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Abstract: One of the most crucial applications of radar-based precipitation nowcasting systems is
the short-term forecast of extreme rainfall events such as flash floods and severe thunderstorms.
While deep learning nowcasting models have recently shown to provide better overall skill than
traditional echo extrapolation models, they suffer from conditional bias, sometimes reporting lower
skill on extreme rain rates compared to Lagrangian persistence, due to excessive prediction smoothing.
This work presents a novel method to improve deep learning prediction skills in particular for extreme
rainfall regimes. The solution is based on model stacking, where a convolutional neural network
is trained to combine an ensemble of deep learning models with orographic features, doubling the
prediction skills with respect to the ensemble members and their average on extreme rain rates,
and outperforming them on all rain regimes. The proposed architecture was applied on the recently
released TAASRAD19 radar dataset: the initial ensemble was built by training four models with
the same TrajGRU architecture over different rainfall thresholds on the first six years of the dataset,
while the following three years of data were used for the stacked model. The stacked model can reach
the same skill of Lagrangian persistence on extreme rain rates while retaining superior performance
on lower rain regimes.

Keywords: rainfall; nowcasting; deep learning; stacked generalization; convolutional recurrent
neural networks; data augmentation; conditional bias; ensemble forecasting

1. Introduction

Nowcasting—i.e., short-term prediction up to 6 h—of precipitation is a crucial tool for risk
mitigation of water-related hazards [1–5]. The use of extrapolation methods on weather radar
reflectivity sequences is the mainstay of very short-time (up to 2 h) precipitation nowcasting systems [6].
The raw reflectivity volume generated at fixed time steps by the radar is usually corrected by spurious
echoes and processed into one or more products. In the case of a network of multiple radars, several
strategies are used to merge the resulting volumes or products and generate a composite map. The most
common products used as input to nowcasting models are reflectivity maps at constant altitude, such as
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Plain Positions Indicators (PPI) or Constant Altitude Plain Position Indicator (CAPPI), or the Maximum
vertical reflectivity (CMAX or MAX(Z)). Sequences of reflectivity maps are used as input for prediction
models. More formally, given a reflectivity field at time T0, radar-based nowcasting methods aim to
extrapolate m future time steps T1, T2, ..., Tm in the sequence, using as input the current and n previous
observations T−n, ..., T−1, T0.

Traditional nowcasting models are manly based on Lagrangian echo extrapolation [7,8], with
recent modification that try to infer precipitation growth and decay [9,10] or integrate with Numerical
Weather Predictions to extend the time horizon of the prediction [11,12]. In the last few years,
Deep Learning (DL) models based on combination of Recurrent Neural Networks (RNN) and
Convolutional Neural Networks (CNN) have shown substantial improvement over nowcasting
methods based on Lagrangian extrapolations for quantitative precipitation forecasting (QPF) [13].
Shi et al. [14] introduced the application of the Convolutional Long Short-Term Memory (Conv-LSTM)
network architecture with the specific goal of improving precipitation nowcasting over extrapolation
models, where LSTM is modified using a convolution operator in the state-to-state and input-to-state
transitions. Subsequent work introduced dynamic recurrent connections [15] (TrajGRU) that allowed
the improvement of prediction skills, spatial resolution, and temporal length of the forecast, with
comparable number of parameters and memory requirements. Subsequent works introduced
more complex memory blocks and architectures [16] and increased number of connections among
layers [17,18] to further improve prediction skills at the expenses of an increase in computational
complexity and memory requirements. Approaches based on pure CNN architectures have also been
presented [19,20], showing how simple models can deliver better skills over traditional extrapolation
on low to medium rain rates. Recently, prediction of multi-channel radar products simultaneously [21]
has been explored, too.

While deep learning models have shown to consistently deliver superior forecast skills for
the prediction of low to medium rain thresholds, few studies consider the case of extreme rain
rates, where Lagrangian-based extrapolation methods can sometimes deliver better scores for short
lived precipitation patterns, due to their heavy reliance on persistence. In fact, the main challenge
faced by nowcasting methods is the progressive accumulation of uncertainty: DL architectures deal
with uncertainty by smoothing prediction over time, using the intrinsic averaging effect of loss
functions such as Mean Squared Error (MSE) and Mean Absolute Error (MAE), commonly used as
loss functions to train DL architectures in regression problems [22]. This smoothing problem can
be seen as Conditional Bias (CB): the minimization of MSE leads to models where peak values are
systematically underestimated and compensated by overestimation in weak rain-rates [9,23]. Moreover,
the minimization of these two errors is at odds [24]: measures taken to remove CB lead to an increase in
MSE, and vice versa, the minimization of MSE results in a higher CB, manifested in an underestimation
of high and extreme rain rates.

While not addressing the problem directly, some DL approaches try to cope with CB by
introducing weighted loss functions [15], by integrating loss functions used in computer vision [25],
or by optimizing for specific rain regimes [26]. Others avoid the problem by renouncing to a
fully quantitative prediction and threshold the precipitation at specific rain-rates, approaching the
nowcasting as a classification problem [20,27]. Unfortunately, while applying modification on the
loss function can result in improvement for the general case, the current knowledge on loss functions
suggests that this approach alone cannot be used to improve predictions of extreme events [28].

Instead of solely relying on loss function, in this work, we improve the prediction skills of deep
learning models, especially for extreme rain rates, by combining orographic features with a model
ensemble. Ensemble models are extensively used in meteorology for improving predictions skills, to
estimate prediction uncertainty, or to generate probabilistic forecasts [29]. Despite their potential, the
use of ensembles is problematic for deterministic nowcasting, because model averaging exacerbates
the CB problem, leading to attenuation on extreme rain rates [30]. Thus, we use model stacking [31,32],



Atmosphere 2020, 11, 267 3 of 19

where the outputs of a deep learning ensemble and orographic features are combined by another DL
model to enhance the skill of existing predictions.

The paper is structured as follows. In Section 2, we introduce all the components of our solution,
namely the dataset (Section 2.1), the DL nowcasting model used to create the ensemble (Section 2.2),
the ensemble generation strategy (Section 2.3), the Stacked Generalization model (Section 2.4) with the
Orographic Feature Enhancements (Section 2.5), and the Extrapolation Model used for the comparison
(Section 2.6). This is followed by the presentation of the results in Section 3. Results are discussed in
Section 4, followed by the summary and conclusions in Section 5.

2. Materials and Methods

2.1. TAASRAD19 Dataset

The dataset for this study was provided by Meteotrentino, the public weather forecasting service
of the Civil Protection Agency of the Autonomous Trentino Province in Italy. The agency operates a
weather radar located in the middle of the Italian Alps, on Mt. Macaion (1866 m.a.s.l.). The C-Band
radar operates with a 5-min frequency for a total of 288 scans per day, and the generated products cover
a diameter of 240 km at 500 m resolution, represented as a 480 × 480 floating point matrix. The publicly
released TAASRAD19 [33,34] dataset consists of a curated selection of the MAX(Z) product of the
radar in ASCII grid format, spanning from June 2010 to November 2019 for a total of 894,916 scans.
The maximum reflectivity value reported by the product is 52.5 dBZ, corresponding to 70 mm/h when
converted to rain rate using the Z–R relationship developed by Marshall and Palmer [6] (Z = 200R1.6).
An example of scan is reported in Figure 1.

Figure 1. An example of observed radar reflectivity scan (MAX(Z) product) available in the
TAASRAD19 dataset, represented in color scale over the geographical boundaries of the area covered
by the radar. The area outside the observable radar radius is shaded.
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For the purpose of this study, we split the data by day and grouped the radar scans into chunks
of contiguous frames, generating chunks of at least 25 frames (longer than 2 h) and with a maximum
length of 288 frames (corresponding to the whole day). Only chunks with precipitation are kept. Then,
we divided the data into two parts: the first period from June 2010 to December 2016 was used to train
and validate the model ensemble (TRE), while the precipitation events from January 2017 to July 2019
were used to generate the ensemble predictions. These were in turn used to train, validate, and test the
stacked model (ConvSG). During the last stage, we also tested the integration of orographic features in
the model chain. Figure 2 summarizes the overall flow of the data architecture used in the study.

Figure 2. Data architecture of the study. The predictions generated by the ensemble on the test set were
used to train, validate and test the stacked model.

2.2. Deep Learning Trajectory GRU Model

We adopt the trajectory gated recurrent unit (TrajGRU) network structure proposed by Shi et al.
in [15] as baseline model to build our ensemble. We note that a single instance of this model has
already been integrated internally to the Civil Protection for nowcasting assessments. The underlying
idea of the model is to use convolutional operations in the transitions between RNN cells instead of
fully connected operations to capture both temporal and spatial correlations in the data. Moreover,
the network architecture dynamically determines the recurrent connections between current input
and previous state by computing the optical flow between feature maps, both improving the ability to
describe spatial relations and reducing the overall number of operations to compute. The network
is designed using an encoder–forecaster structure in three layers: in the encoders, the feature maps
are extracted and down-sampled to be fed to the next layer, while the decoder connects the layers
in the opposite direction, using deconvolution to up-sample the features and build the prediction.
With this arrangement, the network structure can be modified to support an arbitrary number of input
and output frames. In our configuration, 5 frames (25 min) are used as input to predict the next
20 steps (100 min), at the full resolution of the radar (480 × 480 pixels). Figure 3 shows the model
architecture diagram.
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Figure 3. Schema of the deep learning architecture adopted by TrajGRU, in a configuration with two
input and two output frames.

Given the complex orographic environment where the radar operates, the data products suffer
from artifacts and spurious signals even after the application of the polar filter correction. For this
reason, we generate a static mask (MASK) using the procedure adopted in [15]: the mask is used to
systematically exclude out of distribution pixels when computing the loss function during training.
As loss function, we adopt the same weighted combination of MAE and MSE proposed by Shi et al.
[15], where target pixels with higher rain rate are multiplied by a higher weight, while for masked
pixels the weight is set to zero. Specifically, given a pixel x, the weight w(x) is computed as the
stepwise function w(x) proposed by [15]:

w(x) =



0 if x ε MASK

1 if R(x) < 2

2 if 2 ≤ R(x) < 5

5 if 5 ≤ R(x) < 10

10 if 10 ≤ R(x) < 30

30 if R(x) ≥ 30,

(1)

where R(x) is the Z-R Marshall Palmer conversion with the parameters described in Section 2.1.
The final loss equation is given by the sum of the weighted errors

B-MAE + B-MSE =
1
N

N

∑
n=1

480

∑
i=1

480

∑
j=1

wnij(xnij − x̃nij)
2 +

1
N

N

∑
n=1

480

∑
i=1

480

∑
j=1

wnij|xnij − x̃nij|, (2)

where w are the weights, x is the observation, x̃ is the prediction, and N is the number of frames.
This loss function gives the flexibility to fine-tune the training process by forcing the network to focus
on specific rain regimes at the pixel level, thus already mitigating CB, with a concept that reminds
spatial attention layers [35]. Augmenting the loss with functions considering also neighbor pixels
(e.g., SSIM [25]) is not feasible here: indeed, the spatial incongruities introduced by pixel masking and
the circular (non-rectangular) output of the prediction target require using a loss function operating at
single-pixel level.
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2.3. Thresholded Rainfall Ensemble for Deep Learning

We base our ensemble on different realizations of the TrajGRU model, given its strength and
flexibility for the task. Ideally, a reliable ensemble should be able to sample the complete underlying
distribution of the phenomenon [36]. For precipitation nowcasting, the ensemble should be able to fully
cover the different precipitation scenarios into which the input conditions can develop. For extreme
precipitations, we aim to model the variability of the boundary conditions that can lead to an extreme
event by generating an ensemble that can mimic the different scenarios. There are two common
approaches for building an ensemble from a single DL model: either adding random perturbations
to the initial conditions of the model or training the model on a different subset of the input space,
e.g., via bagging [37]. Our solution differs from these approaches and it uses the mechanism described
in Section 2.2 to modify the loss weights of lower rain rate pixels. Specifically, the weight for pixels
under a certain threshold is set by modifying the computation of the loss as follows:

w(x) =



0 if (x ε MASK) ∧ (R(x) < T)

1 if T ≤ R(x) < 2

2 if 2 ≤ R(x) < 5

5 if 5 ≤ R(x) < 10

10 if 10 ≤ R(x) < 30

30 if R(x) ≥ 30,

(3)

where T is a threshold value in the set T ε {0.03, 0.06, 0.1, 0.3}, thus building an ensemble of 4
models. With this approach, the model does not need to optimize for all precipitation regimes under
the threshold during training and considers as an optimization target only the higher rain rates.
The mechanism produces a progressive overshooting of the total amount of rain estimate when rising
the threshold, which in turn helps target higher rain regimes. Figure 4 shows the progressive rise in
the average pixel value of the generated predictions of the 4 models on the test set.

Figure 4. Average pixel values (normalized dBZ) of the predictions generated by the 4 models on the
test set. When progressively raising the rainfall threshold in the loss, the resulting models progressively
increase the total amount of predicted precipitation.

We call this approach thresholded rainfall ensemble (TRE). TRE has several desirable properties: it
does not require any sampling of the input data, and it is able to generate models with significantly
different behaviors using a single model architecture. Moreover, all the ensemble members in TRE keep
as primary objective in the loss function the minimization of the error on the high rain rates. Finally,
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TRE allows tuning the ensemble spread by choosing a more similar or more distant set of thresholds, a
property that is not achievable with random data re-sampling or via random parameterization. The
only drawback of this method is that the choice of thresholds is dependent on the distribution of
the dataset, and thus the generated spread can only be empirically tested. However, the presented
thresholds can be reused as is at least on other Alpine radars, and with minor modifications in
continental areas. Indeed, the thresholds are considered on the actual rainfall rate calculated after the
conversion from reflectivity, where all variability given from the physical characteristics of the radar,
background noise, and environmental factors have already been taken into account and corrected.

An example of the prediction behavior of the four models is shown in Figure 5, along with the
input and observed precipitation.

input

observ.

Thr .03mm

Thr .06mm

Thr 0.1mm

Thr 0.3mm

Figure 5. Ensemble prediction with TRE valid at 00:20 UTC 26 April 2017 (best viewed in color).
The first row shows the five input scans (25 min), while the subsequent rows show the observation
(ground truth) and the four models’ output. Observation and prediction are sub-sampled one every
two images (10 min) to improve representation clarity. The ensemble spread can be observed when
rising the threshold value.

As introduced in Figure 2, the four models composing the TRE ensemble were trained on the
TAASRAD19 data from 2010 to 2016. Using a moving window of 25 frames on the data chunks,
we extracted all the sequences with precipitation in the period, for a total of 202, 054 sequences:
95% (191, 952) were used for training while 5% (10, 102) were reserved for validation and model
selection. All models were trained with the same parameters except for the threshold: fixed random
seed, batch size 4, Adam optimizer [38] with learning rate 10−4 and learning rate decay, 100,000
training iterations with model checkpoint, and validation every 10,000 iteration. For each threshold
value, the model with the lowest validation loss was selected as a member of the ensemble.

2.4. ConvSG Stacking Model

Stacked Generalization (or model stacking) is a strategy that employs the predictions of an
ensemble of learners to train a model on top of the ensemble predictions, with the goal of improving
the overall accuracy. The objective of our stacking model is to combine the ensemble outputs to reduce
CB in the prediction.
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We first generate the stacked model training set, i.e., the predictions for each ensemble member
for the data for 2017–2019, for a total of 76, 151× 4 set of prediction sequences, where each sequence is
a tensor of size 20× 480× 480. Given that extreme precipitations are very localized in space and time,
we need to preserve both the spatial an temporal resolution of the prediction. Since the theoretical
input size for the stacked model results in a tensor of size 4× 20× 480× 480, memory and computing
resources are to be carefully planned. To avoid hitting the computational wall, we developed a stacking
strategy based on the processing of a stack of the first predicted image of each model. The approach is
driven by the assumption that ensemble members introduce a systematic error that can be recovered
by the stacked model and that this correction can be propagated to the whole sequence. For this reason,
we use only the first image of each prediction for the training of the stacked model, while all 20 images
of the sequences are used for validation and testing.

Given that our target is the improvement of extreme precipitation prediction, we reserve as test
set for the stacked model a sample of 30 days extracted from the list of days with extreme events
during 2017–2019 compiled by Meteotrentino. The resulting number of sequences for the test set is
6840, corresponding to 9% of the total dataset, while for the validation we random sample 3% of
the remaining (76, 151− 6840 = 69, 311) dataset, for a total of 2189 sequences. The reason for such
low validation split is that, while the training process is only on the first predicted frames, the test
and validation are computed on the whole sequence, expanding the test and validation sets 20 times.
The final number of images for each set is reported in Table 1.

Table 1. Dataset sampling strategy for the stacked generalization model.

Dataset Sampling Strategy Nr. Images

Training 67,122 first image of each seq 67,122
Validation 2189 (3%) seq. × 20 images 43,780
Testing 6840 (9%) seq. × 20 images 136,800

As a sanity check towards excessive distribution imbalances between the three sets, we report the
data distribution, in terms of both pixel value and rain rate in Figure 6.

Rain Rate (mm/h) (%) Rainfall Level

0 < x < 0.5 95.94 Hardly noticeable
0.5 ≤ x < 2 3.37 Light
2 ≤ x < 5 0.47 Light to moderate
5 ≤ x < 10 0.14 Moderate
10 ≤ x < 30 0.07 Heavy
30 ≤ x < 1000 0.01 Extreme

(a) Train

Rain Rate (mm/h) (%) Rainfall Level

0 < x < 0.5 96.59 Hardly noticeable
0.5 ≤ x < 2 2.90 Light
2 ≤ x < 5 0.34 Light to moderate
5 ≤ x < 10 0.11 Moderate
10 ≤ x < 30 0.05 Heavy
30 ≤ x < 1000 0.01 Extreme

(b) Validation
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Rain Rate (mm/h) (%) Rainfall Level

0 < x < 0.5 90.69 Hardly noticeable
0.5 ≤ x < 2 7.85 Light
2 ≤ x < 5 1.02 Light to moderate
5 ≤ x < 10 0.28 Moderate
10 ≤ x < 30 0.13 Heavy
30 ≤ x < 1000 0.04 Extreme

(c) Test

(d) Distribution plot of the three sets

Figure 6. Distribution of the rainrate values for the three sets used for train (a), validation (b) and
test (c). (d) shows the plot of the distribution of the reflectivity values in the three sets. Zero values are
removed since they dominate the distribution.

The architecture of the Stacked model, ConvSG, is built with the aim to preserve the full resolution
of the input image during all the transformations from input to output. The architecture is partially
inspired by the work presented in [19]: we use a resolution-preserving convolutional model with a
decreasing number of filters, where we add a batch normalization [39] layer after each convolutional
layer to improve training stability and we adopt a parametric ReLU (PreLU) activation and initialize
all the convolutional weights sampling from a normal distribution [40] to help model convergence. As
a loss function, we integrate the loss described in Equation 2, by assigning more weight to pixels in
the higher rain thresholds. The final architecture is composed by 5 blocks of 5x5 Convolution with
stride 1, Batch Normalization and PreLU, and a final 5x5 convolutional output layer. Figure 7 shows
the architecture diagram of the ConvSG model along with the expected input and outputs.

Figure 7. The architecture of the deep learning ConvSG model.

For the training of the ConvSG model, we adopt the following training strategy:

(d) Distribution plot of the three sets

Figure 6. Distribution of the rainrate values for the three sets used for train (a), validation (b) and
test (c). (d) shows the plot of the distribution of the reflectivity values in the three sets. Zero values are
removed since they dominate the distribution.

(c) Test (d) Distribution plot of the three sets

Figure 6. Distribution of the rain rate values for the three sets used for: training (a); validation (b); and
testing (c). (d) The plot of the distribution of the reflectivity values in the three sets. Zero values are
removed since they dominate the distribution.
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The architecture of the Stacked model, ConvSG, is built with the aim to preserve the full resolution
of the input image during all the transformations from input to output. The architecture is partially
inspired by the work presented in [19]: we use a resolution-preserving convolutional model with a
decreasing number of filters, where we add a batch normalization [39] layer after each convolutional
layer to improve training stability and we adopt a parametric ReLU (PreLU) activation and initialize
all the convolutional weights sampling from a normal distribution [40] to help model convergence.
As a loss function, we integrate the loss described in Equation (2), by assigning more weight to pixels
in the higher rain thresholds. The final architecture is composed by 5 blocks of 5 × 5 Convolution with
stride 1, Batch Normalization and PreLU, and a final 5 × 5 convolutional output layer. Figure 7 shows
the architecture diagram of the ConvSG model along with the expected input and outputs.

Figure 7. The architecture of the deep learning ConvSG model.

For the training of the ConvSG model, we adopt the following training strategy:

• Batch size: 20
• Optimizer: Adam with learning rate 1e−3

• number of epochs: 100
• validation and checkpoint every 1000 iteration.

For each configuration, the best model in validation is selected for testing.

2.5. Enhanced Stacked Generalization (ESG)

2.5.1. Combining Assimilation into ConvSG

We can extend the standard stacked generalization approach by feeding as input to the stacked
model not only the prediction of the ensemble, but also additional data sources that can be expected to
improve the target prediction: we call this method Enhanced Stacked Generalization (ESG).

There are various reasons integrating new data during the stacked phase can be helpful. The first
is that the integration allows breaking down the computation in smaller and faster independent steps,
with an additive process. This allows the use of intermediate model outputs in the processing chain to
be used for operations that accept to trade off accuracy for a more timely answer, as in operational
nowcasting settings. The second reason is that composing different inputs at different stages adds
explainability to the overall system. Finally, ESG can help to meet operational budgets in terms of
computation or memory resources: in our case, adding the orographic features directly as input to the
TrajGRU training process would almost double the memory requirements for the model, forcing us to
compromise either resolution or prediction length.
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2.5.2. Orographic Features

Given the complexity of the Alpine environment in the area covered by the TAASRAD19 dataset
and the direct known relationships between convective precipitation and the underlying orographical
characteristics [9,41–44], we add to the stack of the input images three layers of information, derived
from the orography of the area: the elevation, the degree of orientation (aspect), and the slope
percentage. The three features are computed by resampling the digital terrain model [45] of the area at
the spatial resolution of the radar grid (500 m), and computing the relevant features in a GIS suite [46].
Figure 8 shows an overview of the three features, while the distributions of the values are reported in
Figure 9.

(a) (b) (c)

Figure 8. Overview of the three orographic features used for the ESG model: (a) elevation map
resampled over the radar grid at 500 × 500 m resolution; (b) orientation derived from the elevation
map, where the colors show the nearest cardinal direction N (0), E (90), S (180), and W (270); and (c)
percentage slope derived from the elevation.

The three orographic layers are normalized and stacked along the channel dimension to the four
ensemble images, generating an input tensor of size (4 + 3) × 480 × 480 as input to the ConvSG model.

Figure 9. Histograms of the three topographic features, elevation, aspect, and slope (from the top to
the bottom). The Y axis of the histogram represents the pixel count for each bin, while the X axis is
the value of the elevation in meters, the degree of orientation, and the slope percentage respectively.
No data values are zeroed.
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2.6. S-PROG Lagrangian Extrapolation Model

We compared the ConvSG model with the S-PROG Lagrangian extrapolation model introduced
by Seed [47], here applied following the open-source implementation presented in [7]. S-PROG is a
radar-based advection or extrapolation method that uses a scale filtering approach to progressively
remove unpredictable spatial scales during the forecast. Notably, the forecasting considers the
extrapolation of a motion field to advect the last input radar scan. As a result, S-PROG produces
a forecast with increasingly smooth patterns, while only the mean field rainfall rate is conserved
throughout the forecast, that is, the model assumes the Lagrangian persistence of the mean rainfall rate.
The model is chosen here as a benchmark to the ability of Lagrangian persistence to predict extreme
rain rates.

3. Results

We evaluated the behavior of the various configuration of the ESG models in comparison with
S-PROG, with each single member of the ensemble, and with respect to the ensemble mean, by
averaging pixel-wise the four predictions tensors. To better assess the contribution of each component
to the final solution, we performed an ablation analysis that shows the contribution of each of
the introduced features (Thresholded Rainfall Ensemble, Stacked Generalization and Orographic
Enhancement) to the final result. Both continuous and categorical scores are reported.

3.1. Categorical Scores

The standard verification scores used by meteorological community to test predictive skills of
precipitation forecasting are the Critical Success Index (CSI, also known as threat score), the False
Alarm Ratio (FAR), and the Probability of Detection (POD). These measures are somewhat similar to
the concept of accuracy, precision ,and recall commonly used in machine learning settings. To compute
the scores, first the prediction and the ground truth matrices of the precipitation are converted into
binary values by thresholding the precipitation. Then, the number of hits (truth = 1, prediction = 1),
misses (truth = 1, prediction = 0), and false alarms (truth = 0, prediction = 1) between the two matrixes
are computed and the skill scores are defined as:

• CSI = hits
hits+misses+ f alsealarms

• FAR = f alsealarms
hits+ f alsealarms

• POD = hits
hits+misses

The overall evaluation results are summarized in Table 2 and Figure 10, which report the
comparison of the CSI (threat score) on the test set for three combinations of ConvSG, along with
ensemble members, the mean, and S-PROG. Three combinations of ConvSG are shown: (i) the standard
Stacked Generalization approach composed by all four members of the ensemble ConvSG (Ensemble);
(ii) the orographic enhanced stacked generalization ConvSG (Ens + Oro); and (iii) the best of the four
combination of each single model plus the orography ConvSG (Single + Oro). In this configuration, the
best performance are achieved by the TrajGRU 0.03 mm model combined with orography.
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Table 2. CSI forecast skill of the ESG models compared with the ensemble (higher is better). In bold is
the best result, the second best is underlined.

CSI Threshold (mm/h) 0.1 0.2 0.5 1 2 5 10 20 30

S-PROG 0.557 0.502 0.377 0.241 0.140 0.076 0.053 0.037 0.027
TrajGRU 0.03 mm 0.618 0.553 0.444 0.353 0.270 0.155 0.067 0.016 0.004
TrajGRU 0.06 mm 0.611 0.567 0.449 0.350 0.268 0.165 0.089 0.031 0.012
TrajGRU 0.1 mm 0.580 0.567 0.457 0.353 0.259 0.166 0.090 0.031 0.011
TrajGRU 0.3 mm 0.611 0.570 0.468 0.345 0.256 0.162 0.080 0.028 0.010
Ensemble AVG 0.625 0.577 0.466 0.357 0.270 0.171 0.081 0.025 0.007
ConvSG (Ensemble) 0.624 0.546 0.420 0.344 0.272 0.164 0.086 0.034 0.014
ConvSG (Single + Oro) 0.627 0.575 0.463 0.357 0.269 0.166 0.098 0.046 0.022
ConvSG (Ens + Oro) 0.628 0.577 0.466 0.360 0.273 0.171 0.099 0.048 0.026

Except for the threshold 0.5 mm, the full ESG model always outperforms all other deep learning
combinations. The margin grows larger at the increase of the score threshold, and for very heavy rain
rates (20 and 30 mm) all ESG model combinations register noticeable improvements over all members
of the ensemble. At 30 mm, the full ESG model records a skill that is more than doubled with respect
to the best performing ensemble member, and it is on par with the score reported by S-PROG, while
retaining superior skills on all the other thresholds.

Figure 10. CSI score on test set. The dashed, squared, and plain patterns in the bars represent the three
sets of light, medium, and heavy precipitation thresholds, respectively.

The second best performing model is ConvSG (Single + Oro), confirming that the addition of
the orographic features induces substantial improvements on all rain regimes and particularly on the
extremes. This is also reflected in the performance of the ConvSG (Ensemble) model, where a skill
increase on the high rain rates, thus a reduction in CB, is paid with an inferior performance at lower
rain rates.

The framewise comparison shown in Figure 11 confirms that the increase in skill learned by
all the ESG combinations is systematic and does not depend on temporal dimension: as such, the
performance increases are consistent across all the predicted timesteps.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. Comparison of ESG, ensemble members and average for CSI, FAR, and POD scores on
heavy and severe rain-rates (10, 20, and 30 mm/h): (a) CSI-10; (b) CSI-20; (c) CSI-30; (d) FAR-10; (e)
FAR-20; (f) FAR-30; (g) POD-10; (h) POD-20; and (i) POD-30.
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3.2. Continuous Scores

For the continuous scores, along with the standard Mean Squared Error (MSE) and Mean Absolute
Error (MAE), we consider two scores that highlight the ability to forecast extreme events. One is the
Conditional Bias itself (beta2) and the other is the Normalized Mean Squared Error (NMSE), a measure
where differences on peaks have a higher weight than differences on other values.

The NMSE is expressed as:

NMSE =
(P−O)2

(P + O)2 (4)

where P is the prediction and O is the observation, while the CB is computed as the linear regression
slope. All scores are reported in Figure 12. As expected, the stacked models substantially improve beta2
(Figure 12d) and NMSE (Figure 12b), but have a higher MSE (Figure 12a). S-PROG has a comparable
CB with the full ESG model in the first lead times, but it is substantially outperformed by all the DL
models on all the other measures.

(a) (b)

(c) (d)

Figure 12. Continuous score performance of the model: (a) mean squared error; (b) normalized mean
square error; (c) mean absolute error; and (d) conditional bias (closer to 1 is better).
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Figure 13 shows an example output of the ConvSG (Ens + Oro) model on the test set, along with
all members of the ensemble and the average. The ESG model handles better the overall variability,
with less smoothing on the extremes.

input

observ.

Thr .03mm

Thr .06mm

Thr 0.1mm

Thr 0.3mm

EnsAVG

S-PROG

ConvSG

Figure 13. TRE Ensemble members, Ensemble average, S-PROG, and ConvSG (Ens + Oro) prediction
on test at 1535 UTC 03 July 2018 (best viewed in color). The first row shows the five input scans (25
min), while the subsequent rows (50 min) show the observation (ground truth), the four models’ output,
the ensemble average, the Lagrangian extrapolation model, and the stacked generalization output.

4. Discussion

4.1. ConvSG Behavior

The results reported in Section 3 show that ConvSG can substantially improve the predictive
skill of deep learning models on extreme rain rates. When the SG is trained only on the ensemble
predictions, with no additional information, the ConvSG model is able to leverage the ensemble spread
to trade off predictive performance on the lower rain rates for an improvement in high and extreme
thresholds. This behavior is an instance of the no free lunch duality between the choice of reducing
either CB or MSE. The study confirms that the balance between MSE minimization and CB is present
also in deep learning models. On the other hand, the integration of orographic features extracted from
the digital terrain model results in a gain in predictive skills over all the rain rates, with the largest
improvements registered again on the high rain regimes. As expected, the best performing model is
thus given by the combination of both the ensemble and the orography, where the skill score on the
extremes is on par with S-PROG, whose skill is mainly driven by persistence.
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4.2. Comparing ConvSG and S-PROG

While the score of S-PROG and ConvSG are similar on the extremes, there is also a fundamental
qualitative difference between the predictions generated by the DL approach and the Lagrangian
extrapolation. Indeed, the DL is able to to correctly model the growth and decay of the precipitation
patterns in different locations in space. An example can be observed in Figure 13, where the ConvSG
model is able to forecast the intensification of the rain rate in the upper section of the precipitation
front, whereas S-PROG models a gradual decay. This ability opens the possibility for the DL model
to eventually forecast new extremes, a behavior not possible by assuming Lagrangian persistence.
This reflects in the trend reported by the CB score shown in Figure 12d: S-PROG has the best score in
the first few frames but quickly decays to the worst score after 40 min of lead time. For the NMSE score
(Figure 12b), S-PROG is competitive only in the first lead time, and quickly decays thereafter. Finally,
for MSE and MAE (Figure 12a–c), ConvSG is superior to S-PROG because the two scores are more
indicative of the skills obtained in the lower rain rates. This yields that an effective model evaluation
and comparison can be correctly performed only when multiple thresholds for the categorical scores
and multiple continuous scores are included in the analysis.

5. Conclusions and Future Work

We present a novel approach, leveraging a deep learning ensemble and stacked generalization,
aimed at improving the forecasting skills of deep learning nowcasting models on extreme rain rates,
thus reducing the conditional bias. The proposed method doubles the forecasting skill of a deep
learning model on extreme precipitations, when combining the ensemble along with orographic
features. Our contribution is threefold:

1. the thresholded rainfall ensemble (TRE), where the same DL model and dataset can be used to train
an ensemble of DL models by filtering precipitation at different rain thresholds;

2. the Convolutional Stacked Generalization model (ConvSG) for nowcasting based on convolutional
neural networks, trained to combine the ensemble outputs and reduce CB in the prediction; and

3. the enhanced stacked generalization (ESG), where the SG approach is integrated with orographic
features, to further improve prediction accuracy on all rain regimes.

The approach can close the skill gap between DL and traditional persistence-based methods on
extreme rain rates, while retaining and improving the superior skill of the DL methods on lower rainfall
thresholds, thus reaching equal or superior performance to all the analyzed methods on all the rainfall
thresholds. As a drawback, its implementation requires a non-trivial amount of data and computation
to train and correctly validate all model stack, along with some knowledge of the data distribution for
the selection of the thresholds. Indeed, the presented ensemble size of four models was chosen as the
minimum working example for TRE, to satisfy the computational budget limits for the deep learning
stack. We thus expect that, incrementing the number of members and the corresponding thresholds,
the contribution of the ensemble to the overall skill of the Stacked Generalization will increase. Further
experiments are needed to more formally determine the thresholds and the number of the ensemble
members required to maximize the desired skill improvements on the extremes. Moreover, despite the
presented improvements, the absolute skill provided by nowcasting systems on extreme rainfall is
still lagging in the single digit percentage, leaving the problem of extreme event prediction wide open
for improvements. As future work, we plan to test the integration of new environmental variables in
the ESG model along with orography, and to leverage the ensemble spread to generate probabilistic
predictions.
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Abbreviations

The following abbreviations are used in this manuscript:

QPF Quantitative precipitation forecast
QPE Quantitative precipitation estimation
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Sort-Term Memory
TAASRAD19 Trentino Alto Adige Südtirol Radar Dataset 2019
MAX(Z) Maximum Vertical Reflectivity
PPI Plain Position Indicator
CAPPI Constant Altitude Plain Position Indicator
LSTM Long Short-Term Memory
BL Balanced Loss
SG Stacked Generalization
CB Conditional Bias
ESG Enhanced Stacked Generalization
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