D [Fig. 1(b)℄, perfe
tly mat
hing the target

support at the end of the multi-s
aling pro
ess [Fig. 1(e)℄. Moreover, thanks to the exploitation

of the C-RVM solver, progressively a
quired information on the target lo
ation and size has been

su

essfully exploited, allowing to remove artifa
ts in the ba
kground and to a
hieve a faithful

estimation of the obje
t fun
tion [Fig. 1(e) vs. Fig. 1(a)℄. For 
ompleteness, the a
tual and

retrieved imaginary part of the 
ontrast fun
tion at the last step have been reported in Fig. 2,


on�rming the a

ura
y of the developed approa
h.
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Figure 2. Numeri
al Assessment (�Con
entri
 Square� Pro�le, τ = 0.1, SNR = 20 dB) - (a)

A
tual and (b) IMSA-BCS-CSI re
onstru
tion (s = S = 4) of the imaginary part of the 
ontrast

fun
tion.

To further prove the e�e
tiveness and robustness of the proposed method, Figure 3(b) shows the

IMSA-BCS-CSI out
ome when dealing with the retrieval of the �Inhomogeneous Square� pro�le

[Fig. 3(a)℄, having a maximum obje
t fun
tion equal to τmax = 0.6, and pro
essing highly-

blurred data (SNR = 5 dB). As it 
an be seen, the target lo
ation and size have been 
orre
tly

identi�ed, with a good estimation of the obje
t fun
tion [Fig. 3(b) vs. Fig. 3(a)℄, regardless

of the very harsh imaging 
onditions. Even more interestingly, there is a 
lear advantage of the

IMSA-BCS-CSI over a state-of-the-art multi-s
aling BCS method based on the �rst order Born

approximation (IMSA-BCS-BA [9℄). Indeed, the plot in Fig. 3(
), showing the IMSA-BCS-BA

result for the same test 
ase, indi
ates that su
h method is only able to dete
t the presen
e of

the target and to roughly estimate its lo
ation, being however in
apable of 
orre
tly dete
ting

its a
tual support and obje
t fun
tion.

To 
omplete the 
omparative assessment, the result yielded by the BARE-BCS-CSI method,

based on a standard non-iterative single-resolution BCS solver working in the CSI framework,

has been reported in Fig. 3(d) (N = 400). Although the CSI formulation allowed to dete
t

the presen
e of the inner 
ore of the target with higher 
ontrast, overall the re
onstru
tion

quality is signi�
antly lower with respe
t to the IMSA method, with many artifa
ts arising in

the ba
kground region, as well [Fig. 3(b) vs. Fig. 3(d)℄. Quantitatively, the behavior of the total

re
onstru
tion error has been reported in Fig. 4 as a fun
tion of τmax for both IMSA-BCS-CSI

and BARE-BCS-CSI , 
on�rming the superior performan
e of the proposed method whatever

the level of noise and the a
tual 
ontrast.



NCMIP 2019

Journal of Physics: Conference Series 1476 (2020) 012013

IOP Publishing

doi:10.1088/1742-6596/1476/1/012013

6

-3 -2 -1  0  1  2  3

x/λ

-3

-2

-1

 0

 1

 2

 3

y/
λ

 0

 0.2

 0.4

 0.6

 0.8

R
e[

τ(
x,

y)
]

(a)

IMSA-BCS-CSI IMSA-BCS-BA BARE-BCS-CSI

-3 -2 -1  0  1  2  3

x/λ

-3

-2

-1

 0

 1

 2

 3

y/
λ

 0

 0.2

 0.4

 0.6

 0.8

R
e[

τ(
x,

y)
]

-3 -2 -1  0  1  2  3

x/λ

-3

-2

-1

 0

 1

 2

 3

y/
λ

 0

 0.2

 0.4

 0.6

 0.8

R
e[

τ(
x,

y)
]

-3 -2 -1  0  1  2  3

x/λ

-3

-2

-1

 0

 1

 2

 3

y/
λ

 0

 0.2

 0.4

 0.6

 0.8

R
e[

τ(
x,

y)
]

(b) (
) (d)

Figure 3. Numeri
al Assessment (�Inhomogeneous Square� Pro�le, τmax = 0.6, SNR = 5 dB)

- (a) A
tual and retrieved 
ontrast distribution by the (b) IMSA-BCS-CSI , (
) IMSA-BCS-BA,

and (d) BARE-BCS-CSI methods.
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al Assessment (�Inhomogeneous Square� Pro�le, SNR ∈ [5, 20] dB) -

Behavior of the total re
onstru
tion error as a fun
tion of τmax for the IMSA-BCS-CSI and

BARE-BCS-CSI methods.

4. Con
lusions

This work presented an innovative IS method able to jointly exploit a-priori information on the


lass of imaged targets and progressively a
quired information of their position and size. More in

detail, sparseness priors have been exploited to regularize the solution thanks to a probabilisti


formulation of the IS problem within the CSI framework. Furthermore, the integration of the



NCMIP 2019

Journal of Physics: Conference Series 1476 (2020) 012013

IOP Publishing

doi:10.1088/1742-6596/1476/1/012013

7

BCS solver with the IMSA, enabled thanks to the exploitation of a C-RVM solver, allowed to

adaptively in
rease the resolution within the RoI and yield signi�
ant improvements in terms

of re
onstru
tion a

ura
y. Numeri
al results veri�ed the e�e
tiveness of the IMSA-BCS-CSI

method, as well as its superior performan
e with respe
t to state-of-the-art alternatives.
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