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Abstrat. This work presents a novel inverse sattering (IS) methodology to deal with the

retrieval of the eletromagneti (EM ) properties of unknown satterers. The proposed tehnique

is based on the e�etive ombination of a ustomized Bayesian ompressive sensing (BCS) solver

with the iterative multi-saling approah (IMSA). Aordingly, a-priori information on the lass

of imaged targets as well as progressively aquired information on their loation and size is

exploited to yield aurate and robust reonstrutions. Moreover, a ontrast soure inversion

(CSI ) formulation is adopted in order to enable the retrieval of non-Born satterers. Numerial

results are shown to verify the e�etiveness of the proposed IMSA-BCS-CSI method, as well as

to ompare it with state-of-the-art alternatives.

1. Introdution

Non-invasively retrieving qualitative (i.e., loation and shape) and quantitative (i.e., material

omposition) information on unknown targets starting from sattered �eld measurements requires

to solve an inverse sattering (IS ) problem. As it is well-known, suh a problem is highly non-

linear and ill-posed [1℄[2℄. For suh a reason, many tehniques have been proposed to takle these

issues and yield robust and aurate reonstrutions in many appliative senarios inluding

subsurfae imaging [3℄-[5℄, biomedial imaging [6℄[7℄, and non-destrutive testing and evaluation

[2℄. Within this ontext, the Born approximation (BA) has been often invoked to restore the

linearity of the IS problem [8℄-[11℄. However, its range of appliability is limited to weak satterers

or to senarios in whih the estimation of qualitative information is enough. Higher-order

approximations (e.g., the seond-order Born approximation, SOBA [3℄), Born iterative methods

(BIM s), and distorted Born iterative methods (DBIM s [12℄) have been explored, as well, to deal

with the mirowave imaging (MI ) of stronger satterers. Alternatively, the iterative multi-saling

approah (IMSA) proved to be a valid ountermeasure to both non-linearity and ill-posedness,

allowing to (i) redue the ratio between unknowns and informative data, (ii) adaptively inrease

the resolution only within the regions of interest (RoI s), and (iii) exploit progressively aquired

information on the imaged senario in suessive (higher-resolution) inversions [3℄[4℄[9℄.

Dealing with the ill-posedness of the IS problem, it is well-known that exploiting a-priori

information on the lass of imaged targets is an e�etive reipe to restore the solution stability in

presene of noise [1℄. Within this framework, ompressive sensing (CS ) methodologies [13℄-[16℄

are e�etive regularizers, allowing to enfore sparseness priors with respet to a suitably-hosen

representation (e.g., pixel [9℄, wavelet [15℄, total variation [8℄). Moreover, those based on a
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Bayesian formulation (BCS ) [17℄ attrated artiular attention sine they do not require that the

involved kernel operator satis�es the restrited isometry property (RIP) [13℄.

However, standard CS and BCS methods do not allow to exploit additional information besides

that on the solution sparsity. To overome suh a limitation, this work presents an innovate IS

method based on the e�etive integration of a ustomized BCS solver with the IMSA. Thanks

to the exploitation of a onstrained relevane vetor mahine (C-RVM ), progressively aquired

information through suessive IMSA steps on the target loation and size an be exploited to

guide and improve the BCS solution. Moreover (as veri�ed in Set. 3) thanks to the formulation

of the IS problem within a ontrast soure inversion (CSI ) framework [18℄[19℄, the proposed

method overomes a state-of-the-art solution based on the BA [9℄, being able to aurately

image non-Born targets, as well.

2. Mathematial Formulation

With referene to a 2D transverse magneti (TM ) IS senario, let us onsider an investigation

domain D inside an homogeneous lossless medium having permittivity ε0 and permeability µ0.

The presene of a target within D is mathematially desribed by means of the so-alled objet

funtion

τ (r) = [εr (r)− 1]− j
σ (r)

2πfε0
(1)

where εr (r) and σ (r) are the relative permittivity and ondutivity at position r ∈ D,
respetively, f being the frequeny, and r = (x, y). In order to retrieve an image of D, a set of

V z-polarized plane waves impinging from angular diretions φv = [2π (v − 1) /V ], v = 1, ..., V ,

is exploited. Adopting a CSI formulation [18℄[19℄, the sattered �eld under the v-th illumination

omplies with the following data integral equation

Ev
s (r) = [Ev (r)−Ev

i (r)] =

∫

D

χv
(

r
′
)

G
(

r, r′
)

dr′; v = 1, ..., V (2)

where Ev
i (r) and Ev (r) are the inident and total �eld, respetively, and G (r, r′) is the free-spae

Green's funtion. Moreover, χv (r) is the v-th ontrast soure, de�ned as

χv (r) = Ev (r) τ (r) ; r ∈ D; v = 1, ..., V. (3)

Under these assumptions, the IS problem at hand is aimed at retrieving a guess of the objet

funtion inside D starting from the knowledge of Ev
i (r), v = 1, ..., V , and of the orresponding

sattered �eld samples olleted by M ideal �eld probes loated in rm ∈ Ψ, m = 1, ..., M , Ψ
being an external observation domain not interseting D.
The solution of suh a problem is found numerially by means of an hybrid inversion methodology

based on the integration of a ustomized BCS solver with the IMSA. More in detail, the proposed

IMSA-BCS-CSI method iteratively solves (2), updating at eah s-th inversion step (s = 1, ..., S)
the RoI Ds ⊂ Ds−1 ⊂ ... ⊂ D1 = D and inreasing the resolution within suh a region for the

suessive reonstrution. Towards this end, the following multi-resolution representation of the

unknown ontrast soures is exploited at the s-th zooming stage

χv
s (r) =

s
∑

t=1

Nt
∑

n=1

χv
t,nΦt,n (r) ; v = 1, ..., V (4)

where Nt is the number of pixels at the t-th resolution level (t = 1, ..., s), while χv
t,n = χv (rt,n),

rt,n being the baryenter of the n-th pixel at the t-th resolution level (i.e., Dt,n ∈ Dt). Moreover,

{Φt,n (r) ; n = 1, ..., Nt; t = 1, ..., s} are multi-resolution pixel basis funtions de�ned as

Φt,n (r) =

{

1 if r ∈ Dt,n and r /∈ Dt+1

0 otherwise
; n = 1, ..., Nt; t = 1, ..., s. (5)
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Aordingly, (2) is rewritten at the s-th inversion step in ompat matrix notation as

Ev = G
s
χv

s
(6)

where Ev ∈ R
2M×1

ontains the real/imaginary parts of the sattered �eld, χv
s
∈ R

2Ls×1

ontains the real/imaginary parts of the Ls =
∑s

t=1 Nt unknown ontrast soure oe�ients

in (4), while G
s
∈ R

2M×2Ls
is the orresponding multi-resolution Green's operator. Aording

to the BCS theory, the solution of (6) is omputed in losed form without the need to perform

omputationally-una�ordable heks of the RIP ompliane by G
s
as follows

χ̂v

s
=

1

η̂vs

[

GT

s
G

s

η̂vs
+ diag (âvs)

]−1

GT

s
Ev; v = 1, ..., V (7)

where .T is the transpose, while η̂vs and âvs =
{

âvs,l; l = 1, ..., 2Ls

}

are the BCS estimated noise

variane and hyper-parameters, omputed as

(η̂vs , â
v
s) = arg

{

max
(ηv

s
, av

s
)
L
(

Ev|G
s
, ηvs , a

v
s

)

}

(8)

where L
(

Ev|G
s
, ηvs , a

v
s

)

is the BCS logarithmi likelihood funtion [17℄[20℄. It is worth

observing that aording to (7) eah hyper-parameter diretly in�uenes the orresponding entry

of χv
s
. Aordingly, in order to exploit progressively aquired information on the solution from

previous iterations, (8) is solved by means of a ustomized onstrained relevane vetor mahine

(C-RVM ), enforing that only the 2Ns < 2Ls entries of â
v
s assoiated to pixels falling within the

RoI at the s-th step are updated by the maximization proedure

1
. One the ontrast soures

have been estimated through (7), the objet funtion in eah pixel is omputed by averaging over

di�erent views (v = 1, ..., V ) the ratio between retrieved urrents and the orresponding total

eletri �eld. To summarize, the IMSA-BCS-CSI method onsists in the following proedural

steps

(i) Low-Resolution (LR) Inversion. Set s = 1 and partition the RoI D1 = D into N sub-

domains. Solve the LR inverse problem (7)-(8), then ompute the estimated LR objet

funtion.

(ii) RoI Updating. Set s ← (s+ 1) then apply the IMSA �ltering and lustering proedure [9℄

on the previous solution to update the RoI at the s-th step, Ds ⊂ Ds−1, by omputing its

baryenter rs = (xs, ys) and its side Ls aording to the proedure desribed in [9℄;

(iii) High-Resolution (HR) Inversion. Partition Ds into N sub-domains and solve the HR inverse

problem (7)-(8) enforing that only hyperparameters orresponding to pixels inside Ds

are a�eted by the C-RVM searh proedure. Finally, ompute the estimated HR objet

funtion.

(iv) Termination. Stop if s = S or if a stationary ondition on the RoI size and loation is met

[9℄. Otherwise, go to Step (ii).

1
It is worth pointing out that all (2Ls − 2Ns) remaining entries are fored to in�nity by the C-RVM, suh that

orresponding entries of χv

s
are set to zero [20℄.
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3. Numerial Results

This Setion is aimed at numerially assessing the proposed IMSA-BCS-CSI methodology.

Towards this end, some representative results are shown dealing with the imaging of a square

investigation domain D of side 6λ, whih has been probed by means of V = 60 inident plane

waves. A set of M = 60 probes uniformly distributed over an external irular observation

domain Ψ of radius ρ = 4.5λ has been used to ollet sattered data. Conerning the settings of

the IMSA-BCS-CSI, N = 100 ells have been onsidered to disretize the RoI at eah zooming

step, the maximum number of IMSA steps being �xed to S = 4. To test the robustness of the

method against noise, an additive white Gaussian noise has been superimposed on the sattered

�eld, while the total integral error, de�ned as in [9℄, has been omputed to give a quantitative

measure of the obtained solution �quality�.
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Figure 1. Numerial Assessment (�Conentri Square� Pro�le, τ = 0.1, SNR = 20 dB) - (a)

Atual and intermediate IMSA-BCS-CSI reonstrutions at intermediate steps (b) s = 1, ()
s = 2, (d) s = 3, and (e) s = S = 4.

Figure 1 deals with the retrieval of the �Conentri Square� pro�le, whose atual dieletri

pro�le is shown in Fig. 1(a) (τ = 0.1 2
). More in detail, the evolution of the IMSA-BCS-CSI

solution through suessive multi-saling steps (s = 1, ..., S) has been reported when proessing

2
It should be pointed out that suh a preliminary benhmark is aimed at assessing the e�etiveness of the

developed multi-saling approah independently on the onsidered ontrast value.
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noisy data at SNR = 20 dB. As it an be observed, there is a progressive re�nement of the

reonstrution auray going from the LR inversion, in whih the target loation has been

roughly deteted [s = 1 - Fig. 1(b)℄, to the last HR step [s = S = 4 - Fig. 1(e)℄. A dashed line

has been plotted to indiate the extension of the RoI at eah step. It an be inferred that the RoI

has been progressively shrunk starting from D1 = D [Fig. 1(b)℄, perfetly mathing the target

support at the end of the multi-saling proess [Fig. 1(e)℄. Moreover, thanks to the exploitation

of the C-RVM solver, progressively aquired information on the target loation and size has been

suessfully exploited, allowing to remove artifats in the bakground and to ahieve a faithful

estimation of the objet funtion [Fig. 1(e) vs. Fig. 1(a)℄. For ompleteness, the atual and

retrieved imaginary part of the ontrast funtion at the last step have been reported in Fig. 2,

on�rming the auray of the developed approah.
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Figure 2. Numerial Assessment (�Conentri Square� Pro�le, τ = 0.1, SNR = 20 dB) - (a)

Atual and (b) IMSA-BCS-CSI reonstrution (s = S = 4) of the imaginary part of the ontrast

funtion.

To further prove the e�etiveness and robustness of the proposed method, Figure 3(b) shows the

IMSA-BCS-CSI outome when dealing with the retrieval of the �Inhomogeneous Square� pro�le

[Fig. 3(a)℄, having a maximum objet funtion equal to τmax = 0.6, and proessing highly-

blurred data (SNR = 5 dB). As it an be seen, the target loation and size have been orretly

identi�ed, with a good estimation of the objet funtion [Fig. 3(b) vs. Fig. 3(a)℄, regardless

of the very harsh imaging onditions. Even more interestingly, there is a lear advantage of the

IMSA-BCS-CSI over a state-of-the-art multi-saling BCS method based on the �rst order Born

approximation (IMSA-BCS-BA [9℄). Indeed, the plot in Fig. 3(), showing the IMSA-BCS-BA

result for the same test ase, indiates that suh method is only able to detet the presene of

the target and to roughly estimate its loation, being however inapable of orretly deteting

its atual support and objet funtion.

To omplete the omparative assessment, the result yielded by the BARE-BCS-CSI method,

based on a standard non-iterative single-resolution BCS solver working in the CSI framework,

has been reported in Fig. 3(d) (N = 400). Although the CSI formulation allowed to detet

the presene of the inner ore of the target with higher ontrast, overall the reonstrution

quality is signi�antly lower with respet to the IMSA method, with many artifats arising in

the bakground region, as well [Fig. 3(b) vs. Fig. 3(d)℄. Quantitatively, the behavior of the total

reonstrution error has been reported in Fig. 4 as a funtion of τmax for both IMSA-BCS-CSI

and BARE-BCS-CSI , on�rming the superior performane of the proposed method whatever

the level of noise and the atual ontrast.
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Figure 3. Numerial Assessment (�Inhomogeneous Square� Pro�le, τmax = 0.6, SNR = 5 dB)

- (a) Atual and retrieved ontrast distribution by the (b) IMSA-BCS-CSI , () IMSA-BCS-BA,

and (d) BARE-BCS-CSI methods.
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Figure 4. Numerial Assessment (�Inhomogeneous Square� Pro�le, SNR ∈ [5, 20] dB) -

Behavior of the total reonstrution error as a funtion of τmax for the IMSA-BCS-CSI and

BARE-BCS-CSI methods.

4. Conlusions

This work presented an innovative IS method able to jointly exploit a-priori information on the

lass of imaged targets and progressively aquired information of their position and size. More in

detail, sparseness priors have been exploited to regularize the solution thanks to a probabilisti

formulation of the IS problem within the CSI framework. Furthermore, the integration of the
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BCS solver with the IMSA, enabled thanks to the exploitation of a C-RVM solver, allowed to

adaptively inrease the resolution within the RoI and yield signi�ant improvements in terms

of reonstrution auray. Numerial results veri�ed the e�etiveness of the IMSA-BCS-CSI

method, as well as its superior performane with respet to state-of-the-art alternatives.
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