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Abstract

Metamaterials are typically described as materials with ’unusual’ wave prop-
agation properties. Originally developed for electro-magnetic waves, these
materials have also spread into the field of acoustic wave guiding and cloak-
ing, with the most relevant of these ’unusual’ properties, being the so called
band-gap phenomenon. A band-gap signifies a frequency region where elas-
tic waves cannot propagate through the material, which in principle, could
be used to protect buildings from earthquakes. Based on this, two relevant
concepts have been proposed in the field of seismic engineering, namely:
metabarriers, and metamaterial-based foundations.

This thesis deals with the development of the Metafoundation, a meta-
material-based foundation system for the seismic protection of fuel storage
tanks against excessive base shear and pipeline rupture. Note that storage
tanks have proven to be highly sensitive to earthquakes, can trigger sever
economic and environmental consequences in case of failure and were there-
fore chosen as a superstructure for this study. Furthermore, when tanks
are protected with traditional base isolation systems, the resulting horizon-
tal displacements, during seismic action, may become excessively large and
subsequently damage connected pipelines. A novel system to protect both,
tank and pipeline, could significantly augment the overall safety of industrial
plants.

With the tank as the primary structure of interest in mind, the Metafoun-
dation was conceived as a locally resonant metamaterial with a band gap en-
compassing the tanks critical eigenfrequency. The initial design comprised a
continuous concrete matrix with embedded resonators and rubber inclusions,
which was later reinvented to be a column based structure with steel springs
for resonator suspension. After investigating the band-gap phenomenon, a
parametric study of the system specifications showed that the horizontal
stiffness of the overall foundation is crucial to its functionality, while the
superstructure turned out to be non-negligible when tuning the resonators.

Furthermore, storage tanks are commonly connected to pipeline system,
which can be damaged by the interaction between tank and pipeline during
seismic events. Due to the complex and nonlinear response of pipeline sys-
tems, the coupled tank-pipeline behaviour becomes increasingly difficult to
represent through numerical models, which lead to the experimental study
of a foundation-tank-pipeline setup. Under the aid of a hybrid simulation,
only the pipeline needed to be represented via a physical substructure, while
both tank and Metafoundation were modelled as numerical substrucutres
and coupled to the pipeline. The results showed that the foundation can
effectively reduce the stresses in the tank and, at the same time, limit the
displacements imposed on the pipeline.



Leading up on this, an optimization algorithm was developed in the fre-
quency domain, under the consideration of superstructure and ground mo-
tion spectrum. The advantages of optimizing in the frequency domain were
on the one hand the reduction of computational effort, and on the other hand
the consideration of the stochastic nature of the earthquake. Based on this,
two different performance indices, investigating interstory drifts and energy
dissipation, revealed that neither superstructure nor ground motion can be
disregarded when designing a metamaterial-based foundation. Moreover, a
4 m tall optimized foundation, designed to remain elastic when verified with
a response spectrum analysis at a return period of 2475 years (according to
NTC 2018), reduced the tanks base shear on average by 30%. These results
indicated that the foundation was feasible and functional in terms of con-
struction practices and dynamic response, yet unpractical from an economic
point of view.

In order to tackle the issue of reducing the uneconomic system size, a
negative stiffness mechanism was invented and implemented into the foun-
dation as a periodic structure. This mechanism, based on a local instability,
amplified the metamaterial like properties and thereby enhanced the overall
system performance. Note that due to the considered instability, the device
exerted a nonlinear force-displacement relationship, which had the interest-
ing effect of reducing the band-gap instead of increasing it. Furthermore,
time history analyses demonstrated that with 50% of the maximum admis-
sible negative stiffness, the foundation could be reduced to 1/3 of its original
size, while maintaining its performance.

Last but not least, a study on wire ropes as resonator suspension was
conducted. Their nonlinear behaviour was approximated with the Bouc Wen
model, subsequently linearized by means of stochastic techniques and finally
optimized with the algorithm developed earlier. The conclusion was that
wire ropes could be used as a more realistic suspension mechanism, while
maintaining the high damping values required by the optimized foundation
layouts.

In sum, a metamaterial-based foundation system is developed and stud-
ied herein, with the main findings being: (i) a structure of this type is feasible
under common construction practices; (ii) the shear stiffness of the system
has a fundamental impact on its functionality; (iii) the superstructure cannot
be neglected when studying metamaterial-based foundations; (iv) the com-
plete coupled system can be tuned with an optimization algorithm based on
calculations in the frequency domain; (v) an experimental study suggests
that the system could be advantageous to connected pipelines; (vi) wire
ropes may serve as resonator suspension; and (vii) a novel negative stiffness
mechanism can effectively improve the system performance.
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Chapter 1

Introduction

1.1 Metamaterials and Phononics

Metamaterials are materials with ’unusual’ properties. This very broad def-
inition, given by Solymar and Shamonina [1] in their book ’Waves in meta-
materials’, does not give insight in what properties those may be. But as the
title of their book already promises, metamaterials are classically related to
the propagation of waves. Originally, the term was coined by Smith et al.
[2], who developed a material with negative permittivity and permeability
in the electro-magnetic regime. However, as pointed out by Zouhdi et al. [3]
the word metamaterial never got defined properly, but can be used to de-
scribe materials with unconventional wave propagation behaviour. Besides
electro-magnetic waves [4], also phononic waves, which are characterized by
mechanical vibrations, can be manipulated with metamaterial like struc-
tures. A comprehensive review of the recent advances in phononic waves
was given by Maldovan [5], who highlighted that the main distinction be-
tween different types of metamaterials is the frequency range of application.
Electromagnetic waves for example are widely used in modern technology,
have a typical frequency range from 106 Hz (e.g. analogue Radio) up to
1020 Hz (PET-scan) and are characterized by the movement of photons and
electrons. Phononic waves on the other hand, range from practically 0 Hz,
where infra-sound and acoustic waves start; and reach up into the Terra-
Hz scale, where thermal waves are located. The frequency range of seismic
waves is, of course, located at the lower end of the phononic wave spectrum
and can be regarded as part of the acoustic wave regime, as illustrated in
Figure 1.1. The first to demonstrate that acoustic waves could be manipu-
lated analogously to electromagnetic waves was Liu et al. [6]. They arranged
centimeter sized lead balls coated with silicon rubber in a periodic array and
showed numerically as well as experimentally that a structured material of
this type can produce interesting wave propagation properties. Of particular

1
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Figure 1.1: Frequency spectra of phononic waves.

interest, is the so called band-gap property, which prohibits elastic waves to
propagate in a specific frequency region [7].

Band-gaps in acoustic materials can essentially be achieved through Bragg
scattering or local resonance [8]. In particular, Bragg scattering relies on the
obtainable phase shift through arranging unit cells, while local resonance
depends on the local frequency of embedded resonators [9, 10]. For Bragg
scattering, this entails that the frequency region where band gaps can be
achieved is primarily dependent on the unit cell dimension of the structured
medium. Note that the unit cell of a structured medium is the smallest
identifiable component that, when arranged in a periodic manner, consti-
tutes the overall material. For Bragg scattering the unit cell size can be
estimated with,

R =
λ

2
(1.1)

where, R is the lattice constant, or the size of the unit cell, while λ denotes
the wave length. For seismic waves, the wave length can reach far beyond
100 m, which renders the application of metamaterials based on Bragg scat-
tering nearly impossible. Local resonance, however, can produce band-gap
like properties with unit cells much smaller than the wave length of the tar-
get waves. Therefore, locally resonant materials are of primary interest to
seismic-metamaterials and, hence, also this thesis. The band-gaps of the
proposed foundations will be calculated with dispersion analyses and dis-
cussed in the relevant chapters where applicable. In order to provide the
reader with a better understanding of what kind of information can be read
from the resulting dispersion diagrams, a short introduction to dispersion
analysis follows here.

1.1.1 Dispersion analysis

The dispersion analysis sheds light on the wave propagation properties of
periodic lattices and is elaborated here on the simplest case, the monoatomic
chain. In order to obtain the dispersion diagram, the classical equations of

2



1.1. Metamaterials and Phononics

R

m

uj−1

k

m

uj

k

m

uj+1

Figure 1.2: Monoatomic lattice.

motion (of one unit cell) need to be subjected to the Floquet-Bloch boundary
condition [11–13]. Figure 1.2 displays a simple chain where, m describes the
mass of the unit cell, in this case an atom, k represents the stiffness of the
connection between the masses, R is the lattice constant as described above,
and uj , uj−1, and uj+1 are the displacements of the unit cell under study, the
previous unit cell, and the subsequent unit cell, respectively. The relevant
equation of motion reads,

müj + k(uj−1 − uj) + k(uj+1 − uj) = 0 (1.2)

According to the Floquet-Bloch theory, the previous and subsequent dis-
placements can be related to the unit cell under study with,

uj+n = u0e
i(qnR−ωt) (1.3)

Here u0 is the amplitude of the wave, q is the angular wave number, which
is defined as the inverse of the wavelength (2π/λ), while ω is the angular
frequency of the propagating wave, and t denotes time. Furthermore, n
relates to other unit cells with -1 for the previous and +1 for the subsequent
unit cell. For a lattice constant of R = 1, the term qnR degenerates to ±q,
which can range from −π ≤ q ≤ π.

To highlight the meaning of this relationship, the oscillation of the cen-
tral unit cell and the neighboring ones is demonstrated in Figure 1.3 via the
complex plain. Note that the displacement of the unit cells develops over
time as the real part of the expressions ei(−q−ωt), e−iωt, and ei(q−ωt) multi-
plied with u0 from (1.3), for the previous, central, and subsequent unit cell,
respectively. After applying this relationship (1.3) to the equation of motion
(1.2), and solving the system for the angular frequency ω, the dispersion
relation reads,

ω =

√
−2k(cos(q)− 1)

m
(1.4)

This equation essentially maps traveling waves to their propagation fre-
quency. Figure 1.4 schematically depicts the dispersion branch of the mono-
atomic lattice with normalized mass m = 1 and stiffness k = 1. From Figure

3



1. Introduction

1.3 it can be deduced that the dispersion relation has to be 2π periodic for
q, since this will include all possible positions on the unit circle in the com-
plex plain. This further entails that only a finite magnitude of wave number
q can be studied for a specific system, which in turn depends on the unit
cell dimension given by R. Moreover, the group and phase velocity vp and
vg, for any given wave, can be studied form Figure 1.4, with the following
relationships,

vp =
ωi

qi
, vg =

dωi

dqi
(1.5)

Here, the subscript i corresponds to a generic point on the dispersion branch,
for which the values of qi, ωi and the derivatives dqi and dωi can be read from
the diagram. Note that the phase velocity gives the speed at which features
of the wave travel through the system, such as peaks and troughs, while the
group velocity is the speed at which energy is transported. Of particular
interest is the fact that at the end of the dispersion branch at values π
and −π the group velocity tends towards zero and waves become standing
waves which do not propagate through the system, but remain localized.
Furthermore, with the introduction of additional degrees of freedom more
dispersion branches appear, which represent different modes of vibration.
These, of course, depend on the system under study and will be discussed
for various Metafoudation layouts in the respective chapters. But before
diving into the peculiarities of the proposed foundation, a look at other
technologies and research projects may give an idea about what is being
investigated in the field of seismic metamaterials.

Re

Im

ei(−q−ωt)

0

e−iωt

q

ei(q−ωt)

q

t

Figure 1.3: Oscillation of neighbouring unit cells in the imaginary plane.
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1.2. Seismic-metamaterials

1.2 Seismic-metamaterials

Two ideas are dominating the field of seismic metamaterials, namely, meta-
material based foundations and seismic metabarriers. Metabarriers essen-
tially consist of resonators that are placed on or in the soil and target the
attenuation of surface waves, while metamaterial-based foundations need
to be placed under the building and have the capacity of attenuating bulk
waves.

In terms of metabarriers, Brule et al. [14] studied the wave propagation
through periodic bore holes in soil, by means of full scale dynamic testing,
and showed that seismic metamaterials are indeed feasible to obtain. Besides
this, Huang and Shi [15] showed how periodic pile barriers could be applied
to produce attenuation zones for plane wave reduction. This concept was
later improved by Achaoui et al. [16], who were able to achieve a much
lower band-gap frequency range (≤ 10 Hz) by clamping pile foundations
to the bedrock. These investigations were primarily oriented around the
concept of Bragg scattering, which is limited in terms of feasibility due to
the required unit cell dimensions.

Exploiting the concept of local resonance, [17, 18] proposed resonators
embedded in the soil to further improve the obtainable band-gap for surface
wave attenuation. Along these lines, Palermo et al. [19] then studied a real-
istic setup with steel resonators supported by rubber bearings that would be
buried in the soil around a building of interest. The used resonators were de-
signed as cylindrical units with approximate radius and height of 0.4 m and
1.7 m, which were then placed in concrete shells to protect them from the
surrounding soil and potential damage. Arranged in a periodic grid, these
resonators effectively reflected Rayleigh waves back into the ground and sub-
sequently attenuated the seismic action affecting a building. Furthermore,
the necessary equations to design a functional metabarrier dependent on soil
type and desired band-gap were provided in their work.

Another interesting approach to seismic barriers was proposed by Colombi
et al. [20], who studied a forest as a natural array of resonators for the

q

ω

dωi

dqi

qi

ωi

π−π

Figure 1.4: Dispersion relation of the Monoatomic lattice.
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1. Introduction

attenuation of Rayleigh waves. Through numerical simulations and the in-
strumentation of a forest, they found that band-gaps in a frequency range of
tens of Hz can be obtained. More precisely, two band gaps were discovered
for the studied forest ranging from about 30 - 45 Hz and 90 - 110 Hz, where
incoming Rayleigh waves were attenuated. A further study on forests as
metamaterials, namely the metaforet project, confirmed these findings by
means of a large scale experiment, where 1000 seismic sensors instrumented
an area of 120m × 120m [21]. Building up on these developments [22] then
proposed the metawedge, which essentially represented an array of verti-
cal resonators that, due to the varying resonant frequencies, widened the
achievable band-gap.

The clear advantage of metabarriers is that they can be placed next to
the structure of interest, and may therefore be applied to existing struc-
tures. This is particularly interesting for the protection of cultural heritage
sites where other types of seismic mitigation strategies can only be installed
through extensive construction efforts. However, since surface waves are only
one part of the seismic action that may damage a structure, metabarriers can
only be applied in combination with other measures or at far field locations
where primary and secondary body waves have already been attenuated.

Metamaterial-based foundations, on the other hand, have the advantage
of covering any type of plane wave, since they represent the connection of the
superstructure with the ground. Some of the first works in this regard were
carried out by Xiang et al. [23] and Bao et al. [24]. Both studied layered
foundations with alternating stiffness and mass properties and found that
waves propagating inside the frequency regime of the designed band-gap
would be attenuated.

Furthermore Cheng and Shi [25] and Jia and Shi [26] came up with 2D
foundation systems for the seismic protection of nuclear power plants and
traditional buildings, respectively. In their designs they used 1 and 2 com-
ponent cylindrical inclusions consisting of steel and rubber, which provided
low frequency band-gaps in the harmful frequency range of incoming earth-
quakes. Cheng and Shi [27] further developed their foundation concept to
show different band-gaps for orthogonal wave propagation directions. Of
particular interest was the attenuation of the vertical component of the
earthquake, which usually has a different frequency content with respect
to the horizontal one and has proven to be damaging to structures such as
nuclear power plants. By arranging two different asymmetric unit cells in
a periodic manner they showed how the vertical as well as the horizontal
component of a seismic event could be attenuated through their foundation.
However, in their study the foundation was considered as a filtering medium
for the nuclear power plant, which entailed that they neglected the feedback
from the power plant on the foundation. Besides this, also Yan et al. [28]
studied the efficacy of periodic foundations for horizontal as well as vertical
ground motions, and found that metamaterial-based foundations are indeed
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able to address both components.

A seismic metamaterial endowed with isochronous oscillators was pro-
posed by Finocchio et al. [29], where steel balls would roll on cycloidal
surfaces inside a concrete matrix. Casablanca et al. [30] later developed a
similar system comprised of concrete slabs separated by low damping teflon-
steel surfaces; where the concrete slabs housed steel masses held in place with
rubber inclusions, in order to add local resonance to the system. This com-
posite foundation exerted the band-gap property in a low frequency range
of 3.5 Hz - 13 Hz and was analyzed analytically as well as experimentally
with a specimen size of approximately 1× 1m. They effectively obtained an
attenuation zone where the predicted band-gap was located. But also in this
research effort, the feedback of the superstructure was neglected.

As shown in [31], which constitutes Chapter 4 of this thesis, the su-
perstructure cannot be neglected, due to the feedback it imposes on the
foundation. Furthermore, it was found that the horizontal stiffness is of crit-
ical importance to the effectiveness of the foundation [32], which in turn is
constrained by the engineering design of the foundation according to com-
mon construction practice [31]. Besides this, the size of the resonators play
a vital role for the functionality of the foundation, while at the same time
are a major cost driving factor, due to the amount of required material.

Furthermore, it is worth mentioning that cracks are expected to occur
in concrete structures and that those cracks can have an impact on the
wave propagation [33]. The authors of [32] were inspired by the work of
Mishuris, Movchan and Slepyan [34–36] to investigate the potential effect
of such cracks on the wave propagation. Therefore, In Chapter 2, which
comprises the publication [32], the effect of static cracks on the developed
foundation is investigated. The results show that due to the location and
small size of the expected cracks, no noticeable shift can be expected for the
particular structure discussed herein.

1.3 Fuel storage tanks and seismic engineering

Since fuel storage tanks represent highly sensitive infrastructures that can
have a sever impact on the community and the environment if damaged, they
were chosen as a superstructure for this study. In 1999 the Kocaeli earth-
quake damaged several fuel storage tanks, which caused fires that couldn’t be
extinguished for 3 days [37]. Furthermore, the 2011 Tohoku earthquake and
tsunami, which triggered the Fukoshima accident [38, 39], destroyed 30% of
the Japanese oil industry and initiated fires that took 10 days to extinguish
[40–42]. These scenarios can be described as Natural Technological Events
(NaTech events) [43, 44], where a natural disaster causes an technological
accident, which subsequently increases the severity of the consequences sig-
nificantly. Krausmann et al. [45] showed that storage tanks with connected
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pipelines represent the most vulnerable equipment when it comes to NaTech
events, triggered through earthquakes, floods or lightning.

Besides the consequence intensity of storage tanks, they also show varying
fluid levels over their lifetime time, which significantly alters their fundamen-
tal periods [46, 47]. This is particularly problematic for seismic protection,
since the protective measure has to be effective at every fluid level, and there-
fore, at varying eigenfrequencies. To date traditional seismic protection is
still scarce for fuel storage tanks, due to the cost of seismic isolation and the
difficulty of applying other means such as tuned mass dampers (TMD).

Traditional seismic protection can be split into passive and active control
mechanisms, where active mechanisms require electric power for e.g. the ex-
citation of hydraulic actuators, while passive devices are independent from
external power sources [48]. For this work, only the passive control mecha-
nisms are of interest, which essentially consist, but are not limited to the fol-
lowing 3 subgroups: (i) seismic isolation; (ii) energy dissipative devices [49];
and (iii) Tuned Mass Dampers (TMDs). Concerning the Metafoundation
discussed herein, seismic isolation as well as TMD concepts are of interest,
since the foundation exerts traits form both fields. Regarding seismic isola-
tion two main technologies come to mind, firstly lead rubber bearings [50]
and secondly the concave sliding bearings [51]. The underlying concept is to
build a foundation that decouples the superstructure form the ground and
thereby shifts the fundamental frequency of the overall structure to a fre-
quency regime, where the seismic action causes less damage. This, however,
is usually accompanied with large horizontal displacements, which can be
particularly damaging to connected structures such as pipelines. TMDs on
the other hand, represent resonators that are placed at critical locations of
the building and oscillate in counter-phase with the eigenmodes of the struc-
ture. The downside of TMDs is that they need to be tuned to the correct
frequency, can detune over time, and are not generally effective at atten-
uating seismic action, due to the wide frequency spectrum of earthquakes
[52].

Besides horizontal ground excitations, also the vertical component of
earthquakes has proven to have a great damage potential [53]. Particu-
larly for structures that can cause severe consequences when failing, such
as nuclear power plants, the vertical component should be taken seriously
[54]. Also for fuel storage tanks, vertical accelerations can induce significant
forces, due to the increased hydrostatic pressure deriving from the breath-
ing mode [55, 56]. Note that classical isolation systems such as lead rubber
bearings are particularly stiff, and therefore, not able to reduce the vertical
excitation [57]. While in the present work, only the horizontal component is
treated, it shall be mentioned here that in future studies, also the vertical
component could be addressed by metamaterial-based foundations.
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1.4 Hybrid simulation

As mentioned earlier, connected pipelines can experience significant damages
due to the horizontal displacement of base isolated tanks during a seismic
event. Since the correct response of pipelines, due to their strongly non-
linear behavior, is difficult to predict by means of numerical simulations,
an experimental study is conducted in Chapter 3. More precisely, a hybrid
simulation (HS) is carried out on a 15 m long pipeline system, where a tank
protected by the Metafoundation and a tank protected by concave sliding
bearings (CSB) serve as numerical substructures. While the experiment it-
self will be discussed in detail in the relevant chapter, an introduction to the
used hybrid simulation setup follows here.

In principle, a HS setup splits a system into multiple substructures, of
numerical or experimental nature and couples them via an appropriate time
integration algorithm [58, 59]. Under the aid of this technique, complex en-
gineering systems can be split up into multiple components, where the highly
nonlinear ones, such as pipelines, are tested in the laboratory; while typically
linear components, such as steel frame structures, are modelled numerically.
The substructures are then coupled by means of a transfer system which
enforces equilibrium and compatibility at their interfaces, which allows the
HS method to accurately represent complex systems with economical testing
setups.

The HS time integration algorithm used in Chapter 3 is based on the
work done by Abbiati et al. [60] and relies on localized Lagrange multipliers
for the coupling of the individual substructures. For instance, let’s imagine
3 different substructures as shown in Figure 1.5, which could be of numerical
or experimental nature, and let them share the generalized interface DOFs
ug1 and ug2. These substructures are then coupled to their interface DOFs
via localized Lagrange multipliers denoted with λ, which allow the system
of EOMs to be formulated as,

M(l)ü(l) + R(l)(u(l), u̇(l)) = L(l)TΛ(l) −M(l)T(l)ag

∀l ∈ 1, 2, 3
(1.6)

Here, M, and R are the mass matrix and the restoring force vector of the
l-th substructure, while u, u̇ and ü denote the displacement, velocity and ac-
celeration vectors, respectively. Besides this, ag denotes the applied ground
acceleration, whereas T(l) denotes a Boolean vector that determines the di-
rection of the ground motion. Note that for linear subsystems, R can be
formulated as,

R(u, u̇) = Ku + Cu̇ (1.7)

Furthermore, Λ describes the localized Lagrange multiplier vectors, contain-
ing the Lagrange multipliers (λ) of the substructures as depicted in Figure
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offline EDS algorithms interoperate, i.e. the C-EDS method. In addition, to couple several PSs and NSs using possible multi-
point constraints, we adopt the localized Lagrange multipliers (LLMs) for dual assembly of subdomains.

The following subsections summarize both the LLM method and an online and two offline state of the art algorithms,
which can be profitably combined.

2.2. The localized version of the method of Lagrange multipliers

In a primal formulation, a unique set of interface DoFs is retained. Classically, FE models are assembled in this primal
manner [3]. Conversely, in a dual assembly formulation, all subdomains’ DoFs are retained, all interface DoFs are present
as many times as there are subdomains connected to the same DoF; an additional set of Lagrange multipliers enforces com-
patibility [22]. Although it may sound inconvenient to treat subdomains as separated in a pure numerical context at the price
of adding further system unknowns (Lagrange multipliers), this is not the case in EDS. In fact, only the dual approach allows
for tailoring algorithms and implementations to specific requirements on single (physical or numerical) subdomains, which
guarantee both stability and accuracy.

From this perspective, the localized version of the method of Lagrange multipliers (LLM), can provide a dual assembly
framework for connecting multiple NSs and PSs within the C-EDS method. It is well known that the classical method of
Lagrange multipliers (CLM) allows for multiple sets of interface compatibility equations for the modelling of interfaces con-
necting more than two subdomains by the same DoF. Nonetheless, to avoid singularity in modelling an arbitrary number of
multi-point constraints, Park et al. [23] proposed a localized version of the CLM method.

In order to elucidate the use of the LLMs as method for dual assembly within the C-EDS framework, let us consider the
following system of differential algebraic equations (DAE), in which m mechanical subdomain are coupled by LLMs,

MðlÞ€uðlÞ þ RðlÞðuðlÞ; _uðlÞÞ ¼ LðlÞTKðlÞ þ FðlÞðtÞ
LðlÞuðlÞ þ �LðlÞug ¼ 0orLðlÞ _uðlÞ þ �LðlÞ _ug ¼ 0

(
8l 2 f1; . . . ;mg ð2:1aÞ

Xm
l¼1

�LðlÞTKðlÞ ¼ 0 ð2:1bÞ

where, MðlÞ and RðlÞ are the mass matrix and the restoring force vector of the l-th subdomain, respectively, whilst
€uðlÞ; _uðlÞ and uðlÞ denote acceleration, velocity and displacement vectors. For a linear system, RðlÞ reads,

RðlÞðuðlÞ; _uðlÞÞ ¼ KðlÞuðlÞ þ CðlÞ _uðlÞ ð2:2Þ

with CðlÞ and KðlÞ damping and stiffness matrices of domain l. Vector FðlÞðtÞ represents the external time-varying load that, for
seismic response history analyses, is typically defined as

FðlÞðtÞ ¼ �MðlÞTðlÞagðtÞ ð2:3Þ

where TðlÞ is a Boolean vector depending on the direction of the seismic acceleration agðtÞ. For the sake of brevity, time depen-

dence is omitted and therefore the independent variable t is dropped in the following. LðlÞ and �LðlÞ are Boolean signed matri-
ces that collocate interface DoFs on the single subdomain DoF vector uðlÞ and the generalized interface DoF vector ug ,
respectively. The latter gathers all coupled systems’ interface DoFs taken once. According to Eq. (2.1a), each Lagrange mul-
tiplier vector KðlÞ enforces compatibility between the corresponding subdomain l-th and the generalized interface DoF vector
ug . Finally, Eq. (2.1b) imposes self-balance among all m interface force fields represented by Lagrange multiplier vectors.

As a dual-assembly approach, the LLM introduces additional sets of Lagrange multipliers, which satisfy interface equilib-
rium a priori through Eq. (2.1b) and enforce kinematic compatibility a posteriori by means of Eq. (2.1a). More precisely, at
each simulation step displacement and velocity solutions of (2.1) split into free and link components. The former are calcu-
lated discarding coupling conditions and used to compute the latter by means of a linearized Steklov-Poincaré operator.

To crystallize the idea, Fig. 1 illustrates an example of three-substructure coupling achieved by using the LLMs.

Fig. 1. Three-substructure coupling based on the LLM.
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Figure 1.5: Three different substructures coupled via localized Lagrange multi-
pliers (figure from [60]).

1.5. In order to enforce compatibility on the various subsystems, the follow-
ing two conditions must be satisfied,

L(l)u̇(l) + L̄(l)u̇(l)
g = 0

or

L(l)u(l) + L̄(l)ug
(l) = 0

(1.8)

and

m∑
l=1

L̄(l)TΛ(l) = 0 (1.9)

here, the single substructure DOF vector u(l) and the generalized interface
DOF vector ug are collocated by the Boolean signed matrices L and L̄. To
put the matter more plainly, expression (1.6) contains the system of EOMs
of all substructures, which need to be solved under the constraints of eqs.
(1.8) and (1.9). Here, eq. (1.8) makes sure that either the displacements or
the velocities of the coupled DOFs are equal, while eq. (1.9) imposes the
force equilibrium at the interface nodes. The equations (1.6)-(1.9) can then
be solved according to the time stepping algorithms shown in [60] and are
able to couple any number of numerical or experimental substructures in a
HS environment. Note that for the experiment presented in Chapter 3 this
will be done for a pipeline as an experimental substructure, and two differ-
ent numerical models containing a storage tank isolated with CSBs and a
storage tank clamped to the Metafoundation. This setup has the advantage
of yielding realistic results for the coupled foundation-tank-pipeline system
under full consideration of the dynamic interaction between the substruc-
tures, while only the pipeline has to be physically tested in the laboratory.
Additionally, some comparisons between the Metafoundation and tradtional
isolation devices can be drawn.

10



1.5. Scope, objective and structure of the thesis

1.5 Scope, objective and structure of the thesis

1.5.1 Objective and novelty

The objective of this thesis is to conceive e new type of seismic protection
based on metamaterial concepts for the safety of fuel storage tanks. This
essentially consists of the following two tasks: designing a foundation that
reduces the dynamic effects of an earthquake arriving at a tank; and devel-
oping a system that functions under standard civil engineering requirements.
In pursuit of these goals, a column based foundation layout is developed, as
depicted in Figure 1.6. Note that the tank is separated from the ground via
the foundation, which forces the earthquake to travel through the metama-
terial, thus experiencing filtering effects. In order to design this foundation
an optimization algorithm, for the optimal tuning of the resonators, is es-
tablished, which takes the ground motion and superstructure into account.
While the foundation is targeted at the protection of storage tanks, an ex-
perimental study on the interaction between Metafoundation tank and a
connected pipeline sheds light on the complete coupled behaviour. It is
demonstrated that this type of foundation may have positive effects on con-
nected pipelines, since both tank base shear and horizontal displacement can
be limited. Furthermore, in order to improve the seismic isolation efficiency,
an NSE is developed that effectively reduces the necessary foundation height.
Note that the size reduction of metamaterial inspired seismic structures is
highly desirable, since most proposals in the literature still show excessive
system dimensions. Finally, in order to make the foundation design more
practical, wire ropes are used as resonator suspension devices. It is worth
mentioning that wire ropes can act in all 3 spatial directions and, in future,
may be used to attenuate the vertical component of the earthquake.

In sum, the following original scientific contributions to the field of seis-
mic metamaterials are obtained: (i) conception of a new column based foun-
dation designed under common construction requirements; (ii) development
of an optimization algorithm for the optimal tuning of the localized res-
onators, under consideration of ground motion and superstructure; (iii) ex-
perimental demonstration of the potential effects the foundation may have
on a connected pipeline; (iv) design and study of a novel NSE targeted at
the implementation in periodic foundations; and (v) study of wire ropes for
a more practical resonator suspension.

1.5.2 Scope

Chapters 2-4 are devoted to conceiving a foundation that exerts the band-gap
phenomenon and complies with common construction standards. In partic-
ular, Chapter 2 shows the initial design of the continuous concrete matrix
with embedded resonators and demonstrates that the shear stiffness plays a
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Figure 1.6: View of the Metafoundation placed under a tank.

vital role for locally resonant foundations. Based on these findings a column
based foundation is proposed, which represents the basis for all future devel-
opments in the later chapters. Furthermore, a static analysis on the system
ensures the structural integrity under gravity loading and reveals potential
cracks in the periodic structure, which are then analyzed on their impact on
the dispersion relation. As indicated in the introduction, the protection of
pipelines connected to tanks represents an ongoing issue for petrochemical
plants, and is therefore studied experimentally in Chapter 3. By means of
a hybrid simulation setup, the coupled tank-foundation system is simulated
numerically and coupled to a 15 m long pipeline. The Metafoundation setup
is compared to a classical isolation setup with concave sliding bearings and
the advantages and disadvantages are pointed out. Additionally, Chapter
3 also investigates the coupled foundation tank behaviour for varying fluid
levels in the frequency domain and shows a 3D finite element model to test
the representativeness of the discretized analytical model. Following up on
these studies, Chapter 4 treats the engineering design and the optimization
of the foundation. After dimensioning the components of the foundation
according to Italian and European standards, the foundation is optimized
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in the frequency domain under consideration of the ground motion and the
superstructure. More precisely, the complete dynamic system is represented
via its transmission matrix, while the ground motion is approximated with
a Kanai-Tajimi filtered power spectral density fitted to a set of response
spectrum compatible ground motions. Optimal layouts are presented for 4
different foundations and studied for the application to two different tanks,
i.e. broad and slender fuel storage tanks. Due to the large system dimen-
sions found in Chapter 4, Chapter 5 develops a negative stiffness mechanism
that can be implemented in periodic foundations and significantly amplifies
their functionality and metamaterial like properties. Simulations in the time
and frequency domain show how the attenuation effect of a finite medium
can be augmented for seismic applications, under the consideration of the
full inevitable nonlinearity due to the local instability. Besides this, the re-
sulting change in the band-gap is studied analytically, under the aid of the
harmonic balance method, and later verified with numerical simulations to
show the trend of the band-gap with increased nonlinearity. Moreover, in
Chapter 6 wire ropes are investigated as resonator suspension mechanisms,
in order to render the resonator motion more physical. Note that the non-
linear behavior of the wire ropes is approximated with a Bouc Wen model
and subsequently linearized by means of stochastic linearization to obtain
an equivalent linear dynamic system. The linear system is then optimized
with the previously developed optimization algorithm and used to choose
appropriate wire rope setups for the foundation. Furthermore, multiple res-
onators are tuned to different frequencies and damping ratios, in order to
further increase the system performance.

1.5.3 Structure of the thesis

The 5 main chapters of this thesis each contain one journal article, sum-
marizing the main research output of the author. A brief statement of the
contents follows herein:

• Chapter 2 contains the publication: V. La Salandra, M. Wenzel,
G. Carta, O. S. Bursi and A. B. Movchan, ”Conception of a 3D
Metamaterial- Based Foundation for static and seismic Protection of
Fuel storage Tanks”, Frontiers in Materials, vol. 4, no. 30, 2017.
Here, the Metafoundation is introduced for the first time as a contin-
uous concrete matrix with embedded resonators. A parametric study
shows the importance of the horizontal stiffness for the functionality
of the foundation and leads to a new design with columns as the pri-
mary load bearing system. Additionally, a study on small static cracks
shows no significant impact on the band-gap properties.

• Chapter 3 contains the publication: M. Wenzel, F. Basone and O.
S. Bursi, ”Design of a Metamaterial-Based Foundation for Fuel Stor-
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age Tanks and Experimental Evaluation of Its Effect on a Connected
Pipeline System”, Journal of Pressure Vessel Technology, vol. 142,
no. 021903, 2020. In this work, the foundation is further developed
and an experimental study on a connected pipeline system conducted.
The results suggest that the foundation could potentially reduce tank
base shear, while at the same time limit pipeline stresses, which is a
multi-functionality that traditional isolation system are not able to of-
fer. Furthermore, an analysis on various liquid heights shows that the
foundation reduces tank stresses even at reduced fluid levels.

• Chapter 4 contains the publication: Basone, M. Wenzel, O. S. Bursi
and M. Fossetti, ”Finite locally resonant Metafoundations for the seis-
mic protection of fuel storage tanks”, Earthquake Engineering and
Structural Dynamics, vol. 48, no. 2, pp. 1-21, 2019. This paper
presents the first iteration of the optimization algorithm, based on lin-
ear computations in the frequency domain, which clearly highlighted
the non-negligibility of the superstructure as well as the ground motion
when designing metamaterial-based foundations. We further found
that the foundation under study can be built according to common
construction requirements, which on the flip side, imposes significant
restrictions on the foundation size.

• Chapter 5 contains the article under revision: M. Wenzel, O. S.
Bursi and I. Antoniadis, ”Optimal finite locally resonant metafounda-
tions enhanced with nonlinear negative stiffness elements for seismic
protection”, Journal of Sound and Vibration, under revision, 2020. A
negative stiffness element (NSE), for the implementation in the pe-
riodic foundation and subsequent amplification of its metamaterial
properties, is conceived and studied in this work. Additionally, the
previously established optimization algorithm is generalized, in order
to cope with any linear system, including one with negative stiffness.
From a seismic performance point of view the foundation improves
substantially, with a height reduction from 3 m to 1 m with only 50%
of the admissible NSE value. Furthermore, the wave propagation in
the nonlinear material showed that the band gap range would reduce
with an increase in nonlinearity.

• Chapter 6 contains the article in preparation: F. Basone, O. Bursi
and M. Wenzel, ”Optimal design of finite locally resonant metafoun-
dations with linear and nonlinear devices for seismic isolation of fuel
storage tanks”. The final paper treats the implementation of wire ropes
in the foundation as resonator suspension. The wire ropes are approxi-
mated with the Bouc Wen model and subsequently linearized by means
of stochastic linearization. The linear parameters are then optimized
with the previously developed optimization procedure and used to find
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functional wire rope setups. While the performance of the foundation
did not improve, the wire ropes still add to the feasibility from a struc-
tural view point. Additionally, a study with multiple frequencies for
various resonators shows that only a minimal advantage over a single
frequency can be obtained in terms of base shear reduction. However,
when using different frequencies the damping ratios of the individual
resonators can be reduced, which may further improve the feasibility.

• Chapter 7 closes the thesis with conclusions and future developments.
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Chapter 2

Conception of the
Metafoundation

Overview. Fluid-filled tanks in tank farms of industrial plants can ex-
perience severe damage and trigger cascading effects in neighboring tanks
due to large vibrations induced by strong earthquakes. In order to reduce
these tank vibrations, we have explored an innovative type of foundation
based on metamaterial concepts. Metamaterials are generally regarded as
manmade structures that exhibit unusual responses not readily observed in
natural materials. If properly designed, they are able to stop or attenu-
ate wave propagation. Recent studies have shown that if locally resonant
structures are periodically placed in a matrix material, the resulting meta-
material forms a phononic lattice that creates a stop band able to forbid
elastic wave propagation within a selected band gap frequency range. Con-
ventional phononic lattice structures need huge unit cells for low-frequency
vibration shielding, while locally-resonant metamaterials can rely on lattice
constants much smaller than the longitudinal wavelengths of propagating
waves. Along this line, we have investigated 3D structured foundations with
effective attenuation zones conceived as vibration isolation systems for stor-
age tanks. In particular, the three-component periodic foundation cell has
been developed using two common construction materials, namely concrete
and rubber. Relevant frequency band gaps, computed using the Floquet-
Bloch theorem, have been found to be wide and in the low-frequency region.
Based on the designed unit cell, a finite foundation has been conceived,
checked under static loads and numerically tested on its wave attenuation
properties. Then, by means of a parametric study we found a favorable cor-
relation between the shear stiffness of foundation walls and wave attenuation.
On this basis, to show the potential improvements of this foundation, we in-
vestigated an optimized design by means of analytical models and numerical
analyses. In addition, we investigated the influence of cracks in the matrix
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material on the elastic wave propagation, and by comparing the dispersion
curves of the cracked and uncracked materials we found that small cracks
have a negligible influence on dispersive properties. Finally, harmonic anal-
ysis results displayed that the conceived smart foundations can effectively
isolate storage tanks.

2.1 Introduction

In 1999 the Izmit earthquake damaged the largest Turkish petrochemical
plant and set it on fire. The fire took five and a half days to extinguish and
almost spread to other industrial sites [37]. Such events can be described as
natural technological events or NaTech events. It is of critical importance
for the community and the environment to prevent such incidents from hap-
pening. Fuel storage tanks in petrochemical plants need to be regarded as
high risk structures, due to their fragility to earthquakes and their potential
for cascading effects [61]. Their low impulsive frequencies can fall within
the excitation frequencies of earthquakes and significant effort is required to
isolate them against seismic vibrations. A very innovative solution for isolat-
ing tanks at low frequencies is constructing a foundation based on phononic
crystals. These crystals can create stop bands, which stop waves from prop-
agating in certain frequency regions [7]. Various applications could benefit
from these properties, for example, noise protection [6], seismic isolation [62]
or coastal protection [63]. The present work is dedicated to the feasibility of
such metamaterial-based structures for the seismic isolation of fuel storage
tanks. Three- and two-component new foundations were conceived by [25].
A two- dimensional (2D) array of steel cylinders coated with rubber and
embedded in a reinforced concrete matrix constituted the three-component
foundation. Conversely, the two-component design was based on the same
geometry, but replacing the steel cylinders inside the rubber with homoge-
neous rubber inclusions. By comparing these two designs, they showed that
a three-component periodic foundation can generate useful band gaps for
seismic vibration isolation. Furthermore, they concluded that the reinforce-
ment of the concrete matrix has a negligible influence on the band gaps.
However, it is important to underline the two-dimensional nature of their
proposed designs, which would have to be improved for an omnidirectional
wave. Another 2D approach was studied by [26], while a three-dimensional
(3D) approach for a phononic crystal-based structure was proposed by [64].
The latter design showed the possibility for a 3D foundation to generate stop
bands in the low frequency region. Furthermore, they carried out a para-
metric study on the structural components and their influence on the band
gaps. The mass of the resonator core, the thickness of the rubber coating
as well as the stiffness of the rubber have proven to be of special impor-
tance for the frequency range of the stop bands. In order to validate the
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effects of stop bands in periodic structures, [65] conducted field experiments
on scaled 2D periodic foundations. The comparison between experimental
outcomes and numerical results showed that periodic foundations are able to
mitigate seismic waves. Furthermore, they found good agreement between
experimental tests and dispersion analysis. The work by [66] provides addi-
tional insight on filtering waves propagating through a foundation made of
inertial resonators. The recent work by [67] has addressed the suppression
of vibrations in fuel tanks via specially tuned systems of many multi-scale
resonators attached to the tanks. In the present paper, we introduce a smart
foundation based on metamaterial concepts that can both attenuate seismic
waves and withstand static loads. More precisely, the foundation is capable
of attenuating waves in targeted frequency ranges. In our analyses, we are
particularly interested in the influence that both geometrical and mechani-
cal properties of a foundation inspired by phononic crystals can have on its
dynamic performance as well as its capabilities of bearing gravity loads. In
fact, for its practical use, it is of outmost importance to design a foundation
that can both attenuate seismic waves and withstand static loads relevant to
the coupled structure. Therefore, a broad fuel storage tank, which poses a
significant threat to the community and the environment, was considered as
a case study for the present design. The materials employed in the founda-
tion are concrete and construction grade silicon, which are commonly used in
construction industry. With regard to the design process of the foundation,
an iterative procedure was employed. Given the critical frequency region of
seismic vibrations for the structure of interest, a unit cell is designed with
the aid of a frequency dispersion analysis to cover critical frequencies by
means of a stop band. Then, a finite lattice structure is extracted from
the infinite lattice of unit cells and is checked on its static behavior at the
ultimate limit state [68]. Furthermore, the coupled (foundation+structure)
system is numerically tested on its wave attenuation properties. Since the
proposed smart foundation was still excessive in size, we also investigated
an optimized design endowed with improved performance and reduced di-
mensions. Therefore, an analytical study was performed to derive the wave
propagation properties of the design, while numerical simulations assessed
its performance. Although the proposed design is still in an early research
stage, it already shows a great potential in optimizing such a foundation.
As pointed out by [33] in the analysis of the dynamic behavior of strongly
damaged beams, cracks due to static loading can exert marked effects on
band gap formation. For this reason, the influence of cracks on the dynamic
properties of the proposed foundation is also investigated. Finally, Section
2.4 discusses main results, draws conclusions and future perspectives.
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2.2 Materials and methods

From a dynamic viewpoint, broad tanks like the one under study can be
thought of being composed of an impulsive mass that vibrates in phase with
the tank walls at a higher frequency (e.g. 3-5 Hz) and a sloshing mass that
vibrates not in phase with the tank walls at a lower frequency (i.e. about 0.3
Hz), [69]. The relevant eigenvalue analysis was carried out with the FE soft-
ware Comsol Multiphysics (version 5.2). The smart foundation under study
is conceived for the higher frequency, since sloshing frequencies can be easily
suppressed or mitigated with baffles [70]. Therefore, the design of the unit
cell focused on the first impulsive frequency of the fully filled tank, i.e. 4.05
Hz. In fact, this is the eigenfrequency with the largest participant mass in
the radial direction. A horizontal excitation at this frequency results in both
the largest stresses and accelerations in the tank walls, and thus governs the
requirements for the seismic resilience. After disregarding sloshing frequen-
cies, it was possible to model the liquid as an acoustic medium, as shown
by [67] and [71]. This approach significantly reduced the computational cost
of the model. As a result, in all forthcoming analyses the liquid inside the
tank is assumed to have the same properties as water. The tank itself has
a cylindrical shape with a radius, height, liquid height and wall thickness of
24 m, 16 m, 15 m and 20 mm, respectively. A steel plate with a thickness
of 50 mm was used as bottom plate. In order to simulate the traditional
foundation system, the whole tank was set on a 1 m thick concrete slab, as
depicted in Figure 2.1(A). Moreover, a damping ratio of 5 % was imposed
at both 3 Hz and 5 Hz by means of proportional Rayleigh damping on all
FE models to hand [72]. Furthermore, an additional modal analysis has
been carried out to determine the modal frequencies of the coupled (tank
+ smart foundation) system. The geometry of the proposed smart founda-
tion is presented in Section 2.3 Results and is shown in Figure 2.1(B). In
order to further improve the foundation performance in terms of geometry
and dynamic properties, we conceived and analysed a new unit cell. The
optimized design was modelled by means of shell and beam elements and
the assembly is depicted in Figure 2.1(C). The relevant cell dimensions are
shown in Figure 2.3(A) in Subsection 2.3.5.2, respectively. Since the fluid
level height is not a constant parameter in a storage tank, the impulsive
frequency of the structure changes accordingly. Thus, the variable fluid level
results in a frequency region, which is considered governing the foundation
design. Clearly, we take into account that the varying fluid level height will
change the eigenfrequencies of the coupled foundation-tank system.

2.2.1 Floquet-Bloch theorem and Brillouin zone

Periodic structures can be designed in order to suppress the propagation of
seismic waves in a certain frequency regions. These regions are called band
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Figure 2.1: (A): Broad tank on a standard foundation; (B): Broad tank on a
smart foundation; (C): Broad tank on a smart foundation with optimized unit
cells.

gaps and can be determined with the Floquet-Bloch theorem [73]. This
theorem reduces the study to an infinite lattice of unit cells to the analysis
of a single unit cell with Floquet-Bloch quasi-periodicity conditions. After
imposing these conditions, a frequency dispersion analysis can be carried out
and the band gaps of the unit cell can be found as shown in Figure 2.5(B). In
order to obtain the frequency dispersion diagram, we consider the equation
of motion for an elastic medium in an Eulerian description,

3∑
j=1

∂σij
∂xj

+ Fi = ρ
∂2ui
∂t2

(2.1)

where, the stress-strain relationship reads,

σij = µ (x)

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ(x)δijdiv(u (x)) (2.2)

In particular, Fi (i = 1, 2, 3) are the components of the body force, ρ the
mass density, u(x) displacement vector, µ (x) and λ (x) Lamè constants, x
position vector and δij the Kronecker delta function, respectively. Time t
has been omitted for brevity. According to the Floquet-Bloch theorem the
solution u(x, t) for a periodic system can be expressed as,

u (x, t) = uke
i(qx−ωt) (2.3)

where q = [qx, qy, qz]
T

represents the wave vector in (2.3), while ω denotes
the corresponding frequency in rad/s. As a consequence,

u (x + R) = u (x) eiqR (2.4)

with R being the lattice vector. By imposing these boundary conditions
on a system and solving the discrete eigenvalue problem of a typical cell,
which takes on the following form,(

K− ω2M
)
u = 0 (2.5)
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it becomes possible to calculate the frequency dispersion curves. In Equa-
tion (2.5), K and M are the stiffness and mass matrix, respectively. The
wave vector q can be expressed in the reciprocal lattice. Due to the peri-
odicity of the direct as well as the reciprocal lattice, it is possible to reduce
the wave space to the first Brillouin zone [9]. Therefore, in order to find
the desired band gaps of the frequency dispersion diagram, it is sufficient
to calculate q along the boundaries of this irreducible Brillouin zone [10].
For clarity, the Brillouin zone for the unit cell considered is depicted in the
bottom left of Figure 2.5(A), where qx, and qy assume values between 0 and
bz, while remaining on the contour of the Brillouin zone.

2.2.2 Static analysis

For the unit cell to work properly as an element of the foundation, it is
necessary to build a static system from the infinite lattice of unit cells. A
two-layered grid of unit cells was chosen as a starting point for the founda-
tion. Due to the cubical shape of the cells, it is easy to conceive a framework
of walls and slabs suited for the derivation of the static loads. The dispersion
analysis of the unit cell resulted in a 4 by 4 meters cube with an outer wall
thickness of 10 cm, as shown in Subsection 2.3.2. When these cells are set
adjacent to each other, the outer walls can be combined as a rectangular grid
with a wall thickness of 20 cm and a spacing of 4 m. The same holds true
for the slab between the two layers of unit cells, which results in a thickness
of 20 cm for the intermediate slab, while the static analysis resulted in a
slab thickness of 35 cm for the top slab. Figure 2.2 shows the conception of
the static system and its dimensions. Details of the foundation are shown
in the bottom right of Figure 2.2(A), where the increased top slab and the
soil-structure interface are represented. For the present work, the soil was
assumed to be bedrock, which allows the foundation to be sustained by line
supports along the walls. Since the compression of the rubber, due to static
loading, could influence the dynamic behavior of the system, the inner con-
crete cubes and the rubber coatings were considered as dead loads. A sketch
of the FE model of the static system is shown in both Figure 2.2(B) and
Figure 2.2(C). The calculation of both stresses and governing forces has been
carried out with the FE software RFEM. All walls and slabs were modelled
as shell elements with rigid connections to each other. The supports were
modelled as simple line supports along the bottom edges of the walls. Once
the static system was established, the loads of the tank, rubber and inner
cubes were applied. The liquid was assumed to have the same density as
water with a maximum liquid level of 15 m. The tank was modelled as a
simple face load of 150 kN/m2 and imposed on the foundation. A similar ap-
proach was chosen for the rubber and the inner concrete cubes. The weight
of both the rubber and inner cubes corresponded to a total gravitational
force of 1040 kN per cell. This force was then spread evenly across the slab
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Figure 2.2: (A): Conception of a static system [Dimensions in mm]; (B): FE
model of the foundation including the tank weight as a surface load [kN/m2];
(C): two unit cells on line supports including the weights of the rubber and inner
concrete cubes as surface loads [kN/m2].

between the layers of unit cells, which resulted in a face load of 65 kN/m2.
In order to comply with Eurocode 0 [68] requirements for the ultimate limit
state of the foundation, all dead loads (including gravitational forces of walls
and slabs) were multiplied by the partial load safety coefficient γG = 1.35.
Finally, all dimensions and steel reinforcements were checked according to
the Eurocode 2 [74]. Shear walls were verified for their compressive strength,
while the slabs were reinforced with steel rebars. With reference to the op-
timized unit cell design depicted in Figure 2.3(A), dimensions have been
significantly reduced with respect to the original design. In particular, line
moments decreased with the reduction of the span width by the power of
two and the new slabs 200 mm thick suffice the Eurocode 2 [74] require-
ments. The columns of the optimized design need to be checked for their
compressive strength. The relevant checks are presented in Subsection 2.3.3.

2.2.3 Materials

The first proposed model for the foundation consists of three components:
the concrete resonator cubes, the rubber coatings and the reinforced concrete
framework. For the concrete parts the strength grade was assumed to be
C30/37 in agreement with Eurocode 2 [74], while the rubber was assumed
to be construction grade silicon. Fuel storage tanks are commonly made of
welded construction steel. For all FE models, the materials were considered
homogeneous and linear elastic, and their main mechanical properties are
collected in Table 2.1. The design of the optimized solution uses the same
concrete as the original one, but replaces the rubber with steel springs as
indicated in Figure 2.3(B). The spring stiffness k2 has been tuned to provide
a band gap with a lower bound at 2.4 Hz as discussed in Subsection 2.3.1.
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Table 2.1: Mechanical properties of materials

Material Density Elastic mod. Bulk mod. Possion Strength
[-] [kg/m3] [N/mm2] [N/mm2] [-] [N/mm2]

Concrete 2500 30000 - 0.35 30
Rubber 1300 1.375 - 0.463 -

Steel 7860 210000 - 0.3 235
Liquid 1000 - 2200 - -
Rebars 7860 195000 - 0.3 550

It was found that k2= 3.7 MN/m.

2.2.4 Functionality evaluation of the original design

Due to the finite dimensions of the original foundation and the necessary re-
design for its static behaviour, the foundation can no longer be treated as an
infinite lattice of perfectly equal unit cells. In order to determine the wave
propagation properties, it is crucial to carry out additional computations,
since the appearance of a stop-band in a finite structure is unrealistic. How-
ever, an attenuation zone is expected to appear in the frequency region of
the predicted stop-band. In order to understand the behaviour of the finite
structure, two models are investigated: i) the first model of the foundation
does not include the tank; ii) the second one contains the complete system,
including the tank and the fluid inside. The optimized design was carried
out similarly and is described in Subsection 2.2.5. A horizontal harmonic
acceleration was imposed at the bottom of the foundation. When comparing
the response of the top of the foundation to the imposed wave, it becomes
possible to show the effectiveness of the attenuation at a certain frequency.
This results in a frequency response function of the type shown in Figure 2.8.
The analysis was then carried out for a foundation with one, two and three
layers. Furthermore, the foundation has also been analyzed with a thinner
concrete wall thickness, in order to see whether the horizontal stiffness of
the structure has an influence on the attenuation behavior. The FE model
of the complete system, including foundation, tank and liquid as an acoustic
medium, has 531684 DoFs. In order to minimize the computational effort
due to the transient nature of seismic waves, all calculations were carried
out in the frequency domain; accordingly, the steady-state response of the
coupled system was checked for the frequencies of interest. In order to show
the effectiveness of the attenuation, the steady state response of the broad
tank on a traditional concrete slab foundation was compared to that of the
tank sitting on the smart foundation. In particular, maximum accelerations
of the uncoupled/coupled system were considered to be of special interest,

24



2.2. Materials and methods

since they correlate with the highest stresses appearing in the system.

2.2.5 Optimization of the unit cell

In order to reduce the foundation’s size while maintaining its performance,
the foundation was redesigned according to the results obtained in the Sub-
section 2.3.4 “Functionality evaluation”. We found that: i) the shear stiffness
plays an important role for the effectiveness of the foundation, see Figure
2.8; ii) the rubber, due to its fixed Elastic Modulus, constrains our design
in terms of variability of the band gap. The two main advantages of the
redesign are the reduction in stiffness, by replacing the walls with columns,
and attaching the resonators to the columns with steel springs instead of
rubber as indicated in Figure 2.3(B). As evident from Figure 2.8, the re-
duction of stiffness leads to a more pronounced attenuation zone, while the
steel springs provide the option of tuning the boundaries of the unit cell’s
band gap. As a result, see Figure 2.3(A), the new dimensions of the unit
cell are 3x3x1.5 m, 0.3x0.3 m column thickness, 0.2 m slab thickness and
2.5x2.5x1 m resonator size. Note that due to the reduction of the overall
stiffness of the coupled system, the first impulsive frequency observed, de-
creased to 2.4 Hz, see Table 2.2, and, therefore, a band gap has to be tuned
to this lower frequency. Furthermore, we assumed that the resonators move
on a frictionless surface in the horizontal direction. This is a necessary as-
sumption in order to keep the calculations linear for the frequency domain
analysis. The functionality evaluation of the optimized design followed the
same steps presented in Subsection 2.3.4. However, in contrast to the model
of the original design, the optimized cell variant was discretized with beam
and shell elements, which further reduced the computational effort.

2.2.5.1 Analytical model of the optimized design

In order to investigate the metamaterial-like properties of the new design,
we conceived an analytical model of the foundation and calculated both
the frequency response and the dispersion analysis of unit cells. The main
dimensions of the unit cell, the horizontal shear model and the 1D MDoF
system are depicted in Figure 2.3(A), (B), and (C), respectively. This model
allows only shear type waves that act in the horizontal and propagate in the
vertical direction. As can be seen in Figure 2.3(C), the jth unit cell can be
repeated in order to achieve as many layers as desired. The equations of
motion read,

mj
1

d2u
j
1

dt2
− k1u

j−1
1 + k1u

j
1 + k2u

j
1 + k1u

j
1 − k2u

j
2 − k1u

j+1
1 = 0 (2.6)
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and,

mj
2

d2u
j
2

dt2
− k2u

j
1 + k2u

j
2 = 0 (2.7)

where, m1 denotes the mass of a slab between two layers of foundation
including half the columns of the layer below and half the columns of the
layer above; m2 denotes the mass of the resonator; k1 denotes the horizontal
stiffness of two columns, which represents the equivalent stiffness of the
columns pertaining to each resonator; k2 represents the equivalent stiffness
of the steel springs holding the resonator; and u describes the horizontal
displacement. In order to relate the state variables across the system, the
equations of motion must contain the displacement of the j−1th and j+1th

unit cell. Therefore, u is endowed with a subscript (1, 2) that describes the
corresponding mass, while the unit cell is determined by the superscript
(j− 1, j, j+ 1). For a finite system these equations can be written in matrix
form. The generalized stiffness and mass matrix for a system with n unit
cells reads,

K =

1 | k1 + k2 + k1 −k2 −k1 · · ·
2 | −k2 k2 0 · · ·
... |

...
...

. . .

jth | −k1 0 k1 + k2 + k1 −k2 −k1 · · ·

jth |
...

... −k2 k2 0 · · ·
... |

...
...

. . .

nth | −k1 0 k1 + k2 −k2
nth | −k2 k2


(2.8)

M =



1 | m1 · · ·
2 | m2 · · ·
... |

...
...

. . .

jth | m1 · · ·
jth | m2 · · ·
... |

...
...

. . .

nth | m1

nth | m2


(2.9)

The relevant dispersion relation of the system can be found by imposing the
Floquet-Bloch boundary conditions (2.3) on the equations (2.6) and (2.7),
imposing a time-harmonic solution and looking for non-trivial solutions. The
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Figure 2.3: (A): Top-section and cross-section of the optimized foundation; (B):
Simplified model for shear-wave propagation; (C): 1D mass-resonator chain model.

dispersion relation is given by,

m1m2ω
4 − [(m1 +m2) k2 + 2m2k1 (1− cos (qL))]ω2

+2k1k2 (1− cos (qL)) = 0 (2.10)

A similar solution has been found by [75], who analyzed the negative
effective mass effect in an acoustic metamaterial. Here, ω denotes the circular
frequency; L the length of the column or height of one layer; and q the wave
number with dimension 1/m. The values for m1, m2, k1, k2, and L are 5850
kg, 15625 kg, 12e7 N/m, 3.6e6 N/m, and 1.5 m, respectively. In order to
compare the results provided by the numerical models, also quantitatively,
damping ratios of 1, 3, and 5 % were imposed to 3 and 5 Hz by means of a
Rayleigh model. Furthermore, a model with 1, 2, and 3 layers with damping
of 5 % between 3 and 5 Hz was analysed too.
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Table 2.2: First impulsive eigenfrequency of broad-tank-foundation systems with
various liquid heights

Foundation type Liquid level [m] Imp. freq. of tank [Hz]

Traditional
15 4.15
12 4.95

Smart
15 3.95
12 4.80

Optimized
15 2.40
12 3.70

2.3 Results

2.3.1 Modal analysis of a coupled broad-tank-foundation
system

The analysed broad tank with the maximum fluid level of 15 m anchored to
a standard foundation has its first impulsive frequency at 4.15 Hz. On the
other hand, for the same tank on the proposed smart foundation, the first
impulsive frequency appears at 3.95 Hz. The corresponding impulsive mode
shapes for the two foundation typologies are shown in Figure 2.4(A) and
(B), respectively. The coupled system obtained from the optimized design
exhibits its first impulsive frequency at 2.4 Hz and is depicted in Figure
2.4(C). It is apparent that the impulsive frequency for a tank on the smart
foundation is lower than for one on a standard foundation, and decreases even
further for the optimized design. The impulsive frequency of the structure
increases as the fluid level decreases. For this reason, the tank with a liquid
level of 12 m was also studied. Relevant outcomes of the modal analysis for
the two tank configurations are reported in Table 2.2. On the basis of these
results, a frequency region that covers both frequencies for each tank would
be desirable. Due to the fact that the fluid level can drop below 12 m, band
gaps that stretch even beyond the increased impulsive frequency of the 12
m fluid level constellation were chosen for all the designs. For the standard
tank this resulted in an aspired frequency region between 3.5 Hz and 6 Hz,
while the optimized design was aimed at a frequency range between 2.40 Hz
and 4.5 Hz.

2.3.2 Unit cell design of the original smart foundation

The unit cell was studied as a 2D problem in Comsol Multiphysics. When
applying the Floquet Bloch boundary conditions introduced in Subsection
2.2.1, the dispersion relation can be obtained by calculating the eigenfre-
quencies of the system for different values of the wave vector q. Therefore,
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Figure 2.4: (A): first impulsive mode at 4.15 Hz for a broad tank on a traditional
foundation; (B): first impulsive mode of a broad tank on the proposed smart
foundation at 3.95 Hz; (C): first impulsive mode at 2.4 Hz for a broad tank on the
optimized foundation.

it is sufficient to calculate the eigenfrequencies along the boundaries of the
Brillouin zone, depicted for clarity, in the bottom left of Figure 2.5(A). Here,
T, X, M mark the corners of the Brillouin zone, while bz denotes the edge
length, which amounts to π/a = 0.7854 1/m, where a defines the size of the
unit cell. Our parametric study shows that a unit cell with side length, outer
wall thickness, rubber coating and inner concrete cube size equal to 4 m, 0.1
m, 0.4 m and 3 m, respectively, see Figure 2.5 (A), creates a band gap with a
lower bound of 3.5 Hz and an upper bound of 6.4 Hz as highlighted in Figure
2.5(B). By looking at the results in Table 2.2, this configuration represents
the optimal design to reduce tank vibrations in the frequency range where
waves can cause the greatest damage. Note that the shear wave velocity
is very close to the pressure wave velocity for the diagonal path M to T of
the Brillouin zone. Therefore, the shear wave branch is almost coincident
with the pressure wave branch in both Figure 2.5(B) and 2.12(B). The effec-
tiveness of the proposed solution in the low frequency range is in line with
the results presented by Achaoui et al. [66], who proposed iron spherical
resonators endowed with ligaments embedded in soil. However, the actual
feasibility of their interesting design proposal has yet to be investigated.

2.3.3 Static analysis

Three essential components have to be verified under static loads for the
original design: the top slab, the walls and the intermediate slab. When
the system is subjected only to static loads, the walls need to resist only
compressive stresses. According to Eurocode 2 [74], it is sufficient to verify
that the compressive stress is lower than the design strength of concrete. As
stated in Section 2.2.3 Materials, a strength grade of C30/37 was assumed.
Since the maximum stress of 3.6 N/mm2 shown in Figure 2.6(A) is below
the design strength of 20 N/mm2, the walls are checked for gravity loads.
The slabs, on the other hand, need to sustain the flexural moments produced
by static loads. This results in tension regions in the concrete matrix, see
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Figure 2.5: (A): The unit cell and its Brillouin zone (dimensions in cm); (B):
Dispersion analysis of the unit cell.

Figure 2.6(B), which need to be reinforced in order to offer sufficient load-
bearing capacity. Additionally, for corrosion protection a minimum concrete
cover of the reinforcement bars is needed. Since the present work considers a
general case, the concrete cover was chosen to be 5 cm, which satisfies most
exposition classes mentioned in Eurocode 2 [74]. Given the negative line
moment of -164.84 kNm/m at the ultimate limit state in the top slab above
the walls, see Figure 2.6(B), the final chosen dimensions are 35 cm for the
plate thickness and 12.12 cm2/m for the reinforcements depicted in Figure
2.7(A) top left. A grid of 8 rebars with a diameter of 14 mm is sufficient
for this part of design. Due to the symmetry of the system, the moments
are the same in x and y direction. Therefore, the selected grid has to be
set in both directions. The lower layer of reinforcements needs to cover a
maximum moment of 75.22 kNm/m in the slab, which results in a minimum
reinforcement area of 5.39 cm2/m indicated in Figure 2.7(B) top right. A
grid of 11 reinforcement bars per meter with a diameter of 8 mm fulfills the
requirement.

The intermediate slab shows bending moments of -76.63 kNm/m above
the walls and 31.97 kNm/m in the fields. When setting the slab thickness
to 20 cm, the necessary reinforcement has to be 11.89 cm2/m for the top
layer, see Figure 2.7(C) bottom left, and 4.64 cm2/m for the lower layer of
reinforcements, look at Figure 2.7(D) bottom right. Thus, the same rein-
forcement grid chosen for the top slab was also sufficient for the intermediate
slab.

The preliminary static evaluation of the optimized cell has been carried
out as before. For the sake of brevity, only the design of columns is pre-
sented, while the remaining checks have been omitted. More precisely, the
compressive concrete stresses in the columns of dimension 0.3x0.3 m amount
to 18 N/mm2. This figure must be compared with a design strength of 20
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Figure 2.6: (A): compressive stresses in the walls at the ultimate limit state
[N/mm2]; (B): line bending moments in slabs at the ultimate limit state [kNm/m].

Figure 2.7: (A): compressive stresses in the walls at the ultimate limit state
[N/mm2]; (B): line bending moments in slabs at the ultimate limit state [kNm/m].

N/mm2 and, therefore, the optimized design is statically valid.

2.3.4 Functionality evaluation

The frequency response function at the top of the foundation for a sinusoidal
excitation of amplitude 1 m/s2, plotted in Figure 2.8, shows a clear attenu-
ation zone in the frequency region from 3.5 Hz to 6.4 Hz. In this frequency
region, a reader can observe that the acceleration output at the top of the
foundation is smaller than the input at its bottom. An amplification area
appears in the frequency region below 3.5 Hz, which is not relevant for the
seismic protection of the tank. Furthermore, the influence of the number
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Figure 2.8: (A): acceleration response at the top of the foundation with a wall
thickness of 20 cm; (B): acceleration response with a wall thickness of 10 cm.

of unit cell layers has been studied. The diagrams of Figure 2.8 show that
the number of layers is clearly connected to the attenuation effectiveness.
Moreover, the effectiveness of another model with a decreased concrete wall
thickness from 20 cm to 10 cm has been evaluated. The comparison of Figure
2.8(A) with Figure 2.8(B) highlights that a smaller wall thickness enhances
the attenuation behaviour and increases the intensity of the amplification
area.

In order to compare foundation typologies, the response of the complete
coupled (foundation+tank) system has been studied. The model is depicted
in Figure 2.1(B) and was analyzed with a concrete wall thickness both of 20
cm and 10 cm. For the sake of brevity, only the results corresponding to the
wall thickness of 10 cm are reported herein, due to its increased effectiveness.
Since the maximum acceleration does not appear at the top of the tank, the
maximum acceleration along the full height of the tank wall was plotted.
The comparison in terms of maximum acceleration in the frequency domain
between the smart and a traditional foundation is shown in Figure 2.9(A);
the attenuation and advantages of using the smart foundation become clearly
visible. Finally, the analysis of the tank with a fluid level of 12 m has been
performed. Relevant outcomes in terms of accelerations are reported in
Figure 2.9(B). A careful reader can note that the attenuation due to the
smart foundation is still clear but less pronounced than in the case of a fully
filled tank.

2.3.5 Results for the optimized unit cell

2.3.5.1 Numerical analysis of the optimized cell

Based on the results obtained for the original foundation design and in order
to further reduce the horizontal stiffness, we investigated an optimized design
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Figure 2.9: (A): maximum acceleration response function of the tank wall for
traditional and smart foundation; (B): acceleration responses for a tank with a
reduced liquid height of 12 m.

Figure 2.10: (A): Frequency response function of the optimized foundation alone
subjected to a base acceleration of 1 m/s2; (B): Tank response for a fully filled tank,
on the optimized foundation, for a base acceleration of 1 m/s2; (C): Tank response
with a liquid level of 12 m, on the optimized foundation, for a base acceleration of
1 m/s2.

that employs columns instead of shear walls. When observing Figure 2.10(A)
in contrast to both Figure 2.8(A) and Figure 2.8(B), it becomes evident that
the performance of the foundation improves significantly due to the column
design. The results shown in Figure 2.10(A) can also be compared to the
analytical solution of Subsection 2.3.5 and the same conclusion holds. As
done in Subsection 2.3.4, we also analyzed the coupled system in terms of
frequency response function for a base-excitation of 1 m/s2. Figure 2.10(B)
shows the results of the analysis of a full tank and Figure 2.10(C) depicts
the results for a tank with a liquid level of 12 m. It is apparent that in
both cases the proposed isolation system can reduce vibrations in the tank
significantly, in particular when the tank is totally filled with fluid and,
hence, when seismic loads can produce the most severe damage.
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2.3.5.2 Analytical model of the optimized cell

In order to ascertain the results of our numerical study, we carried out var-
ious calculations on the analytical model introduced in Subsection 2.3.5.2.
Firstly, we performed a frequency response analysis on the model with 1, 5,
and 25 layers. Also in this case, a base excitation üin of amplitude 1 m/s2

was selected and compared to the output üout at the top of the foundation.
As shown in Figure 2.11(A), the foundation exhibits a distinctive attenuation
zone that increases with the amount of layers. This calculation was carried
out without damping and is depicted in decibel dB (20 ∗ log(üout/üin)).
Furthermore, we were interested whether a dispersion analysis of the system
would yield a band gap in the predicted attenuation zone. Figure 2.11(B)
shows the dispersion relation and the corresponding band gap of an infinite
stack of unit cells, calculated with (2.10). In order to check how well the ana-
lytical model represents the numerical one and whether the analytical model
can be used for further optimization investigations, we also conducted cal-
culations on a damped system. Relevant results are shown in Figure 2.11(C)
and 2.11(D) for Rayleigh damping of 1, 3, and 5 % imposed to both 3 Hz
and 5 Hz. Moreover, an analytical study on the damped system (5 % of
Rayleigh damping for both 3 Hz and 5 Hz) with a variation of the layers is
reported in Figure 2.11(D). Relevant results are discussed in Section 2.4.

2.3.6 Influence of small cracks

In order to assess the influence of small cracks on elastic wave propagation,
a cracked cell of the smart foundation was investigated. In fact, as shown in
Figure 2.6(B) of Subsection 2.3.3, the maximum bending moment is located
where the slabs join the walls. Due to the resulting tension in concrete, small
cracks appear in the area close to the internal boundaries of the walls. There-
fore, the cracks were modeled as 5 cm-deep and 1 cm-wide physical gaps with
no stiffness as indicated Figure 2.12 (A). This was considered a conserva-
tive approach, since the presence of reinforcement bars was neglected in the
cracks. In particular, two adjacent cubes along the vertical direction were
endowed with small cracks and modeled in Comsol imposing Floquet-Bloch
conditions. The relevant dispersion analysis, shown in Figure 2.12 (B), must
be compared to the results depicted in Figure 2.5(B) that corresponds to
the uncracked unit cell. The comparison shows that the presence of small
cracks slightly modifies the group velocity of propagating elastic waves.

2.4 Discussion

In Subsection 2.3.2, we showed the dispersion relation of a unit cell that
suits the needs for the isolation of a broad tank introduced in Subsection
2.3.1, with the first foundation design. Based on this unit cell, we designed a
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Figure 2.11: (A): Undamped frequency response function for 1, 5, and 25 layers
of foundation for a base excitation of 1 m/s2; (B): Dispersion relations for the
optimized unit cell; (C): Frequency response function of the analytical model for
two layers and Rayleigh damping of 1, 3, and 5 %; (D): Frequency response function
of the analytical model with 5 % Rayleigh damping and 1, 2, and 3 layers.

Figure 2.12: (A): Position of cracks in the unit cell; (B): Crack modeled as a
physical gap in the slabs due to static loads (dimensions in m); (C): Dispersion
analysis of the cracked foundation sector.
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foundation and checked its static and dynamic properties in Subsection 2.3.3
and 2.3.4, respectively. The static analysis proved that the design is feasible,
while the functionality evaluation showed that the metamaterial concept is
applicable even for a finite foundation. The construction practice is assumed
to be in situ for the present study. Furthermore, the first design of the foun-
dation was rather excessive in size and needed to be reduced. Based on the
functionality evaluation, where in Subsection 2.3.4 we found a correlation
between the shear stiffness of foundation walls and the attenuation effective-
ness, we introduced a new design that improves the isolation performance of
the foundation and reduces its size. The optimized design includes columns
instead of walls, in order to reduce its shear stiffness, and replaces the rub-
ber with uniaxial steel springs, which make the structure more versatile.
The new design discussed in Subsection 2.3.5 showed promising results by
steady state analyses with a reduction of the foundation from 8 m to 3 m in
height, while improving its performance. Besides this, we verified the results
with an analytical model that returned very similar outcomes compared to
numerical calculations and showed that the new design still exhibits band
gaps. The small discrepancy between the results with the damped analyti-
cal model shown in Figure 2.11(C) and 2.11(D) and those of the numerical
model presented in Figure 2.10(A) are mainly due to the difference between
the two models, continuous and discrete, as well as the consequences of the
imposed Rayleigh damping.

2.4.1 Conclusion

In order to check the feasibility of a metamaterial-based foundation for seis-
mic application we conceived a smart foundation that was also designed and
checked for gravity loads. As a result, we found that such a structure can
be realized in accordance with the Eurocode standards while maintaining
favorable band-gap like properties against seismic waves. In particular, we
designed two versions of the smart foundation bearing a fuel storage tank
with a varying fluid level and we showed that the proposed designs can at-
tenuate the resulting frequency range. In addition, we found that the shear
stiffness of the foundation due to lateral concrete walls has a significant
impact on the attenuation efficiency, and, subsequently, we proposed an op-
timized design where the walls were replaced with less stiff concrete columns.
Though the proposed smart foundation was able to attenuate the impulsive
frequencies of the fuel storage tank under different liquid levels, it cannot
yet be considered as a fully optimized solution. In particular, the dynamic
behavior of the system with other liquid levels needs to be investigated, as
well as the performance of the coupled system under several seismic waves.
Finally, given the main drawback of standard isolators, i.e. the inherent high
vertical stiffness, we expect that the use of the investigated foundation for
large structures characterized by rocking motion can reveal great innovative
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potential and undiscovered advantages.

Upcoming developments Since fuel storage tank are typically connected
to pipeline systems and can exert varying fluid levels, the next chapter treats
the coupled tank foundation system in an experimental set-up. Furthermore,
the efficiency of the foundation for varying fluid levels will be elaborated
through various numerical studies in the frequency domain.
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Chapter 3

Metafoundation development
and Experimental Study on a
coupled Pipeline

Overview. The recent advance of seismic metamaterials has led to various
concepts for the attenuation of seismic waves, one of them being the locally
resonant metamaterial. Based on this concept, the so-called metafounda-
tion has been designed. It can effectively protect a fuel storage tank from
ground motions at various fluid levels. In order to show the effectiveness of
the proposed design, the response of the metafoundation is compared to the
response of a tank on a traditional concrete foundation. The design process
of conceiving the metafoundation, optimizing it for a specific tank, and its
seismic response are described herein. Furthermore, the response of a tank
during a seismic event can cause severe damages to pipelines connected to
the tank. This phenomenon can be of critical importance for the design of
a seismic tank protection system and must be treated with care. Since the
coupled structure (tank + foundation + pipeline) exerts highly nonlinear
behaviour, due to the complexity of the piping system, a laboratory exper-
iment has been conducted. More precisely, a hybrid simulation (HS) that
uses the metafoundation and a tank as a numerical substructure (NS) and
a piping system as a physical substructure (PS) was employed. To make
the results relatable to the current state of the art, additional experiments
were performed with concave sliding bearings (CSBs) as an isolation system
in the NS. The metafoundation offered a clear attenuation of tank stresses
and, in some cases, also reduced the stresses in the piping system.

39



3. Metafoundation development and Experimental Study on a
coupled Pipeline

3.1 Introduction

Natural hazards such as earthquakes can cause significant damages to the en-
vironment and the community. Of special interest to many studies on natural
hazards are NaTech events (natural technological events) [43, 44, 76], which
can be caused by the interaction of a seismic incident with the failure of crit-
ical technical components. These events include loss of containment (LOC)
of fuel storage tanks, pipelines, and other components of, e.g., petrochemical
plants and nuclear power plants. LOC events of such critical infrastructures
need to be avoided at the highest priority, as past NaTech disasters have
displayed their potential in causing substantial damage to the community
and the environment [37, 40]. In order to protect structures from seismic
effects, various strategies have found application in the field of earthquake
engineering. The standard form of seismic isolation uses lead-rubber bear-
ings [50] or spherical bearing devices [77]. This type of seismic protection
is able to isolate a structure of interest from the ground motion, and hence,
reduce the stresses appearing in the structure induced by seismic waves at
a wide range of frequencies. It has been shown by Jadhav and Jangid [78]
that these types of isolation devices can effectively reduce the stresses in fuel
storage tanks. In this work, we investigate a new type of seismic protection
based on metamaterial concepts that may offer an alternative to classical
isolators in the future. Many different types of metamaterials exist with in-
teresting wave propagation properties for elastic as well as optical waves [1].
Only recently it has been discovered that a particular type of metamaterial,
namely, phononic crystals, may be feasible to construct at a reasonable size
for the isolation of structures against seismic waves. These phononic crystals
exhibit so-called band gaps that prohibit waves from propagating through
the material when their frequency falls within that gap [7]. Several studies
tried to harvest this property for the design of a foundation for the seismic
isolation of a superstructure, but none have taken the feedback coming from
the structure into account [25–27, 63, 65]. In this work, a foundation is
developed and optimized, based on the aforementioned concept, for the dy-
namic protection of a fuel storage tank, while considering realistic feedback
from a superstructure. The developed system shows promising results for
the reduction of the demand on the tank in the frequency and time domain
and will be referred to as metafoundation. Furthermore, this work evaluates
the effect that the proposed foundation may have on a connected piping sys-
tem and compares the system to a system endowed with classical isolators.
Due to the high nonlinearity of the studied piping system, the evaluation
has been carried out under the aid of a hybrid simulation (HS), which can
capture the interaction of the coupled system in a realistic manner [79, 80].
In particular, the piping system will be constructed in a laboratory as the
physical substructure (PS) of the system, while the tank and the founda-
tion are modeled as numerical substructures (NSs) that are coupled to the
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Table 3.1: Material parameters

Material Density Elastic mod. Bulk mod. Possion Strength
[-] [kg/m3] [N/mm2] [N/mm2] [-] [N/mm2]

Concrete 2500 30000 - 0.35 30
Steel 7860 210000 - 0.3 235

Liquid 1000 - 2200 - -
Steel 7860 210000 - 0.3 355

experimental setup. In summary, the metafoundation reduces stresses in a
tank as a superstructure, while exhibiting a similar demand as a standard
isolator on a connected piping system.

3.2 Design of the Foundation

3.2.1 Materials

The metafoundation consists of two components, namely, the structural ma-
trix and the internal resonators. Both parts are made of concrete of strength
grade C30/37 with material parameters given by Eurocode 2 [74] and are
connected to each other with ideal steel springs. Furthermore, a fuel storage
tank was chosen as a superstructure for the system and is considered to be
made of common welded construction steel with a strength grade of S235.
For the laboratory experiments, a welded piping system with a strength
grade of S355 and a yield strain limit at 0.2% has been used. Table 3.1
shows the material parameters for density, elastic modulus, bulk modulus,
Poisson ratio, and yield strength, for all components used in this work. Note
that linear elasticity was assumed for all calculations.

3.2.2 Fuel storage tank modelling

Fuel storage tanks can be reduced to two fundamental modes, which are
the impulsive and the convective mode. More precisely, the impulsive mode
represents that part of the liquid that resonates in phase with the tank walls
and appears to move mainly in the horizontal direction, while the convective
mode embodies the sloshing motion of the liquid and moves mainly in the
vertical direction. A simplified procedure for the modelling of storage tanks
has been proposed by Malhotra et al. [69], where the tank is reduced to
these two main modes under the aid of design coefficients dependent on the
height to radius ratio. When applying the equations below to typical fuel
storage tanks, it can be found that the impulsive frequency is commonly
situated between 3 and 7 Hz, while the convective mode embodies a much
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Figure 3.1: Modeling of a fuel storage tank: (A) drawing of a generic fuel storage
tank; (B) representation of a fuel storage tank with two S-DOFs for the impulsive
and convective modes (figure from [69])

lower frequency around 0.3 Hz. However, for the tank under investigation,
the impulsive mode takes up a value of 6.84 Hz, while the sloshing mode
resonates at 0.338 Hz. Figure 3.1(A) displays a sketch of storage tank with H
and R denominating the height and radius of the tank, respectively. The two
single degree of freedom point masses (S-DOFs) that simulate the impulsive
and convective modes are denoted with the subscript i, and c, respectively,
and can be seen in Figure 3.1 (B). Here, they are connected to a rigid frame
that contains the remaining mass of the tank.

According to the procedure proposed by Malhotra et al. [69] the vibration
periods of the impulsive and convective mode Ti and Tc, and modal masses
mi and mc can be calculated with,

Ti = CiH

√
ρR

Et
, Tc = Cc

√
R (3.1)

mi = γiml, mc = γcml (3.2)

here, i and c are describing the impulsive and convective mode, while E,
ρ, and ml denote the elastic modulus of the tank wall, the density of the
liquid, and the total mass of the liquid, respectively. The parameters Ci,
and Cc, are empirical parameters while γi and γc are the ratios between the
impulsive and convective mass, mi and mc, with respect to the total liquid
mass ml. All of these parameters are given by Malhotra et al. [69] and
are dependent on to the slenderness of the tank H/R. Note that t is the
thickness of the tank wall. Based on these values the stiffness coefficients
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can be evaluated as,

ki = mi

(
2π

Ti

)2

, kc = mc

(
2π

Tc

)2

(3.3)

It has been shown by Belakroum et al. [70] and Maleki and Ziyaeifar
[81] how baffles can increase the damping of the convective mode. Due to
the possibility of using such baffles against resonance in the convective mode
and the fact that the impulsive mode contains the highest participant mass,
especially for slender tanks, the metafoundation has been designed for the
attenuation of the impulsive mode solely. Furthermore, a storage tank can
experience varying fluid levels, thus, increasing its impulsive frequency with
a decrease in fluid height. In order to address this peculiarity, the band gap
like properties of a locally resonant metamaterial are exploited. By tuning
the lower bound of the band gap to the frequency of the full tank and the
upper bound to a frequency a bit higher than the impulsive frequency of a
3/4 filled tank, an attenuation of both frequencies can be achieved. From
here onward, the tank with the full liquid height of 12 m shall be referred
to as slender tank full (STF), while the tank with a liquid height of 9 m
shall be referred to as slender tank not full (STnF). As mentioned in the
Introduction section, it is necessary to take the feedback from the super-
structure into account. One of the major impacts that this feedback has is
the alteration of the modes of the tank. Due to the softening of the overall
dynamic system for the coupled case, the new eigenfrequency, at which the
impulsive mode gets excited most, appears to be smaller than for the tank
alone. For all analyses in this work, a tank with height H, radius R, and
tank wall thickness t of 12 m, 4 m, and 6 mm, respectively, has been used.
Furthermore, Table 3.2 depicts the various impulsive frequencies caused by
the STF and STnF setups in combination with and without the metafoun-
dation. Here, the metafoundation, was considered without the resonators,
as they will be tuned to the frequency resulting from this modal analysis.
Note that the impulsive frequency is where the impulsive mode of the tank
shows the strongest response, which depends on the liquid height and the
coupled foundation system. Based on these results, a band gap with a lower
bound of 1.1 Hz is desired, while the upper bound was found at 2.2 Hz for
the proposed design.

3.2.3 Description of the structure and dynamic system

The foundation consists of slabs that differentiate the layers, while columns
provide the vertical stability. Between the slabs, resonators will be attached
to the columns via steel springs and are assumed to slide on a friction less
surface, see Fig. 3.2. These layers are perfectly equivalent and can be
regarded as the unit cells of the foundation, which can be repeated in the
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Table 3.2: First impulsive eigenfrequencies of tank–foundation systems with var-
ious liquid levels

Foundation type Tank type Liquid lvl. (m) Impulsive freq. (Hz)

Traditional
STF 12 6.84

STnF 9 10.05

Metafoundation
STF 12 1.26

STnF 9 1.48

Figure 3.2: Drawings of the structure: (A) side view of tank and metafoundation;
(B) layout of one layer (dimensions in cm).

vertical direction. Furthermore, a tank shall serve as a superstructure to
evaluate the wave attenuation performance.

The dimensions of the components on the other hand, were chosen with
common values for engineering practices. More precisely, a cross section of
15 by 15 cm was used for the columns, which are being spaced apart 3 m in
a square grid. The slabs on the other hand were fixed to 20 cm thickness
and 150 cm of vertical spacing, while the resonators consist of cuboids that
are 210 by 210 cm wide and 120 cm high. For the exact geometry see Figure
3.3.
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Figure 3.3: Geometry of the unit cell as part of the concrete matrix; (A) cross
section of the foundation; (B) layout of one unit cell (dimensions in cm).

3.2.4 Analytical model and Floquet-Bloch theorem

When assuming that the horizontal displacement is governed by the flexibil-
ity of the columns, while the slabs move as rigid bodies, the system can be
simplified to a one-dimensional (1D) model that propagates only shear type
waves in the vertical direction (Fig. 3.4). This entails that the total shear
stiffness of one layer can be calculated with the combined horizontal stiffness
of all 24 columns. Furthermore, in this model, the layers can be regarded
as the unit cells of the system and be repeated periodically in the vertical
direction.

Band gaps can be found in periodic structures under the aid of the Flo-
quet–Bloch theorem [73]. These gaps represent frequency regions where
elastic waves cannot propagate through the material, and therefore, shall
be used to attenuate the response of a superstructure that exerts a varying
eigenfrequency. In order to estimate the behaviour of the system, the com-
plete coupled structure will be analysed on its wave propagation behaviour.
More precisely, frequency and time domain analyses will be carried out on
the system, with and without tank, and compared with the dispersion rela-
tion of a single unit cell. For these analyses, it is necessary to formulate the
equations of motion in a general form, so that the unit cell can be repeated
in the vertical direction. This can be achieved by formulating the equations
for the jth unit cell as,

mj
1

d2u
j
1

dt2
− k1u

j−1
1 + 2k1u

j
1 + k2u

j
1 − k2u

j
2 − k1u

j+1
1 = 0 (3.4)

mj
2

d2u
j
2

dt2
− k2u

j
1 + k2u

j
2 = 0 (3.5)
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Figure 3.4: Dynamic system.

here, the mass of the columns is lumped to the slabs and the combined
mass is denoted with m1; the mass of the resonators (9 per layer) is described
with m2; 24 columns per layer provide the equivalent horizontal stiffness for
one cell, which is denoted with k1; the stiffness of the steel springs that
provides the resonators with their resonance frequency is denoted with k2;
while the horizontal displacement is described with u. Since the jth unit
cell is connected to the previous j-1th and subsequent j+1th unit cell, it is
necessary to include the displacements of these cells in the equations. This is
taken into account by the superscript (j 1, j, j+1) for u, while the subscript
(1, 2) determines the corresponding mass. In principal, these equations are
sufficient for analyzing the uncoupled structure. However, since the coupled
response of the system is also of interest, the tank will be modeled with
2DoFs according to the Malhotra procedure and attached to the top layer of
the foundation. In order to find the metamaterial like properties of the unit
cell under study, it is necessary to extend the system to an infinite stack of
unit cells. According to the Floquet-Bloch theorem, the study of an infinite
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lattice of cells can be reduced to the study of a single cell with Floquet-Bloch
quasi periodicity conditions. In line with this, u(x, t) can be expressed as,

u (x, t) = uke
i(qx−ωt) (3.6)

where the frequency is represented by ω, while q = [qx, qy, qz]T denotes the
wave vector in (3.6). As a consequence,

u (x + R) = u (x) eiqR (3.7)

with R being the lattice vector. Furthermore, the eigenvalue problem for a
dynamic system can be formulated as:(

K− ω2M
)
u = 0 (3.8)

here, mass and stiffness matrix are denoted by K and M. In order to
achieve the dispersion relation, it is necessary to apply the boundary condi-
tion (3.7) to equations (3.4) and (3.5), and successively solve the eigenvalue
problem as described in (3.8). When searching for non-trivial solutions for
this problem, the dispersion relation can be found as,

m1m2ω
4 − [(m1 +m2) k2 + 2m2k1 (1− cos (q))]ω2

+2k1k2 (1− cos (q)) = 0
(3.9)

3.2.5 Results for the uncoupled foundation

The configuration depicted in Figure 3.2 and Figure 3.3 resulted in values
for m1, m2, and k1, of 4838 kg, 13230 kg, and 7.5e6 N/m, respectively.
Note that these values are given by the geometric design of the foundation,
thus leaving only k2, the stiffness of the steel springs, for tuning the system.
When considering the foundation as a metamaterial, the layers of resonators
and slabs become the unit cells. This arrangement has the capability of at-
tenuating elastic waves, if its parameters are chosen correctly. To evaluate
this effect, the transmission of an imposed signal will be measured in the fre-
quency domain and the results will be compared to the dispersion relation of
the unit cell. For a slender fuel storage tank, a band-gap with a lower bound
of approximately 1.1 Hz was chosen resulting in k2 equal to 6.22e6 N/m and
an upper bound for the band gap of 2.2 Hz. After establishing the geometry
and fixing the parameters of the system, the following analyses were carried
out on the foundation and the unit cell: (i) A frequency response analysis of
a foundation with 1, 5, and 25 layers without damping (Figure 3.5); (ii) The
dispersion relation of the unit cell as part of an infinite lattice (Figure 3.6).
Furthermore, the frequency response analysis was carried out by imposing a
base excitation of üin = 1m/s2 at the bottom of the foundation and measur-
ing the output acceleration üout at the top of the foundation. For a linear
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elastic undamped system, this can be achieved by writing the equations of
motion,

Mü (t) + Ku (t) = F(t) (3.10)

and transforming them into the frequency domain with, u(t) = uf (ω)eiωt,
ü (t) = −ω2uf (ω)eiωt, and F (t) = MIuine

iωt (with I being the identity
vector). After dividing by eiωt and rearranging the terms we obtain,

uf (ω) =
(
−ω2M + K

)−1
MIuin (3.11)

Where uf (ω) describes the vector containing the response amplitude
functions in the frequency domain for the individual DOFs, while uin is
the ground acceleration, which was set to a constant amplitude of 1m/s2.
Furthermore, ω is the circular frequency of the excitation and the response
and is converted to Hz for Figure 3.5 and Figure 3.6. Figure 3.5 displays
the signal amplification in dB, where the output acceleration is compared
to the input acceleration with (20 ∗ log(üout/üin)). When observing Figure
3.5, a clear attenuation zone becomes apparent between 1.1 Hz and 2.2 Hz.
Here the signal amplification drops to the negative dB regime, resulting in
a decreased output at the top of the foundation. The dispersion relation
depicted in Figure 3.6 yields a band gap between 1.1 Hz and 2.2 Hz, which
is in line with the predicted attenuation zone of Figure 3.5. Note that the
dispersion diagram maps the frequency of a wave traveling through a system
to the resulting wavelength in that system. If no frequency-wavelength pair
can be found, a wave at this frequency cannot propagate unhindered. There-
fore, in the range from 1.1 Hz to 2.2 Hz, where there are no solutions for the
dispersion equation, the system is expected to attenuate waves. For a more
exhaustive explanation of this property see [22]. These results imply that,
indeed, an attenuation zone is present in the foundation when regarded as
an uncoupled system. However, in order to make a judgment on the viability
of this concept, it is necessary to conduct analyses on the coupled system,
as discussed in the following chapters.

3.2.6 Frequency response analysis of the coupled system

To evaluate the performance of the Metafoundation, two different types
of analyses were carried out on the coupled system (tank clamped to the
Metafoundation) as well as on the tank clamped to a concrete plate. In par-
ticular, a frequency response analysis showed the performance of the struc-
ture for a harmonic excitation, while a time history analysis gave insight in
the performance for realistic seismic events. Note that for all analysis form
here on forth a Rayleigh damping model of 5% between 1 Hz and 5 Hz has
been used. The system, designed for a slender tank with a diameter of 8 m
and 12 m height, comprises two layers with nine unit cells each. This system
can have varying fluid levels, and therefore, was studied for the STF and the
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Figure 3.5: Frequency response function for a foundation with 1, 5, and 25 layers
without damping.

Figure 3.6: Dispersion relation of the unit cell.
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Figure 3.7: Geometrical characteristics: (A) slender tank including the
Metafoundation META; (B) slender tank on a traditional foundation TRAD (di-
mensions in m).

STnF case. The relevant parameters, m1, m2, k1, and k2 for the foundation
and mi, mc, ki, and kc for the impulsive and convective modes of the tank,
are represented in Table 3.3.

Figure 3.7 shows the configuration of the slender-tank–foundation system
with the full liquid height (META) and the reference system of a tank with a
solid concrete slab as a foundation (TRAD). Furthermore, Figs. 3.8 and 3.9
show the frequency response functions of the impulsive mode for the STF
and STnF case, respectively.

The graphs depict the displacement response of the impulsive mode rela-
tive to its foundation and the absolute acceleration response of the impulsive
mode. Clearly, the STF shows the most effective attenuation with respect
to the traditional foundation, while the STnF performs a little less efficient.
However, it is worth noting that in terms of magnitude of response the STnF
still performs on a similar level as the STF does. Furthermore, the frequency
of the resonator has been tuned to produce a lower bound of 1.1 Hz for the
band gap, which also corresponds to the optimal tuning of the two spikes
of the frequency response (see Figure 3.8 META curve). These results were
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Figure 3.8: Frequency response function of the impulsive mode of a slender tank
with full liquid height (STF); (A) displacement of impulsive mass compared to
foundation; (B) absolute acceleration of the impulsive mass.

Table 3.3: Parameter values for the analysis of two tank–foundation systems with
various fluid levels

System m1 (kg) m2 (kg) k1 (N/m) k2 (N/m)
Meta 4.35e4 1.19e5 6.75e7 6.22e6

System mi (kg) mc (kg) ki (N/m) kc (N/m)
STF 4.52e5 8.58e4 8.35e8 3.86e5
STnF 3.16e5 8.69e4 1.26e9 3.92e5

expected, since firstly, the attenuation zone for a finite foundation has dif-
ferent levels of effectiveness in its frequency range, and secondly, a tank with
a reduced fluid level experiences less demand due to the reduced mass.
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Figure 3.9: Frequency response of a slender-tank–foundation system for a reduced
fluid level of 3/4; fill (STnF); (A) displacement of impulsive mass compared to
foundation; (B) absolute acceleration of the impulsive mass.

3.2.7 Seismic response analysis for the coupled system

For the assessment of the functionality of the structure, it is not sufficient
to consider only calculations in the frequency domain. Therefore, additional
analyses were carried out in the time domain for various earthquakes (Table
3.4) extracted from the European Strong-Motion Database (ESM). Here,
Rjb is the epicentral distance with Mw being moment magnitude, while
PGA represents the peak ground acceleration of that record.

Note that the set of seismic records is compatible for a site in Priolo
Gargallo in Sicily, Italy with soil type B and a return period of 2475 years
(according to Eurocode 8 [82]). For the time integration, we employed a
classical Newmark-beta scheme with a time-step of 0.001 s and values for β
and γ of 0.25 and 0.5, respectively. Figures 3.10 and 3.11 present the response
of the system for an earthquake that occurred in South Iceland on the 21st of
June 2000 with a magnitude of 6.4 and a PGA of 7.07 m/s . In order to judge
the results of the time history simulations, the base shear and overturning
moment of the tank were considered as governing for the limit state. More
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Table 3.4: Set of EC 8 compatible ground motions for the site Priolo Gargallo
(soil type B) with a return period of 2475 years

Event (component) Event ID Mw Rjb (km) PGA (m/s2)
Erincan (X) 000535 6.6 13 3.81
South Iceland (X) 006263 6.5 7 6.23
South Iceland Aftersh. (Y) 006334 6.4 11 7.07
L’Aquila Mainshock (X) IT0789 6.3 5 4.34
L’Aquila Mainshock (X) IT0790 6.3 4 4.79
L’Aquila Mainshock (X) IT0792 6.3 5 5.35

precisely, Fig. 3.10 depicts the absolute time evolution of the base shear and
overturning moment for STF, while Fig. 3.11 shows the results for STnF.
Clearly, the amplitudes of the base shear and the overturning moment are
significantly smaller for the Metafoundation variant. For the sake of brevity,
only the maximum values of the base shear and overturning moment are
presented for the rest of the ground motions ordered by PGA (Figure 3.12).
Note that the time history analysis was carried out for particularly strong
ground motions, in order to estimate the performance of the foundation in
extreme scenarios. When comparing the maximum values of base shear and
overturning moment of the two tank setups, it becomes apparent that the
Metafoundation greatly attenuates the forces in the tank with respect to a
traditional concrete base plate.

3.2.8 Validation of the 1D model through FE-modelling

In order to numerically validate that our analytical model represents a real
system, we studied an FE-model of the Metafoundation coupled with a slen-
der tank in the frequency domain. The model was built in COMSOL Multi-
physics 5.2 according to the geometry shown in Figures 3.2, 3.3, and 3.6 and
contains the Metafoundation with resonators as lumped masses and a slender
fuel storage tank. Note that in this section, the COMSOL specific names of
the relevant FE-model elements is written in parenthesis. In particular, the
columns were modelled with beam elements (Euler-Bernoulli beam), while
the slabs and tank shells were modelled as shell elements (shell). The liquid
inside the tank, on the other hand, was modeled as an acoustic medium
with 3D elements (acpr) for the frequency domain, as this represents a good
approximation when sloshing motions are neglected [67, 71]. The interac-
tion between the tank shell and the acoustic medium was modeled with a
boundary condition of the type sound hard boundary condition (asb). Fur-
thermore, all beam and shell elements were considered to be linear elastic
and endowed with 5% Rayleigh damping between 1 and 5 Hz, which is equiv-
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Figure 3.10: Absolute time evolution of the (A) base shear and the (B) over-
turning moment for STF.

alent to the damping used in the 1D model. The acoustic medium on the
other hand was endowed with the properties of water and modelled with
3D tetrahedral elements. In sum 5313 tetrahedral elements, 2478 triangu-
lar elements, 672 edge elements, and 172 vertex elements were created with
the finite element mesh. Figure 13 (A) shows the FE-model of the coupled
system, while Figure 3.13 (B) gives an indication on the refinement of the
mesh.

Analogous to the procedure for the analytical model, the coupled tank-
foundation system has been studied in the frequency domain and compared
to the response of a tank modeled with a traditional foundation. For this
purpose, an harmonic excitation of constant acceleration was applied to the
bottom of the foundation, while the maximum absolute acceleration of the
tank shell was recorded. When comparing the results presented in Figure
3.14 to Figure 3.8, it becomes clear that the 1D model shows , qualitatively,
a very similar response with respect to the finite element model. However,
since the impulsive mode according to the Malhotra procedure is supposed
to model the tank response in terms of base shear rather than displacement,
the amplitude of the tank wall in the FE simulation is not equal to the
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Figure 3.11: Absolute time evolution of the (A) base shear and the (B) over-
turning moment for STnF.

Figure 3.12: Maximum values of (A) base shear and (B) overturning moment in
a full slender tank for all studied ground motions.
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Figure 3.13: FE-model: (A) Side view of FE-model; (B) Isometric view of FE-
model with finite element mesh.

Figure 3.14: Frequency response function of the FE-Model of the coupled system.
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simplified 1D model. Furthermore, due to the acoustic medium, the damping
of the overall system becomes much more complicated than a simple Rayleigh
model could do justice. In conclusion, the 1D system is considered to be a
good approximation for the evaluation of the Metafoundation and may serve
as a basis for an optimization procedure. Once a feasible system has been
found, more detailed FE-simulations will need to be carried out in future
studies.

3.3 Experimental Study

3.3.1 Experimental performance of the coupled
tank-foundation-pipeline system

Pipelines are critical components of petrochemical plants and can be sub-
jected to extreme loading conditions during earthquakes. Their potential
to cause LOC events, and thus, trigger cascading effects must be treated
with care. Furthermore, due to their slender nature, complicated geometry
and complex boundary conditions, they are difficult to model in a realistic
manner and often exert highly non-linear behaviour. As a consequence, it
becomes reasonable to carry out experiments for the verification of their
performance. In the present work, the interaction of a tank+foundation
structure coupled with a realistic piping system is investigated. This type
of coupling for laboratory experiments can be achieved with a hybrid sim-
ulation (HS), where the tank and the foundation are modeled as Numeri-
cal Substructures (NS), while a piping setup in a laboratory represents the
Physical Substructure (PS). The setup for the studied experiment is based
on the theoretical work of Abbiati et al. [60], where m substructures are
coupled with localized Lagrange multipliers resulting in the following set of
differential algebraic equations:

M(l)ü(l) + C(l)u̇(l) + K(l)u(l) = L(l)TΛ(l) −M(l)T(l)ag(t)

∀l ∈ 1, . . . ,m
(3.12)

L(l)u̇(l) + L̄(l)u̇(l)
g = 0 (3.13)

m∑
l=1

L̄(l)
T

Λ(l) = 0 (3.14)

Here, M(l), C(l), and K(l) are the mass, damping and stiffness matrix
of the lth substructure, respectively, while ü(l), u̇(l), and u(l) denote accel-
eration, velocity and displacement of the lth substructure. Moreover, the
interface DoFs are collocated by the signed Boolean matrices L(l) and L̄(l)

to the substructure DoFs u̇(l) and the generalized interface DoFs u̇
(l)
g . In
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order to enforce compatibility between multiple substructures, localized La-
grange multiplier vectors Λ(l) are used in (3.12) and (3.14) [83]. For more
details on this procedure refer to [60]. Note that this technique can couple
several numerical and/or physical substructures. Furthermore, in order to
make the results relatable to the current state of the art, the Metafounda-
tion will be compared to a system protected with concave sliding bearings
(CSBs). Be aware that this system is different to the tank clamped to a
traditional foundation. This change of reference system is necessary, since
a tank subjected to very strong ground motions is unlikely to sustain its
integrity when clamped to a concrete slab, while at the same time exhibiting
very small deformations to a possible connected piping system. Therefore, a
more realistic comparison was aspired by using a tank isolated with CSBs.

3.3.2 Physical substructure PS

The PS consists of a piping system with its main line having a diameter of
8 in (outer diameter: 219.08 mm, thickness: 8.18 mm) and its secondary
line showing a diameter of 6 in (outer diameter: 168.28 mm, thickness: 7.11
mm). Furthermore, the system comprises two elbow elements, one t-joint,
and one bolted flange joint, and is based on the U.S.NRC report from 2008
[84]. Here, a large-scale shaking table test was carried out on a piping system
common for the nuclear industry. As discussed in the report, masses have
to be added to the structure at specified positions, in order to take valves
and other components into account. The exact geometry of our system is
depicted in Figure 3.15, while the actual specimen is represented in Figure
3.16. When observing these figures, it becomes clear that the real boundary
conditions of the system are rather complex and that the dynamic response
may be difficult to predict with an FE model. Additionally, the piping
system was filled with pressurized water (32 bar), in order to represent a
realistic scenario. Of particular interest for the present study are the strains
in the critical elbow element, since, as shown by Bursi et al. [85], elbow
elements are highly vulnerable to seismic excitation and may lead to LOC
events when damaged. Therefore, the strains in the critical elbow (Figure
3.15) are measured with strain gauges, and are considered governing for
the following experimental verification. In Figure 3.17 the configuration of
the strain gauges on the elbow is shown. Note that rose like strain gauges
were applied on the inside and outside of the elbow, in order to capture the
strain in radial and longitudinal direction of the pipe. The nomenclature
of the strains shall be explained on the example of the REC strain gauge,
where R stands for Rose, E for external gauge, and C for the vertical strain
or in this case hoop strain (as indicated by the a-b-c coordinate system in
the bottom right corner of Figure 3.17). Furthermore, the rose type strain
gauges are type 3/120 RY31, while the simple gauges are type 3/350 LY41
by the company HBM Messtechnik.
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Figure 3.15: Schematic of the piping system (dimensions in cm).

Figure 3.16: Experimental setup of the piping system.
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Figure 3.17: Configuration of strain gauges on the elbow element.

3.3.3 Numerical Substructure

The NS consists of the tank and Metafoundation equal to the configura-
tion STF, where two layers of foundation were used. Pipes of petrochemical
plants are often connected to tanks close to the tank base plate. When as-
suming that the relative tank deformation between ground and piping con-
nection is very small, the pipe can be assumed to be connected to the bottom
of the tank. This simplifies the numerical model, since the interface node
can now be placed on the last layer of the foundation where tank, foundation
and pipe coincide. Figure 3.18 shows a representation of the coupling of the
NS with the PS. Furthermore, in order to draw a comparison to conventional
isolation systems, an additional NS has been investigated. In particular, four
CSBs (concave sliding bearings) were considered as an isolation variant for
the slender tank and modeled as an alternative NS. The friction coefficient
has been set to 8%, while the spherical radius amounts to 5000 mm. For
a CSB, the isolation period can be calculated with 2π

√
2R/g, where R is

the spherical radius and g the gravitational constant. This amounts to an
isolation period of 6.34 sec.

A common approach for modeling a CSB is to use the piece-wise linear
Mostaghel model as it is represented in Figure 3.19. This model is well
described in [86], with its governing parameters δMST , αMST , and kMST
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Figure 3.18: Coupling of the numerical and physical substructure.

Figure 3.19: Generic Mostaghel model (Figure from [60]).

Figure 3.20: Numerical coupling of CSB, tank, and piping system.
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being equal to 5e-4 m, 1.3e-3, and 2.18e8 N/m, respectively. All four CSB
devices work in parallel and therefore can be simulated by a single device
with equivalent parameters. The resulting coupling of the PS and NS is
represented in Figure 3.20.

3.3.4 Results of the experimental study

Table 3.5 lists the seismic records that have been used for the experiment.
In particular, two sets of Eurocode 8 [82] compatible records have been used;
(i) a set of three records compatible with a site situated in Priolo Gargallo
with soil type B and a return period of 475 years; (ii) 2 records from the
previous set as discussed in subsection analytical results for the coupled
system (return period 2475 years). Note that in Table 3.5 T denotes the
expected return period of the earthquake, which is used to divide them
into medium and strong ground motions. Equivalent to the earthquakes for
the time history analyses, these records were extracted from the European
Strong-Motion Database (ESM).

For the sake of clarity, only the results of the critical strain gauges for one
of the seismic events, namely 000535, are depicted in Figure 3.21. Since the
yield strain of the piping system amounts to 2000 µm/m, the piping system
remains in the elastic range when connected to the Metafoundation, while the
setup comprising the CSB array exhibits yielding in the REC strain gauge
(hoop strain). However, when comparing this result with the maximum
appearing hoop strains recorded for all seismic events shown in Figure 3.22
(bottom), it becomes apparent that a reduction of hoop strain cannot be
assumed for any given earthquake. On average, the Metafoundation reduces
the hoop strain by 37%, while the maximal reduction, obtained for event
000535 amounts to 67%.

From the high dispersion of the results, it becomes clear that the average
reduction is heavily influence by the extreme event. This excessive strain
measured for the CSB, is due to the low post yielding stiffness of the non-
linear system, which makes it difficult to predict what earthquakes may
trigger yielding in the pipeline. However, since the Metafoundation is a linear
system, also it’s response scales linearly with the excitation and therefore,
such extreme events are less likely. Moreover, the CSB setup shows a much
better performance in terms of base shear, with an average decrease of 73%
and a maximal reduction of 85% with respect to the Metafoundation. It is
worth noting however, that a CSB is a highly specialized device that has been
optimized over many years and requires regular maintenance and inspection.

From the obtained results, we deduce that the developed foundation is
not a better solution than a CSB array, but that it clearly shows some
positive wave attenuation behaviour and that with more research and op-
timization, it may provide a viable alternative. Additionally, for a more
reliable performance of the system, it may be necessary to take the piping
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Table 3.5: Seismic events for the experimental validation

T(yrs) Event (comp.) Event ID Mw Rjb (km) PGA (m/s2)

475
S. Iceland (Y) 004673 6.5 15 4.68
L’Aquila M. (Y) IT0791 6.3 9 3.24
L’Aquila M. (Y) IT0792 6.3 5 6.44

2475
Erincan (X) 000535 6.6 13 3.81
L’Aquila M. (X) IT0789 6.3 5 4.34

Figure 3.21: Strains in the critical elbow for the most sever seismic event.

system into account when tuning the foundation. This, on the other hand,
is not within the scope of the present work.

3.4 Conclusion

The proposed Metafoundation represents a novel type of seismic shield and
has been designed to protect fuel storage tanks from real ground motions.
Through analyses in the frequency and time domain, we have demonstrated
the effectiveness of the foundation at attenuating seismic effects. More pre-
cisely, a slender fuel storage tank may profit greatly from the proposed foun-
dation in terms of attenuation of base shear and overturning moment with
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Figure 3.22: Experimental results: (A) Base shear of the tank; (B) maximal
hoop strain in the elbow (REC).

respect to a traditional concrete foundation. Additionally, the conducted
laboratory tests shed light on the interaction of the Metafoundation with
the complete coupled structure (tank + foundation + pipeline) and made it
comparable to standard isolation devices. The measured elbow strains show
no plastification for the system coupled with the Metafoundation, while the
configuration including the CSB array exceeds the critical yield strain for
one of the investigated ground motions. However, since some seismic events
showed a higher demand in the elbow when coupled to the Metafoundation,
a clear advantage of the Metafoundation cannot be concluded yet. In future
studies the tuning of the foundation could potentially be expanded to the
complete coupled system and, consecutively, reduce stresses in a connected
piping system more reliably. Besides the attenuation of horizontal excita-
tion, the foundation may offer interesting properties regarding soil-structure
interaction and vertical component damping.

Upcoming developments As demonstrated in this chapter, the foun-
dation needs to be tuned to the superstructure of interest, which leads to
the optimization algorithm developed in the next chapter. Furthermore,
the complete system will to be designed according to common construction
standards and subsequently validated with a set of site representative ground
motions.
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Chapter 4

Optimization of Locally
Resonant Metafoundations

Overview. This paper introduces a novel seismic isolation system based
on metamaterial concepts for the reduction of ground motion-induced vibra-
tions in fuel storage tanks. In recent years, the advance of seismic metama-
terials has led to various new concepts for the attenuation of seismic waves.
Of particular interest for the present work is the concept of locally resonant
materials, which are able to attenuate seismic waves at wavelengths much
greater than the dimensions of their unit cells. Based on this concept, we
propose a finite locally resonant Metafoundation, the so-called Metafoun-
dation, which is able to shield fuel storage tanks from earthquakes. To
crystallize the ideas, the Metafoundation is designed according to the Ital-
ian standards with conservatism and optimized under the consideration of its
interaction with both superstructure and ground. To accomplish this, we de-
veloped two optimization procedures that are able to compute the response
of the coupled foundation-tank system subjected to site-specific ground mo-
tion spectra. They are carried out in the frequency domain and both the
optimal damping and frequency parameters of the Metafoundation embed-
ded resonators are evaluated. As case studies for the superstructure, we
consider one slender and one broad tank characterized by different geome-
tries and eigenproperties. Furthermore, the expected site-specific ground
motion is taken into account with filtered Gaussian white noise processes
modeled with a modified Kanai-Tajimi filter. Both the effectiveness of the
optimization procedures and the resulting systems are evaluated through
time history analyses with two sets of natural accelerograms corresponding
to operating basis and safe shutdown earthquakes, respectively.
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4.1 Introduction

4.1.1 Background and motivations

Natural hazards such as earthquakes can interact with critical infrastruc-
tures and cause so-called NaTech [43] events (natural technological events).
They can have serious consequences on both community and environment
and, therefore, need to be treated with care. One example of such an event
is the loss of containment (LoC) of fuel storage tanks, pipelines or other
components of petrochemical plants and nuclear power plants. LoC events
of such critical infrastructures need to be avoided at the highest priority, as
past NaTech disasters have displayed their potential in causing substantial
damage to the community and the environment [40]. Fuel storage tanks
in petrochemical plants need to be regarded as high risk structures, due to
their fragility to earthquakes and their potential for cascading effects [61].
Their low impulsive frequencies can fall within the excitation frequencies of
earthquakes and significant effort is required to isolate them against seis-
mic vibrations. In order to avoid LoC events from occurring during an
earthquake, various strategies have been proposed in the field of seismic
engineering. The most common solutions use lead-rubber bearings [50] or
spherical bearing devices [77]. In this work, we investigate a new type of
seismic isolation based on a metamaterial concept that may offer an alter-
native to classical seismic isolators. Although the performance of classical
isolators on superstructures has been studied in depth [87, 88], they require
two strong floors, exert a very high stiffness against the vertical component
of an earthquake and seem to be ineffective for large structures subjected
to rocking [89]. As a result, we propose an isolation system that does not
require the use of additional strong floors or specialized devices. In recent
years, periodic materials have received growing interest due to their ability
to attenuate waves in certain frequency ranges [90]. In principle, there are
two types of periodic materials currently investigated for seismic engineer-
ing use: phononic crystals (PCs) and locally resonant acoustic metamaterials
(LRAMs). Although both are able to create a stop band to forbid elastic
wave propagation within a selected frequency band, for the attenuation of
low frequency vibrations, LRAMs are better suited than PCs. This is due
to their capability to exhibit low frequency band gaps that can be endowed
with unit cells much smaller than the wavelength of the desired frequency re-
gion. This particular property has opened an innovative direction to reduce
earthquake-induced vibrations [29, 66, 91]. At the outset, two types of appli-
cations have been proposed based on this phenomenon: (i) foundations with
embedded resonators [24, 27, 32, 92] capable of attenuating seismic waves
effects, and: (ii) barriers that are able to redirect surface waves back into
the ground [15, 19, 93, 94]. More precisely, Cheng and Shi [27] studied a pe-
riodic foundation composed of a reinforced concrete matrix and steel masses
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that are connected to the matrix with rubber layers. They demonstrated the
effectiveness of their isolation system for a large set of ground motions and
applied it to a nuclear power plant. However, the feedback of the superstruc-
ture and the subsequent effects on the effectiveness of the foundation have
been neglected. Another highly innovative approach has been proposed by
Casablanca et al. [30] who studied a foundation composed of concrete plates
with embedded cylindrical steel resonators. Although the efficiency of the
foundation was proven with experimental tests for harmonic excitations, no
considerations were made on the coupling foundation system-superstructure
or the effects that expected seismic records could entail on system func-
tionality. Furthermore, the foundation was not designed for gravity and/or
seismic load combinations. In order to display the effects of the coupling
between foundation and superstructure, La Salandra et al. [32] investigated
a periodic foundation for the isolation of fuel storage tanks in the frequency
domain. They found a significant shift in the desired frequency range for the
band gap and, therefore, highlighted the importance of this feedback effect.
On the other hand, they did not optimize their foundation to the coupled
system or considered sets of seismic records for the evaluation of the foun-
dation effectiveness in a realistic scenario. Following up on the most recent
developments, a proper foundation must take into account both the feedback
of the superstructure and the frequency content of the expected earthquake.
Moreover, to ensure the feasibility of a realistic design, the structure needs to
be conform to current seismic standards and be equipped with simple links,
e.g. wire ropes, capable of achieving certain amount of hysteretic damp-
ing. In order to set a design that can comply with all the aforementioned
constraints, we investigated two different types of optimization procedures.
These procedures are carried out in the frequency domain and rely on the
principal of tuned mass dampers (TMDs), which represent popular passive
response control devices tuned to oscillate out of phase with the primary
system [95–97]. It is generally recognized, indeed, that TMDs are not gener-
ally effective at reducing seismic responses, due to the fact that earthquakes
include a wide frequency spectrum and often entails large vibrations for
higher modes [52]. As a solution, multiple tuned mass dampers (MTMD)
have been proposed. Thus, it has been shown that MTMDs, with multiple
different eigenproperties, can reduce the effects that ground motions entail
on buildings [98–101]. For these more complex systems, various optimization
procedures have been established [102–105]. In contrast to classical MTMD
systems, the resonators of the proposed design are located below the struc-
ture instead of in correspondence with the governing modes. This needs to
be taken into account by the optimization procedures. More precisely, the
procedures are characterized by two different optimization parameters that
are studied and compared herein: i) the maximum absolute acceleration of
the impulsive mode of a tank; ii) the dissipated energy of the resonators
compared to the total amount of dissipated energy. The optimization of
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non-conventional TMDs towards the dissipated energy is a procedure intro-
duced by Reggio and De Angelis [106] and has been adapted to the proposed
design. Finally, we validate the system with time history analyses (THAs)
and highlight the advantage in terms of base shear reduction when compared
to a traditional foundation.

4.1.2 Scope

Along those lines, the following issues are explored hereinafter: (i) a founda-
tion design based on the concept of metamaterials compliant with common
construction standards, i.e. the Italian structural code [107]; (ii) the effect of
the foundation flexibility on its dynamic performance; (iii) an optimization
procedure that takes the feedback of a superstructure and the relevant earth-
quake frequency content into account. More precisely, the elastic design of
the foundation is carried out considering a response spectrum provided by
the Italian code for an active seismic site located in Priolo Gargallo, Sicily,
Italy. Once the principal dimensions are fixed, a set of ground motions that
correspond to the uniform hazard spectrum (UHS) specified for the site, can
be chosen. Then, an average power spectral density (PSD) of these accelero-
grams is evaluated and fitted with a modified Kanai-Tajimi filter. In detail,
we use a Kanai-Tajimi filter modified by Clough and Penzien (KTCP-filter)
and investigate three typical soil types and the above-mentioned fitted “soil
type”. With the results of these initial calculations, the optimization proce-
dures can be employed to set the optimal values for frequency and damping
ratio of the metafoundation resonators. As a result, the structure is modelled
as a whole and investigated on its effectiveness. This is done with THAs of
the coupled optimized foundation-tank systems subjected to the previously
chosen seismic records. The remainder of the paper is organized as follows.
Firstly, the description of fuel storage tanks and the evaluation of the seis-
mic activity of the construction site is presented in Section 4.2. Section
4.3 introduces considerations on the uncoupled metamaterial-based system
and negativity concepts. Both modeling and design of the foundation-tank
coupled system are presented in Section 4.4. Moreover, Section 4.5 pro-
vides optimization procedures for the evaluation of the optimal parameters
of resonators. In addition, both evaluation and comparison of the coupled
systems subjected to ground motions are given in Section 4.6. Finally, we
draw conclusions and present future developments in Section 4.7.

4.2 Description of the foundation-tank coupled system

Steel columns with hollow steel sections and concrete slabs that define the
unit cells compose the foundation. In each unit cell there is a concrete
mass that is linked to the steel-concrete composite structure. In order to
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Figure 4.1: Foundation-slender tank coupled system: (A) isometric view with
steel columns; (B) plan view. Dimensions in m.

provide high and controllable damping values as required by the optimization
process, see Section 4.4, these links can be realized with wire ropes [108] as
sketched in Figure 4.4 (A). If properly designed, wire ropes can achieve
the required damping values collected in Tables 4.6 and 4.7, respectively,
of Section 4.5. Moreover, to allow for the displacement of resonators, a
gap of 200 mm between columns and concrete masses, i.e. resonators, was
considered. Both the isometric and plan view of the coupled foundation-
tank system are illustrated in Figure 4.1. In particular, the superstructure
corresponds to a slender fuel storage steel tank.

4.2.1 Fuel storage tank modelling

The hydrodynamic response of a tank-liquid system is mainly characterised
by two different contributions, called impulsive and convective component,
respectively. If the tank walls are assumed to be rigid, the impulsive com-
ponent represents the portion of liquid that moves synchronously with the
tank walls. Conversely, the liquid that moves with a long-period sloshing
motion in the upper portion of the tank is represented by the convective
component. Since there are significant differences in their natural periods,
they can be considered uncoupled [69]. A simplified procedure for modelling
storage tanks with flexible walls has been proposed by Malhotra et al. [69],
who reduced the tank response to the contribution of two main modes in a
plane, through coefficients dependent on tank parameters. In this respect,
Figure 4.2 shows the sketch of a fuel storage tank and its equivalent 2D
lumped mass model. The two SDoFs that simulate both the impulsive and
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Figure 4.2: Fuel storage tank: (A) isometric view; (B) 2D modeling with two
SDoFs for the impulsive and convective mode (Malhotra et al. [69]).

convective modes are connected to a rigid frame that includes the tank wall
mass. Accordingly [69], the vibration periods Ti and Tc and the relevant
modal masses mi and mc can be evaluated as,

T1 = CiH

√
ρR

Et
, Tc = Cc

√
R (4.1)

and,
mi = γiml, mc = γcml (4.2)

where, E, ρ and ml denote the Young modulus of the tank wall, the
material density and the total mass of the liquid, respectively; H and R
define the liquid height and tank radius, respectively; t is the equivalent
uniform thickness of the tank wall while Ci, Cc, γi and γc are the parameters
that depend on the tank slenderness. This procedure considers also the
remaining mass ms lumped to the bottom plate of the tank.

Clearly, the impulsive mode is strongly dependent on the fluid level and
the stiffness of the tank walls, while the convective mode is mainly influenced
by the tank radius. The stiffness values of the equivalent linear springs ki
and kc can be calibrated to match the tank properties as follows,

ki = mi

(
2π

Ti

)2

, kc = mc

(
2π

Tc

)2

(4.3)

Since the impulsive mode contains the highest participant mass, espe-
cially for slender tanks, the Metafoundation has been designed for the at-
tenuation of the impulsive mode. In this paper two types of tanks char-
acterized by different height H, radius R and tank wall thickness t have
been considered. Table 4.1 shows the main geometrical characteristics of the
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Table 4.1: Main characteristics of broad and slender tank.

Parameter Broad Tank Slender Tank
Diameter [m] 48.0 8.0

Wall thickness [mm] 20.0 6.0
Tank height [m] 15.6 14.0

Maximum liquid height [m] 15.0 12.0
Convective frequency [Hz] 0.34 0.12
Impulsive frequency [Hz] 6.85 3.95

two considered tanks and the resulting frequencies for their impulsive and
convective modes.

4.2.2 Modelling of the coupled foundation-tank system

The two SDoFs that simulate the tank-liquid system along the X-direction
(see Figure 4.1) are defined in the previous sub- section and depicted in Fig-
ure 4.3. Moreover, the Metafoundation modelling is carried out condensing
both masses and stiffnesses of the resonators of each layer to one stack of
unit cells. This dynamic condensation in both X- and Y-direction is exact,
since all the resonators are endowed with the same mass m2,i and stiffness
k2,i and operate in parallel in each layer. The same condensation is also ap-
plied to masses m1,i and stiffnesses k1,i of the unit cells, which are assumed
to behave as a shear-type system. Therefore, being interested in the motion
along, let us say the X-direction, each layer consists of only two DoFs: one
for the resonators and one for the cells, respectively. A sketch of the system
and the corresponding lumped mass model is shown in Figure 4.3(A) for the
single-layer foundation, and in Figure 4.3(B) for the two-layered foundation.
From a model viewpoint, the resonators are attached to the upper layer via
springs and are assumed to slide on a friction less surface. Hence, the system
of the equations of motion (EOM) can be defined as follows:

Mü(t) + Cu̇(t) + Ku(t) = −Mτ üg(t) (4.4)

where M, C, and K are the mass, damping, and stiffness matrices, re-
spectively, while ü(t), u̇(t), and u(t) denote the acceleration, velocity, and
displacement vector. Furthermore, τ is the mass influence vector while üg(t)
represents the ground acceleration. As a result, M and K read,

M =


m1 +ms 0 0 0

0 m2 0 0
0 0 mc 0
0 0 0 mi

 (4.5)
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4. Optimization of Locally Resonant Metafoundations

Figure 4.3: Tank-foundation coupled systems: (A) one-layer case and (B) two-
layer case

K =


k1 + k2 + kc + ki −k2 −kc −ki

−k2 k2 0 0
−kc 0 kc 0
−ki 0 0 ki

 (4.6)

and,

M =


m1 0 0 0 0 0
0 m2 0 0 0 0
0 0 m1 +ms 0 0 0
0 0 0 m2 0 0
0 0 0 0 mc 0
0 0 0 0 0 mi

 (4.7)

K =


k1 + k2 + k1 −k2 −k1 0 0 0
−k2 k2 0 0 0 0
−k1 0 k1 + k2 + kc + ki −k2 −kc −ki

0 0 −k2 k2 0 0
0 0 −kc 0 kc 0
0 0 −ki 0 0 ki

 (4.8)

for the Metafoundation with one and two layers, respectively.
More precisely, m1, m2, k1, and k2 denote the total mass of the cells,

the mass of the resonators, the horizontal stiffness of all columns, and the
stiffness of all springs attached to the resonators, respectively. Additionally,
ms is assigned to the top slab of the Metafoundation.

4.2.3 Seismic design of the Metafoundation

The construction site of the aforementioned foundation-tank system was cho-
sen to be Priolo Gargallo (Italy), which is characterized by a peak ground
acceleration PGA of 0.56 g for safe shutdown earthquake and soil type B.
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4.2. Description of the coupled system

Figure 4.4: Two-layer metafoundation: (A) cross section of the foundation; (B)
cross section of a steel column.

Table 4.2: Geometrical characteristics of each foundation layout.

Foundation layout L2H3 L2H4 L1H3 L2H3
number of layers 2 2 1 1

h [m] 3.0 4.0 3.0 4.0
w [mm] 200 230 250 300
t [mm] 30 30 30 30

Since the foundation is supposed to remain undamaged even for SSE earth-
quakes, according to the conservative Italian code requirements for shallow
foundations [107], the columns are designed to remain elastic for PGAs cor-
responding to a return period of 2475 years. The resulting stresses and
modal displacements of the coupled system (see Figure 4.3) were combined
with the complete quadratic combination and provided a lower bound for
the cross-sectional dimensions of the steel columns shown in Figure 4.3(B).
As a result, four Metafoundations characterized by different combinations
of layers and column heights were designed. The relevant geometrical char-
acteristics are collected in Table 4.2, and the nomenclature can be found in
Figure 4.4.

4.2.4 Site-specific seismic hazard and accelerogram
selection

In order to evaluate the seismic activity of the construction site, i.e. Pri-
olo Gargallo, two sets of natural accelerograms were selected with 10% and
5% probability of exceedance in 50 years, i.e. the so-called operating ba-
sis earthquakes (OBE) and safe shutdown earthquakes (SSE), respectively
[109]. These accelerograms are listed in Table 4.3 and 4.4. They are se-
lected so that their mean spectrum fits in a least-square sense the uniform
hazard spectrum (UHS), and are used in Section 4.6 for the validation of
the metafoundation designs. Although more sophisticated techniques are
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Table 4.3: List of natural accelerograms for OBE events.

Event Country Mw Rjb[km]
Loma Prieta USA 6.93 3.85
Kalamata Greece 5.90 11.00
South Iceland Island 6.50 15.00
L’Aquila Mainshock Italy 6.30 4.87
Friuli Earthquake Italy 5.60 26.21
Northridge-01 USA 6.69 20.11
Umbria Marche Italy 6.00 11.00
Montenegro Montenegro 6.90 16.00
Erzincan Turkey 6.60 13.00
Friuli Italy-01 Italy 6.50 14.97
South Iceland Island 6.40 12.00
Times New Roman Greece 6.00 14.00
L’Aquila Mainshock Italy 6,30 4.63
L’Aquila Mainshock Italy 6.30 4.39
L’Aquila Mainshock Italy 6.30 5.65
South Iceland Island 6.50 7.00
Northridge-01 USA 6.69 35.03

present in the literature, see for instance, the conditional mean spectrum
(CMS) [110], the aforementioned UHS procedure is considered herein [111].
More precisely, methods like the CMS can reduce the dispersion of the re-
sponse spectra at different periods, which is very important for a probabilistic
analysis based on fragility functions. Nonetheless, the present work focuses
on the feasibility of an innovative metamaterial-based design, and therefore,
the UHS-based procedure suffices. Both the response spectra of selected
accelerograms and the UHS of Priolo Gargallo are shown in Figure 4.5; a
careful reader can note that the seismic events exhibit a good mean fit of
the UHS with a significant dispersion in frequency content.

4.3 Uncoupled system properties and metamaterial
concept

4.3.1 Properties of a periodic lattice

If the Metafoundation described in Subsection 4.2 can be designed as a peri-
odic system, relevant unit cells can suppress the propagation of seismic waves
in certain frequency regions [27, 92]. These regions are called band gaps and
can be determined by means of a lattice dispersion analysis using the Flo-
quet–Bloch theorem [73]. Under the aid of this theorem, it becomes possible
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4.3. Uncoupled system properties

Table 4.4: List of natural accelerograms for SSE events.

Event Country Mw Rjb[km]
Victoria Mexico Mexico 6.33 13.8
Loma Prieta USA 6.93 3.85
Northridge-01 USA 6.69 20.11
Montenegro Montenegro 6.90 25.00
Erzincan Turkey 6.60 13.00
South Iceland Island 6.50 7.00
L’Aquila Mainshock Italy 6.30 4.87
Loma Prieta USA 6.93 11.03
Landers USA 7.28 11.03
South Iceland Island 6.40 11.00
L’Aquila Mainshock Italy 6.30 4.63
L’Aquila Mainshock Italy 6.30 4.39

Figure 4.5: Response spectra of the selected accelerograms: (A) UHS for OBE;
(B) UHS for SSE.
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4. Optimization of Locally Resonant Metafoundations

to reduce the study of an infinite lattice to the analysis of a single unit
cell with Floquet-Bloch quasi-periodic boundary conditions. After imposing
these conditions, a frequency dispersion analysis can be carried out and the
band gaps of the system can be found. According to the Floquet–Bloch
theorem, the solution u(x, t) for a periodic system reads,

u (x, t) = uke
i(qx−ωt) (4.9)

where q = [qx, qy, qz]
T

is the wave vector which becomes a scalar q =
qx = 2π/λ in the uniaxial case, where λ defines the wavelength, while ω
represents the circular frequency. In the uniaxial case, the solution u(x+R)
of the periodic lattice becomes,

u (x+R) = ueiqR (4.10)

where R is the lattice constant. Furthermore, in order to apply these condi-
tions, the EOMs of a typical cell need to be considered,

mj
1ü

j
1 − k1u

j−1
1 + k1u

j
1 + k2u

j
1 + k1u

j
1 − k2u

j
2 − k1u

j+1
1 = 0 (4.11)

and,
mj

2ü
j
2 − k2u

j
1 + k2u

j
2 = 0 (4.12)

where mi, ki, and ui denote masses, stiffnesses and displacements of
both cells and resonators indicated in Figure 4.6(A), while the superscript
j determines the position of the unit cell, i.e. j, unit cell under study,
j − 1, unit cell below and j + 1: unit cell above. After the imposition of
the boundary condition (4.10) onto the terms uj+1

i and uj−1
i in (4.11) and

(4.12), respectively, the discrete eigenvalue problem can be formulated as,(
K− ω2M

)
u = 0 (4.13)

The non-trivial solutions of (4.13), with applied boundary conditions
and under consideration of the trigonometric relationship eiqR = cos(qR) +
i sin(qR), yields the following dispersion relationship,

m1m2ω
4 − [(m1 +m2)k2 + 2m2k1(1− cos(qR))]ω2

+2k1k2(1− cos(qR)) = 0
(4.14)

Thus, Figure 4.6 illustrates the dispersion relation and corresponding band
gap of an infinite periodic stack of unit cells for the configuration L2H4
presented in Subsection 4.2.3. Clearly, a band gap forms in the frequency
range of 1-1.7 Hz, which according to the Floquet-Bloch theorem does not
allow the propagation of elastic waves. However, this result is only valid for
an infinite lattice. Therefore, additional analyses are presented hereinafter
for the case of a finite foundation.
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4.3. Uncoupled system properties

Figure 4.6: (A) 1D mass-resonator chain model. (B) dispersion relation for an
infinite stack of unit cells with the geometric properties of L2H4.

4.3.2 Concept of seismic isolation and negative apparent
mass

Another well-known concept for the protection of critical infrastructures is
seismic isolation [50]. In this regard, the linear theory of seismic isolation
[50] entails that the dynamic response of a base-isolated structure is governed
by the parameter ε = ω2

b/ω
2
s , where ωb is the frequency of the base-isolated

structure and ωs is the fundamental frequency of the fixed-base structure.
If ε is of the order of 10−2 or less, the design of the seismic isolation can
be considered effective. For the case at hand, the impulsive mode of the
tank, described in Subsection 4.2.1 is the one of interest. Therefore, ωs

becomes the impulsive frequency of the uncoupled system, i.e. ωs = ωi

and ωb defines the frequency of the impulsive mass mi of the tank. With
regard to the coupled system, see Figure 4.3, it becomes evident that the
stiffness of the columns has a direct influence on ε. In fact, note that a
weakening of the columns entails a reduction of ε, which in turn improves
the isolation behaviour of the coupled system. Hence, the elastic design of
the Metafoundation discussed in Subsection 4.2.3, provides a minimum value
for the columns cross-section, and therefore, governs the horizontal stiffness
value. Furthermore, to exploit the negative apparent mass concept [75], we
consider resonators endowed with masses larger than the one of the unit
cell, as shown in Figure 4.7(A). The apparent mass of the system Mapp(ω)
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4. Optimization of Locally Resonant Metafoundations

Figure 4.7: (A) Schematization of a unit cell; (B) Apparent mass as a function
of forcing frequency.

depicted in Figure 4.7(B) reads,

Mapp(ω) = m1 −
k1

ω2
+

k2

ω2
2 − ω2

(4.15)

where ω2 is the frequency of the resonator and ω represents the forcing
frequency. It is clear from Figure 4.7(B), that the effective mass becomes
negative when the forcing frequency is near to the resonance one. Since the
acceleration response is opposing to the applied force, the response ampli-
tude is reduced. This effect is greatly magnified as the input frequency ω
approaches the local resonance frequency ω2.

4.4 Optimization procedure of the Metafoundation

Metamaterials are typically designed for their band gap properties. However,
for a finite lattice the interaction of the metamaterial with the superstructure
can have a significant impact on its dynamic behavior [99]. Furthermore, it
is established that the frequency content of an earthquake is highly site
specific and may change significantly for different sites. Therefore, to take
these issues into account, we propose two optimization procedures herein,
that are able to optimize the coupled system, for a specific frequency content
and a chosen superstructure. In particular, these procedures evaluate the
optimal parameters of the resonators, namely k2 and ζ2. With regard to
m2, based on both the considerations of Subsection 4.3.2 on the apparent
mass, and the main limitation of TMDs, being the low mass of the damper
[106, 112], we design the resonators to exert the largest mass compatible
with the unit cell dimensions. As a result, the remaining free parameters in
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4.4. Optimization procedure of the Metafoundation

the optimization procedure are: i) the stiffness k2 of each resonator; ii) the
damping ratio ζ2 of each resonator.

4.4.1 Ground motion modelling

In a first step, the earthquake ground motions are modelled as a stationary
Gaussian filtered white noise random process with zero mean and spectral
intensity S0. In this respect, Kanai and Tajimi [113] proposed an analyt-
ical formulation able to simulate a site specific PSD, which has later been
modified by Clough and Penzien [114]. This formulation is based on the
Kanai-Tajimi filter modified by Clough and Penzien and, for brevity, is re-
ferred to as KTCP. The KTCP filter is evaluated as,

H2
KTCP (iω) = H2

CP (iω)H2
KT (iω) (4.16)

where HCP (iω) attenuates the very low-frequency component introduced by
Clough and Penzien, and HKT (iω) denotes the soil filter suggested by Kanai
and Tajimi. The filters read,

HCP (iω) =
ω2

ω1(
1− ω2

ω2
1

)
+ 2iζg

ω
ωg

(4.17)

HKT (iω) =
1 + 2iζg

ω
ωg(

1− ω2

ω2
g

)
+ 2iζg

ω
ωg

(4.18)

where ωg and ζg are the frequency and damping ratio that describe the
characteristics of the soil, while ω1 and ζ1 denote the parameters of the low
pass filter introduced by Clough and Penzien.

4.4.2 Optimization procedures in the frequency domain

The evaluation of the response of the coupled system is evaluated in the fre-
quency domain herein. Hence, the system of EOMs of the coupled foundation-
tank system can be written as,

Mü(t) + Cu̇(t) + Ku(t)−Y(t) = −Mτ üg(t) (4.19)

mjlÿjl(t) +mjl2ζrlωrlẏjl(t) +mjlω
2
rlyjl(t) = −mjl[üg(t) + üj(t)] (4.20)

where Y(t) is the force vector applied to the Metafoundation by the res-
onators; ÿjl(t), ẏjl(t) and yjl(t) define the acceleration, velocity and dis-
placement of the l-th resonator on the j-th layer, while, mjl, ζrl and ωrl

represent the mass, damping ratio and frequency of the resonators, respec-
tively. We condense the masses of the resonators of each layer as shown in
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the Subsection 4.2.2. Therefore, the j-th component of the vector Y(t) can
be evaluated as,

Nr∑
l=1

mjl[2ζrlωrlẏjl(t) + ω2
rlyjl(t)] (4.21)

where Nr is the number of resonators in each layer. Through modal trans-
formation, the displacement vector u(t) can be defined as,

u(t) = Φq(t) (4.22)

where q(t) is the vector that represents the generalized coordinates of the
coupled system, while Φ denotes the eigenvector matrix. Substituting (4.22)
in (4.19) and premultiplying by ΦT , the j-th equation of motion becomes,

q̈k(t) + 2ζkωkq̇k(t) + ω2
kqk(t)

−
N∑
j=1

ψk(j)

Nr∑
l=1

mjl[2ζrlωrlẏjl(t) + ω2
rlyjl(t)]

= −Γküg(t)

(4.23)

where qk(t), ζk, ωk, Γk, and ψk(t) are the generalized coordinate, damp-
ing ratio, eigenfrequency, mass participation factor, and mode value, of the
k-th mode at the j-th layer, respectively. In order to obtain the trans-
fer functions of the system, we define ground acceleration, modal displace-
ment, displacement and forcing term as üg(t) = 1eωt, qk(t) = Tqk(ω)eωt,
uj(t) = Tuj (ω)eωt and yjl(t) = Tyjl

(ω)eωt, respectively, assuming a unit am-
plitude for üg(t). Substituting these relationships into (4.20) and (4.23), we
obtain,

Tqk(ω)

Hk(ω)
−

N∑
j=1

ψk(j)

Nr∑
l=1

mjl[i2ζrlωrlω + ω2
rl]Tyjl

(iω) = −Γk (4.24)

Tyjl
(ω)

Hrl(ω)
= −1 + ω2Tuj (ω) (4.25)

where Hk(ω) and Hrl(ω) define the transfer functions of an SDoF system,

Hk(ω) =
1

ω2
k − ω2 + i2ζkωkω

(4.26)

Hrl(ω) =
1

ω2
rl − ω2 + i2ζrlωrlω

(4.27)

The modal transformation (4.22) combined with (4.24) and (4.25) entail the
displacement transfer function of (4.25). Subsequently, the transfer func-
tions of the interstorey drift Dj(ω), relative velocity Vj(ω) and absolute
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acceleration Aj(ω) can be evaluated as,

Dj(ω) = Tuj
(ω)− Tuj−1

(ω) (4.28)

Vj(ω) = iωTuj
(ω) (4.29)

Aj(ω) = 1− ω2Tuj
(ω) (4.30)

Hence, the power spectral density (PSD) of u(t) can be evaluated as,

Suu(ω) = |Huu(ω)|2SKTCP (ω) (4.31)

where Suu(ω) denotes the PSD of u(t), while Huu(ω) represents a generic
transfer function of the coupled system. Furthermore, based on the Wiener-
-Khintchine transformations, the autocorrelation function Ruu(τ) the vari-
ance σ2 of a generic response can be calculated as,

σ2
uu = Ruu(0) =

∫ +∞

−∞
Suu(ω)dω (4.32)

Hence, the variance of drift σ2
Dj

, velocity σ2
Vj

and absolute acceleration σ2
Aj

at the j-th layer can be computed by means of (4.31) and (4.32) as,

σ2
Dj

=

∫ +∞

0

|Dj(ω)|2H2
KTCP (ω)dω (4.33)

σ2
Vj

=

∫ +∞

0

|Vj(ω)|2H2
KTCP (ω)dω (4.34)

σ2
Aj

=

∫ +∞

0

|Aj(ω)|2H2
KTCP (ω)dω (4.35)

4.4.3 Optimization parameters

In order to compute the optimal parameters of the resonators, we can use
the variances of the responses of the coupled system defined in (4.32). More
precisely, to evaluate the effectiveness of the Metafoundation and the optimal
stiffness and damping ratio of the system, two parameters, the Performance
Index PI and the Energy Dissipation Index EDI are defined based on: i) the
reduction of the absolute acceleration of the impulsive massmi; ii) the energy
dissipated by the resonators. The performance index PI can be defined as,

PI(ζ2, ω2) =
σ2
Ai

(ζ2, ω2)

σ2
Aifix

(4.36)

where σ2
Ai

is the variance of the absolute acceleration of the impulsive mass
of the coupled system as a function of the damping ratio and the frequency of
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the resonators, while σ2
Aifix

defines the same quantity for a coupled system
with a fixed base. As a result, the optimal values of the unknown parameters
are obtained reducing the absolute acceleration of the impulsive mass of the
superstructure as follows,

ζopt2 , ωopt
2 = min[PI(ζ2, ω2)] (4.37)

As far as the energy dissipation index EDI is concerned, it is based on the
dissipated energy by the resonators with respect to the input energy [106].
In this case, the j-th equation of motion can be written in terms of relative
energy balance by multiplying each term by the velocity of the j-th degree
of freedom and then integrating over time, yielding,

Ekj
(t) + Edj

(t) + Eej (t) = Eij + Efi(t) (4.38)

where Ekj
(t) is the relative kinetic energy, Edj

(t) defines the energy dissi-
pated by viscous damping, Eij (t) is the elastic strain energy, Efj (t) repre-
sents the relative input energy and is the energy flowing between the degrees
of freedom. Since the seismic input is a stochastic process, (4.38) has to be
formulated in terms of expected values as,

E[Ekj
] + E[Edj

] + E[Eej ] = E[Eij ] + E[Efj ] (4.39)

In particular, if we consider the conservation of mechanical energy in a finite
time increment ∆t, (4.39) becomes,

E[∆Edj
]− E[∆Efj ] = E[∆Eij ] (4.40)

Reggio and De Angelis [106] proved that the relative input energy of the
system is equal to the dissipated one, thus resulting in,

N∑
j=1

E[Efj ] = 0 (4.41)

where N defines the degree of freedom of the system. Thus, the EDI can be
expressed as,

EDI(ζ2, ω2) =

∑Nr

r=1E[∆Edr(ζ2, ω2)]∑N
j=1E[∆Edj(ζ2, ω2)]

(4.42)

where Nr indicates the number of resonators. More details about the evalua-
tion of these terms can be found in [106]. Finally, the optimal damping ratio
ζopt2 and frequency parameter ωopt

2 are obtained by maximizing the energy
dissipated by the resonators with respect to the one dissipated by the whole
coupled system,

ζopt2 , ωopt
2 = max[EDI(ζ2, ω2)] (4.43)
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Figure 4.8: PSD functions of filtered white noises: (A) KTCP filter for three
types of soil; (B) average PSD and KTCP fit for OBE events; (C) average PSD
and KTCP fit for SSE events

Table 4.5: Parameters of the KTCP filter.

Soil type S0 [m2/s3] ωg [rad/s] ζg ω1 [rad/s] ζ1
Soft 1.0 10.5 0.65 1.0 0.7
Medium 1.0 15.6 0.60 1.0 0.7
Rock 1.0 31.4 0.55 1.0 0.7
Priolo G. OBE 0.037 12.0 0.60 2.0 0.62
Priolo G. SSE 0.090 14.0 0.60 0.75 1.90

4.5 Results of Metafoundation optimizations

In order to apply the optimization procedures described in the previous
Section, three different types of soils - soft, medium and rock soil [115] -
modeled with the KTCP filter are considered, as shown in Figure 4.8(A).
Furthermore, to evaluate the PSD of the ground motions representative for
the construction site, the procedure described in Section 4.8 is applied to the
seismic records selected in Subsection 4.2.4. Thus, in order to fit the PSD
functions that characterize the OBE and SSE events, the parameters of the
KTCP filter (S0, ωg, ζg, ω1, ζ1) were evaluated. The resulting PSD functions
and the fitted KTCP filtered estimates are shown in Figure 4.8(B) and Figure
4.8(C), respectively, while Table 4.5 displays the relevant parameters.

The optimization procedure is carried out for each Metafoundation de-
scribed in Table 4.2. Thus, with reference to the L1H4 foundation with a
slender tank, typical results are depicted in Figure 4.9, that shows both the
surface and the contour line of PI, respectively, corresponding to the SSE
case for the Priolo Gargallo site. The same information is illustrated in
Figure 4.10 for EDI. In order to select the optimal combination of coupled
Metafoundation-tank systems, taking into account different soil properties,
4 different foundations with 2 distinct tanks, as described in Subsection 4.2.1
and 4.2.3, are subjected to 5 different PSDs and evaluated by means of PI
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4. Optimization of Locally Resonant Metafoundations

Figure 4.9: PI optimization of a slender tank on an L1H4 foundation with SSE
records: (A) optimization surface vs. resonator parameters; (B) contour lines of
the optimization surface

Figure 4.10: EDI optimization of a slender tank on an L1H4 foundation with
SSE records: (A) optimization surface vs. resonator parameters; (B) contour lines
of the optimization surface

and EDI parameters. Thus, Tables 4.6 and 4.7 summarize the optimal pa-
rameter values ζopt2 and ωopt

2 of the resonators for slender and broad tanks,
respectively. The results show that PI and EDI yield very similar optimal
frequencies for the resonators, while the optimal damping ratio is found to
be higher for the EDI approach. Clearly, this is related to the fact that the
EDI parameter focuses on the amount of energy that is being dissipated by
the resonators. A better comparison between the results provided by the
two indices can be done after time history analyses carried out in Section
4.6.

The results of the optimization also confirm the effectiveness of the iso-
lation effect provided by the unit cells. With regard to the PI and EDI
values of the system for different foundations, while also observing the isola-
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tion parameter ε, it becomes clear that the Metafoundation reduces stresses
not only due to its metamaterial like or TMD like properties, but also be-
cause of its capability to exert a limited amount of seismic isolation. As a
result, the L1H4 foundation performs better in terms of both PI and EDI
due to its small epsilon value. With regard to the ground-metafoundation
coupling, more flexible foundations perform better in firm soils due to the
maximum decoupling between soil and foundation frequency content. The
best performance is obtained for the L1H4 foundation with rock soil for both
PI and EDI values. When comparing the parameters of the KTCP fitted
PSD obtained for the Priolo Gargallo soil to the standard KTCP soil filters,
see Table 4.5, it becomes apparent that the Priolo Gargallo site is in be-
tween medium and soft soil. Moreover, Table 4.6 shows that similar optimal
resonator parameters are obtained for both Priolo Gargallo soils.

The optimization procedure for the broad tank provides lower values for
ζopt2 and ωopt

2 compared to the slender tank, since it has a different geometry
and, therefore, exerts lower eigenfrequencies. However, analogously to the
slender tank, also the broad tank shows better results for a more flexible
foundation in firm soils. Note that more favorable results are obtained for
the broad tank, with respect to the slender one, despite the increased ε value.
This is due to the decoupling of the eigenfrequency of the coupled system
and the frequency content of the soil filter. In addition, the results show
that the fitted KTCP filtered soils are located between medium and soft soil
types.

4.6 Time history analysis

In order to evaluate the performance of the proposed Metafoundation un-
der realistic ground motions, THAs were carried out for the OBE and SSE
events. The base shear of the tank was assumed to be the governing factor
for the performance of the system and can be calculated as follows,

V = ki(ui − utl) + kc(uc − utl) (4.44)

where ui, uc and utl denote the displacement of the impulsive mass, the
displacement of the convective mass, and the displacement of the top layer
of the foundation, which coincides with the bottom of the tank, respectively.
As a result, the reduction of the tank base shear due to the presence of a
Metafoundation can be evaluated as,

α(i) =
V

(i)
RMS

V
(i)
RMS,fix

(4.45)

where VRMS and VRMS,fix are the root mean square (RMS) values of the
base shear of a tank on a Metafoundation and a tank on a fixed-base founda-
tion, while i denotes the seismic event under study. This index displays the
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4. Optimization of Locally Resonant Metafoundations

stress reduction of the Metafoundation with respect to a traditional founda-
tion.

4.6.1 Results for the coupled foundation-slender tank
system

Herein, Figure 4.11 shows the RMS of the base shear of the coupled system
subjected to SSE events. More precisely, it compares the results of the
Metafoundation optimized with PI and EDI with the response of a fixed-
base tank. It is worth noting that the results of the THAs show a high
dispersion for the base shear when correlated with the PGA. This is due to
the wide variety of frequency and amplitude content of the accelerograms
depicted in Figure 4.5. Therefore, the PGA may not represent the most
significant intensity measure for the structure under consideration. However,
since the interest is not on a fragility analysis of the system, the PGA has
been considered as a sufficient parameter for result interpretation. A linear
regression of the base shear against the PGA, presented in Figure 4.11, shows
that the Metafoundation reduces the base shear with respect to a traditional
foundation, and that the optimization procedure based on PI seems to deliver
slightly better results than the EDI procedure. Furthermore, the general
trend shows that the performance of the Metafoundation increases with the
foundation flexibility, as predicted by the optimization results discussed in
Section 4.5.

It is possible to observe that the L2H3 foundation increases the base
shear although the corresponding linear regression shows a slight reduction,
as depicted in Figure 4.11(A). This is because the regression defines a law
between the base shear and PGA of accelerograms, whereas the mean value
of parameter α doesn’t take this relationship into account. Note that the
reduction of base shear of Figure 4.12 exhibits a certain dispersion due to
the variability of accelerograms. This can be quantified by the coefficient of
variation (COV) value computed for each type of foundation. More precisely,
COV varies from 0.292 to 0.359 for the PI optimized coupled structure, and
from 0.290 to 0.357 for the EDI optimized coupled structure. Furthermore,
in order to display the effect of their isolation capability, the foundation ty-
pologies are ordered by their ε value. An average reduction of the base shear
between 10% and 15% can be achieved with the optimized foundations L1H3
an L1H4. Conversely, poor results are obtained for the two-layered cases due
to the increased stiffness of the foundation. These graphs also support the
conclusion that the PI procedure provides a slightly better optimized foun-
dation than the EDI procedure. The fundamental difference between these
procedures is that the PI evaluates the minimal absolute acceleration of the
impulsive mode while the EDI takes into account the energy dissipated by
the resonators. THAs of the coupled foundation-slender tank systems for
the Priolo Gargallo soil corresponding to the OBE events are not presented
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4.6. Time history analysis

Figure 4.11: RMS of the base shear of a slender tank vs. PGA of the SSE
records: (A) L2H3; (B) L2H4; (C) L1H3; (D) L1H4.

Figure 4.12: Base shear reduction for a slender tank subjected to SSE events:
(A) PI optimization; (B) EDI optimization.
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for brevity. It shall be mentioned that they show very similar results as for
the SSE events and further underline the functionality of the system.

4.6.2 Results for the coupled foundation-broad tank
system

Figure 4.13 shows the RMS of the base shear of the coupled system foundation-
-broad tank with the optimal parameters obtained for the Priolo Gargallo
soil corresponding to the SSE events. Also in this case, each Metafoundation
reduces the base shear with respect to a traditional foundation. The general
trend, shown in Figure 4.14, highlights the impact of the flexibility on the
effectiveness of the Metafoundation systems. Here it can be seen that the
best performance, for SSE events, was obtained for the L1H4 foundation sys-
tem achieving a base shear reduction of up to 30%. When comparing these
results to the slender tank analyses, it becomes evident that the Metafoun-
dation has a much greater effect on the broad tank system. Even for the two
layered setups the broad tank may experience a demand reduction of about
10%-15%. This is caused by the decoupling of the frequencies of the tank
from the expected ground motion and further underlines the importance of
the superstructure to the performance of the overall system. Furthermore,
COVs of α vary from 0.133 to 0.210 for the PI optimized coupled struc-
ture and from 0.127 to 0.217 for the EDI optimized coupled structure. The
COVs appear to be smaller than those of the slender tank. As a result, the
Metafoundations entail a superior performance for the coupled foundation-
broad tank.

4.7 Conclusion

In this article, we presented a foundation based on a finite locally resonant
metamaterial concept, i.e. the Metafoundation, that has been both designed
and optimized. In particular, it exploits the properties of metamaterials and
combines them with classical seismic isolation concepts. In order to show
that this class of structures can be built under realistic circumstances, the
proposed Metafoundation system has been designed according to the Italian
standards with conservatism. Note that the construction details are not fully
developed; however, in order to address the durability of the system at this
early stage, we only use common construction materials and devices such
as steel, concrete and wire ropes. Furthermore, the system was designed
for a highly vulnerable superstructure, namely fuel storage tanks, and for a
very active seismic-prone site. The tuning of this coupled system has been
achieved via two optimization algorithms operating in the frequency domain,
which are able to account for the superstructure as well as the ground motion
spectrum. These algorithms are newly established in the field of mechanical
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4.7. Conclusion

Figure 4.13: RMS of the base shear of a broad tank vs. PGA of the SSE records:
(A) L2H3; (B) L2H4; (C) L1H3; (D) L1H4.

Figure 4.14: Base shear reduction for a broad tank subjected to SSE events: (A)
PI optimization; (B) EDI optimization.
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metamaterials, and show that the superstructure has a significant influence
on the functionality of the Metafoundation. Additionally, they clearly dis-
play the influence of the shear stiffness, and therefore, the isolator-like prop-
erties. After optimizing the parameters of the Metafoundation, time history
analyses were carried out. Favourable results were obtained for the isolation
of a broad fuel storage tank with a base shear reduction of about 30%, while
for the slender tank the proposed system seems to be a bit less effective
with maximum reduction capabilities of about 15%. These results lay down
the basis for future studies and developments of the Metafoundation such
as, tuning several resonators to different frequencies, employing more ad-
vanced optimization procedures, adding another metamaterial-like concept
like negative stiffness elements, or designing the foundation for the atten-
uation of the vertical component of an earthquake. Overall, the proposed
standards-compliant metamaterial-based foundation, if properly optimized,
can effectively reduce stresses in broad/slender fuel storage tanks for site-
specific seismic hazards.

Upcoming developments The building code conform and optimized foun-
dation developed in this chapter shows that this type of structure can be
built, but that the required dimensions are clearly beyond what can be con-
sidered common for standard civil engineering applications. Therefore, the
next chapter develops a mechanism that can be implemented in the founda-
tion, in order to make it more efficient at smaller scales.

4.8 Appendix: Non-stationary power spectral density

This appendix explains how to estimate the time modulating function of
the power spectral density (PSD) for time modulated zero-mean Gaussian
processes that represent the seismic records introduced in Subsection 4.2.4.
At the outset, the PSD function can be written as,

S(ω, t) = φ2(t)Sst(ω) (4.46)

in which φ(t) ≤ 1, is the time modulating function and Sst(ω) is the sta-

tionary PSD function. With a set of N seismic records denoted with ˜̈u
(i)
g (t)

where i = 1, 2, . . . , N we can define an estimate φ̃(t) of φ(t) as,

φ̃(t) =
σ̃(t)

max(σ̃(t)|t ∈ [0, T ])
(4.47)

where σ̃(t) is the estimate of the standard deviation of the recorded signals
and T is the duration of the process. By means this time modulating function

φ̃(t), to a set of non-stationary signals ü
(i)
g,st(t), a set of pseudo stationary
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4.8. Appendix: Non-stationary power spectral density

signals ˜̈u
(i)
g,st(t) can be evaluated as,

˜̈u
(i)
g,st(t) =

˜̈u
(i)
g (t)

φ̃(t)
(4.48)

with the Fourier transform of ü
(i)
g,st(t), we can discretize a finite set of normal

random variables realized as stationary Gaussian processes as,

ü
(i)
g,st(t)

∼=
M/2∑
p=1

[Ap cos(ωpt) +Bp sin(ωpt)] (4.49)

where ωp is the sampled frequency with frequency increment ∆ω = 2π/T ,
and M being the total amount of time steps of each signal. Ap and Bp are
zero mean Gaussian random variables, the so called Fourier coefficients, and
can be evaluated as,

A(i)
p =

2

M

M̄∑
k=1

[˜̈u
(i)
g,st(tk) cos(ωptk)] (4.50)

B(i)
p =

2

M

M̄∑
k=1

[˜̈u
(i)
g,st(tk) sin(ωptk)] (4.51)

Since the Fourier coefficients are uncorrelated for different frequencies, more
precisely, E[ApAq] = E[BpBq] = E[ApBq], for p 6= q, we can find,

E[ApAp] = E[BpBp] = 2Sst(ωp)∆ω (4.52)

E[ApBp] = 0 (4.53)

Finally, using (4.50), (4.51), (4.52) and (4.51), an estimate of the stationary

PSD function S̃st(ωp) of the records ˜̈u
(i)
g,st(t) can be estimate as,

S̃st(ωp) =
1

NM̄2δω

N∑
i=1

∣∣∣∣∣∣
M̄∑
k=1

[˜̈u
(i)
g,st(tk)eiωptk]

∣∣∣∣∣∣
2

(4.54)

93





Chapter 5

Negative Stiffness Element for
Periodic Foundations

Overview. Metamaterials represent a new trend in the field of seismic en-
gineering. Their capacity to attenuate waves at the superstructure level is
highly desirable and sought after in recent years. One of their main draw-
backs to date, is the excessive size of the necessary resonators and, conse-
quently, the uneconomic design they require. In order to tackle this problem,
we apply the concept of negative stiffness to a metamaterial-based founda-
tion system and analyse the potential improvements such a mechanism may
have on the metamaterial as well as the coupled structural behaviour. Since
negative stiffness is a property that cannot be achieved through conventional
measures, a novel mechanism, designed for the implementation in periodic
metamaterial-based structures, is proposed herein. The inevitable nonlin-
earity of the mechanism will be discussed and taken into account, while the
advantages of the negative stiffness element (NSE) will be treated analyti-
cally and verified numerically. Additionally, through an optimization in the
frequency domain and nonlinear time history analyses (THAs), the perfor-
mance of the system coupled with a fuel storage tank is elaborated. With
only 50% of the theoretically allowable NSE value, the foundation system
could be reduced to 1/3 of its size. Furthermore, the nonlinear effect of the
device has proven to diminish the band-gap of the periodic system, which
led us to introduce nonlinearity parameters that can help avoid the strongly
nonlinear range. In sum, this article tackles three problems that are inter-
twined: (i) reducing the size of metamaterial-based structures; (ii) the design
of a mechanism that exerts a negative stiffness in a periodic structure; and
(iii) the study of the inevitable nonlinearity of NSEs and the subsequent
effect on the metamaterial behaviour.
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5.1 Introduction

Metamaterials are entering the field of seismic engineering and other research
areas with a variety of interesting structures. The two most prevalent con-
cepts in the field of seismic protection are phononic crystals [116] and locally
resonant metamaterials [117], where both are able to create the so called bad
gap phenomenon. Band-gaps signify frequency regions where waves cannot
propagate through the material and are therefore able to provide new solu-
tions to existing vibration problems. For the present work we focus on locally
resonant materials, due to their ability to attenuate waves at wave lengths
much greater than their unit cell size, which is a particularly important prop-
erty for seismic metamaterials. To date, locally resonant materials have been
used to conceive foundation systems [24, 27, 30, 32, 92] and wave barriers
[15, 19, 93, 94]. While metabarriers have the advantage of being placed be-
sides the structure, and can therefore be installed after the completion of the
building, they can only attenuate surface waves. Metamaterial-based foun-
dations on the other hand, can in principle attenuate any type of incoming
wave, but have to be placed below the structure of interest, hence limiting
their application to new buildings. The present work is concerned with foun-
dation systems, which show a variety of different designs and applications in
the current literature. A particularly interesting foundation was proposed
by Cheng and Shi [27] who conceived a system tuned to the ground motion
for the protection of nuclear power plants. Their foundation showed different
band-gaps for the vertical and horizontal direction, thereby addressing the
vertical component of earthquakes. This is especially relevant for high conse-
quence structures like nuclear power plants, since classical isolation systems,
like concave sliding bearings, are not able to address the vertical motion [89].
Besides this, also Casablanca et al. [30] developed an interesting foundation
based on concrete plates separated by Teflon sliding surfaces and verified its
behaviour with laboratory experiments. Their experiments clearly depicted
that these types of structures are feasible with common construction mate-
rials and can exert the band-gap phenomenon. However, neither Cheng and
Shi nor Casablanca et al. took the feedback from the structure into account.
La Salandra et al. [32] on the other hand designed a foundation system and
conducted a study on the most influencing factors on the attenuation be-
haviour. Two important findings shall be mentioned, namely, the influence
of the stiffness and the non-negligibility of the feedback of the superstruc-
ture. Subsequently, Basone et al. [31] developed a foundation system based
on their results and conceived an optimization procedure that can take a
structure as well as an ensemble of expected ground motions into account.
However, their design shows significant restrictions in terms of effectiveness
due to the constraints given by the governing building codes (i.e. Eurocode
3 and 8, [82, 118, 119]). Besides this, an experimental study on the coupling
effects between a tank isolated with a metamaterial-based foundation and a
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5.1. Introduction

pipeline suggested that this type of foundation may provide a compromise
between base shear attenuation and horizontal displacement [120], which is
a property that cannot be obtained with classical isolation systems. Further
worth mentioning is the work of Witarto et al. [121] who studied the ap-
plication of metamaterial-based systems to small scale nuclear reactors; and
the work done by Ungureanu et al. [122] who used auxectic like materials to
protect high-rise buildings. Finally, a comprehensive review of seismic meta-
materials including metabarriers as well as foundation systems was given
recently by Mu et al. [123]. From their review one can clearly conclude
that one of the most pressing problems of metamaterial-based foundations
is the excessive size necessary to obtain a functional foundation. However,
two advantages may become attainable through such foundations in future,
namely: (i) attenuation of the vertical component [27]; and (ii) a compromise
between base shear reduction and horizontal displacement [120]. One idea
to improve the performance of a metamaterial-based system was proposed
by Antoniadis et al. [124] who showed that a negative stiffness element
(NSE) inserted in the resonator mechanism could potentially improve the
system behaviour significantly. Note that this is not an effective negative
stiffness as discussed in e.g. [125], but a composite spring system where
the resulting force assists motion and does not oppose it. Note that Anto-
niadis et al. [124] included only a conceptual negative stiffness element that
would exert the desirable amplification force, while a design for an actual
mechanism that could be applied to a periodic structure was still missing.
To date, most proposals including negative stiffness and metamaterials aim
at the continuum level [126, 127], while Morris et al. [128] conducted an
experimental study on such a continuous metamaterial with buckling type
instabilities and showed the energy dissipation capabilities of the structured
medium. These proposals are interested mainly in the material level, and
therefore, do not investigate the application to a structure or the inevitable
nonlinear effect of an NSE on the band-gap.

It is worth noting that research work on nonlinear metamaterials is still
limited and primarily concerned with weakly nonlinear resonant chains. A
perturbation approach for the dispersion analysis of weakly nonlinear chains
has been proposed by Chakraborty and Mallik [129], which clearly depicts
that: (i) solutions to nonlinear wave equations are amplitude dependent;
(ii) wave amplitudes influence their own propagation characteristics, the so-
called self-action; and (iii) analysis methods in the presence of self-action
often do not trace all solutions when more than one dominant component
is involved. Another neat approach to calculating the band-gaps for such
materials relies on the harmonic balance method (HBM) as has been demon-
strated by Lazarov and Jensen [130]. Banerjee et al. [131] on the other
hand provide a comprehensive review of 1D metamaterials including ma-
terials with nonlinear oscillators. Both showed classical bi-atomic lattices
with nonlinear oscillators, e.g. Duffing oscillator, pendulum, impacting res-
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5. Negative Stiffness Element for Periodic Foundations

onators, and concluded that an increase in elastic nonlinearity, entails a shift
and an elongation of the band-gap. Based on the current state of the art,
the present work conceives a new mechanism applicable to periodic struc-
tures, which is able to reduce the size of metamaterial-based foundations.
In order to present a realistic application, a fuel storage tank was chosen
as a superstructure and its feedback taken into account when designing and
optimizing the foundation. Note that fuel storage tanks represent the most
vulnerable and consequence intensive components of industrial plants dur-
ing earthquakes, and that their seismic protection is still an ongoing issue
[37, 40, 43, 44, 76]. The coupled Metafoundation tank system is analysed on
its performance for various foundation heights and different levels of applied
negative stiffness herein. Note that the practical application includes only
a one layered foundation, while further analyses, carried out on the system
considered as a periodic structure, shed light on the wave propagation in
nonlinear negative stiffness enhanced materials.

5.1.1 Scope

The present work tackles three main research issues, namely: (i) Size reduc-
tion of metamaterial-based structures for seismic applications; (ii) Develop-
ment of an NSE that can be implemented in a metamaterial; and (iii) in-
vestigation of the inevitable nonlinear behaviour. The manuscript discusses
these issues in the following order: Section 5.2 elaborates the structure, the
foundation, and the mechanism and shows the simplified dynamic system
used in the subsequent analyses; Section 5.3 shows the metamaterial-like
behaviour of a periodic system with and without considering the nonlinear
effect; Section 5.4 demonstrates an optimization algorithm for the optimal
design of the foundation; Section 5.5 investigates the behaviour of the com-
plete coupled and optimized structure under real seismic action; and Section
5.6 closes the paper with conclusions.

5.2 Description of the structure

The Metafoundation was initially conceived in [32] and later developed and
designed according to common construction standards by [31]. The pro-
posed foundation is based on steel columns that support concrete slabs,
with resonators placed in between the columns, in order to provide the sys-
tem with its locally resonant properties, see Figure 5.1(a). Additionally, for
an improved performance of the system, a new type of NSE is designed and
implemented in the structure by mounting it to the columns and resonators
as displayed in Figure 5.1(b) and 5.2. It is further worth noting that the
columns govern the horizontal stiffness of the system, which has a significant
impact on the functionality of the foundation during earthquakes as shown
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Column
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Figure 5.1: Layout of the Metafoundation for the MINIMAL system: (a) Iso-
metric view; (b) Internal view of the foundation components.

Table 5.1: Geometric properties of the various foundation setups.

FULL REDUCED MINIMAL
Foundation height 3 m 2 m 1 m
Resonator height 2.7 m 1.7 m 0.75 m
Column width 0.3 m 0.24 m 0.17 m
Comp. mem. length l 2.7 m 1.7 m 0.7 m

by [31, 32]. They also investigated multiple foundation set-ups, where the
one layered design turned out to be the most material efficient version, due
to construction standard requirements on the steel columns. Therefore, the
present work treats a one layered foundation for feasibility investigations,
while a multi-layered foundation system will be discussed only on its wave
propagation behaviour. Along these lines, 3 different foundations, namely
the FULL, REDUCED and MINIMAL systems, are studied herein, which
are distinguished by their heights and column cross sections, as listed in Ta-
ble 5.1. Note that Figure 5.1 shows the MINIMAL foundation layout where
the foundation height amounts to 1 m, while the column width is 0.17 m.
Moreover, the columns consist of steel hollow sections with a plate thickness
of 0.03 m for all foundation set-ups. It is worth mentioning that each sys-
tems has been designed to remain elastic for a return period of 2475 years
at the site Priolo Gargallo, Italy, according to Eurocode 3 and 8 [82, 118].
Finally, due to the double symmetry of the structure, the system is con-
densed to a 1D representation that propagates only shear type waves to the
superstructure, which is elaborated in Sections 5.2.1 and 5.2.2.
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Vertical Guide

Prestressed Spring
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Compression Member

Roller
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Spring/Damper

Figure 5.2: Negative stiffness mechanism.

5.2.1 Negative stiffness element NSE

Since a simple spring with a negative effective stiffness does not exist, it is
necessary to design a suitable mechanism that can exert the desired forces.
For the mechanism at hand we employ a compression member and subject
it to a prestress force, as depicted in Figure 5.2. Note that the compression
member is guided vertically along the column and horizontally along the
slab above, in order to allow for an inclination in the displaced state. Due to
this inclination, the compression member releases the stored potential energy
from the prestressed spring as a horizontal force pair on the resonators and
the columns, see Figure 5.3. Furthermore, as can be seen from Figure 5.1,
the mechanism is placed between resonators on both sides of the relevant
columns, which amounts to a total of 12 mechanisms per horizontal axis of
the foundation. The 9 resonators on the other hand are assumed to slide on
frictionless surfaces and have identical properties.
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Figure 5.3: Kinematic system in the displaced state: (a) Resonator and mecha-
nism in displaced state; (b) Force equilibrium on the displaced system.

5.2.1.1 NSE analytical model

All resonators, columns and installed mechanisms are identical, and are
therefore condensed to one resonator, one column and one mechanism for one
layer of foundation. The kinematics of the system can subsequently be sim-
plified as depicted in Figure 5.3(a), where k1 denotes the condensed stiffness
of all columns in one layer, m2 is the mass of all resonators, m1 represents
the mass of the concrete slab, kR denotes the condensed spring stiffness of
all springs that support the resonators (see also Figure 5.2), and kp is the
stiffness of all prestressed springs. In order to substitute the mechanism with
an equivalent nonlinear spring, the force equilibrium needs to be formulated
on the displaced system, as shown in Figure 5.3(b). Here, FR denotes the
horizontal force applied to the resonator and the bottom slab; FS describes
the vertical force applied by the pre-stressed spring; l is the length of the
compression member; u is the vertical displacement of the member; and v is
the horizontal displacement of the resonator and the compression member
at its top. When establishing the force equilibrium around the member as
depicted in Figure 5.3 (b), the following geometrical relationships can be
drawn,

FS = ukp − P (5.1)

FR =
FS

(l − u)/l

v

l
(5.2)

(l − u)
2

= l2 − v2 (5.3)

Here, P is the prestress force applied to the spring when the member is
in its vertical position. After some algebra the horizontal force FR can be
put in relation to the displacement of the resonator v with,

FR(v) =
v(−P + kp(l −

√
l2 − v2))√

l2 − v2
(5.4)
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Eq. (5.4) clearly is a nonlinear relation for the force displacement path
of the resonator, due to the relationship between the displacements u and
v. It is important to note that the denominator of this function becomes 0
for v → l, which has the effect of an infinite stiffness at v = l. The length
of the mechanism, therefore, plays a significant role in the behaviour of the
nonlinearity. Furthermore, a Taylor series approximation of (5.4) at the
origin is also desired, in order to allow simplified nonlinear calculations in
the frequency domain with the HBM. With the classical formulation of the
Taylor series,

T (x) =

∞∑
n=0

fn(a)

n!
(x− a)

n
(5.5)

the force-displacement relationship (5.4) can be rewritten for a 3rd order
approximation at the origin, with a = 0, and n ∈ {0, 1, 2, 3}, as,

FR (v) = −P
l
v +

kp l − P
2 l3

v3 +HO(v5) (5.6)

The behaviour of the mechanism can now be dissected into a negative
linear and positive nonlinear part,

FR (v) = aNSEv + bNSEv
3 (5.7)

with,

aNSE = −P
l

= kN (5.8)

bNSE =
kp l − P

2 l3
=

kp
2 l2

(1− P

kp l
) (5.9)

From these expressions the maximal stiffness of the mechanism appears
at the initial configuration and amounts to kN = aNSE = −P/l, which will
be used as an approximation of the NSE for linear analyses. Furthermore,
since kp appears exclusively in the nonlinear part of the polynomial approx-
imation, it can be used to tune the nonlinear shape of the mechanisms force
displacement path. Note that when kpl results in a value smaller than P ,
the system is subjected to softening instead of hardening, which is physically
not meaningful for the system under study. The limits of the mechanism can
therefore be set to P

l ≤ kp ≤ ∞ and a dimensionless nonlinearity parameter
established with,

ε = 1− P

kpl
, 0 ≤ ε ≤ 1 (5.10)

When ε→ 0 the system behaves linear, while when ε→ 1 the nonlinear
component becomes infinite and the system enters it’s nonlinear state im-
mediately. The following values were chosen for the sake of demonstration
for Figure 5.4(a), l = 2.7 m, P = 10 000 kN and ε as 0, 0.5, 0.75, and 0.9.
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Figure 5.4: Force displacement path: (a) Variation of parameter ε; (b) Variation
of member length l.

Besides this, a value of ε = 0.95 was regarded as a realistic value for all
set-ups, as it resulted in prestress distances of the prestressed spring equal
to 13.5 cm, 8.5 cm, and 3.5 cm for the FULL, REDUCED, and MINIMAL
system, respectively. Since the length of the compression member plays a
vital role in the nonlinear behaviour, a second force-displacement diagram
was investigated with length l of 1, 0.5 and 0.2 m for ε = 0.95, and displayed
in Figure 5.4(b). Clearly, the linear approximation is very close to the exact
path for small displacements, which is desirable not only for the sake of
simplicity, but also for the later proposed optimization algorithm, based on
computations in the frequency domain.

5.2.2 Dynamic system

Once the mechanism can be substituted with a simple nonlinear spring en-
dowed with the force-displacement relationship of Eq. (5.4) or (5.7), the
dynamic system can be established for the condensed structure as depicted
in Figure 5.5(a). Here, a fuel storage tank with a diameter of 8 m, a height
of 12 m and a steel wall thickness of 6 mm is used as a superstructure and
modelled as a 2 degree of freedom (DOF) system. The two DOFs represent
the impulsive and convective mode according to the procedure proposed
by Malhotra et al. [69] and are characterized by their stiffness ki, kc and
masses mi, mc, respectively. In the interest of brevity, the procedure is not
elaborated here, while only the stiffness, mass and damping coefficients are
listed in Table 5.2. The reader may note that in Figure 5.5 the stiffness
of the resonators kR is a compound stiffness comprised of kF − kN . Here,
kN represents the linearized stiffness of the NSE, which also corresponds to
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Table 5.2: Parameters for the discretized system.

Parameter FULL REDUCED MINIMAL
m1 [kg] 5.88358e+04 5.00074e+04 4.36692e+04
m2 [kg] 2.67907e+05 1.78605e+05 7.93800e+04
k1 [N/m] 8.50176e+08 1.36080e+09 3.30624e+09
kF [N/m] to be evaluated to be evaluated to be evaluated
kN [N/m] to be evaluated to be evaluated to be evaluated
cR [Ns/m] to be evaluated to be evaluated to be evaluated
mi [kg] 4.51666e+05 4.51666e+05 4.51666e+05
mc [kg] 8.57730e+04 8.57730e+04 8.57730e+04
ki [N/m] 8.35184e+08 8.35184e+08 8.35184e+08
kc [N/m] 3.86480e+05 3.86479e+05 3.86479e+05
ci [Ns/m] 1.94223e+06 1.94222e+06 1.94222e+06
cc [Ns/m] 1.82070e+03 1.82070e+03 1.82070e+03

the maximal negative stiffness value, while kF denotes that part of kR that
determines the resonant frequency of the resonator. Modelling the springs
in this way has the following advantages: (i) when kN is small, kF becomes
the dominant stiffness and can be used to evaluate the eigenfrequency of the
resonator with ωR =

√
kF /m2; and (ii) if kF becomes small, the local sta-

bility of the resonator is still fulfilled by the opposing positive stiffness −kN .
Furthermore, in Figure 5.5 the displacement of the foundations top slab and
resonator are denoted with u1 and u2, respectively, while the relative ground
displacement is represented with ug.

For the damping of the structure, we chose a Rayleigh model with 5%
damping at 0.5 and 7 Hz applied to the structure without resonators and
tank. The resonators on the other hand are assigned with a linear visco-
elastic damper, denoted with cR, which works in parallel with kR, and is
also subjected to the optimization procedure described later in this work.
Furthermore, the two DOFs of the tank have been endowed with damping
values of 5% and 0.5% for the impulsive and convective mode, respectively,
and are denoted with ci and cc. All relevant values of the condensed dynamic
system for all subsequent analyses are shown in Table 5.2.

Besides this, the proposed foundation will be analysed not only as a one
layered system for the protection of fuel storage tanks, but also on its wave
propagation properties when arranged as a periodic stack. For this purpose,
a multi-layered foundation can be imagined as depicted in Figure 5.5(b),
where one layer represents the unit cell of the system.
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Figure 5.5: Dynamic systems: (a) Coupled foundation tank system; (b) Founda-
tion modelled as a periodic structure.

5.2.3 Stability condition of the system

Due to the use of a local instability, it is necessary to determine the maximal
allowable parameters, where the local instability does not impose a global
instability on the system. The failure mode interesting for this analysis is
the collapse of the unit cell due to an excessive negative force in the NSE,
which leads to the analysis of a single layer without tank, see also Figure
5.5(a). The system of equations of motion (EOMs) can be written as,

m1ü1(t) + k1u1(t) + (kF − kN )u1(t)− (kF − kN )u2(t) = m1üg(t) (5.11)

m2ü2(t)− (kF − kN )u1(t) + (kF − kN )u2(t) + kNu2(t) = m2üg(t) (5.12)

Here, u1 denotes the displacement of the slab, u2 describes the motion of
the resonator, and üg is the relative ground acceleration. Under harmonic
excitation üg (t) = ug0e

iωt the displacement responses can be assumed har-
monic with u1 (t) = u10e

iωt, and u2 (t) = u20e
iωt, and the system expressed
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in the frequency domain (after dividing by eiωt on both sides) with,

(−ω2 + k1 + kF − kN )u10 − (kF − kN )u20 = m1ug0 (5.13)

(−ω2m2 + kF − kN + kN )u20 − (kF − kN )u10 = m2ug0 (5.14)

When substituting (5.14) into (5.13) and rearranging the terms, the fre-
quency response function FRF for u10 can be written as,

u10 =
kNm2 − kFm1 − kFm2 +m1m2ω

2

kN
2 − k1kF − kF kN + (kFm1 + k1m2 + kFm2 − kNm2)ω2 −m1m2ω4

ug0

(5.15)

The denominator of the FRF, being the characteristic equation of the
system, takes up the form,

y = ω4α1 + ω2α2 + α3 (5.16)

with,
α1 = −m1m2

α2 = kFm1 + k1m2 + kFm2 − kNm2

α3 = kN
2 − k1kF − kF kN

(5.17)

This represents a fourth order polynomial without odd terms, which
therefore is symmetric. Due to its symmetry, the equation has two posi-
tive real roots that are mirrored around the y-axis, and can be expressed in
its factored form as,

y = −m1m2(ω − ω1)(ω − ω2)(ω + ω1)(ω + ω2) (5.18)

After expansion this equation yields,

y = ω4β1 + ω2β2 + β3 (5.19)

with,
β1 = −m1m2

β2 = m1m2(ω1
2

+ ω2
2)

β3 = −m1m2ω1
2ω2

2

(5.20)

A comparison of the coefficients of (5.17) and (5.20) yields the following
equations,

k2m1 + kNm1 + k1m2 + k2m2 = m1m2(ω1
2

+ ω2
2) (5.21)

k1k2 + k1kN + k2kN = m1m2ω1
2ω2

2 (5.22)

In order to be dynamically stable, the systems eigenfrequencies have to be
real and positive,

ω1 > 0; ω2 > 0 (5.23)
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This necessitates the right-hand sides of (5.21) and (5.22) to be greater
than 0, and therefore, two conditions for kN can be elaborated,

kN > −kFm1 + k1m2 + kFm2

m1
(5.24)

and,

kN >
kF
2
−

√
kF

2

4
+ k1kF (5.25)

A parametric study, which is omitted in the interest of brevity here, has
shown that the latter condition is stricter than the former one, and therefore,
is governing for the design. For the remainder of this work, the maximum
negative stiffness of the NSE will be determined relative to the maximal
value of eq. (5.25) in percent %.

5.3 Band-gaps and wave propagation

On the one hand the effect of the NSE on the band-gap behaviour is expected
to be advantageous due to the amplification force, while on the other hand
the effect of its inevitable nonlinearity is yet unknown. In this section the
potential band gaps of the system will be investigated for the linearized as
well as the elastic non-linear structure with parameters corresponding to the
FULL system.

5.3.1 Band gaps of the linear system

Based on the multi-layered foundation depicted in Figure 5.5(b), a chain of
unit cells endowed with NSEs can be established as shown in Figure 5.6,
where u denotes the displacement of the discretized mass with the subscript
(1,2) determining the mass and the superscript (j − 1, j, j + 1) defining the
relative location of the unit cell. Note that for the linear case the NSE is
represented by a linear negative spring with value kN from Eq. (5.8). Under
the aid of the Floquet-Bloch theorem [73] it becomes possible to relate the
movement of the previous and subsequent unit cells, to the unit cell under
study with,

u (x, t) = u0e
i(qx−ωt) (5.26)

Here, u (x, t) denotes the displacement vector at position x at time t, u0 the
amplitude of the displacement at the reference position (x = 0), ω the fre-
quency of the propagating wave, and q the wave vector. For a 1D system the
wave vector becomes a scalar and is defined as the inverse of the wavelength
(q = 1/λ). Furthermore, the distance between the cells will be set to unity,
therefore reducing the position vector x to a scalar of ±1 and the range of
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q to −π ≤ q ≤ π. It is now possible to write the boundary conditions in the
frequency domain for a discretized chain with,

u1,2
j±1 = u1,2e

±iq (5.27)

This condition can be applied to the EOMs of a typical periodic unit cell
which read,

m1ü
j
1 + (2k1 + kF )uj1 − k1u

j+1
1 − k1u

j−1
1 − (kF − kN )uj2 = 0 (5.28)

m2ü
j
2 − (kF − kN )uj1 + kFu

j
2 − kNu

j−1
1 = 0 (5.29)

After the application of the boundary condition (5.28) to (5.29), the
discrete eigenvalue problem can be formulated with,(

K− ω2M
)
u = 0 (5.30)

The non-trivial solution for this problem yields the dispersion relation,

Cos (q) =

2k1kF + 2kF kN − 2kN
2 + (−kFm1 − 2k1m2 − kFm2)ω2 +m1m2ω

4

2(−k1kF − kF kN + kN
2) + 2k1m2ω2

(5.31)

which sheds light on the wave propagation behaviour. For the sake of
demonstration, the frequency of the resonator shall be set to 3 Hz, while
all other structural values match the FULL system from Table 5.2. The
dispersion is depicted in Figure 5.7(a) for varying NSE values, with the
percentage indicating the relationship of the applied NSE to the maximal
allowable negative stiffness value from (5.25). Here the maximum values
of the acoustic branches are highlighted with dotted lines, while also the
minimum value of the optical branch is marked with a dotted line, in order to
highlight the band-gap. When observing the dispersion branches, it becomes
clear that an increase in negative stiffness entails a downwards shift of the
band gaps lower bound, i.e. the acoustic branch, while the upper bound,
i.e. optical branch, remains unchanged. Clearly, this is related to the shift
of Eigenfrequencies in the system, which can be attributed to the softening
effect of the NSE. Furthermore, Figure 5.7(b) depicts the frequency response
function FRF of the system with 75% of the maximal allowable NSE for 1,
10, and 100 Layers. The reader may note that for the constellations of 1, and
10 Layers, the attenuation zone stretches further than the band gap predicts,
which is a property that cannot be found in classical metamaterials and is
most likely due to the assembly of the springs. More precisely, the resonators
are connected not only to the slab they are intended to act upon, but also,
by means of the NSE, to the previous slab.
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5.3.2 Band gaps in the nonlinear system

In this subsection, the effect of nonlinearity on the band gap behaviour is
discussed. More precisely, the HBM will be applied to the unit cell formu-
lation of the system of EOMs and a dispersion relation, dependent on the
nonlinearity of the system, established. Note that this procedure will provide
an approximate but analytical solution for the nonlinear band-gap problem,
where the Floquet-Bloch theorem is not strictly applicable. However, some
studies have shown that periodic structures with weak nonlinearities can
propagate Bloch-like waves with one dominant component and can, there-
fore, be analysed by means of standard techniques [132]. As a result, the
HBM can be applied to find Bloch wave compatible solutions when coupled
with the Floquet 1D boundary conditions [130, 133]. Additionally, THAs
will be run for different excitation frequencies and amplitudes, in order to
obtain an amplitude dependent FRF, which subsequently can be compared
to the results of the band-gap analysis.

5.3.2.1 Analytical evaluation of nonlinear band gaps

In order to apply the HBM, we first need to define the EOMs of the nonlinear
system. For the sake of simplicity, the displacement of the resonator is
defined as relative to the main mass and is denoted with vx, where x ∈
{j − 1, j, j + 1} denotes the relative unit cell. The EOMs read,

m1ü
j
1 + (2k1+kF )uj1 − k1u

j−1
1 − (kF − kN )(uj−1

1 + vj−1)− k1u
j+1
1 − f = 0

(5.32)

m2(üj1 + v̈j) + (kF − kN )(uj1 + vj) + uj+1
1 (kF − kN ) + f = 0

(5.33)

Here, f describes the nonlinear force, which will be simplified with (5.4)
(5.7) and (5.9) to read,

f(t) = aNSEv(t) + bNSEv(t)3 (5.34)

This system is reminiscent of a duffing oscillator. Note however, that the
resonators are connected to the unit cells above and below them, therefore,
representing a new type of resonator chain. The general formulation of the
harmonic balance method with complex exponentials can be written as,

y (t) =

∞∑
n=1

Yne
inωt + Ȳne

−inωt (5.35)

with y (t) being the motion of a generic degree of freedom in time, n denotes
the harmonic, while Yn and Ȳn are the complex and complex conjugate
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amplitudes of the complex exponential series. Conveniently, the Floquet-
Bloch boundary condition can be applied to this formula as follows,

yj±1 (t) =

∞∑
n=1

(
Yne

inωt + Ȳne
−inωt

)
e±iqn (5.36)

with qn being the wave number for harmonic n. Note that this formulation is
equivalent to the formulation for the linear system and assumes a resonator
mass chain with unitary distance between unit cells. This method can now
be truncated for the first harmonic (n = 1) yielding,

uj±1 (t) =
(
U1e

iωt + Ū1e
−iωt

)
e±iq1 (5.37)

vj±1 (t) =
(
V1e

iωt + V̄1e
−iωt

)
e±iq1 (5.38)

Here U1, Ū1, V1 and V̄1, denote the complex and complex conjugate ampli-
tudes of the harmonic motion of u(t) and v(t), respectively. Subsequently
these expressions must be applied to the EOMs (5.32) and (5.33) and their
harmonics balanced, by equating the coefficients in front of eiωt with 0, which
yields the following set of equations,

− (U1 + U1 (kF − kN ) + V1 (kF − kN ))e−iq1 − U1k1e
iq1 − aNSEV1

− 3bNSEV
2
1 V̄1 + 2U1k1 + U1 (kF − kN )− U1m1ω

2 = 0
(5.39)

− U1 (kF − kN ) eiq1 + aNSEV1 + 3bNSEV
2
1 V̄1 + U1 (kF − kN )

+ V1 (kF − kN )− (U1m2 + U1m2)ω2 = 0
(5.40)

After the substitution of (5.40) in (5.39), U1 can be eliminated and the
following dispersion relation can be obtained,

cos (q1) =
N

D
(5.41)

with the numerator N and the denominator D being equal to,

N = 3bNSEV1V̄1

[
2k1 + 2 (kF − kN )− (m1 +m2)ω2

]
+ aNSE

[
2k1 + 2 (kF − kN )− (m1 +m2)ω2

]
− ω2 [(kF − kN ) (m1 +m2) + 2k1m2]

+ 2k1 (kF − kN ) + ω4m1m2

(5.42)

and,
D = 6bNSEV1V̄1 [k1 + kF − kN ]

+ 2aNSE [k1 + kF − kN ]

+ k1

[
kF − kN −m2ω

2
] (5.43)
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Figure 5.8: Dispersion diagram of the non-linear FULL system with varying
amplitudes and 75% of the maximum NSE value.

The new dispersion relation is dependent on bNSEV1V̄1, which represents
the nonlinearity of the system, and is plotted dependent on the amplitude

|V1| =
√
V1V̄1, but for a constant bNSE in Figure 5.8. Here, the disper-

sion branches move to a higher frequency spectrum since an increase of
nonlinearity entails a higher participation of bNSE , which in turn causes a
stiffening of the system. The upwards shift of the dispersion branches may
seem to indicate that the band-gap shifts towards higher frequencies and
that the band-gap widens, as has been found for classical duffing oscillator
type metamaterials [130, 131]. However, when waves that fall within the
band-gap of a specific level of nonlineartiy are attenuated, their change in
intensity subsequently changes the level activated nonlinearity and therefore
also the resulting band gap of the system. Based on this we conclude that
only the common band-gap of the linear and nonlinear system can be re-
tained, which entails that the frequency range narrows towards the upper
bound with an increase in nonlinearity. This is highlighted with the dotted
line for the lower bound and the dashed line for the upper bound in Fig-
ure 5.8 and will be illustrated more clearly with the simulations in the time
domain conducted in the next section.

The reader may note that Figure 5.8 shows amplitudes of up to 1 m
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5.3. Band-gaps and wave propagation

relative displacement, which is not possible for the geometry shown earlier.
However, the motion range of the resonators is restricted only by the spacing
of the columns, which in turn can easily be changed in order to achieve the
highly nonlinear range. Furthermore, the trend of the dispersion branches
may be interesting for other application at different scales, where the highly
nonlinear regime plays a more pronounced role.

5.3.2.2 FRF of the nonlinear system

In order to evaluate the FRF of the nonlinear system, an iterative time
integration procedure was implemented based on a Newton-Raphson solver
inserted into an implicit Newmark beta scheme. The equations of motion
for the system read,

Mü(t) + Cu̇(t) + Ku(t) + R(u, t) = F(t) (5.44)

where M, C, and K are the linear mass, damping and stiffness matrices,
which can be written for the system displayed in Figure 5.5(b) with an arbi-
trary number of layers. Note that the damping matrix C contains Rayleigh
damping of 3% between 2 and 8 Hz for the system without resonators, in
order to attenuate the vibration of the eigenmodes induced by the transient
nature of the simulation. This further provides the band gap range with
low damping values of less then 3%, while the resonators remain undamped,
which minimizes the effect that the overall damping has on the band-gap
phenomenon. Moreover, R(u, t) denotes the vector containing the nonlin-
ear restoring forces, deriving from the NSE i.e. eqs. (5.4) or (5.7), while
the forcing term F(t) can be rewritten as MIüg(t), since the EOMs were
formulated in terms of relative ground displacement. A harmonic ground
acceleration for every frequency can be obtained with,

üg(t) = Aeiωgt (5.45)

with A being the amplitude of the wave and ωg being the radial frequency
of the excitation. Integrate twice over time and a harmonic ground displace-
ment can be obtained with,

ug = −ω2
gAe

iωgt (5.46)

In order to obtain an FRF, a finite chain of masses and resonators is sub-
jected to this harmonic excitation on one side (the ground) and its absolute
displacement response, once the steady state is reached, recorded on the
other side. For these simulations the true nonlinearity and the polynomial
approximation were considered for 1, 10 and 20 layers, without the pres-
ence of a superstructure and an NSE level of 25% of the maximum. In
Figures 5.9(a), (b), (c), (d), (e) and (f) the FRFs are displayed with the
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frequency on the x-axis, the amplitude of excitation in meters on the y-axis,
and the absolute displacement response of the top layer relative to the ex-
citation frequency on the z-axis. Furthermore, a gray horizontal plane is
drawn at unity, where the response at the top is equal to the input at the
bottom, which highlights the attenuation of the excitation. If the response
is smaller than unity, the signal is being attenuated and a band gap can be
expected. Note that the first mode of the complete 20 layered system (in-
cluding the resonators) was located at ω1 = 3.68rad/s at a modal damping
value of ζ1 = 1.4%, which resulted in a settling time of tS = 4/ (ζ1ω1) = 80s.
Therefore a simulation length of 100 seconds was chosen.

For low excitations the structure remains in the linear range, which en-
tails that the numerical FRF resembles the linear FRF for the lowest ampli-
tude. When observing the FRFs for the true nonlinear system, an area with-
out convergence can be seen in the high frequency, high excitation, region,
due to the infinite stiffness at v → l. Furthermore, when comparing the true
nonlinear system to the polynomial approximation, it becomes clear that the
approximation yields very similar results, even in the highly nonlinear range,
where higher harmonics start to appear. This becomes particularly evident
for the one layered system where a clear upwards shift of the eigenfrequency
can be observed and a second spike representing a higher harmonic appears
at 3 times the value of the systems first eigenfrequency. Furthermore, as dis-
cussed in the previous section, the upper bound of the band-gap, or in the
finite case the attenuation zone, does not shift upwards with an increase in
excitation amplitude (activation of nonlinearity). Instead, Figure 5.9 depicts
clearly that the upper bound shows only a slight upwards shift, due to the
finiteness of the system, while the lower bound approaches the upper bound
with increased nonlinearity. Moreover, with more layers the system tends
to show a better attenuation within the band-gap, which is due the added
layers, but also due to the necessary damping present in the systems. From
these results and the nonlinear dispersion analysis from the previous section,
we conclude that with an increase of excitation amplitude the band-gap will
gradually disappear towards the upper bound.

However, for the system to introduce resonance in the higher harmonics,
some of the wave energy must be shifted away from the primary modes,
which will be discussed with further THAs in Section 5.5. With respect to
the band-gap behaviour on the other hand, the effects of the nonlinearity
are clearly detrimental.

5.4 Optimization of the coupled system

As shown in previous publications [32] and [31], once the Metafoundation is
coupled to a superstructure, the complete coupled system needs to be opti-
mized. For this reason, we propose an optimization algorithm herein, based
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Figure 5.9: Numerical FRF for the FULL system with 25% NSE: (a) 1 layer
and polynomial nonlinearity; (b) 1 layer and true nonlinearity; (c) 10 layers and
polynomial nonlinearity; (d) 10 layers and true nonlinearity; (e) 20 layers and
polynomial nonlinearity; (f) 20 layers and true nonlinearity.
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Table 5.3: List of ground motion records.

Event ID M RJb [km] PGA [m/s2]
Loma Prieta BRN090 6.93 3.85 0.4067
Kalamata 000414ya 5.9 11 0.3738
South Iceland 004673ya 6.5 15 0.4224
L’Aquila Mainshock IT0792ya 6.3 4.8698 0.6287
Friuli 2nd Shock IT0078ya 5.6 26.2079 0.4023
Northridge-01 ORR360 6.69 20.11 0.3749
Umbria Marche 000594ya 6 11 0.4224
Montenegro 000199ya 6.9 16 0.3071
Erzincan 000535ya 6.6 13 0.4224
Friuli Italy-01 A-TMZ270 6.5 14.97 0.2585
South I. (aftershock) 006328ya 6.4 12 0.3914
Ano Liosia 001715ya 6 14 0.3103
L’Aquila Mainshock IT0789ya 6.3 4.6338 0.4024
L’Aquila Mainshock IT0790ya 6.3 4.3919 0.4459
L’Aquila Mainshock IT0791ya 6.3 5.6501 0.3300

on calculation in the frequency domain, which represents a simplification
of the algorithm established in [31] and depends on the structure and the
ground motion.

5.4.1 Ground motion models

To narrow down the expected vibrations for the structure at hand, we chose
to place it at a seismic prone site in Italy, namely Priolo Gargallo, and
characterized it with a uniform hazard spectrum (UHS). The red solid line
in Figure 5.10 shows the UHS of Priolo Gargallo for a return period of
475 years, which can be fitted with real records of ground motions (Figure
5.10(a) dashed grey lines). Here, the average response spectrum of the seis-
mic events, see Figure 5.10(a) black dashed-dotted line, was fitted to the
UHS in a least square sense. These records will later also be used to validate
the functionality of the system and are listed in Table 5.3.

In order to obtain the power spectral density (PSD) of the selected
records, which can be used in the optimization algorithm, Welch’s method
was applied with the following parameters: 8000 data points per seismic
record, 1000 data points per finite section of the signal, 500 data points
overlap, and a standard Hamming window. The resulting average PSD for
each individual record (dashed grey lines) and the total average over all
records (solid red line) are displayed in Figure 5.10(b).
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Figure 5.10: Ground motion spectra: (a) Response spectra including the UHS
and the mean response spectrum; (b) PSDs of all ground motion records and their
average estimated with Welch’s method.

5.4.2 Optimization algorithm

In order to design the Metafoundation, it is necessary to take the feed-
back from the superstructure and the expected excitation into account. The
herein proposed optimization algorithm can do both by imposing the power
spectrum of the ground motion on the complete coupled system. The general
form of the Equations Of Motion (EOMs) reads,

Mü (t) + Cu̇ (t) + Ku (t) = MIüg(t) (5.47)

The mass, stiffness and damping matrices, M, K and C can be constructed
for the dynamic system displayed in Figure 5.5 (a) with the values of Table
5.2 and the indication about the damping given in the text, while I represents
the identity vector. Note that for the optimization procedure, the negative
stiffness enters as a linear spring, since the computations in the frequency
domain demand linearity. Firstly, we multiply the EOMs with e−iωt and
integrate over time to obtain,∫ +∞

−∞
[Mü(t) + Cu̇(t) + Ku(t)] e−iωtdt =

∫ +∞

−∞
MIüg(t)e−iωtdt (5.48)

Subsequently, the response and excitation are transformed into the frequency
domain via a Fourier transform with,

U(ω) =

∫ +∞

−∞
u(t)e−iωtdt (5.49)

F(ω) =

∫ +∞

−∞
MIüg(t)e−iωtdt (5.50)
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where the derivatives of the response can be obtained with,∫ +∞

−∞
u̇(t)e−iωtdt = iω

∫ +∞

−∞
u(t)e−iωtdt = iωU(ω) (5.51)∫ +∞

−∞
ü(t)e−iωtdt = −ω2

∫ +∞

−∞
u(t)e−iωtdt = −ω2U(ω) (5.52)

With expressions 5.49 - 5.52 the system can be reformulated in the frequency
domain as, (

−ω2M + iωC + K
)
U(ω) = F(ω) (5.53)

Here, the transmission matrix can be defined and parametrized as,

H(ω, kF , cR) =
[
−ω2M + iωC(cR) + K(kF )

]−1
(5.54)

where kF is a variable in the stiffness matrix K, and cR represents a viscous
damper, which works in parallel with (kF − kN ), in the damping matrix C.
Note that the frequency of the resonator can be approximated with ωR =√
kF /m2, while its damping can be represented with the critical damping

ratio ζR = cR/2
√

(kF − kN )m2. With these expressions and the definition
of the approximate Power Spectral Density (PSD) of the response given by
[114] we can rewrite the system response in terms of PSD as,

SU (ω, ωR, ζR) = |H(ω, ωR, ζR)|2 Sg(ω) (5.55)

where H(ω, ωR, ζR) denotes the transmission matrix as defined in eq. (5.54)
and Sg(ω) describes the PSD of the excitation F(ω), which is comprised of
the average PSD obtained in Section 5.4.1, multiplied with MI. Further-
more, with the transformation by Wiener-Khintchine [114], the variance of
a signal can be calculated based on the relationship of the autocorrelation
function with the PSD as,

σ2 = R (0) =

∫ +∞

−∞
S(ω)dω (5.56)

here, R (0), S(ω), and σ2
u denote the autocorrelation function, the PSD, and

the variance of the response, respectively. In line with this, the relative
displacement of the impulsive mode and the top slab can be estimated with,

σ2
rel =

∫ +∞

−∞
Sj (ω, ωR, ζR)− Sk (ω, ωR, ζR)dω (5.57)

where, Sj (ω, ωR, ζR) and Sk (ω, ωR, ζR) are the PSDs of the relative ground
displacements of the jth and kth degree of freedom (DOF), while σ2

rel repre-
sents the variance of the relative displacement between those DOFs. Hence,
we formulate the Performance Index PI (ωR, ζR) as,

PI (ωR, ζR) =
σ2
META (ωR, ζR)

σ2
TRAD

(5.58)
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where, σ2
META and σ2

TRAD denote the variance of the relative drift of the
impulsive mode for a system with and without Metafoundation, respectively.

5.5 Behaviour of the coupled system

5.5.1 Behaviour of the system in the frequency domain

When running the optimization procedure on the coupled system subjected
to the average PSD of the earthquakes, the PI can be computed and plotted
for various frequency and damping ratios for the resonators, as displayed
in Figures 5.11(a), (b), (c), and (d). Here, fR corresponds to the optimal
frequency of the resonators, while ζR is the optimal damping ratio of the
resonators, which are computed for the Metafoundation with 0%, 25%, 50%,
and 99% of the maximal admissible NSE value (obtained from eq. (5.25)).
Note that a change in frequency allows for a recalculation of the maximal
value of kN , which would entail an iteration of the optimization scheme
for every increase in frequency. This would multiply the computational
effort by the amount of iterations necessary to find the final value, and
has therefore been omitted in the interest of efficiency. Note further that
the actual applicable NSE value is most likely determined by construction
requirements, hence smaller than the theoretically possible one. Instead, the
initial guess of kF was chosen to produce a frequency of 3 Hz and used to
determine the maximal admissible NSE value.

As shown in Figure 5.11 the value of the PI decreases with an increase
in NSE value, while the optimal tuning frequency and damping ratio of the
resonator have a clear effect on the PI. Table 5.4 summarizes the optimal
parameters for all investigated systems and displays that the optimal value
of the stiffness tends to increase for high NSE values in the REDUCED and
MINIMAL systems, while for the FULL system it decreases first and then
increases again. This is most likely due to the NSE changing the frequency
of the resonators, as can be observed in Figure 5.7; and the NSE reducing
the overall stiffness, thereby shifting the critical excitation frequency of the
tank. From this tendency we conclude that an optimization, as carried out
herein, is necessary for the design of a negative stiffness endowed system and
that the superstructure should not be neglected. Furthermore, it is worth
noting that the surface becomes flatter with an increase in NSE value, which
entails that for higher NSE values the system becomes less dependent on the
optimal tuning of the resonators. This effect is particularly interesting for
the frequency of the resonator, as a precise tuning can be challenging in a
real-life application. A similar trend can be observed for the damping ratio,
where the optimal values are located at very high damping ratios of 19% to
30%, while only small improvements in terms of PI can be obtained above
a value of 10%.
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Table 5.4: Results from the optimization for the relevant Metafoundation setups.

NSE FULL REDUCED MINIMAL
kNmax fR ζR PI fR ζR PI fR ζR PI
0 4.00 0.19 0.502 4.75 0.11 0.62 5.85 0.03 0.882
25 3.70 0.23 0.388 4.85 0.14 0.496 5.95 0.04 0.726
50 3.55 0.24 0.286 4.90 0.17 0.407 6.10 0.06 0.617
75 3.95 0.27 0.211 4.80 0.19 0.332 6.25 0.07 0.530
99 4.50 0.30 0.161 5.00 0.20 0.265 6.45 0.08 0.462

Figure 5.11: Optimization surface plots for: (a) PI for the FULL system with
0% kNmax; (b) PI for the FULL system with 25% kNmax; (c) PI for the FULL
system with 50% kNmax; (d) PI for the FULL system with 99% kNmax.

5.5.2 System response in the time domain

From the optimal values determined in the previous section, the stiffness of
spring kF and the damping value of cR can be evaluated from the expressions
kF = ωR

2m2 and cR = ζR 2
√

(kF − kN )m2. Furthermore, the length of
the compression member was chosen beforehand and is shown in Table 5.1,
while the Prestress force in the compression member can be obtained from
the relationship aNSE = −P/l where aNSE = kN with,

P = −kN l (5.59)
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Besides this, the nonlinearity parameter ε yields realistic values for kP when
set to 0.95, where kP can be evaluated form (5.10) as,

kp =
P

(1− ε)l
(5.60)

With these parameters and the optimal values found from the optimization,
summarized in Table 5.4, the complete nonlinear system can be constructed
and subjected to the ground motions from Table 5.3. For the sake of com-
parison, various Metafoundation layouts were considered and the resulting
base shear developments of the respective tank evaluated with,

V (t) = [ui (t)− u1 (t)]ki + [uc(t)− u1(t)]kc (5.61)

where, V (t), ui (t), ki, uc (t), kc, and u1 (t) are the base shear development,
the displacement of the impulsive mode, the stiffness of the impulsive mode,
the displacement of the convective mode, the stiffness of the convective mode
and the displacement of the top slab of the foundation, respectively. For cal-
culating the response of the traditional system, the two SDOFs representing
the tank were subjected to the ground motions without Metafoundation,
which is equivalent to the tank being clamped to a traditional foundation,
such as a concrete slab. The maximum base shear during each earthquake
was considered as the governing performance measure and recorded for the
Metafoundation and traditional foundation layouts with,

η =

∑15
n=1 max(V (t)

meta
n )∑15

n=1 max(V (t)
trad
n )

(5.62)

Here, n identifies the earthquake, while the sums simply cumulate the max-
imum base shear values of each seismic event. Figure 5.12(a), (b), and (c)
shows the results for the FULL, REDUCED, and MINIMAL systems en-
dowed with varying levels of NSE, thereby displaying how the performance
measure η improves with an increase in NSE value. Moreover, when com-
paring the various setups without NSE (0% NSE), it becomes clear that the
η value is significantly lower for the larger systems FULL η = 0.79 and RE-
DUCED η = 0.82 compared to η = 0.93 for the MINIMAL system. This is
due to the stiffness of the structure, which is determined by the structural
design of the columns, limiting the minimal size of the Metafoundation with-
out NSEs. However, when considering the positive impact that the NSE has
on the system performance, it becomes possible to achieve a similar perfor-
mance with the MINIMAL system with 50% of the maximal allowable NSE
value. Furthermore, it is interesting to observe that the maximal recorded
base shear for each earthquake tends to show less variation for higher NSE
values. This suggests that with greater NSE, the performance of the system
becomes more reliable across various seismic records, which is a very de-
sirable property, due to the extreme variability of frequency and amplitude
content of earthquakes.
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Figure 5.12: Time history analyses with ε = 0.95 and various levels of NSE: (a)
FULL system; (b) REDUCED system; (c) MINIMAL system.
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5.6. Conclusion

In Subsection 5.3.2.2 we mentioned that the introduction of the 3rd har-
monic may transfer some energy from the first mode to this higher harmonic,
and therefore, has the potential to improve the systems performance. How-
ever, the investigated systems FULL, REDUCED and MINIMAL do not
enter the strongly nonlinear range, and therefore, further calculations are
carried out herein. A study of the two established nonlinear parameters l
and ε is conducted for l being equal to 1, 0.1, 0.09, 0.05, 0.02, and 0.01 m, and
ε being equal to 0.5, 0.9, and 0.99. These values are applied to the FULL sys-
tem with 75% NSE, while the results are reported in Figure 5.13(a), (b), and
(c). Although these values are geometrically very unrealistic for the system
under study, other applications with a different scale may reach the nonlin-
ear range, and therefore, may profit from the nonlinear effects. However,
Figure 5.13(a), (b), and (c) depicts the trend of the system when entering
the nonlinear regime and shows clearly that an increase in nonlinearity acts
detrimental on the performance of the system. More precisely, there is an
obvious degradation of the performance value from η = 0.532 for the system
with a compression member length of 1 m, to η = 0.90 for a compression
member length of 0.01 m. Curiously, the setups with l = 0.05 m and l = 0.09
m show a very small improvement over the quasi linear system for the earth-
quakes 004673ya and 000594ya. For most other events however, the systems
perform significantly worse and an advantage cannot be concluded. On the
other hand, the trend of the system with a decrease in ε value shows that
the system is less likely to go in the nonlinear range even for very small l
values, which may be useful for the design of the mechanism.

5.6 Conclusion

In this work, a new type of NSE, based on a compression member in a sta-
ble snap through position, has been developed for the application to seismic
metamaterials. The composite system showed enhanced wave attenuation
characteristics and was studied on its fully nonlinear behavior via time and
frequency domain analyses. Due to the implemented NSE as well as the
new type of established resonator chain, the system displayed a widening of
the band-gap and an amplification of the attenuation capabilities with an
increase in NSE. It is further worth noting that a finite system exerted an
attenuation zone that stretched into an even lower frequency range then the
band-gap of the periodic system predicted. The nonlinearity on the other
hand, proved to have a detrimental effect on the band-gap range, since an
increase in activated nonlinearity narrowed the band-gap towards its upper
bound. Besides the study of the NSE enhanced foundation as a periodic
structure, also its application to fuel storage tanks as a seismic protection
system was discussed herein. Due to the feedback from the superstructure
and the shift of eigenfrequencies caused by the NSE, the tuning of the finite
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Figure 5.13: Time history analyses with various ε and l values for a system with
75% NSE: (a) ε = 0.99; (b) ε = 0.90; (c) ε = 0.50.
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5.6. Conclusion

systems necessitated an optimization algorithm. Note that the algorithm
proposed herein considered the superstructure as well as the ground motion
spectrum and could in principle optimize any number of system parameters.
After optimizing the system a set of spectrum compatible ground motions
was used to evaluate its performance, which demonstrated that a size re-
duction to 1/3 of the original size was achievable with 50% of the physically
allowable negative stiffness. Additionally, the NSE enhanced systems showed
a more reliable performance across various earthquakes, which is a highly
desirable property, due to the strong variability in frequency and amplitude
content of seismic records. It is further worth mentioning that soil structure
interaction has not been taken into account directly, i.e. by modelling the
soil underneath the foundation, but indirectly by selecting a ground mo-
tion spectrum that corresponds to a specific site with a specific soil type.
Therefore, the full coupling effects of soil structure interaction need to be
investigated in future studies, since they may provide further interesting res-
onant behavior, especially for vertical component damping. Lastly, it should
be acknowledged that the mechanism was designed in a general way and may
be applied to other vibration problems, where shear type waves need to be
attenuated.

Upcoming developments With the proposed mechanism the system can
be significantly reduced in terms of size. However, the actual motion of the
resonators is still assumed to be on frictionless sliding surfaces, which leads
to the investigation of wire ropes as resonator suspension in the next chapter.
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Chapter 6

Wire Ropes for Resonator
Suspension

Abstract. Periodic metafoundations have proven to inherit valuable prop-
erties from wave propagation in phononic periodic structures in the very
low-frequency regime. In this context, the impact that massive resonators
with varying frequencies or devices with hysteretic behaviour can entail on
the system performance is still unknown. For this purpose, we develop and
optimize two finite locally resonant metafoundation systems in this paper:
(i) a foundation endowed with resonators, linear springs and linear viscous
dampers (linear devices) tuned to multiple frequencies; and (ii) a foundation
equipped with nonlinear hysteretic dampers (nonlinear devices). Both are
optimized considering the stochastic nature of the ground motion, modelled
with a modified Kanai-Tajimi filter in the stationary frequency domain, and
a massive superstructure, chosen to be a fuel storage tank. In order to take
all of the above-mentioned effects into account, we establish a procedure that
is able to optimize any number of parameters. More precisely, to optimize
the nonlinear behaviour of damper devices we employ a Bouc-Wen hysteretic
model and subsequently approximate it with stochastically equivalent linear
differential equations. The optimal values for the Bouc-Wen coefficients can
then be found with iteration of the stochastic linearisation technique and
the previously established optimization procedure. Finally, we test the opti-
mized systems against natural seismic records both with linear and nonlinear
time history analyses.

6.1 Introduction

Applied research in phononic (periodic) materials and structures has been
abundant in recent years especially in the mid-frequency regime. See among
others, the dense state of art of Hussein et al [134], the investigation in acous-
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6. Wire Ropes for Resonator Suspension

tic metamaterials [135], the review of waves behaviour in structured mediums
[131] and the relevant problems of optimization [136, 137]. Investigations in
the field of solid-state physics have shown that certain crystal arrangements
may be used to manipulate the energy or patterns of acoustic (mechanical)
wave energy [5, 6, 138].These elastic materials, termed phononic crystals,
can be designed to produce specific gaps in the frequency response of the
structure. More precisely, when the frequency contents of a wave fall within
the range of the frequency band gap of a periodic structure, the wave, and
its energy, cannot propagate and become evanescent. While acoustic/elastic
metamaterials have provided a root to subwavelength applications, it is still
challenging to control and attenuate waves in the ultralow-frequency domain.
Moreover, the analysis of nonlinear metamaterials is still challenging. For
instance, from a perturbation approach specifically designed for weakly non-
linear periodic chains [129] clearly appears that: (i) nonlinear wave equations
change with amplitude; (ii) the so called self action changes wave propaga-
tion characteristics; and (iii) analysis methods in the presence of self-action
often do not trace all solutions when more than one dominant component
is involved. Within linear metamaterials, a new category of applications of
phononic – or periodic - structures as alternative to classical seismic isola-
tors to earthquake mitigation has received growing interest [27, 30, 32, 92].
Their increasing popularity resides in the possibility of exploiting the ad-
vantages of periodic structures that are able to attenuate waves in certain
frequency ranges. In particular, the authors exploit the advantages of lo-
cally resonant acoustic metamaterials (LRAMs), due to their capability of
attenuating low-frequency waves by means of unit cells much smaller than
the wavelength of the desired frequency region. In fact, the most common
solutions of isolation use lead-rubber bearings [50] or spherical bearing de-
vices [77]. Although they are quite effective for the horizontal components
of earthquakes, they require two strong floors, exert a very high stiffness
against the vertical component of an earthquake [139], and seem to be in-
effective for large structures subjected to rocking [89]. In order to reduce
the seismic response of a superstructure, Casablanca et al and Cheng and
Shi studied periodic and finite locally resonant foundations [27, 30]. Al-
though good results were obtained in terms of response reduction, neither of
the proposed periodic systems were designed for gravity and/or seismic load
combinations. Furthermore, the authors did not take into account the feed-
back forces from superstructures to metafoundations. In order to overcome
these drawbacks, other researchers [31, 32] proposed a finite lattice LRAM,
the so-called Metafoundation, for the seismic protection of storage tanks.
The foundation consists of standard steel columns and concrete slabs that
define the primary load bearing structure, while massive concrete masses
are considered as resonators. Moreover, the foundation was designed to re-
main undamaged for safe shutdown earthquakes (SSEs). In order to evaluate
the optimal parameters of the resonators and to account for the stochastic
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nature of seismic waves, the authors proposed an optimization procedure
based on computations in the frequency domain. As a result, they showed
that the one-layered Metafoundation is the most efficient solution for at-
tenuating seismic waves. Eventually, LRAMs can be profitably used for
seismic mitigation of new plant components [77]. For existing plant compo-
nents other arrangements of resonators were proposed [139]. Nonetheless,
two basic issues remain unresolved: first, the optimization of multiple res-
onators acting in the Metafoundation associated with different parameters;
and second, the optimization of some structural devices, i.e. springs and/or
dampers, operating in the nonlinear regime. With regard to the first issue,
i.e. the optimization of multiple resonators, Ma and Sheng [135] highlighted
the potential benefits of designing multiple resonators exhibiting both mass
and bulk modulus dispersion between resonances. More precisely, a meta-
material endowed with local resonators can exert an apparent negative mass
as well as an apparent negative bulk modulus. These properties can be ex-
ploited for the attenuation of acoustic waves, and therefore, can be suitably
adopted for the design of optimal multiple tuned resonators. As far as the
second issue is concerned, i.e. the selection of proper hysteretic dampers,
Basone et al [31] suggested to use wire ropes; they represent simple devices
able to both effectively suspend concrete resonators inside the foundation
and allow motion in all three main directions. Their behaviour is quite com-
plex and some researchers [108, 140, 141], among others, characterized their
main nonlinear properties. Nonetheless, while the mechanical flexibility of
wire ropes provides good isolation properties, the sliding friction between
the intertwined cables results in high dissipative capabilities. As a result,
these devices can achieve equivalent damping ratios of 15-20 percent while
showing low production and maintenance costs. In view of optimization,
the cyclic behaviour of wire ropes can be reproduced with the well-known
hysteretic Bouc-Wen model [108, 141–143]. This model is quite popular
because it describes the behaviour of a nonlinear hysteretic system with a
compact first-order differential equation [144]. Due to its versatility and
mathematical tractability, the Bouc-Wen model has gained popularity and
has been applied extensively to a wide variety of seismic engineering prob-
lems [145–147]. In order to estimate the peak inelastic response of yielding
structures modelled as nonlinear MDoF systems, Spanos, Giaralis and co-
workers [148–150] profitably used bilinear and hysteretic models within a
frequency domain-based stochastic framework.

6.1.1 Scope

In order to achieve the best performance of a finite locally resonant Metafoun-
dation, the following objectives are pursued hereinafter: (i) the optimal tun-
ing of multiple resonators to different frequencies and damping within differ-
ent configurations of metafoundations; and (ii) the optimization of the non-
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6. Wire Ropes for Resonator Suspension

linear behaviour of wire ropes reproduced with hysteretic Bouc-Wen models.
The superstructure is represented by a fuel storage tank and its equivalent
1D lumped mass model [69]. Therefore, the objective function for both (i)
and (ii) is represented by the interstory drift or the absolute acceleration
of the impulsive mode of the tank. In particular, the metafoundation is
designed to remain undamaged for an active seismic site located in Priolo
Gargallo, Sicily, Italy. The slender tank (superstructure) instead, was part of
an existing plant, i.e. tank nr. 23 or nr. 24 of Case Study nr. 1, analyzed in
a European research project [151]. In view of a consistent seismic input for
linear/nonlinear time history analyses, a set of natural earthquakes that cor-
respond to safe shutdown earthquakes (SSE) events are selected from Italian
and European databases and fitted in average to the uniform hazard spec-
trum (UHS) of Priolo Gargallo. In order to take into account the stochastic
nature of the seismic input, the computations are carried out in the frequency
domain; and because the analysis of nonlinear periodic systems entails the
aforementioned difficulties [129], a linearization technique is assumed for the
Bouc-Wen model considered in objective (ii). More precisely, a stochastic
equivalent linearization technique (SLT) is employed [152]; in fact, an SLT
can, in a relatively straightforward manner, be extended to MDoF systems
[150]. Therefore, an average power spectral density (PSD) function of those
accelerograms is evaluated. The resulting PSD function is fitted with a
Kanai-Tajimi filter [113] modified by Clough and Penzien [114] and, sub-
sequently, adopted in the optimization procedure. The resulting optimized
Metafoundations were then verified through nonlinear time history analyses
(THAs) of the coupled systems subjected to the aforementioned ground mo-
tions. The rest of the paper is organized as follows. Firstly, details about the
modelling of the various components of the coupled foundation-tank system
are provided in Section 6.2. Section 6.3 provides the optimization procedure
in the frequency domain for purely linear elements, while the performance of
the linear optimized system is verified by means of THAs. Section 6.5 on the
other hand deals with the coupled system endowed with nonlinear compo-
nents, where the SLT and its implementation in the optimization procedure
is discussed. The choice of the optimal parameters of BW models that de-
scribe the hysteretic behaviour of the damper devices are discussed in Section
6.6, where the results from the optimization are commented. Furthermore,
each optimized nonlinear system is evaluated by means of nonlinear THAs
for all considered earthquakes. Finally, conclusions and future developments
are presented in Section 6.7.

6.2 Metamaterial concept and dynamic system

The Metafoundation is composed of a finite number of unit cells realized
with standard steel columns endowed with hollow sections and concrete
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slabs, sketched in Figure 6.1(A). In each unit cell there are moving concrete
masses, i.e. the resonators, that are linked via springs to the foundation as
shown in Figures 6.1(B) and (C). The construction site was chosen to be
Priolo Gargallo (Italy), which is characterized by a peak ground accelera-
tion (PGA) of 0.56g at a return period of 2475 years. In agreement with
the paper objectives, the metafoundation was designed to remain undam-
aged even for safe shutdown events (SSE), according to the Italian seismic
code NTC [107]. Two foundations were designed with one and two layers
of resonators, respectively. Both systems have a height of 4 m, and are
comprised of columns, which represent the vertical load bearing system, and
slabs that support the resonators. The columns are made of steel hollow
sections and govern the horizontal stiffness of the structure. Their dimen-
sions are 300x300 mm and 230x230 mm for the one and two layered case,
respectively, while the wall thickness of the hollow section is 30 mm for both.
These dimensions are the results of the linear elastic design according to the
NTC 201839, and determine the minimal allowable column stiffness. The
hydrodynamic response of liquid containers, can be profitably simulated by
means of Housner’s models [153, 154]. The models can approximate inter-
nal actions for regular containers assuming that the water can be split into
impulsive and convective masses. More recently, Malhotra [69] developed a
simplified procedure for seismic analysis of cylindrical liquid-storage tanks.
The relevant model reduces the tank response to the contribution of two
main impulsive and convective modes, in which also the tank wall thickness
is taken into account. Furthermore, in view of effectiveness, the concrete
resonators are assumed to be suspended by wire ropes, as depicted in Figure
6.1(B) and (C), that allow each resonator to move in X, Y and Z direc-
tions. Details on the distribution of steel wire ropes in the single unit cell
are provided in Figure 6.2.

6.2.1 Metamaterial concept and negative apparent mass

In seismic engineering, two types of periodic materials are currently investi-
gated: phononic crystals (PCs) and LRAMs. The main advantage of both
consist in designing a periodic structure that exhibits stop bands capable of
forbidding elastic wave propagation within a desired frequency region. In
particular, LRAMs are more suitable than PCs at ultralow frequencies due
to their capability to exhibit very low frequency band gaps, endowed with
unit cells much smaller than the wavelength of the desired frequency region
[29, 30, 66, 91]. In this regard, the Metafoundation depicted in Figure 6.1
can be designed as a finite periodic system that can suppress seismic waves
in certain frequency regions [27, 92]; these regions, the so-called band gaps,
are analytically defined through a lattice dispersion analysis using the Flo-
quet–Bloch theorem [73]. More precisely, it is possible to reduce the study
of an infinite lattice to the analysis of a single unit cell with Floquet-Bloch
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Figure 6.1: Coupled foundation-tank system with two layers: (A) isometric view,
(B) layout and (C) cross section.

quasi-periodic boundary conditions. As a result, a frequency dispersion anal-
ysis can be carried out and the band gaps of the system can be found [32].
More precisely, Figure 6.3 shows the dispersion relation of an infinite peri-
odic stack of the unit cells described in Figure 6.1. It demonstrates that
a band gap forms in a predefined low-frequency range where elastic waves
become evanescent. It should be emphasized that these considerations are
obtained considering the foundation system depicted in Figure 6.1 as an in-
finite lattice. However, since the Metafoundation is finite, further analyses
are needed. As shown by [32] the horizontal stiffness of the foundation is
one of the governing factors for its effectiveness. It follows that the elastic
design of the foundation required by NTC 201839 provides a minimum value
for the columns cross-section depicted in Figure 6.2(A). Conversely, in or-
der to achieve the largest antiresonance effects or the maximum attenuation
effects, resonator masses are massive and compatible with cell geometry to
exploit the negative apparent mass concept [135]. In this respect and based
on Figure 6.4, the apparent masses experienced by the exterior cells read,

M1
app(ω) = m1 −

k1

ω2
+

k2

ω2
2 − ω2

(6.1)

M2
app(ω) = m1 −

k1

ω2
+

k2

ω2
2 − ω2

+
k3

ω2
3 − ω2

(6.2)

where m1 and k1 are the mass and stiffness of the exterior unit cell, m2
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Figure 6.2: (A) Configuration of a single unit cell equipped with steel wire ropes
(measures in cm); (B) details of a single wire rope and (C) hysteretic loop of
Bouc-Wen model.

and m3 are masses, k2 and k3 are stiffnesses of resonators, ω2 and ω3 are
relevant frequencies of resonators while ω represents the forcing frequency. It
is clear that the effective mass M1

app(ω) becomes negative, in Figure 6.4(A),
when the forcing frequency is close to resonance. Since the acceleration re-
sponse is opposing to the applied force, the response amplitude is reduced
and attenuation zones appear. This effect is greatly magnified as the in-
put frequency ω approaches the local resonance frequency. Further enhance-
ments can be obtained adding resonators with different resonant frequencies,
as shown in Figure 6.4(B). Indeed, a double negativity can be observed close
to the second resonant frequency of the system. As a result, further benefits
can be obtained when multiple resonators are differently tuned. These bene-
fits will be achieved with different optimal configurations of Metafoundations
presented in the next subsection.

6.2.2 System modelling and reduction

For simplicity and without loss of generality, we consider only a seismic in-
put along the X direction. As a result, through dynamic condensation of
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Figure 6.3: Dispersion relation for an infinite stack of unit cells with the geometric
properties of the two-layered foundation case. Figure from [31]

Figure 6.4: Apparent mass as a function of forcing frequency: (A) single and (B)
double unit cell case.
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both mass and stiffness, the foundation-tank coupled system sketched in
Figure 6.1 can be modelled as a full mass system (FMS) in the X-Z plane,
as shown in Figure 6.5(A). The result of the dynamic condensation is exact
since all resonators in the Y direction are assumed to be endowed with the
same mass and stiffness in each layer. In order to deal with simpler coupled
systems and to take benefit in the optimization from different stiffness and
damping values, both condensed mass (CMSs) and reduced mass systems
(RMSs) have been also considered, as indicated in Figure 6.5(B) and (C),
respectively. More precisely, to considerably reduce the computational effort
during the optimization procedure, the CMS is obtained condensing all res-
onators in the X direction. However, the CMS cannot benefit from different
modal contributions in each layer. As a result, the RMS can consider differ-
ent resonator parameters during the optimization, entailing a slight increase
in computational effort. Along these lines, Figure 6.5 shows the principal
configuration of the three analysed systems, for the two-layered case. Here,
mi, ci and ki represent mass, stiffness and damping coefficients of the im-
pulsive mass of the tank, respectively, while mc, cc and kc represent mass,
stiffness and damping coefficients of the relevant convective mass. We un-
derline that resonators considered equal are endowed with the same mass
and the same stiffness. This represents an ideal condition, since statistically
some variations of mass and stiffness exist. However, their variations were
neglected for this study. The system of equations of motions (EOMs) of the
systems depicted in Figure 6.5 reads,

Mü(t) + Cu̇(t) + Ku(t) = F(t) (6.3)

where M, C, and K are the mass, damping, and stiffness matrices, respec-
tively, while ü(t), u̇(t) and u(t) denote acceleration, velocity, and displace-
ment vectors. Furthermore, F(t) = −Mτ üg(t) is the forcing vector, where
τ is the mass influence vector and üg(t) represents the ground accelera-
tion. In order to evaluate the dynamic properties of the RMS depicted in
Figure 6.5(C), we employ the system equivalent reduction expansion proce-
dure (SEREP) proposed by O’Callahan [155]. This procedure allows for the
reduction of some modal vectors of the FMS systems. More precisely, the
convective mode and the relevant DoF of the tank can be eliminated from the
full set of ‘n’ DoFs, while the effects on the lower ‘a’ modes can be retained.
Hence, the SEREP technique is based on the following transformation,

un = Tua (6.4)

where T = ΦnΦg
a is the transformation matrix, with Φn being the modal

matrix of the original system, while Φg
a represents the generalized inverse of

the modal matrix of the active/reduced system. More precisely, Φg
a can be

evaluated as,
Φg

a = (ΦT
a Φa)−1ΦT

a (6.5)
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Figure 6.5: Models of the Metafoundation for the two-layered case: (A) FMS;
(B) CMS and (C) RMS.

As a result, the system matrices of the reduced system read M̃ = TTMT,
K̃ = TTKT and C̃ = TTCT, while the forcing term becomes F̃ = −TTMτ üg.
Since the optimization procedure requires an inversion of the transmission
matrix T for each frequency interval, as illustrated in Section 6.3, SEREP
contributes to the reduction of the run time of the optimization algorithm.

6.2.3 Modelling of wire ropes

In order to model the nonlinear behaviour of wire ropes, we employ the Bouc-
Wen model, which has been extensively used in the literature to capture
the hysteretic behaviour of many seismic devices [108, 140, 141, 146]. In
accordance with this model, for a SDoF system we get

mü(t) + cu̇(t) +R(t) = F (t) (6.6)

where R(t) defines the nonlinear restoring force,

R(t) = αku(t) + (1− α)kuyz(t) (6.7)

In particular, k and uy represent the yielding stiffness and displacement,
respectively, whereas the dimensionless hysteretic component z is given by
the solution of the nonlinear differential equation,

ż(t) = u−1
y

[
Au̇(t)− γ|u̇(t)||z(t)|n−1z(t)− βu̇(t)|z(t)|n

]
(6.8)

Here A, β, γ, and the exponent n are parameters that control the shape and
smoothness of the force-displacement loop. Moreover in (6.7), α = kp/k0

defines the post-yielding to pre-yielding stiffness ratio, with

k0 =

(
δR(u, u̇, z)

δu

)
z=0

= αk + (1− α)kA (6.9)

kp =

(
δR(u, u̇, z)

δu

)
z=zmax

= αk0 (6.10)
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where zmax = [A/(β + γ)]
1/n

. For suitable values of the parameters A, β, γ
and n, the Bouc-Wen model can yield hardening or softening nonlinearities.
A hardening behaviour is simulated when |γ| > |β| and γ < 0; otherwise, a
softening behaviour is obtained. Furthermore, n modulates the sharpness of
yield, with n → inf representing the bi-linear elasto-plastic hysteresis case.
By choosing n = 1, (6.8) can be analytically solved with simple exponential
functions [146]. Explicit expressions for n = 1 and n = 2 are also available in
Demitriades et al. [145]. Other parameter values used for the optimization
process are discussed in Subsection 6.6.1.

6.2.4 Accelerogram selection and seismic input model

In order to evaluate the seismic activity of the construction site, i.e. Priolo
Gargallo, a set of 12 natural accelerograms were selected from Italian and
European databases with 2% probability of exceedance in 50 years. These
accelerograms are selected so that their mean spectrum fits in a least-square
sense the uniform hazard spectrum (UHS) of Priolo Gargallo. It is well
known that the UHS is often overly conservative because it combines the
hazard from different sources and does not reflect a realistic spectrum that
can be expected to occur during a single earthquake. However, the use of
a conditional mean spectrum (CMS) that matches the UHS level at the
fundamental period of the system is overly complex and limiting for the
problem at hand. The optimization procedures performed in the frequency
domain, see Section 6.3 and 6.5, assume that the seismic input is a weakly
stationary Gaussian filtered white noise random process with zero mean and
spectral intensity S0. In order to approximately take soil into account, we
use the Kanai-Tajimi filter [113]; and to avoid unrealistic high values in
the low-frequency range, a second filter in series proposed by Clough and
Penzien [114] was adopted. For brevity, it is referred to as KTCP filter. The
relevant power spectral density (PSD) function can be expressed as,

Süg
= S0

4ζ2
gω

2
gω

2 + ω4
g

4ζ2
gω

2
gω + (ω2

g − ω2)2

ω4

4ζ2
fω

2
fω

2 + (ω2
f − ω2)2

(6.11)

where ωg and ζg are the frequency and damping ratio that describe the soil
characteristics, while ωf and ζf denote the parameters of the low pass-filter
[114], respectively. In the time domain, the KTCP model is governed by the
following differential equation,

üg = ω2
gug + 2ζgωgu̇g − ω2

fuf − 2ζfωf u̇f (6.12)

which can be completed in a state-space variable form as follows,

üg = aT
f uf (6.13)

u̇f = Afuf + Vff(t) (6.14)
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with,

Af =


0 1 0 0
−ω2

f −2ζfωf ω2
g 2ζgωg

0 0 0 1
0 0 −ω2

g −2ζgωg

 (6.15)

and,

uf =


uf
u̇f
ug
u̇g

 af =


ω2
f

−2ζfωf

ω2
g

−2ζgωg

 Vf =


0
0
0
1

 (6.16)

where f(t) is the bedrock Gaussian zero-mean white-noise process. The filter
parameters are chosen to match the ground motion characteristics of Priolo
Gargallo, at a return period of 2475 years. More precisely, the parameters
of the KTCP filter fit in a least square sense the stationary PSD function
of the aforementioned 12 accelerograms. Their values amount to S0 = 0.09
(m2/s3), ωg = 14 (rad/s), ζg = 0.6, ωf = 0.75 (rad/s) and ζf = 1.9.

6.3 Optimization of the Metafoundation endowed with
linear devices

The proposed Metafoundation is characterized by two sets of parameters:
(i) parameters that derive from construction or feasibility constraints, e.g.
column size, slab thickness, etc.; and (ii) parameters that can be chosen more
freely, i.e. stiffness and damping parameters of the resonators. In this regard,
to maximize antiresonance or negativity effects, resonator masses are set as
the largest mass compatible with the unit cell dimensions. Owing to the
seismic input defined in (6.11), the herein proposed optimization procedure
is based on computations in the frequency domain, can, in principle, optimize
any number of parameters. The application of the Fourier transform to (6.3)
and elimination of eiωt, entails,

ω2Mu(ω) + iωCu(ω) + Ku(ω) = F(ω) (6.17)

where ω represents the circular frequency. From (6.17) we can define the
transmission matrix H(ω) as follows,

H(ω) = [−ω2M + iωC + K]−1 (6.18)

Therefore, the PSD of the j-th DoF can be approximated with,

SQj (ω) = |Hj(ω)|2Süg (ω) (6.19)

where Hj(ω) and Süg
(ω) are the j-th transfer function component and the

PSD of the force acting on the system, respectively. Furthermore, we assume

138



6.3. Optimization of the Metafoundation endowed with linear devices

the validity of the Wiener–Khinchin theorem for a weakly stationary random
process, which results in R(τ) and the PSD being a Fourier-transform pair.
Subsequently, the Variance of a signal can be calculated with,

σ2
j =

∫ +∞

0

SQj
(ω)dω (6.20)

The optimization criterion is chosen to be the minimization of the interstory
drift or the absolute acceleration of the impulsive mode of the tank. Note,
that for slender tanks, this mode has proven to dominate the base shear
response of the whole system. Moreover, from (6.6), for the linear case, one
obtains,

|mütot| = | − cu̇− ku| (6.21)

where the relationship between interstory drift and absolute acceleration
depend on damping forces. Therefore, the variance of the interstory drift
and the absolute acceleration read,

σ2
dr =

∫ +∞

0

|Himp(ω)−Htl(ω)|2Süg
(ω)dω (6.22)

σ2
acc =

∫ +∞

0

|1− ω2Himp(ω)|2Süg (ω)dω (6.23)

where Himp(ω) and Htl(ω) are the transfer functions of the impulsive mass
and top layer, respectively. Furthermore, the dimensionless performance
indices can be defined as follows,

PIdr =
σ2
dr

σ2
dr,fix

(6.24)

PIacc =
σ2
acc

σ2
acc,fix

(6.25)

where σ2
dr,fix and σ2

acc,fix represent the variances of interstory drift and ab-
solute acceleration of the impulsive mass for a tank without Metafoundation,
respectively. These indices provide an estimation of the response reduction,
and therefore, need to take up their minimal value for an optimal coupled
system.

6.3.1 Definition of optimization problem

The design variables ζk,n and fk,n define damping ratio and frequency of
the n-th resonator in the k-th layer, respectively. They are collected in the
parameter vector,

X = [ζ1,1, ζk,n, f1,1, fk,n]T (6.26)
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6. Wire Ropes for Resonator Suspension

Therefore, the optimization problem can be stated as,

min(PIdr(X)) or min(PIacc(X)) (6.27)

for CMS, RMS and FMS cases, respectively. Furthermore, the following
bounds hold,

0.05 ≤ ζk,n ≤ 0.20 and 1Hz ≤ fk,n ≤ 4Hz (6.28)

Details on the chosen bounds in (6.28) are provided in the following Subsec-
tion. The optimization procedure is carried out with the aid of a numerical
search algorithm, i.e. the built-in MATLAB ’fmincon’ function. It imple-
ments a nonlinear programming solver, based on the interior-point algorithm
[156], with embedded constraint functions for the sought tuning variables
collected in the parameter vector X.

6.3.2 Results of optimization

The optimization procedure described in Subsection 6.3.1 is carried out for
CMS, RMS and FMS, for both one and two-layered foundation cases. In
this respect, Table 6.1 summarizes the values for CMS, while Tables 6.2
and 6.3 show the results for RMS, and FMS, respectively. When compar-
ing the different systems to each other, the PI value slightly decreases from
CMS to RMS. The RMS allows multiple frequencies for different resonators,
thereby increasing its performance. This consideration is consistent with
the concept of double negativity described in Subsection 6.2.1. However,
the advantage obtained with multiple resonator frequencies is very small,
partly due to the large resonator masses. In sum, the mass of the resonators
provides a great contribution to the seismic isolation of the system; tun-
ing the resonators to different frequencies and damping ratios, on the other
hand, does not provide a significant advantage. The optimization of the PI
via the interstory drift or the absolute acceleration of the superstructure
yield almost the same values for resonator frequencies and damping ratios.
In fact, interstory drift and absolute acceleration of the impulsive mode of
the tank differ only through damping forces as implied by (6.21). Damping
ratios, on the other hand, seem to decrease when multiple resonators are
tuned to different frequencies. This could potentially be useful when it may
be difficult to achieve high damping ratios. With regard to the bounds of
(6.28), Figure 6.6(A) shows the optimization plane of the one-layered CMS
with its corresponding contour lines. This surface is obtained by removing
the upper bound of the damping ratio, in order to show the trend of the
optimization surface. It is evident that when the damping ratio exceeds a
certain threshold, the advantage gained on PIdr is minimal. Moreover, Fig-
ure 6.6(B) depicts the optimization plane of the one-layered RMS case, where
the x and y-axis denote the frequencies of the two independent resonators.
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6.4. Results of time history analyses

Figure 6.6: Optimization surfaces of one-layered (A) CMS case and (B) RMS
case.

Table 6.1: Optimal parameters of the CMS for both one and two-layered cases.

One-layered case (k=1)
Performance index f1 [Hz] ζ1
PIdr 0.677 2.5 0.20
PIacc 0.845 2.5 0.20

Two-layered case (k=1,2)
Performance index f1 [Hz] ζ1 f2 [Hz] ζ2
PIdr 0.807 2.6 0.10 3.6 0.18
PIacc 0.877 2.6 0.10 3.6 0.18

The contour lines of this plot show a wide area for the optimal values of
the two resonators, where the value of the PI does not change significantly.
Clearly, the resonators can be tuned to any set of two frequencies in this
area, without inhibiting the functionality of the Metafoundation. Similar
to the aforementioned damping ratio trend, this could have positive effects
for practical applications, where the tuning of the resonators may not be
very precise. In sum, the optimization of multiple resonators with different
frequencies and damping ratios offer a slight advantage in terms of demand
reduction from CMS to RMS, while no advantages are obtained with FMS.
However, a system with optimal multiple resonators may be employed due
to technological constraints.

6.4 Results of time history analyses

In order to verify the results of the previous Subsection and to take into
account the actual amplitude and phase variation of seismic waves, the per-
formance of the optimized Metafoundation is evaluated with time history
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6.5. Optimization of the Metafoundation endowed with nonlinear devices

analyses (THAs). Therefore, the Metafoundation is subjected to the 12
natural seismic waves corresponding to a safe shutdown event (SSE) at the
Priolo Gargallo site. As a reference indicator, we use the root-mean square
of the tank base shear Vrms,

Vrms =

√√√√ 1

n

n∑
j=1

[ki(u
imp
j − utlj ) + kc(uconvj − utlj )] (6.29)

where, uimp
j , uconvj and utlj denote the displacement of the impulsive mass,

the convective mass, and the top layer of the foundation, while n defines
the number of time steps. The same quantities arms and drms have been
evaluated for both absolute acceleration and interstory drift of the impulsive
mass. Figures. 6.7(A), (B) and (C) show the aforementioned quantities as a
function of PGA. More precisely, they compare the results of THAs obtained
for the optimized one-layered CMS on both PIdr and PIacc with the results
of the fixed-base tank. It is worth noting that the results of the THAs show
a high dispersion for rms values. Therefore, PGA may not represent the
most significant intensity measure for the engineering demand parameters
under consideration. Nonetheless, since we are not interested in a fragility
analysis of the system, the PGA has been considered as a sufficient parameter
for result interpretation. On average, the Vrms values corresponding to the
Metafoundation are below the values corresponding to the fixed-based tank.
Moreover, similar results can be obtained with arms and drms for both PIdr
and PIacc. Along those lines, both Figure 6.8(A) and (B) depict Vrms values
for the one and two layered RMS systems, respectively. Similarly, Figure
6.8(C) and (D) show results for the FMS case. It becomes apparent that
all systems perform on a comparable level, independently of the number of
individual resonators in the system or the chosen optimization parameter.
The only major difference that can be noticed is that the systems with only
one layer outperforms the systems with two layers. This can be attributed
to the lower horizontal stiffness of the one layered system.

6.5 Optimization of the Metafoundation endowed with
nonlinear devices

Motivated by the use of simple hysteretic devices, i.e. wire ropes able to
both effectively suspend concrete resonators inside the Metafoundation, al-
low motion in all three main directions, and provide significant damping;
we propose an optimization procedure based on the stochastic linearisation
technique from [148–150]. In addition, the treatment of a linearised system
allows to bypass several difficulties related to the definition of the disper-
sion properties of a nonlinear periodic system [129]. Similar to the linear
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6. Wire Ropes for Resonator Suspension

Figure 6.7: Root mean square values of the (A) base shear, (B) interstory drift
and (C) absolute acceleration of one-layered CMS for both PIdr and PIacc.

case, we need to define a set of parameters to be optimized. These param-
eters, are chosen among the parameters of the Bouc-Wen model introduced
in Subsection 6.2.3. Along these lines, we start with the following system of
EOMs,

Mü(t) + Cu̇(t) + Ku(t) + uyK
NLz(t) = F(t) (6.30)

where KNL defines the nonlinear component of the stiffness matrix that
contains the terms (1− αn)kn introduced in (6.7). In this model, n denotes
the n-th resonator of the system, while z(t) is the vector that contains the
components zn(t) of the n-th resonator. Since (6.30) defines a nonlinear
system, it is not amenable to the classical linear random vibration theory
introduced in Section 6.3. Therefore, a stochastic linearisation technique
(SLT) is employed to replace the nonlinear vector uyK

NLz(t).

6.5.1 Stochastic linearisation technique

The SLT is a relatively straightforward tool to define an equivalent linear
system, equating its stochastic response to the response of the nonlinear sys-
tem. More precisely, for a SDoF system with N = 1, the nonlinear differential
equation (6.8) becomes,

ż + cequ̇+ keq = 0 (6.31)

where ceq and keq are linearisation coefficients that are “equivalent” in a
statistical sense [157–159]. At this stage, it is useful to introduce a state-
space formulation of (6.30) and (6.31),

d

dt
Y = GY + Vf(t) (6.32)

with,

G =


0N×N IN×N 0N×N 0N×r
−M−1KL −M−1C −M−1KNL −1aT

f

0N×N −ceq −keq 0N×r
0r×N 0r×N 0r×N AF

 (6.33)
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6.5. Optimization of the Metafoundation endowed with nonlinear devices

Figure 6.8: Root mean square values of the tanks base shear for: (A) one-layered
RMS; (B) two-layered RMS; (C) one-layered FMS; (D) and two-layered FMS.

and,

Y =


u
u̇
z

uf

 , V =


0N×1

0N×1

0N×1

Vf

 (6.34)

where Y is the state-space vector, KL and KNL define the linear and non-
linear components of the stiffness matrix, respectively, while keq and ceq
represent the matrices including the equivalent linear coefficients. More-
over, N defines the number of DoFs of the system and r = 4 defines the
number of equations of the KTCP filter introduced in Subsection 6.2.4. Let
the covariance matrix of Y be S with Sij = E[yiyj ]. Then, we assume that
the seismic input is stationary. The solution of (6.33) can be derived from
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6. Wire Ropes for Resonator Suspension

the following Lyapunov system of equations,

GS + SGT + B = 0 (6.35)

where B is a zero matrix except for the generic diagonal element correspond-
ing to the nonzero row of the forcing function vector, i.e. Bij = 2πS0. The
Lyapunov equation (6.35) was solved with the algorithm proposed by Bartels
and Steward [160]. Because keq and ceq are not known a priori, an iterative
solution procedure is required. In this regard, Maldonado et al. [157] sug-
gested to set as initial values ceq = 1 and keq = 0.05 for a faster convergence.
Further details about the procedure are available in [157–159].

6.5.2 Optimization of linearised devices

In order to define the transfer function H(ω) of the coupled systems depicted
in Figure 6.5 we start from (6.6). In fact, (6.33) includes the KTCP filter
and the derivation is more burdensome. Therefore, the relevant H(ω) for a
SDoF reads,

H(ω) =

[
ω2m+ iωc+ αk − iω

iω + keq
ceq(1− α)kuy

]−1

(6.36)

where the derivation details can be found in Appendix A. Its generalization
reads,

H(ω) =
[
−ω2M + iωC + K + Keq

]−1
(6.37)

where Keq contains zero terms except those in which the n-th resonator is
physically connected to the k-th layer of the Metafoundation as depicted in
Figure 6.5. More precisely, the nonzero terms keqij of matrix Keq read,

keqij = − iω

iω + keq
ceq(1− αn)uykn (6.38)

in which αn and kn are referred to the n-th resonator of the Metafoundation.
Note that (6.37) degenerates into (6.18) when α = 1.

6.5.3 Definition of optimization problem

The optimization procedure for the nonlinear devices relies on the design
variables kk,n and βk,n gathered in the parameter vector XNL,

XNL = [k1,1, kk,n, A1,1, Ak,n, β1,1, βk,n, γ1,1, γk,n]
T

(6.39)

Therefore, the optimization problem can be stated as,

min(PIdr(XNL)) or min(PIacc(X
NL)) (6.40)
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where k = 1, . . . , nk and n = 1, . . . , nr. Finally, bounds on the design
variable βk, n are,

0 < βk,n < 1 (6.41)

Further details about the bound in (6.41) are provided in Subsection 6.6.1.

6.6 Hysteretic dampers, Bouc-Wen parameters and
optimization results

6.6.1 Hysteretic dampers and Bouc-Wen parameters

The optimization procedure presented in Section 6.5 allows the evaluation
of the main parameters of a Bouc-Wen model employed to reproduce a hys-
teretic damper. With regard to hysteretic devices, steel wire ropes schemat-
ically depicted in Figure 6.2(B), represent a commonly used solution in seis-
mic engineering due to their capability to dissipate a relatively large amount
of energy. Moreover, they are fairly cheap both in terms of production and
maintenance costs, and allow motion along X, Y and Z direction as indicated
in Figure 6.1. Many authors investigated the effectiveness of wire ropes sub-
jected to shear forces; see, among others, [108, 140–143]. In this respect,
Paolacci and Giannini [140] fitted the parameters of a Bouc-Wen model to
sets of experimental data. Based on their work, we selected the wire rope
WR36-400-08, with its geometric dimensions being collected in Table 6.4
and the relevant nomenclature shown in Figure 6.9(B). In particular, kp and
Rv represent the horizontal stiffness and the vertical load-bearing capacity,
respectively. The authors have found α = 0.254 and uy = 2.2 mm; in ad-
dition, the quality of the fitting can be appreciated in Figure 6.9(A). Once
the geometric and mechanical characteristics of a typical wire rope is estab-
lished, some considerations on the Bouc-Wen parameters need to be made.
In fact, some parameters of the Bouc-Wen model presented in Subsection
6.2.3 are functionally redundant and can be appropriately set. More pre-
cisely, Constantinou and Adnane [161] showed that by setting A = 1 and
β + γ = 1, the model collapses to a rate-dependent Maxwell model with a
nonlinear dashpot, i.e. an Ozdemir model. As a result, with A = 1 in (6.9),
the value of the initial stiffness k = Ry/uy = k0 is retrieved. Furthermore,

we define zmax = [A/(β + γ)]
1/n

= 1 and z ∈ [−1, 1] for (6.8).

6.6.2 Optimization results and time history analyses

The results of Subsection 6.4 underscore that only small differences in base
shear values of the superstructures are achieved with CMS, RMS and FMS in
the linear case. Therefore, only optimizations of one and two-layered CMSs
are carried out herein. In Subsections 6.6.1 we set n, α and uy based on the
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Figure 6.9: (A) Hysteretic behaviour under cyclic shear loading (after Paolacci
and Giannini [140]) and (B) typical hysteretic loop of a Bouc-Wen model.

Table 6.4: Geometric and mechanical properties of wire ropes.

Type Parameter Value

Geometric

H [mm] 178
W [mm] 216
L [mm] 520.7
Φ [mm] 26.6
k0 [kN/mm] 1.35

Bouc-Wen

Ry [kN] 2.97
uy [mm] 2.2
n 1.0
A 1.0
α 0.254

Table 6.5: Bouc-Wen Setups.

Parameter Configurations
β = 0.9 and γ = 0.1
β = 0.5 and γ = 0.5
β = 0.1 and γ = 0.9

properties collected in Table 6.4. As a result, we search for optimal values
of k, β and γ with the constraints A = 1 and β + γ = 1, respectively.

The results of the optimization for PIdr are depicted in both Figure
6.10(A) and (B), for the one-layered and two-layered CMS. Notably, k2 rep-
resents the horizontal stiffness of a single resonator of the Metafoundation.
Figure 6.10(A) highlights a smooth surface in the range 50-60 kN/mm for
the one-layered case; conversely, a narrow valley of possible optimal stiff-
ness values characterizes the two-layered case. Furthermore, the two-layered
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CMS shows poor results in terms of PIdr due to the increased horizontal
stiffness of the system. The parameters β and γ quantify the dissipation
characteristics of wire ropes. One can observe that an increase of β, i.e. a
decrease of γ, does not entail a significant reduction of PIdr. In fact, the
constraint β + γ = 1 strongly sets the shape of the backbone loops and the
relevant dissipated energy, as shown by the loops -in blue- depicted in Figure
6.11.

In order to confirm the performance of the foundation-tank coupled sys-
tem with the properties provided by Figure 6.10, THAs in the nonlinear
regime are carried out. More precisely, k2 values of 56.8 and 40.5 kN/mm
are employed for one and two-layered foundation cases, respectively. These
values entail a number of wire ropes per resonator equal to 42 and 30 for
one and two-layered cases, respectively, which is greater than those needed
to bear each resonator’s weight, i.e. 16 and 8.

In particular, Figure 6.11 shows hysteretic loops of one wire rope -blue
lines- for a one-layered CMS subjected to one of the 12 natural seismic
waves. In all figures, ures and utl represent the displacements of a generic
resonator and the top-layer, respectively. More precisely, Figure 6.11(A)
refers to the optimized system in which each resonator is equipped with 42
wire ropes while Figure 6.11(B) refers to the one in which each resonator
is equipped with the minimum number of wire ropes necessary to bear a
resonator. In both cases, β and γ read 0.9 and 0.1, respectively. One can
observe that the hysteretic dampers exert a positive displacement demand
of about 60 mm versus an actual experimental maximum displacement of
about 10 mm shown in Figure 6.9(A). Therefore, an effective Metafoundation
requires a significant amount of ductility and dissipated energy for quite
strong earthquakes. Hence, given the size of the Metafoundation, we locate
12 and 6 dampers per resonator, for the one and two-layered case. Their
relevant horizontal dissipation capability is equal to the one provided by
the aforementioned optimization procedure. THA results are shown herein
only for the one-layered Metafoundation case, based on Bouc-Wen parameter
values collected in Table 6.5. In fact, as argued from Figure 6.10(B), the
two-layered Metafoundation achieves a limited performance when hysteretic
dampers are used. This can also be understood from Figure 6.11, where the
limited performance of hysteretic dampers versus linear dampers is evident.

Figure 6.12 shows root-mean square values of the tanks base shear for
each considered optimal configuration. Note that the benefits with respect
to the case of a tank with a fixed foundation are evident. In agreement with
the optimization outcomes, partly explained through Figure 6.10(A), there
are no significant differences among the Metafoundations equipped with wire
ropes endowed with the parameters of Table 6.5. An additional comparison
between the non-linear foundation tank coupled system and the fixed-base
solution is made in terms of maximum and median response. Figure 6.13
depicts: (A) the maximum values of base shear; (B) absolute acceleration of
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Figure 6.10: Optimal surfaces in the nonlinear case: (A) one layered CMS and
(B) two-layered CMS.

Figure 6.11: Hysteretic loops of one-layered CMS hysteretic damper -blue lines,
A = 1, β = 0.9 and γ = 0.1- and linear viscous damper -red lines, ζ1,1 = 0.2-:
resonators equipped with (A) optimal and (B) minimum number of wire ropes.

Figure 6.12: Root-mean square values of the tank base shear for one-layered
CMS: (A) β = 0.9 and γ = 0.1, (B) β = 0.5 and γ = 0.5 and (C) β = 0.1 and
γ = 0.9.
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Figure 6.13: Time history results for a fixed base tank and CMS: (A) Maxi-
mum base shear; (B) Absolute acceleration of the impulsive mode; (C) Maximum
displacement of wire ropes; (D) Maximum interstory drift.

the impulsive mode; (C) maximum wire rope displacement; and (D) inter-
story drift of the impulsive mass, obtained for the 12 accelerograms at hand.
Maximum and median values are again referred to the optimized one-layered
CMS equipped with nonlinear devices in which β and γ are equal to 0.9 and
0.1, respectively. Figure 6.13 clearly shows that the nonlinear Metafounda-
tion generally reduces seismic demand. Furthermore, median values achieve
reductions of about 21%, 10% and 19% for base shear, absolute acceleration
and interstorey drift, with respect to the fixed tank. Similar conclusions
apply for the linear metafoundations analysed in Subsection 6.4.

With regard to nonlinear devices, Figure 6.13(C) shows both maximum
and median values of wire rope displacements for the optimized nonlinear
CMS relevant to each accelerogram. Maximum displacements reach approx-
imately 12 mm with a median equal to 8 mm. These figures are feasible for
standard wire ropes. An additional comparison between linear and nonlinear
devices entails that damping devices with a linear behaviour provide more
favourable results than those characterized by a hysteretic behaviour. This
trend is also justified by the amount of dissipated viscous and hysteretic
energy. In this regard, Figure 6.14 depicts the Enon−lin

d /Elin
d ratio for the

one-layered CMS for each considered accelerogram. The limited performance
of hysteretic dampers becomes evident, since none of the parameter setups
reaches close to unity. Needless to say, that for the Metafoundations to
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Figure 6.14: Enon−lin
d /Elin

d ratio of dissipated energy by nonlinear hysteretic
dampers and linear viscous dampers for the optimal cases of one-layered CMS.

hand endowed with resonators that move in X and Y directions, wire ropes
represent a technological solution that is both much cheaper and feasible
than fluid viscous dampers coupled to linear springs. Moreover, they can
potentially be competitive against the vertical component of an earthquake.

6.7 Conclusion and future developments

In this paper, we proposed two Metafoundations designed to inherit favourable
properties from seismic wave propagation in phononic periodic structures in
the ultralow-frequency regime: (i) a foundation endowed with resonators
and linear dampers tuned to multiple frequencies; and (ii) a foundation
equipped with resonators and nonlinear hysteretic devices. They are com-
posed by steel-concrete composite and steel components that define exterior
unit cells containing resonant concrete masses. The tuning of these coupled
tank-foundation systems was achieved through an optimization algorithm in
the frequency domain, which is able to optimize any number of parameters,
to account for the superstructure as well as the stochastic nature of the seis-
mic input. In particular, to optimize the nonlinear behaviour of hysteretic
damper devices we employed a Bouc-Wen hysteretic model; which was subse-
quently reduced via a system of stochastically linearised equations. Then, we
tested the optimized systems against natural seismic records both with lin-
ear and nonlinear time history analyses. In particular, optimization results
showed that a Metafoundation with multiple resonant frequencies provides
limited benefits to the structural response during earthquake events. This is
mainly due to the massive resonator masses. However, a system with multi-
ple resonators can attain an optimal response with reduced damping values,
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which entails that simple linear devices can be used. With regard to the
use of nonlinear hysteretic devices, the optimization showed that favourable
results can be achieved with dampers endowed with relatively high dissipa-
tive characteristics, like wire ropes. Nonetheless, the limited performance
of wire ropes with respect to linear dampers in terms of dissipated energy
reduces the utility of a two-layered finite-lattice Metafoundation. These re-
sults lay down the basis for future developments of Metafoundations, where
a proper use of nonlinear hysteretic devices arranged for instance at 45°,
see Fig. 6.2(A), requires a physical characterization of the whole wire rope
set. Finally, a Metafoundation equipped with wire ropes that move in all 3
spatial directions may provide a seismic isolation system that can take care
of both the horizontal as well as the vertical component in the future.

6.8 Appendix: Obtaining the transmission matrix
after SLT

In order to obtain the transmission matrix H(ω), we can to solve (6.31) as
a Caughy problem,

z(t) = −ceqe−keqt

∫
ekeqtu̇(t)dt (6.42)

The initial conditions z(t = 0) = 0 and u̇(t = 0) = 0 entails that also
the resulting integration constant equates to 0. Subsequently, we substitute
(6.42) in (6.6) and (6.7) and obtain,

mü(t) + cu̇(t) + αku(t) + (1− α)kuy

[
−ceqe−keqt

∫
ekeqtu̇(t)dt

]
(6.43)

The solutions u(t) = u0e
iωt and F (t) = eiωt entail,

−ω2u0e
iωtm+ iωu0e

iωtk + (1 + α)kuy

[
−ceqe−keqt

∫
iωekeqtu0dt

]
= F0e

iωt

(6.44)
More precisely, the integral in (6.44) has the following solution,∫

iωu0e
(iω+keq)tdt =

iω

iω + keq
u0e

(iω+keq)t (6.45)

thus, (6.44) becomes,

−ω2u0e
iωtm+ iωu0e

iωtk+ (1 +α)kuy
iω

iω + keq
u0e

(iω+keq)t = F0e
iωt (6.46)

Eventually the transfer function H(ω) reads,

H(ω) =

[
−ωm+ iωc+ αk − iω

iω + keq
ceq(1− α)uyk

]−1

(6.47)
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Chapter 7

Summary, conclusion and future
developments

7.1 Summary

The recent advance of seismic metamaterials introduced novel ideas to the
field of earthquake engineering. Inspired by these developments, this the-
sis explored the possibility of using locally resonant metamaterials for the
conception of a new type of foundation, namely the Metafoundation. Of
particular interest was the band-gap property of locally resonant materials,
since this property denies elastic waves from propagating within a specific
frequency region, and therefore may be advantageous for earthquake miti-
gation measures. Based on this phenomenon a foundation was conceptual-
ized as a continuous metamaterial and later redesigned as a discrete column
based structure for the seismic protection of fuel storage tanks. The de-
veloped foundation could potentially prevent NaTech events, related to the
petrochemical industry, from occurring, since storage tanks and connected
pipeline systems have proven to be extraordinarily vulnerable to seismic ac-
tion.

The foundation proposed herein, offered the desired band-gap properties,
if considered as an infinite periodic material, while when arranged as a finite
system, this property was reduced to an attenuation zone. Additionally, the
feedback from the superstructure and the frequency content of the expected
ground motion influence the behaviour of the overall system, which lead to
the development of an optimization algorithm. The algorithm was based
on computations in the frequency domain, allowed for an efficient tuning of
multiple foundation parameters and was made available as an open source
software on GitHub. It is worth noting that soil structure interaction was
not taken into account directly, by modelling the soil underneath the foun-
dation, but considered indirectly through the ground motion spectrum used
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for the optimization. Here, the site and soil type of the chosen location have
an influence on the frequency content of the seismic spectrum, thereby ac-
knowledging the filtering effects of the soil. However, proper soil structure
interaction should be investigated in future studies, since its effects may yield
additional benefits, especially for vertical component damping. Besides the
foundation tank interaction, which was treated with the optimization algo-
rithm, also the effect that the Metafoundation has on connected pipelines
was investigated in an experimental study. It is worth noting that pipeline
systems connected to base isolated storage tanks can be damaged due to the
large displacements that occur when traditional isolators get activated. This
issue was touched upon with a hybrid simulation, where a tank with clas-
sical isolation was compared to a tank protected via the Metafoundation.
The study was conducted experimentally, because of the highly nonlinear
response of liquid filled pipelines, which can be difficult to model numeri-
cally in a realistic manner. Besides this, the strict construction requirements
of Eurocodes [68, 74, 82, 118, 119] and NTC 2018 [107] have proven to be
a limiting factor for the functionality of the foundation and resulted in a
foundation height of 4 m for a reliable attenuation of seismic effects. In or-
der to reduce this excessive height, a negative stiffness element, based on a
local instability, was implemented in the foundation and reduced its height
to 1 m at a similar performance level. Furthermore, also the effects of the
negative stiffness as well as its nonlinear behaviour on the wave propagation
properties of the periodic medium were investigated. The analyses showed
that the mechanism amplified the band-gap property in terms of range as
well as efficiency, while the nonlinearity of the device had the effect of re-
ducing the band-gap width. Last but not least, the implementation of wire
ropes as resonator suspension rendered the overall design more realistic with
respect to the previously assumed ideal sliding surfaces and may allow for
vertical component damping, due to their flexibility in all 3 spatial direc-
tions. The main conclusions drawn from the development and analysis of
the Metafoundation are elaborated in individual paragraphs below.

7.2 Conclusions

The importance of the horizontal stiffness. The first draft of the
herein discussed Metafoundation was proposed in Chapter 2, where a con-
tinuous concrete matrix with embedded resonators was studied. Through
varying the wall thickness of a finite stack of unit cells, it was demonstrated,
in the frequency domain, that the horizontal stiffness of the foundation plays
a vital role in its wave attenuation effectiveness. Based on this, a new design
with columns as primary load bearing system was conceived and tested on
its steady state response when coupled to a tank. Overall, the foundation
was reduced from an 8 m continuous system to a 3 m column based structure

156



7.2. Conclusions

with a far better wave attenuation efficiency in Chapter 2.

Effects of small cracks on the band-gap behaviour. As discussed in
Chapter 2, small cracks can appear in the foundation due to static loading,
which may change the wave propagation properties of the periodic medium.
However, since the investigated cracks were relatively small compared to the
unit cell dimensions and located in the slabs, which have only a small impact
on the shear wave propagation, no significant alteration of the band-gap was
detected.

The superstructure is non-negligible. In Chapter 2 the band gap was
designed to include the resonant frequency of the coupled foundation-tank
system, in order to provide the most effective seismic protection. Further-
more, Chapter 3 built on this development and tuned the foundation accord-
ing to the frequency response of the system when subjected to an harmonic
input. However, since seismic events are not harmonic, but behave more
like a random Gaussian process, an optimization algorithm was proposed in
Chapter 4. This algorithm can take both, the superstructure as well as the
expected frequency content into account and demonstrated, after a study
of 4 different foundation layouts coupled with 2 different tanks subjected to
various ground motion spectra, that the resonators are dependent on the
superstructure and the foundation layout. The variance in optimal design
with respect to the ground motion was less pronounced, yet still significant
enough to be considered in all further studies.

Optimization of the Metafoundation unavoidable. As mentioned
above, an optimization algorithm that is able to consider the superstruc-
ture as well as the ground motion was conceptualized in Chapter 4. It was
later generalized in Chapter 5, where direct parametrization of the transmis-
sion matrix allowed for the optimization of any number of different linear
parameters. In particular, the methodology was used in Chapter 5 for a
foundation endowed with negative stiffness elements and in Chapter 6 to
optimize multiple frequencies for different resonators and to fine tune the
linearized parameters deriving form a stochastic linearization. In sum, the
optimization algorithm yields reliable results, could be used also for other vi-
bration isolation problems and has been made available as a Python module
on GitHub at: https://github.com/moritz343/Optimization.

Design of the foundation under common construction practice pos-
sible. The first static design check was conducted on the continuous system
in Chapter 2, where the concrete matrix was evaluated on static resistance
and potential cracks. Subsequently in Chapter 4, the design checks were
expanded to an elastic response spectrum analysis, in order to comply with
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common construction practices, such as the Eurocode or the Italian standard
NTC 2018. The restrictive nature of these requirements becomes particu-
larly apparent, when observing the average base shear reduction of various
foundation layouts, where a foundation height of 4 m diminishes the average
base shear of a broad tank by 30%. On the one hand, this clearly displays
that the foundation can be designed under realistic circumstances, while on
the other hand, a 4 m tall foundation cannot be regarded as economical. It
was therefore concluded that the foundation is possible, yet more work needs
to be done before it can become a viable option in a real life application.

Effects on a coupled pipeline. Since not only fuel storage tanks but
also connected pipeline systems can be damaged by seismic events, and sub-
sequently cause NaTech disasters, an experiment on the coupled structure
has been carried out and presented in Chapter 3. The Metafoundation setup
was compared to a concave sliding bearing (CSB), where the results showed
that the CSB performed more efficient in terms of base shear, while the
Metafoundation was able to reduce the pipeline stresses with respect to the
CSB. It is worth mentioning that the response of the complete coupled sys-
tem may further be improved by considering the tank as well as the pipeline
when designing the foundation, since their dynamic interaction has been dis-
regarded when designing the foundation for the numerical substructure of
the experiment.

Comparison with standard isolation devices. As demonstrated with
the experiment carried out in Chapter 3, traditional base isolation systems
such as CSBs outperform the Metafoundation in terms of base shear reduc-
tion for storage tanks. However, the function of traditional base isolation
systems is to reduce the eigenfrequency of the superstructure by decoupling
it from the ground, which necessarily entails large horizontal displacements
that may impose significant stresses on connected pipelines. Besides this,
traditional isolators are generally not able to address the vertical component
of seismic events due to their high vertical stiffness. Therefore, two advan-
tages may be obtained by the Metafoundation over traditional solutions after
further developments, namely: (i) reduction of pipeline stresses induced by
horizontal tank displacements; and (ii) vertical component damping.

Performance at various liquid levels. Additional to the experimental
study, Chapter 3 also contains a numerical evaluation of the foundations
performance when the tank is not full. The results showed that the demand
reduction of the 3/4 filled tanks diminished with respect to the full tanks,
while the absolute demand for the tanks with reduced liquid height still fell
below the full tank setups.
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Wire ropes as resonator suspension. In Chapter 4 it was mentioned
that wire ropes could potentially serve as devices to suspend the concrete
resonators, which was later elaborated in more detail in Chapter 6. Here,
a stochastic linearization technique was applied to the Bouc-Wen model, in
order to find an equivalent linear system that could approximate the wire
rope setup and subsequently be optimized with the method proposed in
Chapter 5. With the optimal parameters for the linearized system, a realistic
wire rope setup was chosen and analysed on its performance via time history
analyses. While the hysteretic behavior of the wire ropes did not improve
the system response, it is clear that from an engineering point of view, a
wire rope construction is more realistic than endowing the resonators with
ideal friction less sliding surfaces and visco-elastic dampers. Furthermore,
wire ropes allow the resonators to move also in the vertical direction and
may provide vertical component damping in the future.

Negative stiffness elements for reduced foundation height and im-
proved performance. Since the resulting foundation height, due to the
restrictions form engineering requirements, was considered excessive for a
tank foundation, a device that can exert an amplification effect on the res-
onators was studied in Chapter 5. The device is based on a snap through
mechanism, held in a stable position, that for all practical purposes behaves
like a spring with negative stiffness. On the one hand the mechanism am-
plifies the motion of the resonators, while on the other hand it softens the
overall stiffness of the foundation; thus improving the system performance
significantly. It was found that for 50% of the maximum physically admissi-
ble negative stiffness, the foundation could be reduced from a 3 m high layout
to only 1 m, while maintaining its performance. Furthermore, the analysis
in the time and frequency domain showed that the NSE endowed foundation
was less sensitive to resonant frequency changes and seismic record variabil-
ity.

Effect of the nonlinear NSE on the wave propagation. In Chapter
5 the application of the NSE to the foundation resulted in a new type of
periodic chain, where not only the main masses, but also the resonators were
connected to the next and previous unit cell via nonlinear springs. Recent
works on nonlinear elastic metamaterials treated the dispersion analysis of
classical diatomic lattices, endowed with duffing type oscillators, with the
harmonic balance method (HBM) and found an elongation and shift of the
band-gap. However, when applying the HBM to the new resonator chain
with a polynomial nonlinearity, a closing of the band-gap was found for
increased levels of nonlinearity. Therefore, it can be concluded that for this
type of nonlinear metamterial an activation of the nonlinearity should be
avoided.

159



7. Summary, conclusion and future developments

Effects of the nonlinear NSE on seismic analyses in the time do-
main. Since the introduction of a nonlinearity introduces higher harmonics
to the system, a further study on the energy transfer from the first to the
third harmonic was conducted in Chapter 5. Through a variation of the non-
linear parameters, the behavior of the structure was forced to go into the
highly nonlinear range, which, unfortunately, did not yield any additional
improvements in terms of base shear reduction. However, with the proposed
nonlinear parameters, the structure can effectively be designed to enter or
stay outside of the nonlinear regime.

7.3 Future developments

The work done on the Metafoundation can be regarded as a first step to-
wards introducing metamaterial-based foundations into the realm of civil
engineering. While more work is needed before foundations of this type can
be realized, some advantages may be obtained in the future. Possible advan-
tages include the attenuation of vertical earthquake motions, most common
at near fault locations with a shallow focal depth; the reduction of rocking
motions; and the attenuation of base shear with limited horizontal displace-
ments. Structures that could profit from this constitute mainly large build-
ings with a high consequence intensity, such as nuclear power plants and fuel
storage tanks. In particular, the safety of tanks and their connected pipelines
needs to be improved, since these structures are still particularly vulnera-
ble to seismic events. To date, only classical isolation has been applied to
fuel storage tanks, which can result in large horizontal displacements during
earthquakes, thereby damaging connected pipeline systems. The herein pro-
posed foundation on the other hand may provide a suitable protection system
that limits tank as well as pipeline stresses in the future. Additionally, the
high vertical stiffness of isolators makes them generally inefficient at atten-
uating the vertical component of an earthquake, which can have damaging
effects on nuclear power plants. With resonators that can oscillate in all 3
spatial directions, by suspending them with wire ropes for example, these
vertical excitations may be addressed by the Metafoundation after further
iterations.

Besides this, an NSE comprised of a local instability, can in theory drasti-
cally reduce the system size of a periodic foundation, and therefore, make the
overall system more economical. This is particularly important for seismic
metamaterials, since the typical system dimensions found in the literature
are still relatively large. Moreover, it’s applicability to a periodic structure
targeted at the attenuation of shear type waves makes it a versatile device
that could, in principle, also find implementation in other vibration isolation
issues or metamaterial-based structures. Finally, it is worth mentioning that
the field of seismic metamaterials is a rapidly expanding one, where new ad-
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vances emerge frequently. Hopefully other researchers can profit from the
ideas and concepts discussed in this thesis and bring further developments
to this fascinating field of research.
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