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Adaptive coding of stimuli is well documented in perception, where it supports efficient encoding over a broad range of pos-
sible percepts. Recently, a similar neural mechanism has been reported also in value-based decision, where it allows optimal
encoding of vast ranges of values in PFC: neuronal response to value depends on the choice context (relative coding), rather
than being invariant across contexts (absolute coding). Additionally, value learning is sensitive to the amount of feedback in-
formation: providing complete feedback (both obtained and forgone outcomes) instead of partial feedback (only obtained out-
come) improves learning. However, it is unclear whether relative coding occurs in all PFC regions and how it is affected by
feedback information. We systematically investigated univariate and multivariate feedback encoding in various mPFC regions
and compared three modes of neural coding: absolute, partially-adaptive and fully-adaptive.

Twenty-eight human participants (both sexes) performed a learning task while undergoing fMRI scanning. On each trial,
they chose between two symbols associated with a certain outcome. Then, the decision outcome was revealed. Notably, in
one-half of the trials participants received partial feedback, whereas in the other half they got complete feedback. We used
univariate and multivariate analysis to explore value encoding in different feedback conditions.

We found that both obtained and forgone outcomes were encoded in mPFC, but with opposite sign in its ventral and
dorsal subdivisions. Moreover, we showed that increasing feedback information induced a switch from absolute to relative
coding. Our results suggest that complete feedback information enhances context-dependent outcome encoding.

Key words: counterfactual; decision-making; multivariate encoding; reinforcement learning; relative coding; reward
encoding

Significance Statement

This study offers a systematic investigation of the effect of the amount of feedback information (partial vs complete) on uni-
variate and multivariate outcome value encoding, within multiple regions in mPFC and cingulate cortex that are critical for
value-based decisions and behavioral adaptation. Moreover, we provide the first comparison of three possible models of neu-
ral coding (i.e., absolute, partially-adaptive, and fully-adaptive coding) of value signal in these regions, by using commensura-
ble measures of prediction accuracy. Taken together, our results help build a more comprehensive picture of how the human
brain encodes and processes outcome value. In particular, our results suggest that simultaneous presentation of obtained and
foregone outcomes promotes relative value representation.

Introduction
Despite high variation in incoming information from the sur-
rounding environment, humans perceive consistency in it. For
example, an object can be seen in very different contexts (e.g., in

daylight or in darkness), where its physical properties (e.g., color)
vary greatly. Nonetheless, we perceive them as stable. To achieve
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this invariance, neurons adjust their sensitivity to the context
characteristics through normalization, that is, they rescale their
response to object properties relative to the specific context,
instead of responding in absolute terms. These context effects
allow efficient coding of broad ranges of sensory input and are
well documented in perception (Carandini and Heeger, 2012;
Louie and Glimcher, 2012). Recently, context dependence and
normalization were reported also in value-based decision, in
both monkeys (Padoa-Schioppa, 2009; Bermudez and Schultz,
2010; Kobayashi et al., 2010; Rustichini et al., 2017; Conen and
Padoa-Schioppa, 2019) and humans (Nieuwenhuis et al., 2005;
Elliott et al., 2008; Cox and Kable, 2014; Burke et al., 2016; for
review, see Louie and De Martino, 2014), allowing optimal
responses to vast ranges of values in PFC. Specifically, neurons
seem to rescale their firing to adapt to the decision context (rela-
tive coding) so that their response to a specific value depends on
the choice context (e.g., reward vs punishment), rather than
being invariant (absolute coding). Additionally, studies on value-
based decision showed that feedback information affects value
learning so that providing complete feedback (both obtained
and foregone - counterfactual - choice outcomes) instead of
partial feedback (only the obtained outcome) improves learning
(Palminteri et al., 2015, 2017; Bavard et al., 2018). However, it is
unclear (1) whether relative coding occurs in all PFC regions and
(2) whether and how it is affected by feedback information.

Evidence for relative coding has been found in various PFC
regions, such as mPFC, orbitofrontal cortex (OFC), and cingu-
late cortex (Nieuwenhuis et al., 2005; Elliott et al., 2008; Bunzeck
et al., 2010; Cox and Kable, 2014), mainly with univariate fMRI
analysis. This analysis identifies areas where neural response to
value is consistent across voxels and participants. However,
recordings from individual neurons showed that neuronal sub-
populations in PFC exhibit opposite responses to value (Padoa-
Schioppa and Assad, 2006; Schoenbaum et al., 2007; Kennerley
and Wallis, 2009), thus questioning the ability of univariate anal-
ysis to capture all effects of interest. The introduction of multi-
variate methods (Haxby et al., 2001) that can detect value
information encoded heterogeneously in brain activity patterns
distributed across the brain, allowed to extend univariate results
and answer questions related to the specific coding mechanisms
the brain uses to encode value (Kahnt, 2018). Although with
these techniques scientists could decode various value signals in
the human brain (Clithero et al., 2009; Kahnt et al., 2010;
Vickery et al., 2011; Wisniewski et al., 2015; Howard et al., 2016;
Yan et al., 2016), the exact neural code that it uses to represent
value is seldom investigated. The only decoding study in humans
that investigated how outcome value adaptation occurs in the
brain (Burke et al., 2016) considered only obtained outcomes.
Moreover, despite the authors tested different possible types of
adaptation in both univariate and multivariate signals, they
employed methods that are hardly comparable.

To help build a more exhaustive picture, we designed an anal-
ysis plan to investigate outcome value processing and encoding
in multiple regions in mPFC/OFC and cingulate cortex (see
Evaluating differences between output types). The aim of the
study is threefold: (1) to systematically evaluate univariate and
multivariate effects in these regions, (2) to compare different
coding models of outcome value encoding, and (3) to assess the

effect of feedback information on value representation. We
hypothesize that counterfactual information will produce rescal-
ing of value signal depending on the context, such that the value
of a neutral outcome becomes positive in a loss context (as ab-
sence of punishment) and negative in a gain context (as absence
of reward), thus inducing relative coding of value signals.

Materials and Methods
Participants
Twenty-eight participants took part in the experiment (16 females and
12 males; age 25.66 5.4 years). All participants were right-handed, did
not report any psychiatric or neurologic history, and had normal or cor-
rected-to-normal vision. The ethics committee of the University of
Trento approved the study and participants provided written informed
consent before their inclusion in the study. They received monetary pay-
ment, calculated as a show-up fee plus the total amount of money they
won during the experiment.

Experimental design, stimuli, and procedure
Participants performed an instrumental learning task while undergoing
fMRI scanning.At thebeginningof the experimental session, they received
written instructions and the task was further explained orally, if necessary.
Participants were requested to maximize their payoff, considering that
both reward seeking and punishment avoidance were equally important
strategies and thatonly factual (butnot counterfactual, seenextparagraph)
outcomeswould be used to calculate their total earnings. After the instruc-
tion phase, participants performed a training session to practice the task
before entering the fMRI scanner. After practice, they performed four
learning runs in the scanner. Participants were presented with a pair of
abstract symbols belonging to the Agathodaimon alphabet. For each run,
we used eight different symbols arranged in four pairs to produce four
choice contexts (i.e., reward/partial, reward/complete, punishment/par-
tial, and punishment/complete). The contexts were defined based on the
possible outcome (either reward, winning 0.5e vs 0e; or punishment, los-
ing 0.5e vs 0e) and the feedbackprovided (either partial, only the outcome
of the chosenoption; or complete, the outcomesofboth the chosenand the
unchosenoptions). The contextswere characterizedbya fixedpair of sym-
bolswithin the same runbut thepairs associatedwith each contextdiffered
among runs. Each symbol in one pairwas associatedwith the possible out-
comes with complementary probability (0.75/0.25 for reward and 0.25/
0.75 for punishment). Participants performed 96 trials (24 repetitions of
the 4 experimental conditions)duringeach scanning run.
Examples of trials with either partial (top rows) or complete (bottom

rows) feedback information are shown in Figure 1. At the beginning of
each trial, a pair of symbols was shown (with each symbol randomly pre-
sented either on the left or on the right of a central fixation cross).
Participants had to choose one of the symbols and to press the corre-
sponding button with their left or right thumb, within 3000 ms.
Afterward, a red pointer was displayed under the selected option for
500ms, which was then replaced by its outcome (10.5e, 0.0e, or �0.5e)
shown for 3000 ms. In complete feedback trials, the outcome of the
unchosen option (i.e., counterfactual) was displayed as well. The next
trial followed after;1000 ms (jittered, minimum 500ms and maximum
1500 ms) during which a fixation screen was shown. Presentation order
of the different pairs of symbols and the position of each symbol in the
pair was pseudorandomized and unpredictable so that each symbol was
displayed an equal number of times to either side of the screen.
At the end of the four experimental runs and while the anatomic

image was acquired, participants performed a post-learning evaluation
of option value. We do not describe this task here because the data were
not used for the analyses described in this paper. For details, please see
the original article (Palminteri et al., 2015).

Image acquisition and preprocessing
fMRI images were recorded using a 4T Bruker MedSpec Biospin MR
scanner (CIMeC) equipped with an 8-channel head coil. For each of the
four scanning runs, we collected 338 T2*-weighted EPI volumes. Each
image consisted of 47 slices recorded in ascending interleaved order with
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acquisition parameters as follows: TR 2200 ms, TE 21ms, FA 75°, FOV
192 mm, matrix size 64� 64, yielding an in-plane voxel resolution of 3
mm3withvoxel sizeof 3� 3� 2.3mm.AT1-weighted anatomic sequence
was recorded as well, with imaging parameters: TR 2700 ms, TE 4.18ms,
FA7°,matrix size 224� 256� 176,witha voxel resolutionof1mm3.
We used SPM12 (RRID:SCR_007037) to pre-process and analyze the

fMRI data. During preprocessing, the images were realigned and slice-time
corrected, low-frequency noise was removed using a high-pass filter with a
cutoff period of 128 s (Worsley and Friston, 1995), and an autoregressive
AR model was fitted to the residuals to allow for temporal autocorrelations
(Friston et al., 2002). The anatomic image was segmented using the tem-
plate tissue probability maps in SPM12 and used as a reference to co-regis-
ter the functional images. To perform the univariate analyses, fMRI images
were also smoothed (FWHM 6 mm) and normalized to MNI space. For
the multivoxel pattern analysis (MVPA), the images were neither normal-
ized nor smoothed to preserve fine-grained patterns of brain activity.

Statistical analyses
fMRI data from this experiment has been previously analyzed with a
model-based procedure to test the hypothesis that successful avoidance
of punishment is reframed as a positive outcome and that neural activity
in brain regions within the valuation system is better accounted by a rel-
ative model of value representation compared with an absolute model
(Palminteri et al., 2015). An additional aim of the previous analyses was
to assess neural encoding of choice and outcome in those different
regions as a function of task context.
The analyses described in this paper differ in either the method used

(MVPA) or the question asked (whether and how outcome representa-
tion changes as a function of the available information).

Behavioral analyses. For the sake of clarity and completeness, we
report behavioral results (see Fig. 2) from the original paper (Palminteri
et al., 2015). We used one-sample t tests to assess learning in the differ-
ent experimental conditions (i.e., to compare the actual correct choice
rate with the value expected by chance). To assess possible effects of con-
text (i.e., reward vs punishment) and feedback information (i.e., partial
vs complete) on either accuracy or reaction times (RT), we performed
linear mixed-effects model (LMM) analysis with accuracy (or RT) as pre-
dicted value and context and feedback information as fixed effects. As
random effect, we introduced intercepts for each participant, thus allow-
ing intersubject variability in behavioral responses.

Evaluating differences between output types
ROI selection. The first aim of the present study was to assess univariate
and multivariate effects of outcome encoding in mPFC and cingulate
cortex and to identify possible differences between distinct outcome con-
ditions (see Experimental design, stimuli, and procedure). In particular,
we aimed to test whether the regions along the dorsal/ventral axis of
mPFC were sensitive to outcome processing or encoded information
about outcome value for the three outcome types we investigated. To
avoid circular inference (Kriegeskorte et al., 2009), we selected an inde-
pendent set of ROIs from the Brainnetome Atlas (Fan et al., 2016; RRID:
SCR_014091). We included nine areas along mPFC/OFC and cingulate
cortex in the set of selected ROIs (see Fig. 3A), because these areas have
been previously implicated in reward processing, especially when choice
outcome is revealed (Knutson et al., 2003; Diekhof et al., 2012; Clithero
and Rangel, 2014) compared with, for example, ventral striatum, which
seems to be more strongly (or equally) activated during outcome antici-
pation (Knutson et al., 2001; Rangel et al., 2008; Diekhof et al., 2012;

Figure 1. Experimental paradigm. Examples of experimental trials with either partial (top rows) or complete (bottom rows) feedback. Outcome types (factual vs counterfactual) are
also specified. From these two factors (i.e., feedback and outcome type), three different experimental conditions originate: partial factual, complete factual, and complete counterfactual
outcomes.
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Stott and Redish, 2014; Oldham et al., 2018) and to reflect prediction
error rather than value (Hare et al., 2008; Rohe et al., 2012).
Univariate analyses. Realigned, slice-time corrected, smoothed, and

normalized images were used to obtain parameter estimates for the
GLM. The GLM was set up to assess processing and encoding of out-
come value in trials with either partial or complete information (for
details on the different information conditions, see Experimental
design, stimuli, and procedure). Twelve regressors were included in the
model, corresponding to the four possible outcomes (i.e., 10.5e,
10.0e, �0.0e, and �0.5e) for each of the three outcome types
(i.e., partial factual, complete factual, and complete counterfactual). We
defined the time vectors for the 12 regressors using the onset time of the
outcome screen presentation; all regressors were convolved with the ca-
nonical HRF function to compute the GLM. The estimates were linearly
combined to contrast the conditions of interest: estimates for negative out-
comes (i.e.,10.0e and�0.5e)were subtracted fromthose for positive out-
comes (i.e.,10.5e and�0.0e) for eachoutcome type.
Multivariate analyses. Realigned and slice-time corrected images were

used to estimate run-wise correlation coefficients for the GLM (see
Univariate analyses). We used MVPA with an ROI-based approach to
determine which brain regions contained information about outcome
value. Three decoding analyses were performed: the purpose of the first
one was to identify brain regions encoding information about outcome
value in trials with partial feedback, the second one aimed at identifying

brain regions containing information about factual
outcome value in trials with complete feedback, and
the goal of the last analysis was to establish whether
any region in the brain contained information about
the counterfactual outcome. All analyses decoded
between positive and negative outcomes (i.e.,10.5e/
�0.0e vs 10.0e/�0.5e; see Experimental design,
stimuli, and procedure) using the parameter esti-
mates from the GLM (see Univariate analyses).
Decoding analyses tested whether patterns of neural
activity within each ROI contained information
allowing for distinguishing between two task condi-
tions (e.g., a positive and a negative outcome). We
performed pairwise decoding between positive and
negative outcomes. For each selected ROI and for
each of the four fMRI runs, we extracted parameter
estimates for the four experimental conditions (i.e.,
for 10.5e, 10.0e, �0.0e, and �0.5e outcomes) for
the outcome type of interest. A total of 16 pattern
vectors (1 for each of the 4 conditions and for each
of the 4 runs) were available for each participant. For
each decoding analysis, the pattern vectors of the
pair under evaluation were assigned to independent
training and test sets, to avoid overfitting (Duda et
al., 2000). We implemented a leave-one-run-out
cross-validation procedure, where data from each
run were assigned, in turn, to the test set and data
from the remaining three runs were used to train a
support vector classifier (Müller et al., 2001; Cox and
Savoy, 2003; here, regularization parameter C= 1) to
distinguish between the two conditions of interest.
The trained classifier was applied to data from the
test set and its classification accuracy was calculated
as the ratio between the number of correct classifica-
tions and the number of all classifications that were
performed. The resulting classification accuracy
reflects how well the classifier distinguished between
the two conditions of interest in the specified ROI.
For each of the three analyses, the decoding proce-
dure was repeated using all possible condition pairs
as classes for the classification. Accuracies resulting
from each pairwise classification were averaged,
yielding an accuracy value for each ROI, participant,
and analysis. We used shuffle tests with all possible
permutations of the condition labels to calculate the
actual chance level. To assess statistical significance,

we randomly sampled from the results of the permutations and calcu-
lated second level statistics by comparing actual accuracies with the dis-
tribution of accuracies obtained from 106 resamplings. All decoding
analyses were performed using The Decoding Toolbox (TDT; Hebart et
al., 2015; RRID:SCR_017424).
ROI analyses. We used ROI analyses to assess the effect of different

types of outcomes at the neural level in the set of selected ROIs. For
each participant and for each analysis (see Univariate analyses and
Multivariate analyses), we used the mean contrast effect (or decoding
accuracy) for each ROI. Then, we used LMMs to assess the effect of
outcome type and ROI on the extracted mean estimates (for details on
the single analyses, see Results, Univariate and multivariate effects of
outcome valence). We ran LMM analyses using R 3.2.3 (RRID:SCR_
001905) and the lme4 package (Bates et al., 2015; RRID:SCR_015654).
We favored LMMs over repeated-measures ANOVA because they take
into account subjects’ sensitivity to different experimental conditions
beyond individual variability in mean responses. Thus, LMMs are
more powerful than repeated-measures ANOVA (Barr et al., 2013).
Statistical significance of the tests was calculated with likelihood ratio
tests of the model with the effect of interest against the model without
that effect (Barr et al., 2013). Post hoc tests comparing different levels
of the factors and interactions showing a significant effect were per-
formed using the emmeans package (Lenth, 2018). To maintain the

Figure 2. Behavioral results. The graphs on the top row display the correct choice rate in the partial (left) and com-
plete (right) information conditions for the two contexts. In the bottom row, mean reaction times in partial (left) and
complete (right) information trials are depicted.
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alpha level at the intended value of 0.05, we performed pairwise com-
parisons with the Tukey HSD test (Tukey, 1949) and chose the Holm’s
method (Holm, 1979) to correct for multiple comparisons and control
the familywise error rate while maintaining high statistical power.

Comparing different value coding models
The second goal of this study was to assess how the human brain enco-
des outcome value. Specifically, we aimed to test whether outcomes are
represented using an absolute, a partially-adaptive, or a fully-adaptive
code (see Fig. 4A). To this purpose, we implemented different support
vector regression (SVR) analyses (for a detailed description, see Kahnt et
al., 2011) that captured the characteristics of each of the theoretical mod-
els. Different from the classification approach described in Evaluating
differences between output types, we used the local patterns of brain ac-
tivity associated with multiple predictors (i.e., the 4 possible outcomes:
10.5e, 10.0e, �0.0e, and �0.5e) to predict a continuous variable (i.e.,
the outcome value as assumed by the theoretical model). We adopted a
leave-one-run-out cross-validation procedure (see Evaluating differences
between output types) to assure independence between train and test
sets (Mitchell, 1997). For each ROI, we calculated the prediction accu-
racy of the SVRmodel using the Fisher’s Z-transformed correlation coef-
ficient between the predicted outcome values and the actual values in the
test set. The SVR analyses were implemented using TDT (Hebart et al.,
2015; RRID:SCR_017424).
The first analysis aimed to identify brain regions representing value with

an absolute code. Under absolute value coding, neural patterns of brain ac-
tivity should reflect the magnitude of the reward, irrespective of the context

(see Fig. 4A, left). Thus, local pattern of brain activity encoding neutral out-
comes in the reward (i.e.,10.0e) and in the punishment (i.e., �0.0e) con-
texts should be equivalent; in addition, they should be different from neural
patterns encoding both the best (i.e.,10.5e) and the worst (i.e.,�0.5e) out-
come. To identify brain regions showing neural activity patterns in line
with this model, we used a SVR model where we set three different out-
come values: one value (i.e., 0) for both the neutral outcomes, one value (i.
e., 2) for the best outcome, and one value (i.e.,�2) for the worst outcome.
In the second analysis, we tested whether any brain regions

encoded outcome value in a fully-adaptive way. If a region encoded
outcomes with a fully-adaptive code, good and bad outcomes should
be represented in the same way, irrespective of the context in which
they occur (see Fig. 4A, right). Thus, neural patterns encoding the
good outcome in the reward context (i.e., 10.5e) and in the punish-
ment context (i.e., �0.0e) should be equivalent; similarly, brain ac-
tivity patterns representing the bad outcome in the punishment
context (i.e., �0.5e) and in the reward context (i.e., 10.0e) should
be identical. To assess whether neural activity patterns encoded out-
come value according to the fully-adaptive coding model, we per-
formed SVR assigning the same outcome value (i.e., 2) to both the
good outcomes (i.e., 10.5e and �0.0e) and a different value (i.e.,
�2) to both the bad outcomes (i.e., 10.0e and �0.5e).
Finally, a third analysis assessed partially-adaptive coding of outcome

value. If the human brain represented outcomes with a code that is just
partially-adaptive, the value of the good outcome in the punishment
context (i.e., �0.0e) should not be as high as the value of the good out-
come in the reward context (i.e., 10.5e) and the value of the bad out-
come in the reward context (i.e., 10.0e) should not be as low as the

Figure 3. Univariate and multivariate effects in the selected ROIs. A, The selected ROIs are depicted. fMRI analyses were conducted on nine preselected anatomic ROIs along the dorsal/ven-
tral axis of mPFC. The set of ROIs comprises one dorsal, one middle, and one ventral area for each of three target regions: SFG, orbitofrontal/frontopolar cortex, and cingulate cortex. pOFC, pos-
terior OFC; FPC, frontopolar cortex; vACC, ventral ACC; dACC, dorsal ACC; MCC, middle cingulate cortex; vSFG, ventral SFG. B, Results of the univariate analyses on outcome valence are shown.
ROIs on the x-axis are arranged from the most ventral (left) to the most dorsal (right), according to their mean z-coordinate. The dashed line indicates a null effect. ROIs where there was a sig-
nificant difference between counterfactual outcomes and both factual outcomes are highlighted. C, Univariate effects are shown only for outcomes in trials with complete feedback. The order
of the ROIs on the x-axis is as in B. The interaction effect outcome type� ROI was significant, reflecting positive encoding of value for factual outcomes and negative encoding for counterfac-
tual outcomes in more anterior mPFC ROIs but the opposite pattern in the dorsal regions. D, The graph displays the results of the multivariate analyses on outcome valence. The dashed line
marks chance level (rounded-up to 50, actual chance level calculated with shuffle tests is 49.997). ROIs on the x-axis are arranged as in B and C. No ROI is highlighted on this graph as neither
the main effect of ROI nor the interaction effect outcome type� ROI was significant in this analysis. Error bars display SEM. ***p, 0.001, **p, 0.01, *p, 0.05.
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value of the bad outcome in the punishment context (i.e., �0.5e).
However, the value attributed to the null outcome (i.e., 0.0e) should be
higher in the punishment context compared with the reward context,
because the absence of punishment is a more positive outcome than the
absence of reward, as expected by the partially-adaptive coding model
(see Fig. 4A, middle). To test whether local patterns of brain activity
reflected a partially-adaptive coding, we set a SVRmodel in which differ-
ent values were assigned to each of the possible outcomes (i.e., 2 and 1 to
the good outcomes and�1 and�2 to the bad outcomes).
The three SVR analyses were performed on data from each pre-selected

ROI (see Evaluating differences between output types), yielding to a pre-
diction accuracy value for each participant, model, analysis, and ROI.We
used LMM and likelihood ratio tests (see Evaluating differences between
output types) to assess the effect of coding model, outcome type, and ROI
on prediction accuracy (for details of each analysis, see Results, Revealing
theneural codeunderlying outcomevalence representation).

Code accessibility
All analyses were performed using in-house developed code and imple-
mented either in MATLAB (RRID:SCR_001622) or R (RRID:SCR_
001905). All code and the data for the behavioral and the ROI analyses
are available through GitLab: https://gitlab.com/doris.pischedda/value_
normalization.git.

Results
Behavioral results
An extensive description of the behavioral results from this
experiment can be found in the original paper (Palminteri et al.,
2015). Here, we report only a summary of them, together with
the findings of the neuroimaging analyses described in the previ-
ous section (see Materials and Methods, Statistical analyses), to
provide a full picture of the results of the experiment.

Mean accuracy and RT in the different experimental condi-
tions are shown in Figure 2. Behavioral data provide evidence for

learning, as the percentage of correct responses for participants
was significantly higher thanwhatwould be expected by chance (i.
e., 50%) in all contexts (allT values. 7.4, all p values, 6� 10�8).
LMM analyses (see Materials and Methods, Statistical analyses)
showed a main effect of feedback information on accuracy
(x 2

(1) = 34.4, p=3� 10�8) but not on RT (p=0.08) and a main
effect of context and an interaction effect of context and informa-
tion on RT (x 2

(1) = 34.8, p=4� 10�9 and x 2
(1) = 5.3, p=0.021,

respectively), but not on accuracy (p=0.35 and p= 0.70, respec-
tively). Post hoc test showed higher accuracywhen feedback infor-
mation was complete compared with when it was partial
(p, 0.0001) and slower RT when partial rather than complete
feedback was provided (p= 0.004), but only in punishment trials.
Overall, the behavioral results suggest that people learn similarly
in reward and punishment contexts and can integrate counterfac-
tual information to improve their performance.

Univariate and multivariate effects of outcome valence
The first aim of the analyses described in this manuscript was to
investigate where the human brain represents information about
outcome value during a learning task including both reward and
punishment contexts and where either partial or complete feed-
back was provided. In particular, we explored both univariate and
multivariate effects of outcome type in a set of preselected regions
along the dorsal/ventral axis of mPFC to confirm their role in
processing/encoding of outcome value. As our analyses rely on
both differences between positive and negative outcomes and
monetary gain and losses (see Materials and Methods, Statistical
analyses), we describe our results in terms of outcome valence
rather than value (for extensive discussion see, Kahnt et al., 2014).

To assess possible differences in univariate effects between
different outcome types and ROIs, we performed an LMM

Figure 4. Comparison of different value coding models. A, Three different models for value coding are shown. Under absolute value coding (left), values are represented independent of the
context, thus neural activity patterns encoding the same value in reward and punishment contexts (e.g.,10.0e and �0.0e) are equivalent. With partially-adaptive coding (middle), values are
rescaled so that positive outcomes in punishment contexts (e.g.,�0.0e) have a higher value than negative ones in reward contexts (e.g.,10.0e). Finally, if the code is fully adaptive (right) neu-
ral patterns encoding a positive outcome in different contexts are equivalent, but different from those encoding negative outcomes, which are identical as well. B, Results of the analysis compar-
ing different value coding models. The absolute coding model is the best at predicting neural activity patterns representing factual outcome when partial feedback is provided (left) in all ROIs.
Instead, for counterfactual outcome value encoding (right) the fully-adaptive coding model is the one with higher prediction accuracy (see Materials and Methods, Comparing different value
coding models). For factual outcome encoding when complete feedback is given (middle), the model with higher prediction accuracy is either the fully-adaptive or the partially-adaptive one,
depending on the ROI. C, Interaction effect of coding model � type of outcome. The absolute model had higher prediction accuracy for factual outcomes with partial information than both the
partially-adaptive and the fully-adaptive models. Instead, the fully-adaptive model had higher prediction accuracy than the absolute model for factual and counterfactual outcomes with complete
feedback. pOFC, posterior OFC; FPC, frontopolar cortex; vACC, ventral ACC; dACC, dorsal ACC; MCC, middle cingulate cortex; vSFG, ventral SFG. Error bars represent SEM. ***p, 0.001, **p, 0.01.
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analysis modeling brain signal change as predicted value and
outcome type and ROI as fixed effects. We considered intercepts
for each participant as random effect, thus allowing intersubject
variability in mean brain activation. Results are shown in Figure
3B. Both the ROI and the outcome type� ROI interaction had a
significant effect on signal change (x 2

(8) = 36.7, p= 1.3� 10�5 and
x 2
(16) = 96.8, p=1.4� 10�13, respectively). Instead, the main

effect of outcome type on the neural signal was not significant
(x 2

(2) = 0, p= 1). Post hoc tests performed using the Tukey HSD
test (corrected for multiple comparisons with the Holm’s
method) revealed higher univariate effects for factual than for
counterfactual outcomes (all p values, 0.026) and no difference
for factual outcomes between the partial and the complete feed-
back condition (all p values. 0.22) in all regions, except in mid-
dle superior frontal gyrus (mSFG) and dorsal SFG (dSFG), where
univariate effects were higher for counterfactual than for factual
outcomes (all p values, 0.006), and in anterior OFC (aOFC),
ventral SFG, in dorsal anterior cingulate cortex (ACC), and mid-
dle cingulate cortex where there was no difference between the
three outcome conditions (all p values. 0.31). Together, the
univariate results indicate that, while anterior mPFC regions
(except aOFC) encode factual outcomes (either with partial or
complete information) positively and counterfactual outcomes
negatively, the opposite is true for the most posterior areas (Fig.
3C), suggesting that ventral regions process primarily factual out-
come information while more posterior areas play a main role in
counterfactual outcome processing.

To evaluate possible differences in multivariate effects
between different ROIs and outcome types, we used an LMM
modeling decoding accuracy as predicted value and ROI and
type of outcome as fixed effects. As random effect, we added ran-
dom intercepts for participants to account for individual differ-
ences in participants’ mean neural response. Results are shown
in Figure 3D. The effect of outcome type on decoding accuracy
was significant (x 2

(2) = 17.4, p=0.0002), reflecting better decoding
for factual outcome compared with counterfactual ones. Instead,
neither the effect of ROI nor the outcome type� ROI interaction
reached significance (x 2

(8) = 10.9, p= 0.21 and x 2
(16) = 8.1, p=0.95,

respectively). Post hoc tests (with Tukey HSD, corrected for mul-
tiple comparisons with the Holm’s method) showed worse
decoding for counterfactual outcomes than for factual outcomes
with either complete (p= 0.0001) or partial (p= 0.019) feedback
and no difference in factual outcome encoding between the par-
tial and complete feedback conditions (p= 0.13). In summary,
multivariate results show that information about counterfactual
outcomes can be decoded in multiple regions of mPFC, although
with lower accuracy than for factual ones. As counterfactual out-
comes are not relevant for the obtained reward and representa-
tional strength is stronger for attended than unattended items
(Christophel et al., 2018), this suggests that they receive less
attention.

Revealing the neural code underlying outcome valence
representation
The main goal of this study was to investigate how the human
brain represents outcome information when the result of the cho-
sen (and unchosen) option is revealed. To this purpose, we com-
pared three different models of valence coding (i.e., absolute,
partially-adaptive, and fully-adaptive models; Fig. 4A) to assess
which one would account better for valence representation of the
three possible outcomes (i.e., factual outcome with partial or com-
plete feedback and counterfactual outcome) in the different ROIs.

To test for possible differences in prediction accuracy (see
Materials and Methods, Comparing different value coding mod-
els) among the three coding models for each outcome type and
in the different ROIs, we used an LMM modeling prediction ac-
curacy as the dependent measure and coding model, outcome
type, and ROI as fixed effects. As random effect, we included
intercepts for each participant (see Univariate and multivariate
effects of outcome valence) in the model. Mean prediction accu-
racies for the different conditions are shown in Figure 4B. The
LMM analysis showed a main effect of both outcome type
(x 2

(2) = 227.0, p, 2.2� 10�16) and ROI (x 2
(8) = 52.1, p=1.6 -

� 10�8), but no effect of coding model (x 2
(2) = 3.7, p= 0.16).

Importantly, there was an effect of the interactions coding model
� type of outcome (x 2

(4) = 54.5, p= 4.2� 10�11; Fig. 4C) and type
of outcome � ROI (x 2

(16) = 31.9, p=0.01), but no effect of the
interactions ROI � coding model (x 2

(16) = 3.0, p = ;1) nor cod-
ing model � outcome type � ROI (x 2

(32) = 16.2, p=0.99). Post
hoc tests (see Univariate and multivariate effects of outcome va-
lence) showed that the absolute model had higher prediction ac-
curacy than both the partially-adaptive (p=0.016) and the fully-
adaptive (p, 0.0001) models for factual outcomes with partial
feedback, while for both factual and counterfactual outcomes
with complete feedback the fully-adaptive model was more accu-
rate than the absolute model (p=0.001 and p=0.004, respec-
tively) and comparable to the partially-adaptive one (p=0.35
and p=0.19, respectively). Finally, there was no significant differ-
ence in prediction accuracy between the three outcome condi-
tions in the most ventral region (all p values. 0.05), whereas all
pairwise comparisons between outcome conditions were signifi-
cant in frontopolar cortex (all p values, 0.03); in the other
regions prediction accuracy was higher for factual than for coun-
terfactual outcomes (all p values, 0.011) but it was similar for
the two factual outcome types (all p values. 0.08).

To sum up, a formal comparison of three different coding
models shows that outcome information encoding is more in
line with absolute coding when only partial information about
the outcome is provided but with fully-adaptive coding when
counterfactual information is also presented. This suggests that
making information about the alternative outcome available
changes how the brain represents valence. We found poor pre-
diction accuracy for all models in the most anterior region of
mPFC. This could suggest that this area may encode outcome va-
lence yet in a different way. However, we refrain from providing
interpretations of differences between different ROI as accuracy
measures depend on additional factors beyond neural encoding
which usually differ between PFC regions (Etzel et al., 2013; for a
thorough discussion, see Bhandari et al., 2018).

Discussion
We systematically investigated outcome processing and encoding
in multiple subdivisions of mPFC/OFC and cingulate cortex,
using different analysis approaches, to assess (1) univariate and
multivariate effects in these regions, (2) possible effects of feed-
back information on outcome encoding, and (3) to compare dif-
ferent coding models of outcome valence.

A first goal of this study was to assess univariate and multi-
variate effects of outcome valence and feedback information in
different regions in mPFC/OFC and cingulate cortex. We
showed that signal change reflecting differences between good
and bad outcomes was higher for factual than for counterfactual
outcomes with no difference between the two factual outcomes
(with complete or partial feedback) in pOFC, frontopolar cortex,
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and ventral ACC; in dSFG and mSFG the effect was higher for
counterfactual than for factual outcomes, and in the remaining
regions, there was no difference between the three outcome
types. Additionally, although factual outcome processing gener-
ally increased activation in anterior ROIs (except aOFC), the
same regions were deactivated by counterfactual outcome proc-
essing. Deactivation for counterfactual outcome processing in
OFC replicates results from a previous study showing enhanced
OFC activity for counterfactual processing in loss trials and rela-
tive deactivation in win trials in the complete feedback condition
(Coricelli et al., 2005). Here, we did not distinguish between win
and loss trials; however, as participants were highly accurate in
their choices (Fig. 2), winning trials were much more frequent,
thus, on average, deactivation should prevail, as we actually
observed. As for the multivariate effects, we found that multivari-
ate decoding was higher for factual than for counterfactual out-
comes. Nevertheless, decoding accuracy for counterfactual
outcomes was significantly higher than chance level, indicating
that mPFC regions did encode counterfactual information. As
counterfactual outcomes did not affect participants’ actual gains/
losses (i.e., they were irrelevant for performance) and it has been
shown that decoding accuracy is higher for attended than unat-
tended (i.e., behaviorally irrelevant) items (Christophel et al.,
2018), it is possible that counterfactual outcomes received less
attention. Although univariate and multivariate results look
slightly different, these differences are not rare (Mohr et al.,
2015; Baggio et al., 2016; for a thorough discussion of their inter-
pretation, see Davis et al., 2014). Notwithstanding, all regions
that were selected showed univariate/multivariate effects, thus
confirming their role in processing/encoding of outcome
valence.

The second aim of the study was to investigate how outcome
valence is represented in the brain. To this purpose, we compared
the accuracy of three different coding models (i.e., absolute, par-
tially-adaptive, and fully-adaptive) in predicting valence encoding
in the different outcome conditions. We found that outcome va-
lence is represented with different neural codes when either com-
plete or partial feedback is provided. In particular, although
neural coding is better described by absolute coding when partial
feedback is given, relative coding fits the fMRI data better when
feedback is complete. This result is in line with previous research
using computational modeling and showing a better fit of behav-
ioral data for an absolute coding model when only partial feed-
back is used, whereas a relative model fits the data better when
complete feedback trials are also introduced (Bavard et al., 2018).
In addition, our results are in line with previous research provid-
ing evidence for absolute coding of value signals in posterior ven-
tromedial PFC when feedback information is partial (Burke et al.,
2016). Interestingly, this evidence comes from univariate analyses,
although the same study reports evidence for partially-adaptive
coding from multivariate results. Burke et al. (2016) assessed dif-
ferent coding models by using two procedures: cross-set classifi-
cation to test for partially-adaptive/absolute and fully-adaptive
coding of value and support vector regression to adjudicate
between partially-adaptive and absolute coding. The first method
provides a measure of classification accuracy, whereas the second
estimates prediction accuracy of the model, which are different
measures, both qualitatively and conceptually. The difference
between univariate and multivariate results may thus have occurred
because of comparing heterogeneous measures in the latter
analysis. By using the same measure for all models, we showed
that actually an absolute coding model fits the data better than
a partially-adaptive one when feedback is partial.

The final goal of our research was to clarify how counterfac-
tual information is represented and processed and to assess
whether and how it affects outcome valence coding. First, we
were able to decode counterfactual information from local activ-
ity patterns in the brain regions we considered. Moreover, we
showed that counterfactual information processing reflects into
deactivation/activation of the regions in the network, with an op-
posite pattern compared with factual information. Thus, coun-
terfactual outcomes are both represented and processed in these
regions. Our finding that in the most ventral mPFC areas factual
outcomes are encoded positively and counterfactual outcomes
are encoded negatively is consistent with previous evidence (Li
and Daw, 2011; Klein et al., 2017). We extend these results by
showing that the pattern is opposite in the dorsal mPFC areas.
Finally, we found that presenting information about the alterna-
tive choice outcome affects how the brain encodes outcome va-
lence, moving from an absolute code when information is partial
to a relative code when information is complete, thus confirming
our original hypothesis. But how does counterfactual informa-
tion affect behavior? As previous studies showed that learning is
significantly higher when complete information is provided than
when feedback is partial (Palminteri et al., 2015, 2017; Bavard et
al., 2018) and we found evidence for different coding of valence
in distinct feedback conditions, the improvement in learning
when complete feedback is given may arise from a more effective
way (relative) of the brain to encode valence in this situation.
Presenting information about the counterfactual outcome might
make the context more salient, inducing a more effective repre-
sentation of valence (relative instead of absolute). Given the
structure of our task, in trials with complete feedback partici-
pants often experienced trials where factual and counterfactual
outcomes differed. This difference likely prompted a comparison
between the two outcomes, making the value range more explicit
and possibly inducing coding in terms of context. Although par-
ticipants learned the associations between symbols and out-
comes (they started choosing the best symbols more often
after learning; see Palminteri et al., 2015) and could in princi-
ple anticipate the counterfactual outcome, they did not seem
to represent it. We found evidence for absolute coding in tri-
als with partial feedback; this result is compatible with the
counterfactual outcome not being represented in this condi-
tion, indicating that a direct comparison between factual and
counterfactual outcomes is crucial to represent valence in rela-
tive terms. Importantly, relative coding of valence is not only
efficient, but it also produces behavioral effects: through nor-
malization, neutral outcomes in the punishment context ac-
quire positive value, thus punishment avoidance acts as
reinforcement for choosing the symbol leading more likely to
this outcome. Indeed, we find better performance in com-
plete information trials when rescaling should occur (Fig.
2). This process induces symmetry between reward and
punishment learning and can account for asymmetry effects
previously reported with partial feedback (Kubanek et al.,
2015). Our results provide evidence for this neural mecha-
nism that was just hypothesized by testing different learning
models (Palminteri et al., 2015). Although our neural results
may also be explained by assuming that participants imple-
ment a Q-learning model in the partial feedback condition
and a policy gradient (or direct comparison) model in the
complete feedback condition (Li and Daw, 2011; Klein et
al., 2017), these alternative models are not able to explain the
behavioral patterns of preferences observed in previous studies
(Palminteri et al., 2015; Bavard et al., 2018).
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To summarize, this study offers the first systematic investiga-
tion of both univariate and multivariate effects of different infor-
mation conditions on outcome valence encoding within multiple
regions of mPFC/OFC and cingulate cortex. In addition, we pro-
vide the first comparison of three possible coding models (abso-
lute, partially-adaptive, and fully-adaptive) for outcome valence
encoding in the human brain by using comparable measures
(i.e., obtained using the same analysis approach) of model accu-
racy in predicting the observed fMRI data. Taken together, our
results help build a more comprehensive picture of how the
human brain encodes and processes outcome valence. In particu-
lar, our results suggest that outcome valence is represented
through multiple coding mechanisms, flexibly activated depend-
ing on the specific choice setting. We acknowledge some limita-
tions of our study: first, in our experiment, we showed factual
and counterfactual outcomes together, so activity related to either
of them is not temporally separated. Moreover, different from
previous studies investigating the pure representation of other
cognitive variables (Reverberi et al., 2012; Pischedda et al., 2017),
we investigated valence representation during outcome receipt,
when additional cognitive processes (e.g., comparison between
actual and expected outcome) likely took place. It should be
noted, however, that it is extremely hard to dissociate outcome
representation from the related computations (e.g., prediction
error calculation) as these are triggered upon outcome presenta-
tion. Nonetheless, we hope our findings will stimulate future
research to fully understand value-based decision, eventually.
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