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Quantum localization bounds Trotter errors in
digital quantum simulation
Markus Heyl1*, Philipp Hauke2,3, Peter Zoller4,5

A fundamental challenge in digital quantum simulation (DQS) is the control of an inherent error, which appears when
discretizing the time evolution of a quantummany-body systemas a sequenceof quantumgates, called Trotterization.
Here, we show that quantum localization-by constraining the time evolution through quantum interference-strongly
bounds these errors for local observables, leading to an error independent of system size and simulation time. DQS is
thus intrinsically muchmore robust than suggested by known error bounds on the global many-body wave function.
This robustness is characterized by a sharp threshold as a function of the Trotter step size, which separates a localized
region with controllable Trotter errors from a quantum chaotic regime. Our findings show that DQS with compara-
tively large Trotter steps can retain controlled errors for local observables. It is thus possible to reduce the number of
gate operations required to represent the desired time evolution faithfully.
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INTRODUCTION
Quantum computers promise to solve certain computational problems
exponentially faster than any classical machine (1). A particularly
promising application is the solution of quantummany-body problems
(2), with large potential impact on quantum chemistry, material sci-
ence, and fundamental physics. The devices used in this effort can
be divided into two major classes: analog quantum simulators, where
the Hamiltonian of interest is engineered to mimic the desired quan-
tum many-body physics; and digital quantum simulators (DQSs),
where a target time-evolution operator is represented by a sequence
of elementary quantum gates. The digital approach is particularly
flexible since a universal digital quantum simulator can be freely
programmed to simulate the unitary evolution of any many-body
Hamiltonian with local interactions (Fig. 1A) (3). Recent experiments
have demonstrated remarkable progress in implementing digital
quantum simulation (DQS), e.g., by simulating simple molecules in
quantum chemistry (4–6), condensed-matter models (7–12), and
lattice gauge theories (13).

The working principle of DQS is as follows. Suppose that the target
HamiltonianH ¼ ∑Ml¼1Hl can be decomposed intoM terms whose time
evolution operators Ul(t) = exp(−itHl) can be implemented on the con-
sidered quantum computing device. Using the Suzuki-Trotter formula,
the full time-evolution operator U(t) = exp(−itH) can be approximated
by discretizing it into n ∈ N repetitions of the fundamental gates Ui

UðnÞðtÞ ¼ U1
t
n

� �
U2

t
n

� �
…UM

t
n

� �h in
ð1Þ

This Trotterization comes inherently with an error that can be rig-
orously upper bounded via the accuracy of the global unitary time-
evolution operator (3)

UðtÞ � U ðnÞðtÞ ¼ t2

n
∑
M

l>m¼1
½Hl;Hm� þ D ð2Þ
Here, D subsumes terms of order t3/n2 and higher. According to
Eq. 2, for the lowest-order corrections, the Trotter error on the full
time-evolution operator may grow quadratically with total sim-
ulation time t and (in generic quantum many-body systems) linearly
in the number of simulated degrees of freedom N. It is possible to
improve this upper bound, but an error bound that scales less than
linear in t is not possible if one is concerned with the entire unitary
operator (14). Although the polynomial scaling with both t and N is
efficient in a computational complexity sense, it poses a substantial
challenge for practical computations (15, 16), seemingly preventing
current technology from simulating all but small instances. As we
show in this article, these generic bounds on the global many-body
wave function overestimate by far the actual error on local observa-
bles such as magnetizations or low-order correlation functions. For
example, in the DQS of a quantum Ising chain, the deviation of the
magnetization dynamics from the ideal evolution can be considera-
bly smaller and remain bounded even at long times (see Fig. 1B). It is
the purpose of this article to explain this observation from physical
grounds and thus assign a physical interpretation to Trotter errors.

We achieve this by linking Trotter errors to quantum localization.
Localization is a ubiquitous phenomenon with many facets. Initially, it
has been introduced to understand the absence of transport in systems
of free particles with disorder (17). Since then, the concept has been
generalized to various contexts such as many-body localization in
Hilbert space as absence of quantum ergodicity (18) or energy local-
ization in periodic time-dependent quantum many-body systems as
absence of heating in continuously driven systems (19). As we show
here, there occurs a related localization in Hilbert space at small
Trotter steps that bounds time-discretization errors on local observables
occurs. Our aim is to isolate the role of this universal error source, for
which we focus in the following mostly on an idealized setting. We
discuss the interplay of the Trotter errors with other, platform-
dependent error sources in the concluding remarks and in the Supple-
mentary Materials.
RESULTS
Trotter sequences as Floquet systems
In this work, we interpret the Trotterized evolution as a periodically
time-dependent quantum many-body system with a period t = t/n
(see Fig. 1). The desired stroboscopic dynamics is therefore governed
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by an associated Floquet Hamiltonian HF, which we define for later
convenience in the following form

e�iHFt ¼ U1ðtÞU2ðtÞ…UMðtÞ ð3Þ

The starting point of our considerations is an analytical expression
for HF in the limit of sufficiently small Trotter steps t

HF ¼ H þ i
t
2
∑
l>m

Hl;Hm½ � þ Oðt2Þ ð4Þ

This form, which can be obtained from Eq. 3 via a Magnus ex-
pansion, quantifies the Trotterization error on a Hamiltonian level.
There remain, however, two fundamental questions that we aim to
address in this work: (i) What is the radius of convergence t* of this
expansion? [Mathematically rigorous bounds for the convergence
radius of the Magnus expansion do exist, but their applicability to
generic quantummany-body systems is not often evident (19, 20).]
(ii) What is the influence of corrections to H that appear in HF on
the long-time dynamics of local observables? Recent theoretical
predictions for heating in generic quantummany-body systems sub-
Heyl et al., Sci. Adv. 2019;5 : eaau8342 12 April 2019
ject to a periodic drive might leave a rather pessimistic impression
(21–23). We show in this work that the errors on local observables
can nevertheless be controlled for all practical purposes. Throughout
this work, we adopt the notion of local observables to be operators
that include a bounded number of constituents. This definition in-
cludes local order parameters and typical correlation functions.
These are not only generically the measures to describe the properties
of physical systems, they are also the quantities that can be experimen-
tally measured in a scalable way. Moreover, our general argumentation
holds for physical Hamiltonians with few-body interactions, which for
almost all of our discussionmay even be taken to be long-ranged, except
if otherwise stated.

Benchmark model: Quantum Ising chain
In the following, we illustrate our discussion with a generic, exper-
imentally relevant model, the quantum Ising chain with Hamiltonian
H = HZ + HX, withHZ ¼ J∑N�1

l¼1 Szl S
z
lþ1 þ h∑Nl¼1S

z
l andHX ¼ g∑Nl¼1S

x
l .

Here,Sgl (g = x, y, z) denotes spin-
1/2 operators at lattice sites l= 1,…,N.

These models are paradigmatic workhorses for DQS platforms such
as nuclear magnetic resonance (24), trapped ions (7), and super-
conducting qubits (25). As an initial state, we choose |y0〉 = ⊗ l| ↑ 〉l,
which can be prepared with high fidelity (7, 25, 26). In the remainder,
we use the parameters h/J = g/J = 1 and choose to measure times in
the characteristic scale h−1. For details about the simulations in-
cluding the used gate sequences, see Materials and Methods. Al-
though we focus on this model, our findings also apply to other
systems and thus seem generic (see also the Supplementary Ma-
terials where we provide a similar analysis for the lattice Schwinger
model).

Quantum many-body chaos threshold
As the central result of this work, we connect Trotter errors in DQS
with a threshold separating a many-body quantum chaotic region
from a localized regime, thus linking the intrinsic accuracy of DQS
with a quantum many-body phenomenon. For that purpose, we
first investigate the inverse participation ratio (IPR)

IPR ¼ ∑
v
p2v ; pv ¼ j〈fvjy0〉j

2 ð5Þ

with |fv〉 denoting a full set of eigenstates of the Floquet Hamiltonian
HF. The IPR measures the localization properties of the state |y0〉 in
the eigenbasis |fv〉, which is well studied also in the single-particle con-
text (27). In a quantum chaotic delocalized regime, |y0〉 is scrambled
across the full eigenbasis implying a uniform distribution pv → D�1,
with D as the number of available states in Hilbert space. Since D
grows exponentially with the number of degrees of freedom N, we in-
troduce the rate functionlD ¼ N�1logðDÞ, which exhibits a well-defined
thermodynamic limit. Analogously, we define lIPR = −N−1 log(IPR).
In Fig. 2A, we show numerical data for the ratio lIPR=lD for the
considered benchmark example. For the data in this plot, we take into
account the expected leading-order finite-size corrections lD ¼
N�1½logðDÞ � logð2Þ� in the delocalized regime, which can be esti-
mated using random matrix theory (28). As one can see, there appears
a sharp threshold separating a quantum chaotic regime at large Trotter
steps, where lIPR tends tolD with increasing system size, from a regular
region with lIPR=lD < 1.

A strong fingerprint of quantum chaos can also be found in
out-of-time–ordered (OTO) correlators, which quantify how fast
A

B

Fig. 1. Trotterized time evolution and resulting error on local observables.
(A) Gate sequence for the digital quantum simulation (DQS) of an Ising model.
The desired evolution up to total simulation time t is split into n repeated se-
quences of length t = t/n, each decomposed into fundamental quantum gates.
The example shows a gate sequence for a four-qubit chain with Ising spin-spin
interactions (ZZ) and transverse and longitudinal fields (simulated by single-qubit
operations along the X and Z directions on the Bloch sphere). (B) Magnetization
dynamics MðtÞ ¼ N�1∑Nl¼1〈S

z
l ðtÞ〉 in the DQS of the Ising model for N = 20 spins

and different Trotter step sizes t compared to the exact solution. The normalized
deviation DM(t)/(ht)2 with DM(t) = |Mt=0(t) − M(t)| from the ideal dynamics
shows a collapse of the error dynamics Mt=0(t) for sufficiently small t.
2 of 8
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quantum information scrambles through a many-body system.
A typical OTO correlator is of the form

FðtÞ ¼ 〈V†ðtÞW†VðtÞW〉 ð6Þ

whereV(t) denotes the time evolution of the operatorV in theHeisenberg
picture.While quantum chaos via OTO correlators is conventionally
diagnosed by considering a late-time exponential growth for opera-
torsV andWwith finite support in real space (29), here, we consider
the asymptotic long-time value of the extensive operator V ¼ W ¼
N�1∑lSzl (30). We estimate the corresponding long-time limit, F =
F (t → ∞), via a stroboscopic average F ¼ limn→∞n�1∑nl¼1FðltÞ.

In Fig. 2B, we present numerical evidence that this quantity detects
the many-body quantum chaos threshold that we have seen in the
IPR. There is a clear threshold that separates a localized region at small
Trotter steps t, whereF > 0, from a quantum chaotic region at large t,
where F→ 0. The vanishing OTO correlator in the many-body quan-
tum chaotic regime can be understood directly from the results ob-
tained for the IPR. Consider the spectral decomposition of a local
Hermitian operator V = ∑ala|a〉〈a|, with la as the eigenvalues and
|a〉 as the eigenvectors of V (for the considered magnetization, these
are equivalent to the set of spin configurations). The effective Floquet
dynamics yields after n periods

VðntÞ ¼ ∑
a
∑
v;m
laCnaC*mae�iðEn�EmÞntjfn〉〈fmj ð7Þ

with the Floquet quasi-energy corresponding to the eigenstate |fn〉 and
Cna = 〈fv|a〉.The behavior of the IPR suggests that for all spin config-
urations, pna≡jCnaj2 ¼ D�1 is uniformly distributed, such that the
amplitudes Cna are almost structureless and contain only a phase
information, Cna ¼ D�1=2eiφva . After sufficiently many Floquet
cycles, this phase information is randomized and scrambled by the
unitary evolution, except when v = m, projecting the operator to the
so-called diagonal ensemble (31). Thus, for n → ∞, one obtains
VðntÞ→D�1∑ala1. Here, D�1∑ala ¼ D�1TrV is equivalent to the
Heyl et al., Sci. Adv. 2019;5 : eaau8342 12 April 2019
infinite-temperature average, which yields a vanishing value for the
considered total magnetization. That is, the operator becomes com-
pletely scrambled over the full Hilbert space.

Within the localized phase, the amplitudes Cva contain more
structure than only the phase information, which yields a nonzero
value for the OTO correlator. For small systems, such as for N = 10
in Fig. 2B, one can observe additional structures in the crossover
region, which vanish for larger N. We attribute these to individual
quantum many-body resonances, which can be resolved in small
systems but which merge for large N.

Robustness of local observables
While the corrections due to time discretization are weak on a
Hamiltonian level, as seen in the Magnus expansion in Eq. 4, there
is a priori no guarantee that the long-time dynamics is equally well
reproduced. It is, e.g., well known for classical chaotic systems that
even weak perturbations can grow quickly in time. Here, we provide
numerical evidence that in the localized regime, the dynamics of local
observables remains constrained and controlled, even in the long-time
limit. This asymptotic long-time dynamics is a worst-case scenario for
DQS: When Trotter errors on local observables can be controlled in
this limit, so can they on shorter times. In the Supplementary
Materials, we also discuss the buildup of Trotter errors on short to
intermediate times in more detail.

In Fig. 3A, we show the asymptotic long-time valueM of the mag-
netization,M̂ðtÞ ¼ N�1∑lSzl ðtÞ. One can observe that the many-body
quantum chaos threshold identified in the IPR and OTO correlator
has a substantial influence on the long-time Trotter error of local ob-
servables such as M(t). For large Trotter steps t, the magnetization
 31, 2020
A B

Fig. 2. Localization and quantum chaos in the Trotterized dynamics of the
quantum Ising chain. (A) Rate function lIPR of the IPR, normalized to the max-
imally achievable value lD describing uniform delocalization over all accessible
states. A sharp threshold as a function of the Trotter step size t separates a loca-
lized regime at small t from a quantum chaotic regime at large t. (B) The long-
time limit F of the OTO correlator also signals a sharp quantum chaos threshold.
F is normalized with respect to F0 =

1/8, the theoretical maximum. Full scrambling is
only achieved for large Trotter steps.
A C

B D

Fig. 3. Trotter errors for local observables in the infinite long-time limit for
the Ising model. Both the magnetization M (A) and simulation accuracy QE

(C) exhibit a sharp crossover from a regime of controllable Trotter errors for small
Trotter steps t to a regime of strong heating at larger t. The dashed line in (A)
refers to the desired case of the ideal evolution. The Trotter error exhibits a qua-
dratic scaling at small t for both the deviation of the magnetization, DM = M −
Mt=0, (B) and QE (D). The solid lines in (B) and (D) represent analytical results
obtained perturbatively in the limit of small Trotter steps t. These results indicate
the controlled robustness of digital quantum simulation against Trotter errors, in
the long-time limit and largely independent of N.
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acquires its infinite-temperature value, perfectly consistent with the
above analysis of the fully delocalized quantum chaotic phase. How-
ever, for small Trotter steps, the error DM relative to the targeted dy-
namics exhibits a quadratic dependence in t, as we show in Fig. 3B.
The origin of these weak Trotter errors can already be identified from
the dynamical trajectories of the magnetization shown in the inset of
Fig. 1B, where we plot the error DM(t) for different Trotter steps nor-
malized with respect to (ht)2. We observe a collapse of trajectories
corresponding to different t, with the overall magnitude of the error
remaining bounded in time. This finding suggests that in the localized
phase, the discretization error on local observables itself shows reg-
ular behavior, in the sense that different perturbation strengths as
measured by t do not yield fast diverging expectation values.

Simulation accuracy
In the previous sections, we have provided evidence for a sharp thresh-
old between a delocalized and a localized regime with controllable
Trotter errors. We now aim to understand the influence of the regular
regions onto the dynamics of local observables. We identify as the
underlying reason for the weak Trotter errors a dynamical constraint
due to an emergent stroboscopic constant of motion in the effective
time-periodic problem, which is the Floquet Hamiltonian HF. Al-
though this integral of motion is different from the desired energy
conservation of the target HamiltonianH, the perturbative expansion
in Eq. 4 suggests a close connection. It is therefore natural to quantify
the accuracy of DQS by measuring how far the system deviates from
the desired constant of motion H via

QEðntÞ ≡
EtðntÞ � E0

ET¼∞ � E0
ð8Þ

Here, we have introduced Et(nt) = 〈H(nt)〉t and E0 = Et → 0(nt) =
〈y0|H|y0〉, where the subindex t refers to the used Trotter step for the
dynamics. InQE(t), we normalize the errors using the system’s energy at
infinite temperature, ET¼∞ ¼ D�1TrH . In the idealized limit t → 0,
where the integral of motion HF → H, one has QE(t) = 0. In the op-
posite limit of large Trotter steps, i.e., in the many-body quantum
chaotic region, we expect full delocalization over all eigenstates, yielding
QE(t)→ 1 in the long-time limit.Thus,QE(t) defines a system-independent
measure for the simulation accuracy. Fromanalternative perspective,QE(t)
quantifies heating in the effective periodically driven system, as it has been
studied previously in the context of energy localization (19).

In Fig. 3C, we show numerical data for the long-time average QE.
Again, we find a sharp threshold between the localized and quantum
chaotic regimes. For small Trotter steps,QE acquires only a weak qua-
dratic dependence on t (see Fig. 3D), yielding

QE ≡ QEðt→∞Þ ¼ ðt=tEÞa; t≪tE ð9Þ

with a = 2. While tE depends on the microscopic details of the sys-
tem, we find from our numerics that there is no notable depen-
dence on N even in the asymptotic long-time limit, with potential
corrections in the thermodynamic limit N → ∞ that are discussed
further below.

To obtain an analytical understanding for the observations of weak
Trotter errors on local observables, let us start by considering the
Magnus expansion for the Floquet Hamiltonian in Eq. 4, which
quantifies the leading-order corrections due to time discretization on
Heyl et al., Sci. Adv. 2019;5 : eaau8342 12 April 2019
a Hamiltonian level. From our numerical results for QE, we anticipate
that the target Hamiltonian H is an almost conserved quantity, which
motivates us to study the perturbative corrections to strict energy con-
servation. Using time-dependent perturbation theory up to second
order in the Trotter step size t, we find

QE ¼ qEðhtÞ
2 þO½ðhtÞ3� ð10Þ

The explicit derivation and the final formula for qE are given in
Materials and Methods. For the considered parameters, we estimate
qE = 0.18. As it can be seen in Fig. 3D, this analytical value matches well
the numerical results.

To test whether the errors on other local observables are also
controlled by the emergent constant ofmotion in the localized regime,
we exemplarily study the corrections to the targetedmagnetization dy-
namics. From time-dependent perturbation theory we obtain DM ¼
mðJtÞ2 þO½ðJt3Þ� with m = 0.05. This theoretical prediction is again
very close to the numerical data (see Fig. 3B). As these findings indicate,
in the regular region at small Trotter steps, the discretization error on
local observables can be captured by time-dependent perturbation
theory in the Trotter step size t—even in the asymptotic long-time
limit.

Our observations give a smaller error on local observables than
suggested by general considerations on Floquet dynamics in high-
frequency regimes (corresponding to small Trotter steps) (32, 33).
In these works, it is shown that there exists a static local Hamiltonian
~H , which approximates, with exponentially small error on local ob-
servables, the stroboscopic Floquet long-time dynamics in the re-
gimes relevant also for the present case. In the derivation of these
results, however, it turns out that this Hamiltonian is ~H , in general,
different fromH. Our results show that the evolution can be approxi-
mated by H itself, as is desired within DQS, while the errors in local
observables are now polynomial in t.
DISCUSSION
As we have shown, intrinsic Trotter errors in DQS are controllable for
local observables, with a sharp threshold separating a localized from a
many-body quantum chaotic regime. We have achieved this by iden-
tifying the Trotterized time evolution on general grounds with an ef-
fective time-periodic Floquet problem. As a consequence, the dynamics
is constrained by an emergent conserved quantity given by the Floquet
Hamiltonian HF in Eq. 3. While the target Hamiltonian H is not con-
served in the Trotterized dynamics, in the localized regime, H remains
almost conserved up to perturbative corrections for small Trotter steps
t. This finding does not hold anymore in the many-body quantum
chaotic regime, where Trotter errors proliferate and become un-
controllable. While we present data here for a specific model and a spe-
cific initial state, our arguments remain general; we find similar
properties also for other initial conditions andothermodel systems such
as the recently experimentally realized lattice Schwinger model,
which we discuss in the Supplementary Materials. Furthermore,
analogous behavior is also found in long-ranged spin models (34).
Our numerical studies are based on up to N = 20 qubits, which is
within realized and expected size ranges of digital quantum simula-
tors (4–13, 35–38).

For experiments, it is of particular interest to assess the precise val-
ue of the threshold scale t*. Theoretically predicting t* is in general as
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difficult as solving the desired time evolution. Nevertheless, one can
estimate t* as follows. Before running an experiment, one can numer-
ically calculateQE for smallN, yielding a first estimate on t*. From this
starting point, experiments can find an optimal Trotter step at largerN
by decreasing t until sufficient convergence is reached. Once in the
perturbative regime, one can use data at nonzero t to extrapolate to
the ideal dynamics in a well-defined way.

For concrete experimental realizations, it is furthermore of relevance
how Trotter errors behave on short to intermediate time scales. From
Fig. 1B, one can anticipate that the long-time Trotter error emerges
already on rather short time scales. In the Supplementary Materials,
we study this transient dynamics in more detail. As we show there for
the considered Ising chain, the buildup of the sharp threshold between
controllable Trotter errors and quantum chaotic behavior can be ob-
served already on experimentally relevant time scales.

While our results appear to be robust upon increasing the number
of degrees of freedom, a quantitative extrapolation to N → ∞ would
require the numerical study of larger systems. In this context, recent
works have argued that generic periodically driven systems will even-
tually heat up indefinitely in the thermodynamic limit (21–23). This
might leave a rather pessimistic impression, but, as we explain now,
time discretization errors still remain controllable. Even in the worst-
case scenario where such an indefinite heating takes place, the energy
growth can still be bounded as long as the Hamiltonian has only short-
ranged interactions, via jEðtÞ � E0j≤ Ce�t0=tt for t≪ t0 (22, 23, 32, 33).
Here, C denotes a constant of dimension energy squared, and t0
denotes a constant of dimension time, both of which are independent
of N. Thus, for a given total simulation time t, one can ensure a max-
imum allowed error D on the simulation accuracy by QE(t), choosing
t according to t = t0/log(ct/D) with c = C|ET=∞ − E0|. In this worst-
case scenario, the Trotter step size to reach a given accuracy therefore
acquires at most a logarithmic dependence on t but remains
independent of N. This is still an exponential improvement over
the global wave function bounds such as given in Eq. 2. In practice,
since it is tunable via t, this extremely slow intrinsic heating can always
be adjusted such that the associated heating rate is smaller than that of
other error sources, such that Trotter errors become unimportant.

Therefore, the accuracy ofDQS experiments on local observables is
limited mainly by extrinsic error sources. While these may in the fu-
ture be eliminated by error correction (39, 40), for relevant system
sizes to solve many-body problems, full error correction is still out
of reach with currently available resources. In the Supplementary
Materials, we discuss in detail two typical extrinsic error sources, tim-
ing errors on individual gates and slow drifts of gate couplings over
various shots of the experiment. The slow drifts turn out to be rela-
tively benign, leading only to an effective average over an ensemble of
target Hamiltonians. Individual timing errors, however, induce in the
limit of small t, a time scale beyond which the accuracy of DQS is se-
verely affected. In addition, a realistic implementation on a physical
device will suffer from other potential imperfections, many of which
can be very device specific. Typical error sources include qubit deco-
herence and faulty pulses such as imperfect swaps between internal
levels. Both of these make it highly preferable to use as few gates as
possible. In view of these, our results become particularly relevant:
As they show, intrinsic errors in DQS remain controlled even with
relatively large Trotter steps. This makes it possible to reach a desired
simulation time with a reduced number of gates, thus diminishing the
influence of extrinsic errors and enhancing the accuracy in DQS for
local observables.
Heyl et al., Sci. Adv. 2019;5 : eaau8342 12 April 2019
MATERIALS AND METHODS
Numerical methods and gate sequences
The numerical data shown in this work was obtained for a quantum
Ising chain with the Hamiltonian

H ¼ HZ þHX ð11Þ

where

HZ ¼ J ∑
N�1

l¼1
Szl S

z
lþ1 þ h∑

N

l¼1
Szl ;HX ¼ g∑

N

l¼1
Sxl ð12Þ

Many of the involved contributions in this model Hamiltonian
mutually commute. Therefore, only a small set of elementary quantum
gates is required to simulate the Trotterized dynamics. We used the
following sequence of two gates

U ð1Þ ¼ U1U2;U1 ¼ e�itHZ ;U2 ¼ e�itHX ð13Þ

For the presented simulations of observables, we computed the
real-time evolution for 2 × 104 periods, except otherwise noted, using
a Lanczos algorithm with full reorthogonalization. Because, for a finite-
size system, observables still show remaining temporal fluctuations, we
extracted the asymptotic long-time limit of the presented quantities by
performing a stroboscopic time average over the last 104 periods. This
large number of Trotter steps is far beyond realistic current-day imple-
mentations and serves here only as a worst-case scenario. However,
when the Trotter errors on local observables can be controlled even
in this idealized limit, one can expect the same to hold true on shorter
times relevant for current experiments. In the SupplementaryMaterials,
we illustrate in more detail how the Trotter error builds up on short
time scales.

The IPR shown in Fig. 2 can, in principle, be obtained either by
exact diagonalization or by use of a dynamical evolution. We chose
the latter because it allows us to reach larger systems and is, in prin-
ciple, an experimentally accessible approach. Dynamically, the IPR
can be obtained by a stroboscopic mean

IPR ¼ lim
n→∞

1
n
∑
n

l¼1
P l; P l ¼ j〈y0je�ilHFtjy0〉j

2 ð14Þ

as one can prove by expandingPl in the eigenbasis ofHF, followed by a
summation of the resulting geometric series.Note thatP l is the Loschmidt
echo, a common indicator for quantum chaotic behavior in single-particle
systems (27).

For the computation of the OTO correlator F(t) defined in Eq. 6,
we decompose F(nt) as

FðntÞ ¼ 〈y1ðntÞjy2ðntÞ〉 ð15Þ

where the two states

jy1ðntÞ〉 ¼ WeiHFntVe�iHFntjy0〉 ð16Þ
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jy2ðntÞ〉 ¼ eiHFntVe�iHFntWjy0〉 ð17Þ

can be obtained from forward and backward evolving the quantum
many-body state with appropriate insertions of theW andV operators.
Since the backward evolution has to be performed for every Trotter step
n, the overall runtime of this approach scales proportional to n2. This
limits the accessible total simulation time t= nt.We used n= 103 for the
data shown in Fig. 2B and we performed a stroboscopic average over
the last 300 periods to obtain an estimate for the asymptotic long-time
value.

Trotter errors on local observables from perturbation theory
As mentioned before, the Trotter errors for local observables can
be captured using time-dependent perturbation theory in the
limit of sufficiently small t. In the following, we outline how to
obtain the analytical expressions for the coefficients qE and m for
QE and M, respectively. First, we consider the simulation accuracy
QE and, afterward, the Trotter errors on the magnetization M.

For the derivation of the corrections appearing inQE, we utilize the
energy of the target Hamiltonian H, and therefore, the simulation ac-
curacy QE exhibits a substantial overlap with the emergent conserved
quantity HF

〈HFðntÞ〉t ¼ 〈HF〉 ¼ const: ð18Þ

Here, 〈OðntÞ〉t ¼ 〈y0jeiHFntOe�iHFntjy0〉 denotes the full Trotter-
ized time evolution with Trotter step size t as in the main text.
Moreover, we define the expectation values in the initial state via
〈O〉 ¼ 〈y0jOjy0〉 and under the ideal time evolution as 〈OðtÞ〉 ¼
〈OðtÞ〉t¼0.

To obtain all corrections to the desired order, we first express HF

using theMagnus expansion up to second order in the Trotter step size

HF ¼ H þ tC1 þ t2C2 þOðt3Þ ð19Þ

with

C1 ¼
i
2
½HX ;HZ �; C2 ¼ � 1

12
½HX � HZ ; ½HX ;HZ �� ð20Þ

For convenience, we restrict the presentation from now on to a
sequence of two elementary gates within one period, as we have
for the case of the simulated quantum Ising chain. Using the above
expansion for HF in combination with the conservation of HF, one
obtains for the energy deviation

DEðntÞ ¼ 〈HðntÞ〉t � 〈H〉;
¼ tDC1ðntÞ þ t2DC2ðntÞ

ð21Þ

where

DCnðntÞ ¼ 〈Cn〉� 〈CnðntÞ〉t; n ¼ 1; 2 ð22Þ
Heyl et al., Sci. Adv. 2019;5 : eaau8342 12 April 2019
Asanext step,weuse time-dependentperturbation theory todetermine
the leading order in t corrections of DCv(nt). For this purpose, we write

e�iHFt ¼ e�iHtWðtÞ;WðtÞ ¼ T e�i∫
t

0dt′Vðt′Þ ð23Þ

with T denoting the time-ordering prescription and

VðtÞ ¼ eiHtVe�iHt ;V ¼ tC1 þ t2C2 ð24Þ

For the corrections to DE(nt) quadratic in t, we need to perform the
time-dependent perturbation theory to first order in t for C1 and can
neglect any t-dependent contributions for C2.

Let us first consider DC1ðntÞ, which gives

DC1ðntÞ ¼ 〈C1〉� 〈C1ðntÞ〉� it∫
nt

0 dt′〈½C1ðt′Þ; C1ðntÞ�〉 ð25Þ

The time integral can be conveniently evaluated by recognizing that

C1 ¼
i
2
½HX ;HZ � ¼

i
2
½H;HZ � ð26Þ

since H = HX + HZ and thus

C1ðtÞ ¼
1
2
d
dt

HZðtÞ ð27Þ

This gives

DC1ðntÞ ¼ 〈C1〉� 〈C1ðntÞ〉�
it
2
〈½HZðntÞ � HZ ; C1ðntÞ�〉 ð28Þ

In the limit of n → ∞, we can use the general property that ex-
pectation values of operators are governed by the so-called diagonal
ensemble (31)

〈OðntÞ〉→n→∞ ∑
l
pl〈ljOjl〉 ð29Þ

where pl = |〈l|y0〉|
2 and the set of all |l〉 denotes the eigenstates for the

target Hamiltonian H. Using particular properties of the considered
protocol, the above result for DC1ðntÞ can be simplified considerably.
We can use, for example, that 〈C1〉 ¼ 0and 〈½HZ ; C1ðntÞ�〉 ¼ 0, because
|y0〉 is an eigenstate for HZ, which lastly yields

DC1ðntÞ→n→∞ � t
4
∑
l
pl〈lj½HZ ; ½HZ ;HX ��jl〉 ð30Þ

For the contributions toDE(nt) that are second order in t stemming
from DC2ðntÞ, we can restrict to the zeroth order in time-dependent
perturbation theory for 〈C2ðntÞ〉t, i.e., we can replace 〈C2ðntÞ〉t→〈C2ðntÞ〉.
This yields

DC2ðntÞ→n→∞ 〈C2〉� ∑
l
pl〈ljC2jl〉 ð31Þ
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Collecting all contributions, we lastly obtain

QE ¼ DE
ET¼∞ � E0

¼ qEðhtÞ
2 þO½ðhtÞ3� ð32Þ

with

qE ¼ 1

J2E0
〈C2〉�∑

l
pl〈ljC2jl〉�� 1

4
∑
l
pl〈lj½HZ ; ½HZ ;HX ��jl〉

� �

ð33Þ

given that ET=∞ = 0. This expression can be evaluated using full diago-
nalization, which provides access to all eigenstates |l〉. For the con-
sidered parameters of our simulations, we find qE = 0.18, which is
consistent with the full dynamical calculation in the small Trotter step
limit (see Fig. 3D).

For estimating the lowest-order corrections in t for other observa-
bles such as the magnetization M, we can not make direct use of the
emergent conserved quantity HF as for the energy of the target
Hamiltonian. Still, we can perform time-dependent perturbation
theory, which we now have to carry out up to second order. Following
the same steps as before, we obtain the following expression for the
magnetization

DMðntÞ ¼ 〈MðntÞ〉t � 〈MðntÞ〉 ¼

¼ t2

12
½〈fH2

ZðntÞ;MðntÞg〉� E2
Z〈MðtÞ〉�

þ i
t2

6
〈½C1ðntÞ � C1;MðntÞ�〉

� 5t2

12
∫
nt

0 dt〈C1ðtÞHZðtÞMðntÞ þ h:c:〉 ð34Þ

Here, {A,B} =AB+BA denotes the anticommutator, andEZ is given
by HZ|y0〉 = EZ|y0〉. In the limit n → ∞, we can again use that expec-
tation values can be evaluated in the diagonal ensemble. In addition, the
expression involving the time integral can be formally solved using the
Lehman representation. Last, we obtain

DMðntÞ→n→∞mðhtÞ2 þO½ðhtÞ3� ð35Þ

with

m ¼ 1

12J2
∑
l
pl〈ljfH2

Z ;Mg � E2
ZMjl〉

� 1
6J2

∑
l
plRe½〈lj½HX ;M�HZ jl〉�

þ 1

6J2
∑
l;l′

pl
El � El′

Re½〈lj½HZ ;HX �HZ jl′〉〈l′jMjl〉�

þ 1

6J2
∑
l;l′

〈ljMjl〉
El � El′

Re½ClC
�
l′〈lj½HZ ;HX �HZ jl′〉� ð36Þ

where Cl = 〈l|y0〉 and El denotes the eigenenergies of the target
HamiltonianH corresponding to the eigenstate |l〉. Using full diagonal-
Heyl et al., Sci. Adv. 2019;5 : eaau8342 12 April 2019
ization, we can again evaluate this expression yielding for our model a
value of m = 0.05, which we used in Fig. 3B for the asymptotic small t
prediction and which matches well the result from the full dynamics.
Notice that for the presented derivation of the perturbative corrections
for the magnetization M, we used explicitly that the initial state is an
eigenstate of M. Choosing different observables or different initial
conditions might yield linearly in t contributions as the leading-order
corrections.
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