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Abstract

Department of Civil, Environmental, and Mechanical Engineering
(DICAM)

Modelling and Simulation

Homogenization of periodic lattice materials for wave propagation,
localization, and bifurcation

by Giovanni Borpica

The static and dynamic response of lattice materials is investigated to dis-
close and control the connection between microstructure and effective be-
havior. The analytical methods developed in the thesis aim at providing a
new understanding of material instabilities and strain localizations as well
as effective tools for controlling wave propagation in lattice structures.

The time-harmonic dynamics of arbitrary beam lattices, deforming flex-
urally and axially in a plane, is formulated analytically to analyze the in-
fluence of the mechanical parameters on the dispersion properties of the
spectrum of Floquet-Bloch waves. Several forms of dynamic localizations
are shown to occur for in-plane wave propagation of grid-like elastic lattices.
Itis demonstrated that lattices of rods, despite being ‘simple’ structures, can
exhibit a completely different channeled response depending on the charac-
teristics of the forcing source (i.e. frequency and direction) as well as on the
slenderness of the elastic links. It is also shown how the lattice parameters
can be tuned to attain specific dispersion properties, such as flat bands and
sharp Dirac cones.

In the research field of material instabilities, a key result proposed in
this thesis is the development of both static and dynamic homogenization
methods capable of accounting for second-order effects in the macroscopic
response of prestressed lattices. These methods, the former based on an
incremental strain-energy equivalence and the latter based on the asymp-
totic analysis of lattice waves, allow the identification of the incremental
constitutive operator capturing the macroscopic incremental response of ar-
bitrary lattice configurations. The homogenization framework has allowed
the systematic analysis of prestress-induced phenomena on the incremen-
tal response of both the lattice structure and its ‘effective” elastic solid,
which in turn has enabled the identification of the complex interplay be-
tween microstructure, prestress, loss of ellipticity (shear band formation)
and short-wavelength bifurcations.
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Potential new applications for the control of wave propagation are also
shown to be possible by leveraging the inclusion of second-order terms in
the incremental dynamics. In particular, the tunability of the prestress state
in a square lattice structure has been exploited to obtain dynamic interfaces
with designable transmission properties. The interface can be introduced
in a material domain by selectively prestressing the desired set of ligaments
and the prestress level can be tuned to achieve total reflection, negative
refraction, and wave channeling.

The obtained results open new possibilities for the realization of engi-
neered materials endowed with a desired constitutive response, as well as
to enable the identification of novel dynamic material instabilities.
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Introduction

The mechanical design of materials at their microstructural level is becom-
ing the new frontier for the creation of materials with unprecedented ca-
pabilities. This new approach has led to a series of successful results, as
for instance, the realization of architected materials exhibiting extreme me-
chanical features such as foldability, energy absorption, dynamic isolation,
and wave channeling [5-14], which are even enhanced by reconfigurability,
tunability, and programmability [15-17]. A key component of this progress
is the advancement in the modelling of the physical relationships between
material ‘substructure” and ‘effective’ macroscopic behavior, provided by
the development of homogenization theories [18-23].

Within this context, the present thesis aims at investigating the connec-
tion between material microstructure and material response, at both macro
and micro scale, in terms of dynamic characteristics, material instabilities,
and localization phenomena, occurring in a class of composite materials en-
dowed with a reticulated periodic structure (so-called ‘lattices’). The statics
and dynamics of these composites is addressed by adopting the structural
model of the elastic rod to represent interactions at the material scale. This
idealization will be shown to be highly effective for obtaining analytical re-
sults capturing the static and dynamic behavior of heterogeneous materials,
and thus enabling the efficient analysis of the influence of microstructural
parameters, without requiring the expensive parametric computations typ-
ically needed in three-dimensional continuum formulations.

The resulting theoretical and numerical analysis has three main ramifi-
cations: (i) the investigation of the influence of structural variables on low
and high frequency response of lattice materials; (ii) the identification of
new ways of tuning the response of structured materials for the realization
of adaptable dynamical interfaces; (iii) the modelling of the relationships
between material structure, stress state, and material instabilities, as well as
their influence on the ‘effective’ macroscopic response.



2 Chapter 1. Introduction

0 x 2r 0 . 2r 0 . 2n

Fig. 1.1. Dynamic localization and progressive ‘isotropization’ (from left to right),
occurring during the forced wave propagation of a grid lattice of elastic Rayleigh beams
(deforming in the plane). Displacement field (upper parts) and corresponding Fourier
transform (lower parts) are shown as generated by a couple (of axis orthogonal to the
lattice plane) pulsating at different frequency (increasing from left to right). In the right
column, the forcing source excites exclusively the Bloch wave characterized by a pure
‘rotational’ standing wave, hence leading to a resonant mode with a circular wavefront.
Further details are provided in Chapter 2 (see Figs. 2.12-2.15).

The modelling of the dynamic features of vector wave propagation in
lattice materials is first addressed in Chapter 2, with an exploratory analysis
of in-plane vibrations of a grid of elastic beams. The eigenvalue problem for
free wave propagation is formulated analytically for a rectangular grid of
elastic rods with distributed mass and endowed with rotational inertia (so-
called ‘Rayleigh beams’). The analytic formulation allows the investigation
of the influence of the mechanical parameters on the dispersion properties
of the spectrum of Floquet-Bloch waves, whose characteristics are visual-
ized by the computation of the dispersion relation and waveforms. Due
to the coupling between axial and transverse displacements, the disper-
sion relation is found to be strongly dependent on the slenderness of the
beams. This effect is exploited to show how the lattice parameters can be
tuned to attain specific dispersion properties, such as flat bands and sharp
Dirac cones [24]. The effect of the rotational inertia, namely the lowering of
the propagation frequencies as well as the ‘sharpening’ of the double-root
points, is highlighted by comparing results obtained adopting the Rayleigh
model vs the standard Euler-Bernoulli.

The computation of waveforms corresponding to propagating modes
and standing waves reveals valuable information about possible resonance
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phenomena under forced vibrations. The case of dynamic loading is ana-
lyzed by means of a finite-size computational model of the lattice structure
where the beams are discretized using finite elements. As the focus of the
investigation is the material response, the numerical simulations are per-
formed adopting a perfectly matched layer (PML) along the boundaries of
the domain in order to simulate an infinite lattice and thus avoid boundary
disturbances!. Results spanning low-to-high frequency regimes are com-
pared to the simpler problem of lattice subject to out-of-plane motion [25],
demonstrating that a wider range of dynamic localizations is possible for in-
plane deformation, due to the complex interplay between axial and flexural
waves (see Fig. 1.1). It is shown that a simple grid of beams can switch
between several forms of wave localizations and even exhibit surprising
“isotropizations” depending on both the frequency and direction of the pul-
sating load (both in-plane forces and out-of-plane couples are considered).

RARARAALAL PARARRAALY

bvvvvivvvy Yvvy

Fig. 1.2. Dynamic interfaces are realized by introducing prestressed layers in a lattice
(deformed in the plane where elastic rods suffer bending and axial strain) where the
prestress can be tuned to achieve the desired effect. A punctual time-harmonic excitation,
in the form of a couple (with axis normal to the lattice plane), is applied to a lattice
material, so that the layer of prestressed rods can be tuned to obtain the total reflection
of the incident channeled wave (left) or to obtain negative refraction inside the interface
(right). In the latter case, the negative refraction is exploited to realize a flat lens, so that
the image of the forcing source is reconstructed on the opposite side. Further details are
provided in Chapter 3 (see Fig. 3.2 and 3.3).

This study on the dynamics of lattice materials stimulated the idea of
harnessing wave localizations in order to manipulate the propagation of
mechanical signals in a material domain. To this purpose, an additional
mechanical parameter, the axial preload (or prestress) of the elastic rods, is
introduced in Chapter 3, where the problem of incremental wave propaga-
tion is enriched by the geometric second-order contribution of the prestress

For any given frequency, the outgoing waves can be completely absorbed at the boundary
by tuning the damping in the PML, so that reflection is not generated in the interior domain.
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state. The key point is that, if a prestress is applied in such a way that the lo-
cal distortion of the lattice structure is negligible, material interfaces can be
introduced in an ‘ambient lattice’ by selectively prestressing a desired set of
rods. The prestress level can then be tuned to achieve desired transmission
properties at given working frequencies. The advantage of leveraging states
of prestress is that the dynamic characteristics of the interface can be altered
without requiring structural modification in the ambient material, thus the
system can be easily reconfigured for multiple applications.

In order to demonstrate the potential new applications that can be
achieved in the control of wave propagation, different configurations of
prestress states are introduced in a square lattice structure to obtain dy-
namic interfaces exhibiting total reflection, negative refraction, focussing,
and wave guiding effects. Two examples are reported in Fig. 1.2, where the
response induced in the ambient lattice by a pulsating moment is controlled
by preloading a vertical layer of rods. On the left part of the figure, the
preload is selected to produce a purely reflective interface, while on the
right part, without changing the working frequency but by increasing the
preload, the interface is shown to effectively behave as a material with a
negative refractive index, thus allowing the reconstruction of the image of
the source on the opposite side of the layer. This realizes the elastodynamic
counterpart of the optical effect known as flat lensing [26].

B: current configuration B : Incremental macro-deformation

B, : stress-free configuration

Fig. 1.3. The response of a lattice of elastic rods is defined with reference to a relative
Lagrangian setting where the current prestressed configuration is assumed as reference
for the determination of the incremental response. A periodic two-dimensional lattice of
(axially and flexurally deformable) elastic rods is considered prestressed from the stress-
free configuration By (left) by means of a purely axial loading state. The prestressed
configuration 8 (center) can be represented as the tessellation of a single unit cell along
the vectors of the direct basis {a1,a2}. Upon the current prestressed configuration,
the response of the lattice to a macroscopic incremental deformation gradient (right)
identifies the response of the ‘effective’ continuum.

Other prestress-induced phenomena of paramount relevance for the
understanding of the ‘effective’” material response are material instabilities,
which are the main subject of Chapter 4 and 5. Instabilities such as shear
banding and strain localizations are well-known phenomena from the point
of view of continuum mechanics, but less is known about how these can
emerge from and are affected by the microstructural organization of the



Chapter 1. Introduction 5

material. This is mostly due to the phenomenological character of the con-
stitutive laws usually employed in the modelling at the continuum scale.
Therefore, in order to relate quantitatively the macroscopic response of a
prestressed material to the internal state of its constituents, proper homog-
enization methods have to be devised.

In Chapter 4, a static strain-energy-based homogenization is developed
for prestressed lattices, capable of incorporating second-order mechanical
effects in the incremental macroscopic response. Building upon the work
of Triantafyllidis [18, 19, 27-30] and Ponte Castafieda [20, 31-38], the ho-
mogenization method is formulated for arbitrary lattice geometries made of
elastic rods which are considered subject to arbitrarily large nonlinear axial
deformations and whose incremental response is derived analytically from
the large deformation beam theory. By means of a relative Lagrangian de-
scription (see Fig 1.3), the incremental response of the prestressed lattice to
the application of an arbitrary macroscopic incremental displacement gra-
dient is evaluated analytically. The ‘effective’ continuum material is then
identified through the incremental strain-energy matching between the lat-
tice and the continuum, which provides the homogenized current prestress
state as well as the incremental constitutive operator relating the incremental
nominal stress to the incremental deformation gradient.

The method is employed to obtain the analytical expression for the in-
cremental constitutive tensor of the ‘effective’” continuum for a wide family of
lattices, covering several classes of anisotropy: isotropic, cubic, orthotropic,
and complete anisotropy as well. Leveraging the analytic result, failure of el-
lipticity of the incremental macroscopic response is systematically analyzed
as a function of the lattice parameters and compared to the loss of stability of
the lattice which is computed by spanning over all possible wavelength bi-
furcations. This allows the identification of the lattice structural parameters
affecting the critical type of bifurcation so to discriminate the lattice con-
figurations reaching failure of ellipticity for the ‘effective’ continuum (cor-
responding to bifurcations of infinite-wavelength, so-called “macroscopic’)
from the ones exhibiting short-wavelength bifurcations (called ‘local” or
‘microscopic’ instabilities).

‘Macro’ and ‘micro’ bifurcations are investigated via a Green’s function-
based perturbative approach [39] to disclose the incremental response of the
lattice material and its ‘effective’ continuum when statically perturbed close
to the bifurcation threshold. Two examples of this analysis are reported
in Fig 1.4, where two rhombic grid lattices (orthotropic on the left and
anisotropic on the right) are prestressed to bring the ‘effective’ material
close to the elliptic boundary and then perturbed by the application of a
static self-equilibrated dipole. The maps of incremental displacements of
the lattice (upper part) demonstrate that the emergence of strain localization
bands is correctly predicted by the response of the homogenized solid (lower
part). Moreover, the analytic result for the ‘effective’ continuum enables
the tunability of this extreme material response, as the inclination and the
number of localization bands can be designed by tuning the mechanical
parameters of the underlying lattice structure.
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Orthotropic rhombic grid Anisotropic rhombic grid

Lattice

Effective continuum

Fig. 1.4. Examples of static strain localizations in anisotropic lattices made up of flexu-
rally and axially deformable elastic rods, prestressed close to failure of strong ellipticity
of the homogenized material. Two periodic lattices with a rhombic grid structure cor-
respond to ‘effective’” continuum materials, which are brought close to failure of strong
ellipticity by means of an in-plane state of prestress. Both the lattice and its ‘effective’
material display an incremental response characterized by strain localization bands,
which are revealed as the response to an applied perturbation (here in the form of a
static self-equilibrated dipole, see the case of dynamic excitation in Fig. 1.5). The good
agreement between the actual response of the lattice structure (upper part computed via
f.e.m.) and the behavior of the ‘effective” solid obtained via homogenization (lower part
computed via Green’s function) demonstrates that the stability analysis of the homoge-
nized material allows the determination of the correct number of localization bands and
their inclination. Further details are provided in Chapter 4 (see Figs. 4.10-4.13).

The static homogenization outlined in Chapter 4 is generalized in Chap-
ter 5 to the dynamics of incremental waves propagating in prestressed lat-
tices. A dynamic homogenization technique is developed by analyzing the
asymptotic response of a lattice of elastic rods deforming in the plane and
subject to incremental waves in the low-frequency regime. By extending re-
cent results on beam lattices [40] to the incremental dynamics of prestressed
lattices, it is shown that the asymptotics of the Floquet-Bloch spectrum on
the acoustic branches is characterized by linear dispersion and uniform
wave modulation. The result is derived without restrictions on the rods’
constitutive law and without neglecting the rotational inertia of the rods’
cross section. In contrast to the static homogenization, it is shown that
the dynamic approach provides directly the acoustic tensor of the ‘effective’
continuum, which proves that the failure of ellipticity (i.e. the singularity
of the acoustic tensor) coincides with the condition of macro-bifurcation of
the lattice (i.e. a bifurcation of infinite wavelength). It is also shown how



Chapter 1. Introduction 7

both ‘macro” and ‘micro” bifurcations occurring in the lattice have a clear
dynamic interpretation in terms of degeneracies of the dispersion relation
as a function of the prestress state.

Orthotropic rhombic grid Orthotropic rhombic grid Anisotropic rhombic grid
horizontal loading vertical loading vertical loading

Lattice

Effective continuum

Fig. 1.5. Examples of dynamic localization occurring in prestressed lattice made up
of flexurally and axially deformable elastic rods, prestressed close to failure of strong
ellipticity of the homogenized material. When a dynamic perturbation is applied to such
materials (here in the form of a pulsating force, see the case of static loading in Fig. 1.4),
the incremental response is characterized by the propagation of almost parallel plane
waves propagating outward from the forcing source and having a wavefront inclination
dictated by the direction of ellipticity loss. Depending on the loading direction and the
material anisotropy, the lattice response (upper part computed via f.e.m.) exhibits a
single or multiple localization, both correctly predicted by the time-harmonic Green’s
function (lower part) of the ‘effective” solid obtained via homogenization. Further details
are provided in Chapter 5 (see Figs. 5.9-5.17).

The response of the family of lattices considered in Chapter 4 is analyzed
in the time-harmonic regime by introducing a pulsating concentrated force
as an incremental perturbation to the prestressed material. Some examples
of the results are reported in Fig. 1.5, demonstrating an excellent agree-
ment between the lattice response and the time-harmonic Green’s function
of the homogenized material. The lattice-continuum comparison is also
conducted in the Fourier space, by computing the Fourier transform of the
lattice response and superimposing it to the slowness contour of both the
lattice and the continuum, so to assess the spectrum of Bloch waves excited
by the load. The comparison demonstrates that, as the material lies inside
the strong elliptic domain, the ‘effective’ continuum is an accurate represen-
tation of the lattice behavior, while the nonlinear dispersion of the lattice
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may become important, even at low frequency, only in the neighborhood of
the elliptic boundary.



Free and forced
wave propagation in
Rayleigh-beam grids

In-plane wave propagation in a periodic rectangular frame structure,
which includes axial and flexural deformation, the latter enhanced with
rotational inertia (so-called ‘Rayleigh beams’), is analyzed both with a
Floquet-Bloch exact formulation for free oscillations and with a numer-
ical treatment (developed with PML absorbing boundary conditions)
for forced vibrations (including Fourier representation and energy flux
evaluations), induced by a concentrated force or moment. A complex
interplay is observed between axial and flexural vibrations (not found
in the common idealization of out-of-plane motion), giving rise to sev-
eral forms of vibration localization: “X-’, ‘cross-" and ‘star-" shaped, and
channel propagation. These localizations are triggered by several fac-
tors, including rotational inertia and slenderness of the beams and the
type of forcing source (concentrated force or moment). Although the
considered grid of beams introduces an orthotropy in the mechanical
response, a surprising ‘isotropization’ of the vibration is observed at
special frequencies. Moreover, rotational inertia is shown to ‘sharpen’
degeneracies related to Dirac cones (which become more pronounced
when the aspect ratio of the grid is increased), while the slenderness
can be tuned to achieve a perfectly flat band in the dispersion diagram.
The obtained results can be exploited in the realization of metamaterials
designed to filter waves during propagation.
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2.1 Introduction

Research on metamaterials (employed to guide and control elastic waves
for applications in microstructured devices [9, 10, 41-45] and earthquake
resistant structures [46-50]) has focused a strong research effort on time-
harmonic vibrations of periodic beam networks. These networks can be
analyzed via Floquet-Bloch analysis for free vibrations of an infinite domain
(which can be either ‘exact’, when performed with a symbolic computation
program [51] or approximated, when solved numerically [52]), or using the
f.e. methodology for forced vibrations of finite-size structures [25].

Several topologies, vibration conditions and beam models have been con-
sidered for wave propagation in two-dimensional lattices, namely, hexago-
nal, triangular, and square honeycombs, re-entrant and Kagomé lattices [53,
54], subject to out-of-plane motion with [25, 55, 56] or without [57] rotational
inertia (the so-called ‘Rayleigh correction’, introducing a bound to the phase
and group velocity of a beam [58, 59]).

Forced vibrations of grid of beams has been considered for a two-
dimensional mass/spring periodic structure [60], while asymptotic ap-
proximations of lattice Green’s functions have been given [61, 62], close
to standing wave frequencies, with the purpose of revealing the directional
anisotropy in two and three-dimensional periodic lattices.

Although in-plane vibrations of a rectangular grid of Rayleigh (axially
and flexurally deformable) beams may be considered a mature research
field, for which the governing equations and the solution techniques are
well-known, many interesting features still remain to be explored. This
exploration is provided in the present work, where an exact Floquet-Bloch
analysis is performed and complemented with a numerical treatment of
the forced vibrations induced by the application of a concentrated force or
moment, including presentation of the Fourier transform and energy flow
(treated in [63] for free vibrations). It is shown that (i) aspect ratio of the
grid, (ii) slenderness, and (iii) rotational inertia of the beams decide the
emergence of several forms of highly-localized waveforms, namely, ‘chan-
nel propagation’, ‘X-/, “cross-’, ‘star-" shaped vibration modes. Moreover,
these mechanical properties of the grid can be designed to obtain flat bands
and degeneracies related to Dirac cones in the dispersion diagram and di-
rectional anisotropy or, surprisingly, dynamic ‘isotropization’, for which
waves propagate in a square lattice with the polar symmetry characterizing
propagation in an isotropic medium.

The presented results open the way to the design of vibrating devices
with engineered properties, to tune the frequency response of the structure.
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2.2 In-plane Floquet-Bloch waves in a rectangular
grid of beams

An infinite lattice of Rayleigh beams is considered, periodically arranged in
a rectangular geometry as shown in Fig. 2.1a, together with the unit cell,
Fig.2.1b. The beams arerigidly joined together, so that the angle between the
beams at every nodal point is preserved. Moreover, the usual assumptions
of the linear elasticity theory are adopted, including beam unshearability,
small-amplitude of vibrations and absence of damping.

() (b)

()| {ps, EAy. BL)
540

[ R ! ; 1L spw 1 2 (3)

. : ! {(py, EA,, EL} Satts {pAy, BA,, B}

R — 1 R
&1 @)[{2, B, B}
52,112
Uy

3

21,

Fig. 2.1. Geometry of the grid-beam structure, made up of elements which may deform
extensionally and in bending (a) and the relevant unit cell, where the local reference
system is shown (b).

Each beam is assumed to be axially extensible and flexible, so that the
equations governing the time-harmonic (in-plane) response are

2
EA 3&1/1(25) + pA w?u(s) =0,
24v(s) 82151(5) @D
o°08) 20708S) 2 _
El 354 +plw 392 pAwv(s)=0,

where p is the mass density, E the Young modulus, A and I are respectively
the area and the second moment of inertia of the beam’s cross-section, and
w is the angular frequency of the time-harmonic vibration. The axial and
transverse displacements are denote with u(s) and v(s), respectively, where
s is the local axial coordinate, Fig. 2.1b. By setting & = s/I, with [ being
the length of the beam, Egs. (2.1) can be cast in the following dimensionless
form

2
u”(&)+ @*u(&) =0, " (&) + &*v" (&) - % &*v(&) =0, (2.2)

where @ = w I4/p/E is a non-dimensional angular frequency, A = 2IVA/I
represents the slenderness of the beam, and the prime denotes differentia-
tion with respect to &.
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The general solution of Egs. (2.2) is sought in the form
2 . ~ 4 . ~ I
u(&)=>,Cje! @, y(&) = > Djel i@V, (2.3)
=1 =1

where the C; and D; denote 6 complex constants, while the n; and y; are
characteristic roots

Ma(@) =0,  Y1234(@,A) = i\/% (cD + VA2 4 5)2). (2.4)

With the local coordinates shown in Fig. 2.1b, the displacement field on
each beam of the unit cell is

2 4
up(&p) = Z Cpqeznq((bp)ép , 0p(&p) = Z quezyq((:)p,/\p)g,, )
q=1 q=1 (2.5)

Ep=sp/ly,, Vped{l, .4},

where the 24 undetermined constants, C,; and D,;, can be found by im-
posing kinematic compatibility and equilibrium conditions at the central
junction, plus the Floquet-Bloch boundary conditions between correspond-
ing sides of the unit cell.

Assuming for simplicity the elastic modulus E and the mass density p to
be equal in all the beams, by choosing the following dimensionless variables

&1 =wh+p/E, A =2h~vA1/Li, Ax=2D~Ar/D, 2.6)
(X=ll/lz, )(ZAl/AZ/

the linear system governing the time-harmonic oscillations of the lattice is
defined as follows.

e Compatibility of displacements and rotations at the central node of
the unit cell

v1(1) = v3(0), v2(1) = v4(0), ©1(1) = —ua(1),

u1(1) = u3(0), uz(1) = ug(0), v2(1) = u1(1), (2.7)
v1(1) = avy(1), avy(l)=050), v50)=auv(0),
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e equilibrium of the central node

4a
u%(0 1 vy (0) - — &% v (0)+
50) —uj(1) - xAz 0) - 0‘/\2 1 04(0)

///(1) 12 w1 772(1)

2 xan;
4x ., AX 2.
uy(0) — up(1) = —5 o'(1) - 507 v (D+ (2.8)
1 1
4 /// ~2 7
+ ? 3 (0) + /\1 CU1 03(0) =0
/\2 2
v2(0 +—v 0)-v7(1 ——v 1
3(0) IoF 1(0) =07 (1) A2 7(1) =

e Floquet-Bloch boundary conditions

uz(1) = u1(0) e’ X1,
03(1) = 01(0) ',
v4(1) = v} (0) ',
ujy(1) = uj(0)e'®,
0y (1) + @7 (1) = (07(0) + @7 v1(0)) ' X,
vy(1) =07 (0) '™,
ug(1) = up(0) e X2/, (2.9)
04(1) = 02(0) '/,
v,(1) = 05(0) ' X2/
uy(1) = uj(0) e’ /e,

~2 ~2
///(1)+ 04(1) ( ///(0)+ _02(0)) 1I<2/a/

vy (1) = v(0) etkala,

where K; and K; are dimensionless components of the Bloch wave
vector k = kie1 + koeo, namely, Ky = k1211, Ky = k2214.

Egs. (2.7)-(2.9) provide the complete set of equations governing the
propagation of in-plane Floquet-Bloch waves for an infinite and periodic
Rayleigh beam lattice. The governing equations for the corresponding Euler-
Bernoulli approximation can be easily obtained by neglecting the rotational
inertia terms, pl; = pl, = 0, and by retaining only the low-frequency term
of the flexural characteristic roots y;, i.e. Y1234 = +V£@0A/2.
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2.3 Dispersion properties and Bloch waveforms

2.3.1 Dispersion equation

A substitution of representation (2.5) into the boundary conditions (2.7)-
(2.9) leads to an algebraic homogeneous linear system of the type

A(CD1,K, /\1/ /\2/ (XIX)C = 0/ (210)

where A is a 24x24 complex matrix, function of the dimensionless angular
frequency @1 and wave vector K, slenderness A1 and A,, aspect ratio a and
geometric ratio . Vector ¢ collects the 24 complex constants, C,; and D,,,
appearing in the displacement field, Egs. (2.5).

Introducing the following normalization

4w _ 2Mian
n2\EL/(pA) ™

where the angular frequency w has been made dimensionless through di-
vision by the first flexural natural frequency of a simply supported Euler-
Bernoulli beam, the non-trivial solutions of the system (2.10) are found when
the matrix A is rank-deficient

, 2.11)

detA(Q, K, A1, As, a, x) =0, (2.12)

which is the dispersion equation, implicitly defining the relation between the
angular frequency () and the wave vector K, namely, the so-called dispersion
relation. Furthermore, for each point of the {(), K}-space satisfying Eq. (2.12),
the corresponding eigenvector ¢({), K) can be computed from (2.10).

Hence, the propagation of Floquet-Bloch waves is governed by the eigen-
value problem (2.10), where the eigenfrequencies are determined by the dis-
persion relation ((K), periodic with period [0, 27t] X [0, 2], and the eigen-
modes (or waveforms) are defined by the eigenvectors c((2, K), to be inserted
into Egs. (2.5).

2.3.2 Dispersion surfaces: Euler-Bernoulli vs Rayleigh

Dispersion surfaces are provided for the Euler-Bernoulli as well as the
Rayleigh lattices, with an emphasis on the effects of both the rotational iner-
tia and the slenderness of the beams. To this end, a lattice made up of beams
of equal characteristics, except the length, is addressed, x =1, I = L. A
square grid, « =1, A1 = A = A =5, and a rectangular, @ =2, A1 =214, =10,
are considered. Results are reported in Figs. 2.2 and 2.4a for a square and
in Fig. 2.4b for a rectangular grid.

The dispersion surfaces shown in the figures are complemented by the
band diagrams reported in Figs. 2.3 and 2.5, relative to the paths I-X-Y-T'
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and I'-X-Y-Z-T reported in the Figs. 2.2 and 2.4b, permitting the appre-
ciation of details which remain undetected from the dispersion surfaces.

(©

Fig. 2.2. The effect of rotational inertia (becoming important at high frequency) is evi-
denced by the differences between the dispersion surfaces for a square lattice made up
of Euler-Bernoulli (a) and Rayleigh (b) beams, both relative to a slenderness A = 5. The
influence of the slenderness (already evident at low frequency) may be appreciated by
comparing the case A = 5 (b) with the case A = 10 (c). The green and pink horizon-
tal planes denote two first natural frequencies of a double-pinned beam, namely, (¢
corresponds to the flexural vibration and identifies the stationary point of the lowest
dispersion surface (occurring at {K1, K2} = {m, }). , corresponds to the axial vibra-
tion and identifies the set of stationary points of the fourth and fifth surface located
respectively at K1 = 1, VK, and Ky = 7, VK. The band diagrams corresponding to the
path I'-X-Y-T sketched in the figure are reported in Fig. 2.3.

The dispersion surfaces reported in Figs. 2.2 and 2.4 have been marked
with the following two particular frequencies (respectively with a pink and
green plane)

Mk 0° = Mh

,/7‘(2+A]2.l_f’ oy

which are the lowest natural frequencies of, respectively, the flexural and
axial mode of a double-pinned Rayleigh beam. It is worth noting that

Q]f = Vije{1,2} (2.13)
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Fig. 2.3. A lowering of the dispersion frequency induced by the rotational inertia is
visible in the band diagrams for a square lattice made up of Euler-Bernoulli (blue curves)
and Rayleigh beams (red curves), with slenderness A =5 (a) and A = 10 (b). The labels
P; (marked also in Fig. 2.6, see also Table 2.1) denote the points where the corresponding
waveforms have been computed and shown in Figs. 2.8-2.10. Note that () always
corresponds to the vertex of the first dispersion surface, denoted by P4, whereas (),
corresponds to the flat band, denoted by Ps. Furthermore, the rotational inertia leaves
the flat band at Q) = (), unaltered along the X—Y path, due to the fact that purely axial
vibrations occur. The diagrams have been evaluated along the boundary of the first
irreducible Brillouin zone (path I'-X-Y-I" sketched in Fig. 2.2).

Q{ is always lower than Q;?, and that, in the particular case of the Euler-

Bernoulli model, the dimensionless natural frequencies become Q{ =1land
0 = ari/As.

The beam slenderness (which measures the relative importance between
flexural and axial deformations along the beams in the grid) is expected to
play an important role in the in-plane wave propagation and thus in the dis-
persion relation {}(K1, K3). This is in fact a consequence of the compatibility
and equilibrium equations to be satisfied at the central node, Egs. (2.7)—-(2.8),
which produce a coupling between axial and transverse displacements along
the beams, simply absent in the case of out-of-plane motion [25]. The in-
fluence of the slenderness can be easily appreciated by comparing results
reported in Fig. 2.2b with those reported in Fig. 2.2¢, relative to a slenderness
A = 5 in the former figure and A = 10 in the latter. Note that, these values
have been selected to highlight differences in the model response, even if
the structural hypothesis of beam unshearability looses validity at small
values of slenderness. It can be for instance noticed that the second and
third dispersion surfaces are strongly separated by an increase of stiffness.

Rotational inertia produces a lowering of the propagation frequency, so
that for any fixed value of slenderness, each dispersion surface of the
Rayleigh beam lattice is lower than the corresponding surface for Euler-
Bernoulli (compare Fig. 2.2a to Fig. 2.2b and see Fig. 2.3), so that a seventh
surface enters the frequency response in Fig. 2.2b.
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Moreover, a separation is observed between the dispersion surfaces,
except at low frequency, the so-called ‘acoustic branches’, where it is known
that the two Rayleigh and Euler-Bernoulli models predict the same response.

An interesting feature emerging from the dispersion surfaces is the pres-
ence of sets of points independent of the rotational inertia, so that their po-
sition remains the same for both beam models. These points can be seen by
comparing the fourth surface in Fig. 2.2a and 2.2b, where it can be noticed
that the points corresponding to K; = 7, VK> or K» = ©, VKj are located
at the same frequency ), = A/7 in both figures (highlighted with an hori-
zontal green plane), which is the frequency corresponding to the first axial
mode of vibration of a double-pinned beam. Here the dispersion relation is
stationary, so that the corresponding waveforms has a null group velocity,
and, in fact (see Section 2.3.3), these waves do not involve flexion, so that
the joints of the entire lattice remain fixed.

A flattening of the fourth dispersion surface, giving rise to an infinite
set of standing waves propagating at the same frequency with an arbitrary wave
vector, can be produced through a tuning of slenderness for both the Euler-
Bernoulli and Rayleigh beam models. This can be deduced by noting the
reversal in the curvature of the fourth dispersion surface relative to A = 5
(Fig. 2.2b) compared to that relative to A = 10 (Fig. 2.2¢), suggesting the
existence of a flat surface for an intermediate value of slenderness. Indeed
the flat surface is present when the first flexural and axial mode of a double-
clamped beam have the same natural frequency, which, for the Rayleigh
model, occurs for a value of A satisfying the following equation

. A
cos(2y1(®d, A)) cosh (m) +

@ @A
+—sin(2y1(@, A))sinh | ————— | - 1 =0, (214
5 sin2y1(@, A) (Vl(a)/ A)) L_m (2.14)

where

(@, ) = \/w (a} +VAZ 5 (:)2) /2.

A numerical solution of Eq. (2.14) (in the interval 5 < A < 10) yields A =
6.192. For this value of slenderness, the dispersion surfaces and the band
diagram reported respectively in Figs. 2.4a and 2.5a show the presence
of a flat dispersion surface. Note in particular that at the point Y (i.e.
Ky = K = m) a triple root of the dispersion equation exists, corresponding
to the intersection between the fourth, fifth and sixth dispersion surfaces.

The aspect ratio (o = I1/I;) of the rectangular lattice has an important
effect on the vibrational characteristics of the grid. In particular, Figs. 2.4b
and 2.5b pertain to a Rayleigh beam with a = 2,11 = 24, = 10 and these
results can be compared to those reported in Figs. 2.2b, 2.2c and 2.3. Besides
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(b)

Fig.2.4. A completely flatband of the fourth dispersion surface is produced in a Rayleigh
beam square lattice at the slenderness A = 6.192, so that an infinite set of standing waves
propagate at the same frequency () = 1.971, part (a). Dirac cones are clearly visible in the
dispersion surfaces of a rectangular lattice with contrasting slenderness with A1 = 10
and Az = 5, part (b). Note that the frequencies Q0 and (), found for the square lattice
(Figs. 2.2b and 2.2c) are now split in the four frequencies Q{,Z and () ,. The band
diagrams corresponding to the paths I'-X-Y-I" and I-X-Y-Z-T sketched in the figure
are reported in Fig. 2.5.
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Fig. 2.5. The band diagrams relative to the paths [-X-Y-T' and ['-X-Y—-Z-T sketched
in Fig. 2.4 show: (a) the perfectly flat band occurring at the slenderness A = 6.192 in a
Rayleigh square lattice; (b) the Dirac cones (particularly evident in the fourth and fifth
band) present in a rectangular lattice with slenderness contrast A1 = 10, A, = 5.

the fact that the surfaces are different, two aspects can be noticed: (i) that
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a

the two frequencies (), and () split into the four ()f , and Q{ , and (ii) that
Dirac cones become clearly visible [24, 25].

Several singularities and Dirac cones connect the complex multiple dis-
persion surfaces in Figs. 2.2 and 2.4, but Dirac cones become particularly
evident in the rectangular grid, Fig. 2.4b. At these singular points the dis-
persion relation may become non-smooth.

2.3.3 Slowness contours, Dirac cones, and standing waves

Detailed features of the individual dispersion surfaces are analyzed by com-
puting their level sets, also referred to as slowness contours. As these contours
provide valuable information on the kind of anisotropy to be expected in the
time-harmonic response of the lattice, their analysis allows us to identify the
frequency regimes corresponding to different dynamic behaviours. In fact,
this tool has already been proved to be successful at predicting the prefer-
ential directions of the forced vibrations for the out-of-plane problem [25].
As discussed in the previous section, the in-plane wave propagation
problem involves more complex dispersion characteristics than the out-of-
plane, due to the coupling between the axial and flexural beam vibrations.
Furthermore, the vectorial nature of the problem allows the application of
different types of in-plane concentrated loads, namely two orthogonal point
forces and a concentrated bending moment, and hence the shape of the
slowness contours alone cannot provide a comprehensive description of the
forced lattice vibrations. Therefore, a complete investigation of the lattice
vibration properties, involves determination of the following aspects:

(i) identification of frequency ranges displaying the non-convexity of the
slowness contours, for possible detection of negative refraction;

(ii) computation of waveforms corresponding to double roots and stand-
ing waves, as connected to resonance under forced vibrations;

(iii) identification of waveforms evidencing a purely extensional or flexural
response, corresponding to vibration modes of a finite-length beam.

For the Rayleigh beam model and the two values of slenderness, A = 5
and 10, the slowness contours of the first five dispersion surfaces have
been computed and reported in Figs. 2.6 and 2.7, complemented by the
corresponding 3d views. Along the contours pertaining to A = 5, points
are marked (labeled Py, P, ...), for which the corresponding waveforms are
shown in Figs. 2.6-2.10. The numerical values of the coordinates of these
points are provided in Table 2.1; in addition, the same points have also been
indicated in Fig. 2.3a.

The first property that clearly emerges from the shape of the contours is
the cubic symmetry in the quasi-static (low-frequency) response, inherited
by the symmetry of the square grid itself. In particular, considering the two
lowest surfaces (Figs. 2.6f and 2.6g or 2.7f and 2.7g) in the neighbourhood of
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Fig. 2.6. The cubic anisotropy is evident from the slowness contours (f)—(j) associated
to the dispersion surfaces (a)—(e), for a square grid of Rayleigh beams with slenderness
A = 5. The labels P; (marked also in Fig. 2.3a, see also Table 2.1) denote the points where
the corresponding waveforms have been computed and shown in Figs. 2.8-2.10. Linear
dispersion at low frequency is visible in the acoustic branches (the first two dispersion
surfaces), while the dispersion relation becomes nonlinear at high frequency and the
isofrequency contours dramatically change and display several double-root points such
as the four Dirac cones (one of them is labelled P3) connecting the first two surfaces as
well as the stationary points connecting the second and the third (Ps) or the fourth and
fifth surface (Pg).

Point K3 K> QO Disp. Surface
Pr V32 1)2 0.230 1st
P, V32 1)2 0.325 ond
P3 n  1.555 0.812 15t — pnd
Py n n o Qp~0.8467 1st
Ps T n 1.193 ond _ 3rd
P T n Q, ~ 1.592 4th _ 5th
P; T n 1.853 6th

Table 2.1. Location (in the {Ky, K2, Q}-space) of the points on the dispersion surfaces (for
a Rayleigh beam lattice with slenderness A = 5) at which the corresponding waveforms
have been computed and reported in Figs. 2.8-2.10. The points are also marked in
Figs. 2.3a and 2.6. Note that points corresponding to double roots connect two surfaces.

{Ki, Kz} = {0, 0}, the contours perfectly match the linear dispersion of the
acoustic branches of a classical Cauchy continuum endowed with a cubic
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Fig. 2.7. The cubic anisotropy, occurring at all frequencies, is evident from the slowness
contours (f)—(j) and associated dispersion surfaces (a)-(e), for a square grid of Rayleigh
beams with slenderness A = 10.

material symmetry. It is in fact recalled that the effective elastic parameters
(Young modulus E*, Poisson’s ratio v*, shear modulus G*, and mass density
p*) of a 2d continuum equivalent to a square beam grid are [64]

E*=EA/(2l), v =0, G* = 6EI/(21;)?, p"=2pA/2L),

so that the velocities of the pressure and shear waves propagating in the
effective continuum are

E* G*
Up,0° = - Us,00 = T
p P

in the direction parallel to the principal axes and

, (A +v)E*+2G* ” (A =v)E*
p,45° = zp* 7 s,45° = zp,(.

in the direction inclined at 45° with respect to the principal axes (which, for
a cubic material, are the only directions corresponding to de-coupling of
pressure and shear waves).

On the first two low-frequency branches (where the wavelength of the
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Fig. 2.8. Low-frequency (long-wavelength) waveforms for a square Rayleigh beam
grid, computed on the acoustic branches (the two lowest dispersion surfaces). The
locations of the corresponding points P; on the dispersion surfaces are represented in
Figs. 2.6f and 2.6g.

propagating waves is much larger than the size of the lattice unit cell),
the structured medium is expected to exhibit a continuum-like dynamic
response, displaying cubic anisotropy. This behaviour is clearly demon-
strated by the associated waveforms shown in Fig. 2.8, where it can be
noticed from the insets showing the unit cell that the modulation of the
Floquet-Bloch wave is essentially uniform. Moreover, the comparison be-
tween Fig. 2.8a and 2.8b shows that the anisotropy induces a sort of ‘mixing’
of the ‘shear” and “pressure’ waves as the amplitudes are neither parallel
nor orthogonal to the wave vector, in agreement with the cubic symmetry.

As we consider higher frequencies, the dispersion becomes nonlinear
and the geometry of the slowness contours changes dramatically. Non-
convex slowness contours are evident in the proximity of the top of the
first dispersion surface, displaying two orthogonal preferential directions
inclined at 45° with respect to the orientation of the beams (see Fig. 2.6f).
This non-convex pattern occurs again on the third surface, but with different
preferential directions, which are now aligned parallel to the beams of the
lattice (see Fig. 2.6h).

[\ g\ g
== f R - - - - - = =
(e = | | |
| R A N A g ‘ [ N N A s it R
(I (I [ |- | T | ST |
() 1% waveform at (b) 2" waveform at
P3:{K1, Ky, Q}={m,1.555,0.812}. P3:{Ky,Kp,Q}={m,1.555,0.812}.

Fig. 2.9. Waveforms in a square grid of Rayleigh beams at the Dirac vertex, which
connects the first and the second dispersion surface. Both waves propagate vertically,
but are standing horizontally and, in particular, the vertical beams transmit pure flexural
vibrations (a) and pure axial waves (b).
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The peculiarities of the high-frequency dynamics can be associated not
only to the features of the slowness contours, but also to the actual wave-
forms corresponding to double roots, Dirac cones, and standing waves. In
this regard, the Dirac vertex is considered, which is present at the point
P3: {Ki,Ky,Q} = {m,1.555,0.812} connecting the two lowest dispersion
surfaces. The two waveforms related to this double root are depicted in
Fig. 2.9, where it can be seen that both waves propagate vertically, but are
standing horizontally, so that they highlight the difference between the phase
velocity and the group velocity of Floquet-Bloch waves. Specifically, a better
understanding of these waves can be obtained by considering the motion
of horizontal and vertical beams separately: the latter beams (Fig. 2.9a) are
subject to purely flexural vibrations, so that the junctions do not displace
vertically, while in the waveform shown in Fig. 2.9b these beams undergo a
purely axial motion. On the other hand, the dynamics of horizontal beams
is characterized by nodal points (where displacement remains constantly
null), which in the waveform reported in Fig. 2.9b are located at the mid-
point of the beams for both the axial and flexural waves, while in Fig. 2.9a
the nodes of the transverse and the axial displacement are located at the
junctions and at the midpoints, respectively. Due to the cubic symmetry,
three Dirac points analogous to that considered above are present for the
same frequency at the Bloch vectors {Kj, K»} = {n, 7 + (n — 1.555)} and
{Ki1, K3} = {m + (n — 1.555), } (see Figs. 2.6f and 2.6g).

It is important to observe that the Dirac points are very different from
those occurring for out-of-plane vibrations, where triple roots are found
whose waveforms are purely standing waves [25]. In contrast, the in-plane
vibrations associated to the Dirac vertex exhibit what can be called ‘uni-
directional propagation’, as the waves propagate along one direction but are
standing along the other.
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(a) Waveform at P5:{K1, Kp, Q}={m, 7, 1.193}. (b) Waveform at Ps:{K1, Ky, Q}={m, 7, 1.592}.

Fig. 2.10. Standing waves occurring in a square grid of Rayleigh beams, corresponding
to the double root connecting the second to the third (a) and the fourth to the fifth (b)
dispersion surface. The vertical beams are subject to a purely flexural deformation while
the horizontal beams exhibit pure axial vibrations, so that nodal points are located at
the midpoints of beams (a). The waveform (b) occurs at a frequency ) = Q, = A/m,
corresponding to the first axial vibration mode of a double-clamped beam. The motion
of horizontal and vertical beams are completely decoupled and nodal lines are clearly
visible. Due to symmetry, the companion waveforms analogous to (a) and (b) can also
propagate at the same frequencies, with reversed roles of the horizontal and vertical
beams.
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(a) Waveform at Py:{K1, Kp, Q}={m, 7, 0.847}. (b) Waveform at P7:{K1, Ky, Q}={m, 7, 1.853}.

Fig.2.11. Purely flexural standing waves occurring in a square grid of Rayleigh beams on
a stationary point of the first (a) and the sixth (b) dispersion surface, at a frequency cor-
responding to the first flexural mode of a simply supported (a) and a double-clamped (b)
Rayleigh beam. Nodal points are located at the junctions for both cases, but these joints
may have a rotational motion (a), as opposed to the situation where they are totally
fixed (b).

At the points P5 and Pg, two double roots are found, where the disper-
sion surfaces do not present a cone-like geometry, rather they seem to exhibit
stationary points which would imply the presence of standing waves. This
is confirmed by the corresponding pairs of waveforms computed at these
points and in fact revealing sets of nodal points distributed along the two
orthogonal directions (Fig. 2.10). In particular, the two eigenmodes cor-
responding to Ps (Fig. 2.10a) are characterized by a peculiar combination
of a purely flexural motion along one set of beams and a purely exten-
sional deformation along the orthogonal set, with nodal points located at
the beams’ midpoints. On the other hand, the waveforms corresponding to
Pg (Fig. 2.10b) involve only purely axial standing waves along one direction
and nodal lines along the other, so that the junctions remain fixed and the
lattice vibrates with a frequency Q) = (), = A/m, corresponding to the first
axial mode of a double-clamped beam.

Purely flexural standing waves are found at the points P4 and Py where,
respectively, the first and sixth branches of the dispersion relation become
stationary. The corresponding waveforms, represented in Fig. 2.11, show
nodal points at the junctions, so that each beam oscillates according to the
first flexural vibration mode of a double-pinned beam in Fig. 2.11a, or of a
double-clamped beam in Fig. 2.11b.

The above-reported investigation will be useful in the next section for
the interpretation and prediction of the lattice dynamics induced by a time-
harmonic point load.

2.4 Forced vibration of a grid of Rayleigh beams

The relation between the dynamic response of a grid of Rayleigh beams and
the Floquet-Bloch analysis performed in the previous section can be inves-
tigated through the analysis of the vibrations induced by a time-harmonic
source (a concentrated force or moment) in a lattice of infinite extent. To
this purpose, a square grid of Rayleigh beams is numerically solved using
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the Comsol Multiphysics® f.e.m. program in the frequency response mode.
A square finite-size computational window with (N — 1)X(N — 1) unit cells
is considered, where N = 161 is the number of nodes in each direction,
with a perfectly matched layer (PML) along the boundaries, to simulate an
infinite lattice. By tuning the damping in the boundary layers, the outgoing
waves can be completely absorbed, so that reflection is not generated in the
interior domain. The physical parameters for the numerical computations
are chosen to be identical to those used in the previous Section 2.3.

Since the in-plane problem is vectorial, different types of loading are
considered, namely a concentrated in-plane (the vector defining the moment
is orthogonal to the plane of the grid) moment and a concentrated in-plane
force, applied to the central junction. For a given loading and a given
dimensionless angular frequency (), the complex displacement field, with
components u = ugr + iuy and v = vr + ivy, is computed. The results
are plotted in terms of the total displacement associated to the real parts,

Or(x,y,Q)) = ,/u%{ + UIZQ. For the sake of brevity, the total displacement

associated to the imaginary parts 6;(x, y, Q) = \/u? + v? is omitted.

The numerical simulations are complemented with a Fourier analysis of
the nodal displacements, with the purpose of providing a clear connection
between the forced response of the Rayleigh beam lattice and the Floquet-
Bloch analysis performed in the previous sections.

For a given dimensionless angular frequency (), the two-dimensional fast
Fourier transform is applied to the nodal displacement field, u,,; = u(x,, y,)
and vy, = v(xp, y4), where (x,, y;) are the coordinates of the (pg)-node in
the grid. This gives the transformed fields U,s = F[up,] and Vys = F[vp],
where the transform is defined as follows

Xys = Flyg] = Ni o= B p-0-1) o= 2 - 1)(s-1)

2 rq

M= 11
M= 11

xpge P DKI=I0-DKe _ X (K, Ky),

Z| —_
N

i

R

-

i

KR

Vr,se{l,.. N} (215)

in which K; = 2W’T(r —1)and K; = 2W“(s — 1) are the components of the
dimensionless wave vector appearing in Eq. (2.9).

The fast Fourier transform provides the spectrum of Bloch plane waves
composing the forced dynamic response of the beam grid. Specifically,
|U(K1, K2)| and |V (K1, K2)| are the amplitudes of a plane wave with wave
vector {Kj, Kz}, such that the physical displacement field can be represented
as the superposition of all the N? plane waves of the spectrum. For each
numerical simulation performed at a given frequency, the density plot of

the quantity +/|U|>+|V|? is reported superimposed to the slowness contour
computed at the same frequency with the Floquet-Bloch technique.
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2.4.1 Pulsating moment: wave localization and “isotropiza-
tion”

A grid of Rayleigh beams is investigated when forced by a time-harmonic
concentrated moment, acting at a node and pulsating at a given dimension-
less angular frequency (), in the range of frequencies analyzed in Section 2.3.
The results are reported in Figs. 2.12-2.15 in terms of the total displacement
associated to the real parts, 6. Each numerical simulation is accompanied
by the Fourier transform of the complex displacement field, shown in the
lower part of the figure, where a red dotted line indicates the slowness con-
tours obtained with the Floquet-Bloch analysis at the considered frequency
) (see Fig. 2.6).

Three different frequency intervals are investigated, namely: a low fre-
quency regime, from {2 = 0 up to the vertex P, of the first dispersion surface,
at (¢ = 0.8467 (results are reported in Figs. 2.12 and 2.13); an intermediate
frequency regime, between the points P4 and Pg, at (), = 1.5915, where the
propagation of axial waves prevails (results are reported in Fig. 2.14); and
finally a high frequency regime from the point Ps up to higher frequencies
(results are reported in Fig. 2.15). The transition between the low and the
intermediate frequency regimes deserves a special attention, because here
the first dispersion surface shows a stationary point (point P4, being either
a maximum or a minimum, depending on the slenderness ratio). This fre-
quency corresponds to the resonant mode occurring at ()y = 0.8467 and
represented by the pure flexural standing wave in Fig. 2.11a, so that three
different frequencies close to this point are investigated (results are reported
in Fig. 2.13).

The results of the numerical simulations for the low-frequency regime
Q € (0,Qf = 0.8467) are reported in Fig. 2.12. For a given frequency () in this
range, two dispersion surfaces are always intersected. The Fourier transform
of the nodal displacements of the forced lattice, shown in the lower part
of the figure, displays the spectrum of Bloch plane waves composing the
dynamic response, which nicely corresponds to the slowness contours (red
dotted lines) obtained through the Floquet-Bloch analysis in Section 2.3. The
long-wavelength regime for () = 0.025is shown in Fig. 2.12a, where the wave
pattern with square wavefronts is typical of a material with cubic symmetry.
Increasing the frequency up to () = 0.65, the dynamic response exhibits a
strong localization along two preferential directions at +45° with respect
to the horizontal axis, Fig. 2.12b. The corresponding Fourier transform,
reported in Fig. 2.12¢, clearly highlights the excited Bloch waves, among the
ones predicted by the slowness contours at the same frequency (red dotted
lines). It is evident that the applied pulsating moment excites waves along
the two inclined preferential directions, whereas waves with the “isotropic’
shape corresponding to the rounded slowness contour are not generated.
Approaching the stationary point of the first dispersion surface (point Py in
Fig. 2.6), at the frequency () = 0.8, a less marked but still visible diagonal
localization is observed, together with a propagation along the principal
axes of the lattice, see Fig. 2.12c. Note that, while the slowness contour
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Fig. 2.12. Total displacement field (upper part, a-b-c) and corresponding Fourier trans-
form (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited by a
time-harmonic concentrated moment (applied out-of-plane in a low-frequency interval,
0 < < Q5 =0.8467). The slowness contour evaluated from the Floquet-Bloch analysis
is superimposed in red spots. (a) and (d), = 0.025, at low frequency the wave pattern
is typical of a continuous material with cubic anisotropy (note that the slowness contour
and the Bloch spectrum are confined at the corners of the lower figure). (b) and (e),
Q = 0.65, a strong vibration localization along directions inclined at +45°. (c) and (f),
) = 0.8 the inner cross-shaped slowness contour is the most excited by the applied load;
however, its re-entrant curved edges lead to a fan of preferential directions, developing
around the lines inclined at +45°.

is convex in Fig. 2.12 (e), it becomes concave in part (f). The re-entrant
curved edges lead to a fan of preferential propagation directions around
lines inclined at +45°. The appearance of Bloch waves corresponding to the
second slowness contour justifies the weak propagation along the principal
axes.

In the proximity of the stationary point of the first dispersion surface
(occurring at ()¢ = 0.8467), a sudden change in the response of the lattice is
observed, so that a narrow range of frequencies is analyzed and reported in
Fig. 2.13. Part (a) of this figure shows the displacement field for a pulsating
moment with frequency () = 0.83628, where the applied moment excites
mostly Bloch waves corresponding to the inner diamond-shaped slowness
contour visible in Fig. 2.13d. Waves with squared wavefront are produced,
while the two preferential directions inclined at +45° still remain visible.
Immediately below the stationary point of the first dispersion surface, at
Q) = 0.8455, the wave pattern becomes similar to the response of an isotropic
material. Indeed, at this frequency, the inner slowness contour shrinks and
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Fig. 2.13. Total displacement field (upper part, a-b-c) and corresponding Fourier trans-
form (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited by a
time-harmonic concentrated moment (applied out-of-plane at frequencies near the sta-
tionary point P4 in Fig. 2.6, (0 = 0.8467, of the first dispersion surface). The slowness
contour evaluated from the Floquet-Bloch analysis is superimposed in red spots. (a) and
(d), 2 = 0.83628 , the inner diamond-shaped slowness contour is excited by the applied
load, producing waves with squared wavefront; two preferential vibration directions
inclined at +45° are still visible. (b) and (e), () = 0.8455, at a frequency very close to
the resonant point P4, the inner slowness contour shrinks to a little circle and the waves
assume an almost circular wavefront when close to the source, while these assume an
octagonal shape far away from the source. (c) and (f), {1y = 0.8467, at the resonant
frequency the inner slowness contour shrinks to a point, the corresponding evanescent
waveform is typical of a resonant mode. Note that, as the resonant frequency () is
approached, the lattice response exhibits a remarkable ‘isotropization” with wavefronts
becoming circular.

becomes almost circular, Fig. 2.13e; correspondingly, the waves produced
by the applied moment show an almost circular wavefront, when they are
close to the source, while they assume an octagonal shape, when far away
from the source and present a increased wavelength, when compared to the
lower frequencies. At the stationary point of the first dispersion surface,
corresponding to the frequency () = 0.8467, the total displacement field
ORr, reported in Fig. 2.13c, shows an evanescent wave pattern, typical of
a resonant mode, so that the inner slowness contour reduces to a point,
Fig. 2.13f. The Bloch eigenmode corresponding to this point is identified
through the Floquet-Bloch analysis (Section 2.3) as a purely flexural standing
wave, in which the junctions of the grid exhibit a pure rotational motion,
Fig.2.11a, which explains the observed resonant wave pattern. This peculiar
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response of the dynamic lattice, occurring close to the stationary point of
the frequency surface, shows a surprisingly “isotropization’ effect, for which
waves propagate in a square lattice with a polar symmetry resembling the
symmetry observed in an isotropic medium. This is due to the fact that the
stationary point represents a maximum for the dispersion surface, so that
the slowness contours become circular in the neighborhood of this point.
Additionally, the applied load (a concentrated moment) excites with its
polar symmetry exactly the Bloch waves associated with the inner circular
isofrequency contour.
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Fig. 2.14.  Total displacement field (upper part, a-b-c) and corresponding Fourier
transform (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited
by a time-harmonic concentrated moment (applied out-of-plane in an intermediate fre-
quency regime () = 0.8467 < Q) < Q, = 1.5915, where only one dispersion surface is
intersected). The slowness contour evaluated from the Floquet-Bloch analysis is super-
imposed in red spots. (a) and (d), ) = 1.1, the applied concentrated moment does not
produce any visible wave propagation. (b) and (e), ) = 1.21, the Bloch waves of an
X-shaped’ slowness contour are almost uniformly excited, giving rise to several prefer-
ential directions inclined around the directions +45°. (c) and (f), () = 1.3, the preferential
vibration directions are vertical, horizontal and inclined +45°.

Fig. 2.14 shows the dynamic response of the lattice in the intermediate
frequency regime, between the stationary point of the first dispersion curve,
O = 0.8467, and the fourth dispersion surface, (), = 1.5915. For () = 1.10
the slowness contour intersects the second dispersion surface. The total
displacement field O, reported in Fig. 2.14a, shows an evanescent wave-
form prevailing at this frequency. The corresponding Fourier transform,
Fig. 2.14d, confirms that the applied moment excites only weakly Bloch
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waves. At the lower part of the third dispersion surface, for {) = 1.21, the
displacement field shows a waveform with several preferential directions
inclined at +45°, Fig. 2.14b. This pattern is in agreement with the corre-
sponding ‘X-shaped’ slowness contour shown in Fig. 2.14e. At () = 1.3,
Fig. 2.14c, localization is observed along preferential directions inclined at
+45°, together with a characteristic ‘herringbone’ pattern along the princi-
pal axes of the lattice (0°/90°), in agreement with the Bloch waves excited at
this frequency, Fig. 2.14f.
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Fig. 2.15. Total displacement field (upper part, a-b-c) and corresponding Fourier trans-
form (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited by a
time-harmonic concentrated moment (applied out-of-plane in a high-frequency inter-
val, ) > O, =1.5915). The slowness contour evaluated from the Floquet-Bloch analysis
is superimposed in red spots. (a) and (d), ), = 1.5915, since the applied concentrated
moment cannot excite axial waves, the associated cross-like slowness contour is not high-
lighted in the Fourier transform, so that almost isotropic waves are generated, which are
associated to the rounded slowness contour. (b) and (e), () = 1.67, the slowness contours
have a complex geometry, including square and rounded segments, together with eight
symmetrically distributed branches; the corresponding waveform shows eight prefer-
ential directions with rounded wavefronts. (c) and (f), Q) = 1.7326, a strong vibration
localization along directions inclined at +45° is clearly visible, also highlighted by the
corresponding Fourier transform.

The dynamic response of the lattice in the high frequency regime, is
reported in Fig. 2.15, starting from the troughs of the fourth dispersion sur-
face at the frequency (), = 1.5915. In this regime the Floquet-Bloch analysis
predicts the propagation of axial waves along the ligaments of the lattice
, Fig. 2.10b. At the frequency (), = 1.5915, corresponding to the troughs
of the fourth dispersion surface, the dynamic response of the lattice shows
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almost circular wavefronts with only a weak preferential direction of prop-
agation inclined at +45°, Fig. 2.15a. The corresponding Fourier transform,
Fig. 2.15d, highlights that the excited Bloch waves correspond to points
of the third dispersion surface, having almost circular slowness contours.
This wave pattern can be deduced from the Floquet-Bloch analysis because
the vibration eigenmodes pertaining to the troughs (associated with the
cross-like slowness contour) consist of purely extensional standing waves,
Fig. 2.10b, which cannot be excited by a time-harmonic moment, so that an
almost isotropic wave propagation prevails, associated with the rounded
slowness contours. At () = 1.67 the wave pattern reported in Fig. 2.15b
shows four fans (spanning an angle of 45°) of preferential directions with
rounded wavefronts. This waveform is the result of the complex geometry of
the slowness contours, as illustrated in Fig. 2.15e, which includes square and
rounded contours together with eight symmetrically distributed branches.
Finally, at the frequency 2 = 1.7326, an unexpected strong localization is
observed, along directions inclined at +45°, Fig. 2.15c. Here the slowness
contours would predict preferential directions along the principal axes of the
lattice (0°/90°), but the Fourier transform reported in Fig. 2.15f shows that
the excited Bloch waves correspond to the corners of the squared slowness
contour, which explains the observed preferential vibration directions.

2.4.2 Pulsating force: vibration channeling

The dynamic response is analyzed of a square grid of Rayleigh beams (with
A = 5) subject to a time-harmonic in-plane force (with different inclinations:
horizontal or at 45°) applied to a node. Total displacement fields (upper
parts, a-b-c) and corresponding Fourier transform (lower parts, d-e-f) are
reported in Figs. 2.16-2.18, together with the slowness contours evaluated
from the Floquet-Bloch analysis, superimposed with red spots to facilitate
comparisons.

For the frequency ) = 0.65, the total displacement field Or, reported in
Fig. 2.16a, looks different when compared to the displacement produced by
a nodal moment (Fig. 2.12b). In particular, in addition to preferential prop-
agation directions inclined at +45°, which produce an ‘X-shaped’ vibration
localization, other directions of propagation emerge, exhibiting a distinc-
tive ‘herringbone” wave pattern along the horizontal axis. A comparison
between Figs. 2.16 (a) and (d) and Fig. 2.12 (b) and (e) (all pertaining to the
same frequency () = 0.65) shows the presence in the case of the concentrated
force of Bloch waves corresponding to the second dispersion surface with
rounded slowness contour, a circumstance which explains the propagation
in directions other than +45°.

Increasing the dimensionless angular frequency to {) = 1.10, waves are
localized along the horizontal axis, as illustrated in Fig. 2.16b. For an higher
frequency, () = 1.273, a behaviour peculiar of the Rayleigh beam lattice is
observed, namely, the propagation becomes strongly localized in the direc-
tion perpendicular to the direction of the applied force, as clearly shown in
Fig. 2.16¢. Although the slowness contour at this frequency has an almost
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Fig. 2.16. Total displacement field (upper part, a-b-c) and corresponding Fourier trans-
form (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited by a
horizontal time-harmonic concentrated force (applied in the plane in the frequency in-
terval 0 < ) < Q, = 1.5915). The slowness contour evaluated from the Floquet-Bloch
analysis is superimposed in red spots. (a) and (d), {2 = 0.65, an “X-shaped’ localization of
vibrations around two preferential directions inclined at +45°; waves propagate within
the left and right sectors, while waves are not visible in the upper and lower sectors.
(b) and (e), 2 = 1.10, waves possess a thombus-shaped wavefront and an amplitude
localized along the horizontal axis. (c) and (f), () = 1.273, waves are strongly localized
along the vertical direction (orthogonal to the force).

circular shape, the Fourier transform, Fig. 2.16f, highlights that the activated
Bloch waves are localized at the ends of the vertical diameter, which explains
the observed strong localization.

Effects related to the directionality of the pulsating force can be appre-
ciated through a comparison between Fig. 2.16 and Fig. 2.17, where the
frequency-dependent interaction is visible between the vibration patterns
produced by the two in-plane components of the pulsating force. For in-
stance, for ) = 0.65 the wave pattern produced by a point force inclined at
45° with respect to the horizontal axis (Fig. 2.17a) is characterized by a strong
localization along the preferential direction at —45°, whereas the preferential
direction at +45°, present when the force is horizontal (Fig. 2.16a), disap-
pears. Rapidly decaying waves are also visible along vertical and horizontal
directions. At the frequency () = 1.10, the rhombus-shaped wavefronts visi-
ble in Fig. 2.16b are not affected by the inclination of the load, but the combi-
nation of the two force components generates a wave pattern characterized
by an absence of propagation in the second and fourth quadrant and, at the



2.4. Forced vibration of a grid of Rayleigh beams 33

0 0.20 0.40 0.60 0.80 1.00 0 0.05 0.10 0.15 020 025 0 0.10 0.20 0.30 0.40 0.50 0.60

0 s 27 0 s 27 0 s 2

0 2 4 6 8 x107 0 2 4 6x10% 0 025 050 075 1.00 x1072

Fig. 2.17. Total displacement field (upper part, a-b-c) and corresponding Fourier trans-
form (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited by a
time-harmonic concentrated force (inclined at 45° and applied in the plane in the fre-
quency interval 0 < ) < Q, = 1.5915). The slowness contour evaluated from the
Floquet-Bloch analysis is superimposed in red spots. (a) and (d), Q = 0.65, waves are
strongly localized along preferential directions inclined at —45° (perpendicular to the
applied force); rapidly decaying waves are also visible along vertical and horizontal
directions (b) and (e), ) = 1.10, waves propagate within the first and third quadrant
with vertical and horizontal preferential directions. (c) and (f), () = 1.273, a symmetrical
cross-shaped wave localization is visible, where waves propagate within the second and
fourth quadrant.

same time, by an amplification of the response in first and third quadrant
(see Fig. 2.17b). A comparison between Figs. 2.16c and 2.17¢, at () = 1.273,
shows that the total displacement field 6g produced by the inclined load
displays a prevalent propagation in the second and fourth quadrant, while
a negligible response is observed in the first and third quadrant.

At the frequency () = (), = 1.5915, corresponding to the troughs of the
fourth dispersion surface, the dynamic response of the lattice to a nodal
force is drastically different from that generated by a nodal moment (com-
pare Fig. 2.15a to Fig. 2.18a). While an activation of Bloch waves in the
third dispersion surface with rounded slowness contour (Fig. 2.15a and d)
are observed for an applied moment, a nodal force generates axial waves in-
volving only the horizontal and/or (depending on the direction of the force)
the vertical beams connected to the junction where the force is applied. This
extremely localized wave pattern is linked to the ‘cross-shaped’ slowness
contour, as shown by the Fourier transform in Fig. 2.18d.

Finally, the dynamic behaviour of the beam grid, when a time-harmonic
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Fig. 2.18. Total displacement field (upper part, a-b-c) and corresponding Fourier trans-
form (lower part, d-e-f) during vibrations of a Rayleigh grid of beams excited by a
horizontal time-harmonic concentrated force (applied in the plane in a high-frequency
regime, ) > (), = 1.5915). The slowness contour evaluated from the Floquet-Bloch
analysis is superimposed in red spots. (a) and (d), {}; = 1.5915, an extremely localized
wave pattern is visible, which involves only horizontal beams. (b) and (e), = 1.85,
waves localized along the horizontal axis are visible. (c) and (f), ) = 2.10, combination
of a prevalent horizontal localization associated to the activation of the outer contour
and an ‘X-shaped” wave pattern produced by the Bloch waves belonging to the inner
slowness contour.

nodal force is applied, pulsating at high frequency, () = 1.85, is reported in
Fig.2.18b. At this frequency, the slowness contour has a squared shape sim-
ilar to that of Fig. 2.16e at () = 1.10. Correspondingly, also the wave pattern
is similar, showing an horizontal preferential vibration direction. When the
frequency increases to the value () = 2.10, Fig. 2.18c, the displacement be-
comes strongly localized in the horizontal direction, while rapidly-decaying
vibrations emerge with inclination +45°.

2.4.3 Energy flow

The data obtained from the numerical simulations presented in the previous
section are now analyzed to investigate the dynamic anisotropy of the beam
grid in terms of the energy flow through the lattice produced by the pulsating
load. This aspect can be of significant interest for the control of wave
propagation and energy channeling in metamaterials.

With the purpose of constructing a 2d vector field representation of the
energy flow propagating through the beams of the lattice, the flow along
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a single beam is derived. Denoting with s the local coordinate measured
along the beam and increasing in the direction of the unit vector ¢, the
conservation of energy for an arbitrary part of a beam in an integral form
writes

%JSZ(T(s,t)+8(s,t)) ds = (Ray(s, t)-Rii(s, 1) s:sz+h(t), Vs1, 55, (2.16)

where 7" and & are, respectively, the kinetic and elastic energy densities
(functions of the coordinate s and of the time t), while a; is the vector
collecting the internal forces acting on the cross-section with unit normal ¢,
1 collects the corresponding velocities and k accounts for energy sources (for
instance the power of external loads) and dissipation (for instance viscous
damping) present along the interval (s1,s2) of the beam. The complex
representation of the displacement field is used, so that the R operator is
needed.

In the absence of energy sources and dissipations, Eq. (2.16) expresses
the balance between the rate of variation of the energy stored and the power
done by the internal forces acting at the ends of any beam interval. This
power is expressed through the scalar product Ra; - Rii, regardless of the
structural model employed for the beam and it can be represented in an
orthonormal basis {t, n, e3} as follows

Ray - Riu=R(INt+Vn+Mes) R t+1,n+¢@es),

_ RN Ris + RV Rty + RM R, 217)

where N, V and M are, respectively, the axial force, the shear force and the
bending moment, while the axial, transverse and rotational velocities are
denoted as 14, 11, and ¢. As expression (2.17) defines the instantaneous
energy flux flowing in the —t direction, the instantaneous energy flow on a
single beam is defined as

(s, 1) = —(RAN Rii; + RV Rit, + RMR) ¢, (2.18)

where the dependence on coordinate s and the time ¢ is now highlighted.

For time-harmonic response of the beam lattice, it is convenient to evalu-
ate the time average of the energy flow (2.18) over one period of oscillation,
so that the ‘effective’ energy transmitted is obtained. A well-known result
of complex variable calculus [65] yields

21/ w
(q(s, t)y =—t % J Ras - Rudt = —%‘R(at -1') t, (2.19)
0

where the symbol * denotes the complex conjugate and () the time average
operator. Furthermore, it is worth noting that, for time-harmonic motion,
the time average of the energy flow is also constant in s when applied loads
and dissipation are absent, 1 = 0, a property which can be easily obtained
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by localizing Eq. (2.16)

%(‘7’(5, )+ &E(s, t)) = —%(q(s, t)-t), (2.20)

and then averaging on time both sides to obtain

0 w t=27/w
<§(¢+ 8)> = (T+8)| =0,

(where the left-hand side vanishes due to the time-harmonic assumption),
so that

2 (Gats, ) -1 =0, (2.21)

which proves the average energy flow to be independent of s and therefore
to coincide with its mean value (g).

) 7w @

Fig. 2.19. Different forms of vibration localization visible on the vectorial representation
(the figure with the associated displacement field is reported in parenthesis) of the
energy flow produced by a pulsating concentrated moment at the frequencies: (a)
Q = 0.65 (Fig. 2.12b); (b) {2 = 0.8363 (Fig. 2.13a); (c) {1 = 1.5915, (Fig. 2.15a); (d) () = 1.67,
(Fig. 2.15b); by an horizontal force at (e) ) = 1.273 (Fig. 2.16c); and by a horizontal force
at (f) Q = 1.5915 (Fig. 2.18a).

Eq. (2.19) can be computed on each beam of the grid, thus providing the
vector field of the energy flow, given in Fig. 2.19 for the cases of an applied
concentrated moment or force, which is considered in the previous two
sections. Moreover, the outgoing flux Q across a circular path (of radius r
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Fig. 2.20. Outgoing energy flux Q across a circular path centred at the loading point.
The numerical computation shows that Q is independent of the radius r (L = 21 is the
length of the beams), apart from weak oscillations due to the spatial discretization of
the fem analysis. This result represents a verification of the accuracy of the numerical
solutions obtained in Section 2.4.1 and 2.4.2. Labels (a)—(f) refer to the corresponding
energy flow vector plots reported in Fig 2.19.

and outward unit normal 1), centered at the loading point,

21
Q(r)=| (q)-nrdo, (2.22)
0

is reported in Fig. 2.20. As the energy conservation requires the flux Q to be
independent of the radius, this independence is used to verify the accuracy
of the simulations as well as to compare the amount of mechanical power
absorbed by the lattice for different frequencies and loads.

The comparison between the vectorial representations reported in Fig. 2.19
and the corresponding displacement fields (referenced in the captions)
clearly shows that the directions of the energy flow are in nice agreement
with the wave patterns computed in the previous sections. Indeed, the nu-
merical computations confirm that the mechanical energy (in the absence
of dissipation) systematically flows along the directions of the group veloc-
ity vectors, which are locally orthogonal to the slowness contours (see also
[63])-

Considering the case of concentrated moment, the symmetry of the load
produces a peculiar rotational symmetry in the directions of propagation
of the energy, exhibiting different degrees of localization, which depend on
the frequency. Comparing, for instance, Fig. 2.19a and 2.19d, the energy
flows along four and eight radial preferential directions, respectively, and
in both cases the intensity of the flow decreases with the distance from the
load due to the corresponding increase of the length of the wavefront.

Figs. 2.19b and 2.19c show that the anisotropy of the energy flow is less
significant at the frequencies 2 = 0.8363 and () = 1.5915, where, in fact, the
Fourier transforms indicate the prevalence of wave vectors corresponding
to almost circular slowness contours (Figs. 2.13d and 2.15d).

The case of applied force (Figs. 2.19e and 2.19f) differs strongly from the
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case of applied moment, as the in-plane load breaks the rotational symme-
try. Thisis clearly evident in Figs. 2.19e, where the pulsating horizontal force
induces an energy flow propagating in the vertical direction, forming two
symmetric ‘triangular’ streams of decaying intensity. Another interesting
effect emerges at the frequency of the axial waves () = (), = A/m = 1.5915,
for which the energy transmitted by the force exhibits an extremely localized
unidirectional propagation, as shown in Fig. 2.19f, where the force is ap-
plied horizontally and the energy flows along a strongly localized ‘channel’
without attenuation.

2.5 Concluding remarks

Localization of vibration in various complex forms (‘channels’ or “X-’, “cross-
’, ‘star-’ shaped narrow modes), anisotropic — but also isotropic — wave prop-
agation, and Dirac cones and flat bands in the dispersion surfaces have been
shown to be possible at various frequencies, through Floquet-Bloch exact
treatment and numerical analysis of a rectangular grid of Rayleigh elastic
beams with diffused mass. In particular, a surprising ‘isotropization” of
the moment-induced wave pattern has been demonstrated to occur at the
frequency corresponding to the stationary point of the first dispersion sur-
face. The presented results demonstrate that these effects can be designed
by tuning the aspect ratio of the grid, the slenderness and the rotational
inertia of the beams. Therefore, additive manufacturing technologies can
in principle be used to produce microstructured materials with engineered
vibrational properties.
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Prestress tuning of
negative refraction and
wave channeling

The quest for wave channeling and manipulation has driven a strong re-
search effort on topological and architected materials, capable of prop-
agating localized electromagnetical or mechanical signals. With ref-
erence to an elastic structural grid, which elements can sustain both
axial and flexural deformations, it is shown that material interfaces
can be created with structural properties tuned by prestress states to
achieve total reflection, negative refraction, and strongly localized sig-
nal channeling. The achievement of a flat lens and localized modes is
demonstrated and tunability of the system allows these properties to
hold for a broad range of wavelengths. An ingredient to obtain these
effects is the use, suggested here and never attempted before, of con-
centrated pulsating moments. The important aspect of the proposed
method is that states of prestress can be easily removed or changed to
tune with continuity the propagational characteristics of the medium,
so that a new use of vibration channeling and manipulation is envisaged
for elastic materials.

3.1 Introduction

The possibility of channeling, trapping, and controlling waves opens new
possibilities such as cloaking of a part of a body, or achieving total reflection
and negative refraction, effects which prelude the realization of flat lens,
able to overcome the diffraction limits through superlensing effects [26, 66—
68]. Negative refraction in elastic lattices has been obtained for a plane
wave [25, 55, 56, 69, 70] (and experimentally confirmed [71-73]), while only
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in electromagnetism [74] and in elastic plates under flexure [75] pulsating
sources have been considered so far.

Edge waves and trapped modes have been demonstrated, but their
realization involves the use of gyroscopic systems [9, 11, 76], piezoelec-
tric elements [77], topological materials [17] or structures inducing floppy
modes [78, 79]. Recently topologically protected edge waves for plates sub-
ject to flexure have been demonstrated [80].

A route to achieve wide frequency bandwidth for the above-mentioned
dynamical effects is tunability of the mechanical properties, representing
a crucial ingredient in the development of metamaterials or architected
materials, so that the wave propagation can be changed and manipulated,
according to different needs, for instance in a way that an interface may be
occasionally made permeable to mechanical disturbances or changed to re-
alize total reflection or otherwise to allow negative refraction. Tunability has
been addressed with reconfigurable origami materials [15], connectivity [9],
piezoelectric effects [77], or, finally, prestress [81-83]. This latter technique
can simply be implemented by applying forces to a structure prior to wave
propagation, which results strongly influenced, as the dynamics of musical
instruments clearly show. Forces can be readily applied and removed, so
that tunability can be easily and quickly obtained.

Prestress is shown in this article to govern flexural and axial waves
propagation in an elastic square grid of beams, so that axial forces can be
applied to a set of beams arranged in a layer inside an infinite lattice of beams
not subject to prestress. For a certain level of prestress (always assumed
tensile to avoid buckling), the layer is shown to completely reflect waves,
while waves are transmitted for a different prestress level and may display
negative refraction and focusing. Moreover, narrow layers of prestressed
elements give rise to highly localized trapped modes, showing strongly
focused propagation.

3.2 Time-harmonic vibration of a lattice of axially
and flexurally deformable beams

An infinite square lattice of elastic Rayleigh beams [59] (both axially and
flexurally deformable and of length L) is assumed, where layers are subject
to a prestress, induced by axial forces P, acting on a set of rods (Fig. 3.1a).
The prestressed layer defines a ‘structured interface’, with a width chosen as
40L. Theslenderness A = L/r (where r is the radius of gyration of the beam’s
cross-section) of each beam is assumed equal to 15 and the lattice is analyzed
for time-harmonic vibration, with angular frequency w, so that introducing
a dimensionless local coordinate & = s/L, the equations governing the dy-
namics of the lattice in terms of axial and transverse displacements, u and
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Fig. 3.1. (a) Geometry of the beam grid lattice and the prestressed layer. The vertical
beams marked in red are subject to the axial prestress P, so that a tunable interface
is realized. The dispersion surfaces of the ambient lattice (not prestressed) and of the
prestressed lattice are reported in parts (b), (c), and (d), showing the strong effect of the
prestress (made dimensionless as p = PL?/EI).
v, are
u’(&)+ QP u(&) =0, 3.1)
0"(E) +(Q* = p)v”(§) - A2 Q% 0(&) =0, (3.2)

where Q) = w L+/p/E and p = PL?/EI are the dimensionless angular fre-
quency and axial prestress, respectively (p is the mass density, E the Young
modulus, I the second moment of the cross section’s area and the prime
denotes differentiation with respect to &).

An exact Floquet-Bloch analysis guides the determination of the level
of prestress to tune desired dynamic responses of the lattice, for instance,
achieving the total reflection of a wave, or its negative refraction, when
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the wave impinges on an interface separating the lattice without prestress
from the prestressed layer. In particular, the prestress level is determined
using the slowness contours, obtained from the dispersion equation, of
the periodic homogeneous lattice without and with prestress (dispersion
surfaces as influenced by the prestress p are shown in Fig. 3.1b—d). Special
attention has been paid to eliminate the possibility of buckling, by selecting a
tensile prestress (even though effects similar to those shown in the following
can be obtained for compressive prestress, or changing the slenderness of a
layer of rods, an option presented in the Section A).

The eigenvalue problem governing wave propagation in the periodic
grid can be easily formulated as follows (see also [1] for details). On each
beam of the unit cell, the solution of egs. (3.1) and (3.2) can be expressed in
terms of a linear combination of complex exponentials, u(&) = Ce!¢ and
v(&£) = D e!7 ¢, where the characteristic roots are

mp ==,

V1,234 = i\/% ((22 -p= \/4/\202 +(Q2 - p)?|.

Then, the solution of the unit cell is constrained by imposing the junction and
equilibrium conditions at the central joint and the Bloch-Floquet boundary
conditions between corresponding sides of the unit cell for: (i) axial and
flexural displacements, (ii) rotation, (iii) internal moment, (iv) axial and
shear forces.

A homogeneous linear system of equations governing the propagation
of Floquet-Bloch waves is found in the form

AQ,K,p,A)c=0, (3.3)

where A(Q),K,p, ) is a 24 X 24 complex matrix, function of the angular
frequency ) and the wave vector K, of dimensionless components K; and
K3 (obtained from multiplication of the Bloch wave vector, k = kieq + kzez,
by L), as well as the prestress parameter p and the slenderness A. Finally,
vector ¢ defines the waveform as it collects the 24 complex constants that
multiply the exponential functions appearing in the displacement fields. As
the system (3.3) is homogeneous, all non-trivial solutions are found when
the matrix A((, K) becomes singular, a condition providing the dispersion
equation. The latter equation has been solved numerically in order to iden-
tify the influence of the axial prestress on the structure of the dispersion
surfaces (see Fig. 3.1b, ¢, and d) and consequently to tune the prestress
parameter p.
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3.3 Tunable transmission properties of prestres-
sed interfaces

Two forcing sources have been considered to demonstrate the effects related
to the presence of an interface separating elastic beams unloaded from
beams pre-loaded with an axial force.

The first dynamic excitation is a plane wave generated and propagated in
the grid using the following technique. In a first step, by means of Eq. (3.3) a
single Floquet-Bloch wave is calculated for an infinite square grid of beams
not subject to prestress. In a second step, the just calculated displacements
are applied on a finite portion of the boundary of a square region, which
contains layers of prestressed elastic beams and is enclosed within PML
boundary conditions (the damping parameter is tuned to prevent reflection
at the boundary). Propagation in the latter square region is analyzed via
finite elements using COMSOL Multiphysics® in the frequency response
mode. The rotational inertia term of the Rayleigh model is implemented
by modifying the moment equation of the standard Euler-Bernoulli ele-
ments [55]. The second dynamic excitation is a concentrated time-harmonic
moment (of out-of-plane axis) applied to a junction of the beam network
(where the prestress is absent), adjacent to the boundary of the prestressed
structured interface.

In the following applications, the frequency levels have been selected
to provide a slowness contour of the ambient lattice (not prestressed) char-
acterized by almost perfectly straight edges, in order to favor a strongly
localized forced response [1, 57].

3.3.1 Total reflection

A total reflection is shown in Fig. 3.2a of a plane wave (inclined at 45° and
propagating at the frequency () = 3.10) against an interface with prestressed
vertical elements subject to a tensile load of p = 65. This value of prestress
(and those assumed in the following) is very high, so that in a practical
implementation of the concept presented in this paper, a nonlinear material
with a tangent stiffness modulus strongly decreasing with strain has to be
used (strictly speaking, only the tangent modulus at the prescribed prestress
level enters in the formulation).

The black and green arrows denote the group velocity of the incident
wave v?nrc and of the reflected wave vferﬂ, respectively, while the slowness
contour of the lattice is shown in the inset without (marked green) and
with (marked red) prestress. With reference to the inset, the propagation
direction of the incident plane wave, with fronts perpendicular to vector
K, is defined by the gradient of the dispersion relation at the point 4, i.e.
the group velocity of the incident wave v% _ (black arrow) in the lattice
without prestress. Using the conservation of the component of K parallel
to the interface (K = K3), the gradient at point B determines the group

velocity of the reflected wave vferﬂ (green arrow). The directions of o5 _and



44 Chapter 3. Prestress tuning of negative refraction and wave channeling

225232211 222222211

Fig. 3.2. Total reflection on a layer of prestressed (p = 65) elastic rods, at a frequency
Q1 =3.10 of: (a) a plane wave incident at 45° and (b) a channeled wave pattern generated
by a pulsating concentrated moment. The black and green arrows in part (a) denote the

group velocities vﬁfc and %", respectively, and the inset shows the slowness contours

for the lattice without (green) and with (red) prestress, respectively.

vrgerﬂ highlight the total reflection, also marked by the fact that the slowness
contour of the interface (red) is not intersected by the projection of the vector
K along the direction of the interface.

Channeling of the signal generated by a pulsating concentrated moment
(of out-of-plane axis) is shown in Fig. 3.2b. The source, vibrating at {) =
3.10, is applied near the same interface used for Fig. 3.2a and defining a
prestressed layer, so that total reflection is again observed, but now obtained
for the wide Bloch spectrum generated by the pulsating moment.

3.3.2 Negative refraction and flat lensing

Tuning the prestress to p = 190 in the geometry already analyzed for total
reflection, now negative refraction is observed (Fig. 3.3a), so that a part
of the incident wave continues to be reflected and another part crosses the
interface with a strongly negative angle of refraction. In particular, the black,
the green and the red arrows denote the group velocity of the incident v¥
of the reflected v;gerﬂ and of the refracted vferfr waves, respectively. The inset
shows that the green slowness contour remains the same as that of the grid
without prestress, while the red contour is now modified by the higher
value of prestress p. The level of prestress is tuned to obtain a significant
change of the group velocity direction between the ambient lattice and the
prestressed grid. The gradient at point B determines the group velocity
vrgerﬂ (green arrow), while the gradient at point C the group velocity of the
refracted wave vf;r (red arrow). The strong negative refraction follows from

gr gr
the scalar product v, - Ve~ 0.
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Fig. 3.3. Negative refraction inside a layer of highly prestressed, p = 190, beams (a),
producing a flat lens (b). In part (a) a plane wave is incident at 45° on the interface at

the frequency () = 3.10 and the black, green and red arrows denote the group velocities
vfrf o vf(:ﬂ and vrgerfr, respectively. The inset shows the slowness contours for the periodic
lattice without (green) and with (red) prestress, respectively. In part (b) a channeled
wave pattern is generated by a pulsating concentrated moment and the corresponding

image is reconstructed through a flat lens interface.

Using the negative refraction achieved with the prestressed interface, it
is possible to transform the layer of prestressed beams into a flat lens [26, 66,
69, 70], as demonstrated by the wave focusing, forming an image evident
in Fig. 3.3b, where a channeled wave pattern generated by the pulsating
concentrated bending moment is reported.

It is worth noting that the designed interface is capable of refracting
most of the Bloch spectrum activated by the pulsating moment and there-
fore reflecting only a small part of the incident signal. Furthermore, as
a consequence of the simplicity of the tuning obtained through prestress
of some beams, the transmission properties of the interface can be easily
changed, so that the response can switch from a pure reflection (Fig. 3.2b)
to a flat lens effect (Fig. 3.3b). This provides much more flexibility for ap-
plications in dynamics than solutions requiring structural modifications of
the material [69, 72, 84-87].

3.3.3 Trapping and focussing of a signal

Taking advantage of the interplay between the mechanical properties of
the lattice subject or not to prestress, it is possible to introduce a band of
prestressed beams inside an homogeneous lattice in such a way to generate
complex paths to be followed by a trapped wave generated by a concentrated
bending moment applied inside the path.

An ‘S-shaped’ trapped wave is shown in Fig. 3.4a, which propagates
at frequency () = 5.65 inside a channel delimited by two narrow layers of
prestressed beams (p = 190), an expedient which realizes a simple method
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Fig.3.4. (a) Trapping of a wave generated by a concentrated bending moment, pulsating
at the frequency () = 5.65, inside a channel delimited by two narrow layers of prestressed
beams (p = 190) aligned parallel to the desired propagation path. (b) The combination
of two layers of beams at different level of prestress (p = 65 and p = 187.5) generates a
complex channeled wave pattern with negative refraction and focussing effect ({1 = 3.10).

to spatially control the energy transmission along any desired path [88].
Again, since the effect is prestress-induced, it provides a valuable alternative
to other methods of channeling dynamic signals (e.g. leveraging edge-waves
in gyroscopicsystems [9, 11, 76] and topological materials [17] or embedding
piezoelectric elements in elastic lattices [77]).

Finally, it is worth mentioning that layers of beams subject to different
prestress levels can be introduced to obtain complicated effects. For in-
stance, a complex channeled wave pattern showing negative refraction and
focussing effects is shown in Fig. 3.4b, as obtained by the combination of two
layers of prestressed beams at different values of force (p = 65and p = 187.5).
This double-layer interface is designed to first bend the signal (through the
negative refraction occurring at the first prestressed layer p = 187.5) and
then to focus it on the reflective prestressed layer (p = 65). The second inter-
face totally reflects the signal towards the first one, which in turn directs it,
with a negative angle of refraction, towards the original source, where the
signal is concentrated exactly where it is generated. Only a small part of the
original signal is lost in the passage through the first interface due to partial
reflection. As the thickness of these layers can be easily adjusted, the point
of focussing can be effectively engineered as a function of distance from the
forcing source.

3.4 Concluding remark

In summary, we have demonstrated that prestress represents a simple way
to tune the mechanical properties of an elastic grid of (axially and flexurally
deformable) beams, so that the response to wave propagation of a totally
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reflective interface can be changed so to leave the signal refracting through
the interface with a negative angle. Moreover, the prestress can be used
to localize wave propagation into narrow layers inside a material, to mimic
edge wave propagation in topological materials, or to trap energy inside thin
channels. The wave manipulation tool proposed in this study benefits from
the fact that the signal is generated by a moment source and the obtained
dynamical properties work correctly for a wide range of wavelengths.
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Bifurcation and strain
localization in prestressed
lattices: static response

A lattice of elastic rods organized in a parallelepiped geometry can be
axially loaded up to an arbitrary amount without distortion and then
be subject to incremental displacements. Using quasi-static homoge-
nization theory, this lattice can be made equivalent to a prestressed
elastic solid subject to incremental deformation, in such a way to obtain
extremely localized mechanical responses. These responses can be an-
alyzed with reference to a mechanical model which can, in principle, be
realized, so that features such as for instance shear bands inclination,
or emergence of a single shear band, or competition between micro (oc-
curring in the lattice but not in the equivalent solid) and macro (present
in both the lattice and the equivalent continuum) instabilities become
all designable features. The analysis of localizations is performed using
a Green’s function-based perturbative approach to highlight the cor-
respondence between micromechanics of the composite and homoge-
nized response of the equivalent solid. The presented results, limited
to quasi-static behaviour, provide a new understanding of strain local-
ization in a continuum and open new possibilities for the realization
and experimentation of materials exhibiting these extreme mechanical
behaviours. Dynamic homogenization and vibrational localization are
deferred to Chapter 5 of this study.

4.1 Introduction

Shear banding and strain localizations, usually found to emerge before fail-
ure of materials, are typically accompanied by large plastic deformation,
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damage, and possibly fracture. Mechanical features of shear bands strongly
depend on the tested material, so that for instance shear bands are nor-
mally inclined (to the direction of tensile stress) less in rocks than in metals.
As a consequence, from the modelling point of view, the analysis of these
material instabilities is complicated by the fact that (complex and often phe-
nomenological) elastoplastic constitutive laws are to be used for a material
which has to be brought through and beyond several bifurcation thresh-
olds (corresponding for instance to surface instability or cavitation), before
encountering shear band formation, the latter typically complicated by the
simultaneous emergence of elastic unloading zones adjacent to zones of in-
tense plastic loading. From the experimental point of view, samples have to
be brought to failure, so that experiments cannot be repeated on the same
sample and the material forming the latter cannot be easily changed to ana-
lyzed different instability manifestations, for instance in such a way to alter
the shear band inclination.

Imagine now a material in which shear banding and other instabilities
may occur well inside the elastic range and far from failure. A material
that can be designed to produce shear bands with a desired inclination, or
in which shear bands are the first instability occurring at increasing stress,
or in which the anisotropy (not imperfections) allows the formation of only
one shear band. Imagine that this material would be characterized by rig-
orously determined elastic constitutive laws (thus avoiding complications
such as the double branch of the incremental constitutive laws of plasticity)
and would be, at least in principle, a material realizable (for instance via
3d printing technology) and testable in laboratory conditions. This material
would be ideal not only to theoretically analyze instabilities, but also to practi-
cally realize the ‘architected materials’ which are preconized to yield extreme
mechanical properties such as foldability, channelled response, and surface
effects [6,7, 15]. The crucial step towards the definition of a class of these ma-
terials was made by Triantafyllidis [18, 19, 27-30] and Ponte Castafieda [20,
31-38], who laid down a general framework for the homogenization of elas-
tic composites and for the analysis of bifurcation and strain localization in
these materials. In particular, (i) they showed how to realize an elastic ma-
terial displaying a prestress-sensitive incremental response, exactly how it
is postulated for nonlinear elastic solids subject to incremental deformation,
and (ii) provided a new understanding of strain localization phenomena,
showing that a global bifurcation of a lattice structure corresponds to a loss
of ellipticity of the equivalent continuum, while the latter is unaffected by a
local bifurcation occurring in the composite.

The aim of the present work is to extend the mentioned findings to
lattices of elastic rods of arbitrary geometry and subject to nonlinear axial
deformation of the elements, so to explore shear band formation and local-
ization by applying a perturbative approach [89], both to the lattice and to
the equivalent continuum. In particular, a lattice of elastic rods organized
in a parallelepiped network is an example of a composite which may be ar-
bitrarily preloaded without introducing grid distortion, so that rigorous ho-
mogenization results show how a prestressed composite material can react
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to incremental displacements as an equivalent elastic continuum. A quasi-
static approach to homogenization, based on a strain energy equivalence
between the lattice and the continuum, is developed to analyze a generic
lattice?, so that it becomes possible to obtain the infinite-body Green’s func-
tion for the homogenized solid and compare the response of this solid to
an applied concentrated force with the behaviour of the lattice at various
levels of preload. This comparison reveals, first of all, the excellent qual-
ity of the homogenization approach (so that the incremental displacement
fields found in the lattice and in the homogenized material are practically
coincident) and highlights the features of shear banding, so that this insta-
bility is on the one hand given a clear interpretation in terms of structural
global instability of the lattice and on the other sharply discriminated from
local instabilities in the composite, which remain undetected in the contin-
uum. Examples of such instabilities, ‘invisible’ in the equivalent material,
are provided, which exhibit an ‘explosive’ character, so that extend from a
punctual perturbation to the whole lattice.

Fig. 41. Emergence of a periodic micro-bifurcation (ovalization of the straws’ cross
sections, part c), subsequent strain localization (collapse of the straws’ cross sections,
part d), and final strain accumulation (parts e and f) during uniaxial deformation of an
initially (parts a and b) hexagonal packing of drinking straws.

An example of local instability, undetected in the homogenized mate-
rial, but revealed through the analysis of the microstructure, is provided in
Fig. 4.1, where photos of experiments (performed at the Instabilities Lab of
the University of Trento) are shown in which a package of drinking straws,
initially in a regular hexagonal disposition, is subject to an overall uniaxial
strain. The unloaded configuration (Fig. 4.1a) is not particularly different
from the configuration subject to a light loading (Fig. 4.1b). An increase
of the loading yields a micro-bifurcation in terms of a periodic ovalization

For the geometries investigated in [19] our homogenization approach provides exactly the
same results. Moreover, the energy equivalence provides the same results that will be derived
in Chapter 5 using a Floquet-Bloch dynamic approach.
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Fig. 4.2. The micro-bifurcation mode emerging during the uniaxial deformation of the
package of drinking straws shown in Fig. 4.1 is modelled (with the tools provided in
this chapter) as the micro-buckling of an honeycomb lattice of elastic rods, isotropically
loaded with compressive forces. The equilibrium of the honeycomb structure (a) bifur-
cates displaying three critical modes (b), which induces a periodic ovalization pattern,
explaining the regular and diffuse buckled zones in the array of drinking straws (c).

of the straws’ cross sections (Fig. 4.1c), while at higher load strain local-
ization occurs (in terms of collapse of the cross sections, Fig. 4.1d), with
subsequent strain band accumulation (Figs. 4.1e and 4.1f). The periodic
ovalization is perfectly captured by a bifurcation analysis of the hexagonal
rods’ grid (Fig. 4.2) subject to isotropic compression and displaying a peri-
odic bifurcation mode which is compared with a detail of the photo shown
in Fig. 4.1c.2

Homogenization is shown to provide a tool to select the geometry and
loading of a lattice in a way to produce an equivalent solid with arbitrary in-
cremental anisotropy, so that the shear band inclination, or the emergence of
asingular shear band can be designed. The results that will be presented also
demonstrate how lattice models of heterogeneous materials can be highly
effective to obtain analytical expressions for homogenized properties, thus
allowing an efficient analysis of the influence of the microstructural param-
eters. This is a clear advantage over continuum formulations of composites,
where analytical results can only be obtained for simple geometries and
loading configurations (as for instance in the case of laminated solids [29,
30, 90]). Several new features are found, including a ‘super-sensitivity” of
the localization direction to the preload state and the conditions in which
a perfect correspondence between the lattice and the continuum occurs (so
that the discrete system and the equivalent solid share all the same bifurca-
tion modes). The microscopic features found for the strain localization are
shown to share remarkable similarities with the localized failure patterns
observed in honeycombs (as Fig. 4.1 demonstrates), foams and wood [91-

2The bifurcation occurs at an axial load in the grid (that was analytically calculated to be
—arccos? (-1/3)E]/1? ~ —=3.6E]/12) smaller than the load corresponding to loss of ellipticity in
the equivalent material (which was calculated through the homogenization scheme presented
in this chapter to be ~ —7.014E]/1?).
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94], while the highly localized deformation bands emerging at macroscopic
loss of ellipticity are reminiscent of the failure modes observed in balsa
wood [95].

This chapter is organized as follows. The derivation of the incremental
equilibrium is presented in Section 2 for a lattice of elastic rods organized
in an arbitrary periodic geometry, while the homogenization is developed
in Section 3, providing the incremental constitutive tensor of the effective
Cauchy continuum. The stability of lattice structure and its relation with the
strong ellipticity of the equivalent solid is given in Section 4, while examples
and comparisons with the perturbative approach are presented in Sections
5 and 6, where the analysis is specialized to a grid of elastic rods arbitrarily
inclined and equipped with diagonal springs.

Results presented in this chapter are restricted to quasi-static behaviour,
while the important case of dynamic homogenization (with the Floquet-
Bloch technique) and dynamic shear banding is deferred to Chapter 5 of
this study.

4.2 Incremental response of lattices of axially pre-
loaded elastic rods

A two-dimensional periodic lattice of elastic rods, deformable in the plane
both axially and flexurally, is considered, in which all structural members
are axially prestressed from an unloaded reference configuration By. The
prestress is assumed to be produced by dead loading acting at infinity,
while body forces in the lattice are excluded for simplicity. It is assumed
that the preload not only satisfies equilibrium, but also preserves periodicity
and leaves the structure free of flexure. The prestressed configuration 8 is
periodic along two linearly independent vectors {a1, a}, defining the direct
basis of the lattice, so that the structure can be constructed from a single
unit cell C, assumed to be composed of Nj nonlinear elastic rods with
Euler-Bernoulli incremental kinematics, as sketched in Fig. 4.3.

By considering in-plane flexural and axial incremental deformations, the
incremental displacement field of the k—th rod in a given unit cell is defined
by the vector field (Fig. 4.3)

ui(sk) = {ux(sr), vk(sk)}7, Vke{l,...,Np}, (4.1)

where sy is the coordinate along the k—th rod, u(sx) and vk (sx) are the axial
and transverse incremental displacements. The incremental rotation of the
rod’s cross-section Ok (sk) is assumed to satisfy the unshearability condition
of the Euler-Bernoulli kinematics, namely, Ok(sk) = v} (sk)-

4.2.1 Analytic solution for the prestressed elastic rod

The incremental equilibrium equations for an elastic rod obeying Euler-
Bernoulli kinematics and prestressed with an axial load P (assumed positive
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B : current configuration B : Incremental macro-deformation

By : stress-free configuration />

G,

Fig.4.3. A periodic two-dimensional lattice of (axially and flexurally deformable) elastic
rods is considered prestressed from the stress-free configuration By (left) by means of a
purely axial loading state. The prestressed configuration 8 (center) can be represented
as the tessellation of a single unit cell along the vectors of the direct basis {a1, a2}. Upon
the current prestressed configuration, the incremental response (right) is defined by
the incremental displacement field of each rod u(s), here decomposed in an axial and
transverse component, u(s) and v(s).

in tension) and pre-stretched by Ag > 0, are the following

A(Ag)u”(s) =0, (4.2a)
B(Ag) v""(s) — P(Ag) 0" (s) =0, (4.2b)

where A(Ag) and B(Ag) are the current axial and bending stiffnesses, re-
spectively, and s € (0,[) with | being the current length of the rod. It is
worth noting that the current axial and bending stiffnesses are, in general,
function of the current pre-stretch A9, which in turn depends on the axial
load P. In fact, Egs. (4.2) govern the incremental equilibrium of an axially
pre-stretched rod, and their analytic derivation, accompanied with the eval-
uation of A(Ag) and B(Ao) from given strain-energy functions, is deferred to
Appendix C. In the following, the parameters A(Ag) and B(Ag) will simply
be denoted as A and B, and treated as independent quantities for generality.
The specific example in which the rods composing the lattice are made up
of a Mooney-Rivlin elastic incompressible material is explicitly reported in
Appendix C.

Egs. (4.2) is a system of linear ODEs for the functions u(s) and v(s). As
the system is fully decoupled, the solution is easily obtained in the form

u(s)=C{+Cls, v(s)=Cle P +Clef*+Cis+C], (4.3)

where {C¥, Cy, C;’, ey CZ} are 6 arbitrary complex constants and § = VP/B.

4.2.2 Exact shape functions and stiffness matrix
For a rod of length I, the following nomenclature can be introduced

u@=wur, 00)=v1, 6(0)=06,

u)=uz, o(l)=0v2, 6()=6, (4.4)
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sothatthe vector g = {11, v1, 61, Uz, v2, 62} T now collects the degrees of free-
dom of the rod expressed in terms of end displacements. Solving the con-
ditions (4.4) for the constants {C}, C5,C7, ..., C{}T allows the solution (4.3)
to be rewritten as

u(s) = N(s;P)q, (4.5)

which is now a linear function of the nodal displacements g. The 2x6
matrix N(s; P) acts as a matrix of prestress-dependent ‘shape functions” and
therefore the representation (4.5) can also be considered as the definition of a
‘finite element’ endowed with shape functions built from the exact solution.
Moreover, these shape functions reduce to the solution holding true in the
absence of prestress, because in the limit

. 1-3 0 0 3 0 0
},{?ON (s;P) = (1-5)2(1+2s)  (I-s)%s 0 Bl-25)s2  s2(s-I) | *
I3 2 I3 2

the usual shape functions (linear and Hermitian for axial and flexural dis-
placements, respectively) are retrieved.

By employing Eq. (4.5), the incremental stiffness matrix of a prestressed
rod can be computed, so that for the k-th rod the elastic strain energy is
given by

1 lk 7 1”7
E = 5 I (Ax u}(sk)* + B 0] (sx)?) dsk
0
(4.6)

1 Ik
=5 q; (Jo By (sk; Pi)T Ex Bi(sk; Pr) dSk) Gk,

where Ej is a matrix collecting the stiffness terms, while Bi(sk; P) is the
strain-displacement matrix, defined as follows

P)
_ A 0 N E :
Ei = [ 0 Bk} , By (sk; Py) = 0 59_% Ni(sk; Px) .

The ‘geometric’ contribution of the axial prestress is now included in the
potential energy (details are provided in Appendix C),

1 I , 1 I

V= EPkJ v} (sx)* dsy = 5 ax (Pkf bi(sk; Pr) T b(sk; Pr) dsk) g, (4.7)
0 0

where by (sk; Px) = [0 9%{] Ni(sk; Px) is a vector collecting the derivatives

of the shape functions describing the transverse displacement v. A combi-
nation of Egs. (4.6) and (4.7), yields the potential energy for the k-th rod in
the form

Ve=&E+VE. (4.8)

Note that, as the equilibrium equations for the rods have been linearized
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around an axially pre-loaded configuration, the potential (4.8) represents
the incremental potential energy with respect to the current configuration.
See the Appendix C for details on the derivation of Egs. (4.6)—(4.8).

From Egs. (4.6), (4.7) and (4.8) the prestress-dependent stiffness matrix
is defined as

Ik Iy
Ky (Pr) = J By(sk; Px)TEx Bi(sk; Pr) ds + Py J bi(sk; Px) T bi(sk; Pr) ds,
0 0
so that
E 0 0 —5 0 0
0 HEop)  Pea 0 -0 Freapn)
T Trespy 0 o) Trealn)
Kk = Ak k Ak k 7
-1 0 0 T 0 0
0 e —Teap) 0 FEeip) e
0 %@2(%) palpr) 0 —%(Pz(iﬂk) T pa(pr)

where the ¢; are functions of the non-dimensional measure of prestress
Pk = Pkli/Bk given by

3/2
P1(pr) = 15 (vPr — 2tanh (vpr/2))
P2(pi) = ”

6+/Px coth (\pr/2) =12
pr cosh (vPk) — vPi sinh (vPi)

P3(pi) = 4+/pr sinh (/px) — 8 cosh (ypr) +8
o) = \/P_k (sil’lh (\/P_k) B \/ﬁ)

(4+/Px coth (y/pr/2) — 8) sinh? (\/Pr/2)

Note that the stiffness matrix representative of the lattice reduces, in
the limit of vanishing prestress (or unitary pre-stretch Ao = 1), to the usual
stiffness matrix of an Euler-Bernoulli beam with Hermitian shape functions,
so that

lirré(pj(p) =1, Vje{l,..4}
p—)

4.2.3 Incremental equilibrium of the lattice of elastic rods

The current configuration of the lattice unit cell is subject, on the boundary,
to the nominal internal incremental actions and incremental displacements
transmitted by the rest of the lattice. Therefore, the incremental potential
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energy of the cell can be evaluated through a direct summation of all con-
tributions from the rods, equation (4.8), over the set of structural elements
present inside the cell, plus the incremental work done on the unit cell
boundary by the internal actions f,

N
Vg) =D, V(Crq)-f-1q, (4.9)
P

where g is the vector collecting the degrees of freedom of the unit cell, Cy
is the connectivity matrix of the k-th rod, such that gx = Cxq, and f is the
vector collecting the generalized (incremental and nominal) internal actions
(including bending moments) at the nodes of the unit cell.

The (referential) incremental equilibrium equations (in the absence of
body forces) are therefore obtained from the stationarity of the potential
energy (4.9) yielding

KP)qg=Ff, (4.10)
where N
2 b

K(P) = 9097 2. Vi(Crq) (4.11)

is the symmetric (as derived from a potential) stiffness matrix of the unit
cell, function of the vector P = {Pj, ..., Py, } collecting the axial prestress of
the rods. The dimension of the system (4.10) is 3N; where N is the number
of nodes in the unit cell.

4.3 Incremental response of the effective Cauchy
continuum

As the preloaded configuration of the lattice is assumed to be spatially pe-
riodic, the homogenized incremental response of an equivalent prestressed
elastic solid can be defined by computing the average strain-energy density,
associated to an incremental displacement field (defined for the j-th node by
the displacement and rotation components, respectively, qff) = {u), oD}7
and ‘7(9]) = {0("}) which obeys the Cauchy-Born hypothesis [96-98]. The lat-
ter, for a single unit cell, prescribes that the displacement of the lattice nodes
be decomposed into the sum of an affine incremental deformation (ruled
by a second-order tensor L) and a periodic field (defined by a displacement

qﬁf) and a rotational qg’ component) as

gV =40 +1x;,  4V=40, vie@,..N} @12

where x; is the position of the j-th node.
The periodic term § satisfies §#) = §@ for all {p, q} such that x, — x, =
nja; (with n; € {0,1}), and can be expressed in terms of its independent
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Fig. 4.4. The vector q collects the degrees of freedom of the unit cell. In order to impose
the periodic boundary conditions required by the Cauchy-Born hypothesis (4.12) (or
the quasi-periodic boundary conditions required by the Floquet-Bloch hypothesis (4.28)
that will be used in the bifurcation analysis), g is partitioned between sets of inner nodes
g', boundary nodes located at corners {g'?, g'*, 4™, 4"}, and boundary nodes on the
edges {q', 4", 4", q'}. The corresponding vector of incremental internal nominal actions
f is partitioned in the same way.

components through a partition of the degrees of freedom, made in accor-
dance with the location of the nodes present inside the unit cell (see Fig. 4.4),
as

q (1 0 0 0
g' 0 I 00
v 0 0 I Of .
g o o o 1|9
G={4 t=10 1 0o of/{9 1, (4.13a)
g| 0o o1 o7,
gt [0 00 1|1
gt 000 I
gt) [0 0 0 I
which may succinctly be rewritten as
G=270q", (4.13b)

where Zy and §* are defined according to Eq. (4.13a). The vector 4 in
Eq. (4.13a) has been partitioned to highlight the inner and boundary nodes
according to the notation introduced in Fig. 4.4. The same partitioning is
also used for the vectors g and f.

In order to enforce the Cauchy-Born conditions into the equations of
incremental equilibrium (4.10), it is convenient to rewrite Eq. (4.12) as

q(q",L)=Zoq" +4q(L), (4.14)

where the affine part of the deformation §(L) is a vector-valued function
linear in L and such that

g =Lx;, Go¥=0, Vje{l,.., N},
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where the same notation introduced with Eq. (4.12) has been used do that
the subscript u (subscript 0) denotes displacement (rotations) components.

Note that, since the lattice is subject to a non-vanishing prestress state, the
macroscopic incremental deformation gradient defined by L must be an ar-
bitrary second-order tensor and not constrained to be symmetric (as it happens
in the absence of prestress [33, 97, 98]). As explained in the next section, this
unsymmetry is essential for the correct evaluation of the incremental fourth-
order tensor defining the effective continuum, ‘macroscopically equivalent’
to the lattice.

4.3.1 Incremental constitutive tensor for the equivalent con-
tinuum

Before introducing the homogenization technique, it is important to re-
call that, as shown in Section 4.2, the equilibrium equations for the lattice
are (i) obtained in the context of a linearized theory, and (ii) referred to
a prestressed reference configuration, therefore, the unknown ‘equivalent’
continuum has to be formulated in the context of the incremental theory
of nonlinear elasticity by means of a relative Lagrangian description [99].
As a consequence, the response of the effective material is defined by an
incremental constitutive law in the form

S=C[L], (4.15)

relating the increment of the first Piola-Kirchhoff stress S to the gradient
of incremental displacement L, through the elasticity tensor C. The most
general form for the constitutive tensor C is

C=E+IrT in components Cijki = Eiji + 0iTj1, (4.16)

where 6k is the Kronecker delta, T is the Cauchy stress, defining the prestress,
and E is a fourth-order elastic tensor, endowed with all usual (left and right
minor and major) symmetries

Eijki = Ejiki = Bijix = Exaij (4.17)

so that C lacks the minor symmetries but has the major symmetry. The
symmetries of C explain the reason why the full incremental deformation
gradient L, and not only its symmetric part, appears in the Cauchy-Born
hypothesis (4.12) of the lattice. Moreover, Eq. (4.16) shows that L can be
restricted to be symmetric only in the absence of prestress, T = 0.

The incremental strain-energy density for the prestressed continuum
is referred to the prestressed configuration and can be expressed in terms
of a second-order expansion with respect to the incremental deformation
gradient L as follows

W(L)=T-L+C[L]-L/2, (4.18)
S~ ~—  —
Wi(L) Ws(L)
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where the first-order increment W (L) accounts for the work expended by
the current prestress state T (due to the relative Lagrangian description
the first Piola-Kirchhoff stress coincides with the Cauchy stress), while the
second-order term “W>(L) is the strain-energy density associated with the
incremental first Piola-Kirchhoff stress given by Eq. (4.15).

It is also worth noting that taking the second gradient of the incremental
energy density (4.18) with respect to L yields the constitutive fourth-order
tensor C relating the stress increment to the incremental displacement gradi-
ent, while the first gradient provides, when evaluated at L = 0, the prestress
T. The latter property will be used to dissect the effect of prestress in the
homogenized response of the lattice.

4.3.2 First and second-order matching of the incremental
strain-energy density

The homogenization of the lattice response is based on the equivalence
between the average incremental strain-energy associated to a macroscopic
incremental displacement gradient applied to the lattice and the incremental
strain-energy density of the effective elastic material subject to the same de-
formation. In the classical homogenization theory, this condition is known
as macro-homogeneity condition, or Hill-Mandel theorem, [33, 97, 100, 101],
which provides the link between the microscopic and macroscopic scale.

In the following, the macro-homogeneity condition is enforced to obtain
the incremental energy density (4.18) that matches the effective behaviour
of the prestressed lattice at first- ‘W;(L) and at second- ‘W>(L) order. Thus,
the homogenization scheme is based on the following steps:

(i) An incremental deformation gradient L is considered, so that the
incremental energy density for the unknown equivalent continuum is
defined by Eq. (4.18);

(i) following the Cauchy-Born hypothesis, Eq. (4.14), the incremental dis-
placement field for the lattice is prescribed by the given tensor L and
the periodic vector §* necessary to enforce the equilibrium of the lat-
tice;

(iif) with the solution of the lattice in terms of L (the periodic vector §*
becomes in solution a function of L) the incremental energy density is
calculated for the lattice;

(iv) the two incremental energy densities in the continuum and in the
lattice are matched, so to obtain the parameters defining the equivalent
solid.

Determination of the periodic displacement field for the lattice. By sub-
stituting condition (4.14) into Egs. (4.10) and pre-multiplying by Z, the
incremental equilibrium becomes

ZIK(P)Zo§" + ZJK(P)§(L) = Z] f, (4.19)
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where the right-hand side can be written more explicitly using the parti-
tioning introduced in Fig. 4.4 as

i

1 r
Zon= ;b:_];t
flb +frh +flt +frt

The fact that the only non-vanishing forces are assumed to be the internal
actions transmitted at the unit cell boundary by the neighboring cells implies
fi = 0. Moreover, as the displacement field satisfying the Cauchy-Born
hypothesis generates internal forces in the infinite lattice that are periodic
along the direct basis {a1, a2}, any single unit cell is subject to external
boundary forces that are anti-periodic. Consequently f! = —f", fo = —f!
and ¥ = —f0 — fI* — 5o that the term Z] f vanishes and Eq. (4.19)
becomes

ZIK(P)Zo§" = ~Z]K(P)§(L). (4.20)

The solution of the linear system (4.20) provides the incremental strain 4~
internal to the lattice for every given L. As a consequence of the linearity of
4 (L), the solution §*(L) is, in turn, linear in L.

A few considerations have to be made about the solvability of the sys-
tem (4.20). In fact, it is easy to show that the matrix Z K(P) Z is always sin-
gular, regardless of the specific lattice structure under consideration. This is
proved by considering a vector §* = t defining a pure rigid-body translation
and observing that K(P) Zy t = 0, which, in turn, implies that the dimension
of the nullspace of Z] K(P) Zy is at least 2, as two linearly independent rigid-
body translations exist for a 2d lattice. Any other deformation mode, pos-
sibly contained in ker(Z] K(P) Zy), is therefore a zero-energy mode (called
also with the pictoresque name ‘floppy mode’ [78, 102]). These modes are
excluded in the following analysis to ensure solvability of system (4.20), so
that ker(Z K(P) Zy) contains only two (in the present 2d formulation) rigid-
body translations. This exclusion does not affect generality, as the analysis
of floppy modes can always be recovered in the limit of vanishing stiffness
of appropriate structural elements. Note also that sometimes floppy modes
can be eliminated or introduced simply playing with the prestress state
(which may induce stiffening or softening [103, 104]).

Having excluded floppy modes and observing that the right-hand side
of Eq. (4.20) is orthogonal to ker(Z; K(P) Zo),

t-ZJK(P)§(L) =0,

for all rigid-body translations ¢, the solution §*(L) can be determined.

Match of the second-order incremental strain-energy density and determi-
nation of the incremental constitutive tensor. The solution of the linear
system (4.20) allows the incremental displacement (4.14) to be expressed
only in terms of the macroscopic displacement gradient L as q(§*(L), L).



62 Chapter 4. Bifurcation and localization in prestressed lattices: statics

Therefore, the second-order incremental strain-energy stored in a single
unit cell of the lattice undergoing a macroscopic strain can be evaluated as
follows

&(L) = % q(q"(L), L) - K(P)q(4°(L), L), (4.21)

which is a quadratic formin L, because g(§*(L), L) islinear in L. By equating
the second-order strain-energy density of the continuum W,(L) = C[L] -
L/2 to the average energy of the lattice (4.21), the following equivalence
condition is obtained

1 1

o= -Lew, 422
3 CILI L= 5 (1) 4.22)
——— ——

Continuum Lattice

where |C]| is the area of the unit cell.

Finally, the second gradient of (4.22) with respect to L yields the incre-
mental constitutive tensor for the effective Cauchy material, equivalent to
the lattice, in the form

_1®sL) 1 &+
" |C| dLIL  2|C| ILIL

C 9" (L), 1)-K(P)q@ L), L), 423)

which becomes now an explicit function of the prestress state, as well as of all
the mechanical parameters defining the lattice.

Match of the first-order incremental strain-energy density and homoge-
nization of the prestress state. So far, the incremental constitutive tensor
C of a continuum equivalent to a prestressed elastic lattice, Eq. (4.23), has
been obtained through homogenization. It is important now to ‘dissect’
from C the effect of the prestress T and, as a consequence, to obtain the
tensor E.

It will be shown below that the current prestress state T of the homoge-
nized material can be directly linked to the prestress state P = {P, ..., Py, }
of the lattice. In fact, by observing that (4.22) represents the second-order
incremental strain energy, equal to W5(L) = S(L)- L/2, an equivalence anal-
ogous to (4.22) can be obtained considering the first-order increment of the
strain energy, ‘Wi(L) = T - L. Thus, the first-order term can be identified
as the average work done by the prestress state P during the lattice deformation
q(g*(L), L) induced by L so that the following equivalence can be stated

T-L = foq@@),L), (4.24)
—_—— |C|

Continuum

Lattice

where the vector fp collects the forces that emerge at the nodes of the unit
cell and are in equilibrium with the axial preload of the elastic rods P in the
current configuration assumed as reference. As a consequence, the forces fp are
independent of L and linear in P.
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Equation (4.24) requires that the work done by axial loads fp for nodal
displacements g associated to a skew-symmetric velocity gradient L = W
be zero, namely

fo - q(@ (W), W) =0. (4.25)

This statement is a direct consequence of the principle of virtual work for
rigid body incremental motions, because q(§*(W), W) represents an incre-
mental rotation of the lattice and fp satisfies equilibrium. Hence, taking
into account the property (4.25), the homogenized prestress T can be ob-
tained as the gradient of the equivalence condition (4.24) with respect to the
symmetric part of L, denoted as D,

1 0 e
T= 5 95| fr- 1@ ©),D)]. (4.26)

4.4 Stability of prestressed lattices of elastic rods,
strong ellipticity, and ellipticity of the effec-
tive continuum

Lattice bifurcations are governed by the value of the preload P and they
can exhibit deformation modes with different wavelength. When the wave-
length becomes infinite, a ‘global bifurcation” occurs. While in the homog-
enization procedure periodic conditions are used, the systematic investiga-
tion of bifurcations occurring in the lattice can be conducted by comple-
menting the incremental equilibrium of the lattice (4.10) with Floquet-Bloch
boundary conditions, which involve displacement fields of arbitrary wave-
length [98].

Denoting the wave vector as k € R? and applying Bloch’s theorem (see [1,
52] for details), Eq. (4.10) becomes

Z(k)"K(P)Z(k)g* =0, (4.27)

where symbol " denotes the complex conjugate transpose operation and the
matrix-valued function Z(k) generalizes Zj in Eq. (4.13) as

q 1 0 0 0

q' 0 I 0 0

q° 0 0 I 0 .

g't 0 0 © I I

g={q t=10 z1 o o [{N 1, g=zm)q, (4.28)

g [0 0 =z o |[|9,

gt [0 0o o =z |\¥

q'" 0 0 0 =zl

q”t _0 0 0 21221_

in which z; = etk-aj Vie{l,2}.
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Note that conditions (4.28) represents the generalization of Eq. (4.13) to
displacement fields of arbitrary wavelengths, in fact Z(0) = Z, therefore
they allow bifurcations of arbitrary wavelength to be detected and not only
those occurring at the long-wavelength limit, || k|| — 0.

For a given k, the associated preload state P leading to a bifurcation can
be obtained by searching for non-trivial solutions of the incremental equilib-
rium (4.27). Hence, by introducing the notation K*(P, k) = Z(k)"K(P) Z(k),
a bifurcation becomes possible when

detK*(P, k) = 0. (4.29)

Itis worth noting that the matrix K*(P, k) is Hermitian, K*(P, k) = K*(P, k)",
which implies that the determinant (4.29) is always real. Moreover, the
periodicity of Z(k) implies that this determinant is periodic in the k-space
with period [0,271]X[0,27] in the basis {b1, b2} reciprocal to {a1, az}, so
that b; - aj= (31']'.

In order to construct the stability domain of a lattice, the critical (in other
words first) bifurcation needs to be selected by solving Eq. (4.29) for the
smallest preload spanning over all possible wavelengths. Specifically, by
introducing the unit vector P, which singles out a direction in the preload
space, the prestress state is defined as y P for a radial loading, so that the
critical bifurcation corresponds to the value yg defined as

VB = ir;g {y’ detK*()/IS, mb1+mb2)=0,0<1n <2n,0< 1 < 27'(} .
r=

(4.30)
where the periodicity of K*(P, k) is used to conveniently restrict to one
period the search for the infimum over the k-space. It is worth noting that
for a vanishing wave vector, Eq. (4.29) is always satisfied regardless of the
preload state, because the nullspace of K*(P, 0) always contains rigid-body
translations. These trivial solutions clearly need to be excluded.

Strong ellipticity enforces uniqueness of the incremental problem of a
homogeneous and homogeneously deformed material subject to prescribed
incremental displacement on the whole boundary [105] and corresponds to
the positive definiteness of the acoustic tensor (associated to the incremental
constitutive tensor C) defined with reference to every unit vectors n and g
as

A(C)(n) g=Clg®n]n. (4.31)

When the prestress state is null and except in the case of an extreme ma-
terial, where the stiffness of the rods becomes vanishing small [106], the
homogenized material response is strong elliptic, which in turn implies
ellipticity.

Failure of ellipticity corresponds to macro (or global) instabilities, where
the bifurcation is characterized by a wavelength long when compared to the
period of the lattice structure, which models a localization of deformation
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in the equivalent continuum. The homogenized material is elliptic (E) as
long as the the acoustic tensor A©)(n) is non-singular for every pair of unit
vectors n and g, namely,

AOm)g+0. (4.32)

When the acoustic tensor becomes singular, a localization of deformation
may occur corresponding to a dyad g ® n. The localization is called ‘shear
band’ in the special case g - n = 0, or ‘compaction band’ or ‘splitting mode’
when g -n = +1.

It is assumed that the elastic lattice under consideration is equivalent,
at null prestress, to a strong elliptic elastic solid, characterized by a consti-
tutive tensor which is function of the prestress T, in turn through the axial
preload P in the elastic rods, equation (4.26), namely, A©(P, n). Therefore,
using again the previously defined unit vector P and with reference to an
infinite material (or to a material with prescribed displacement on the whole
boundary) bifurcations are excluded as long as the response remains strong
elliptic, while failure of this condition is simultaneous to failure of ellipticity,
which occurs at the value yg defined as

min [detA(C)(yP, n)] = 0} . (4.33)

n,||nf=1

yE = min {7/

Relation between bifurcations in the lattice and in the effective continuum
is that failure of ellipticity of the latter corresponds to long-wavelength
bifurcations of the former, ||k|| — 0, while all bifurcations are scanned
through equation (4.30), a circumstance which implies yg < yg. Moreover,
whenever yp < yg the bifurcation occurs at microscopic level and is not detectable
in the homogenized material, which can still be strong elliptic [18, 19, 36].

4.5 Incremental constitutive operator, failure of
ellipticity and micro-bifurcation for a specific
elastic lattice

The geometry of the current, prestressed configuration of a preloaded lattice,
selected to apply the previously developed formalism, is sketched in Fig. 4.5
and is composed of a rhombic grid (of side I) of elastic rods, inclined at an
angle a, and characterized by the following non-dimensional parameters
and Ay = A1 = A, A1 = IWA/B1, Ay = INVA/By, where the subscript 1 and 2
are relative to the horizontal and inclined rods, as depicted in Fig. 4.5b. The
directbasis of the periodic structure is denoted by the pair of vectors {a1, a2}
whose representation with respect to the basis {ej, e;} (see Fig. 4.5a) is

ar=1lep, ay =1I1(ejcosa +exsina),
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Fig. 4.5. Current configuration of a rhombic lattice of preloaded elastic rods (a), with
the associated unit cell C (b). The direct basis of the lattice is denoted by the pair of
vectors {a1, a} (a). Labels 1, 2, and S denote the horizontal rods, the inclined rods,
and the diagonal springs, respectively (b). The spring stiffness, the axial and flexural
rigidity of the rods, the preloads P and P», as well as the grid angle « can all be varied
to investigate different incremental responses.

while the reciprocal basis {b1, by} is defined as a; - b; = 0;j, so that
b1 = (e1 —eycota)/l, b, =eycsca/l,

and the wave vector can be written as k = 1n1b1 + b2, with 11, being
dimensionless components. The resulting ‘skewed’ grid is also considered
stiffened by a diagonal bracing realized by linear springs® connecting the
midpoints of the horizontal and inclined rods, as sketched in Fig. 4.5b.
The stiffness of the springs is assumed constant ks = kA/I, with « being a
dimensionless measure of stiffness.

In the configuration shown in Fig. 4.5, the lattice is subject to a preload
state defined by the axial forces P; and P,, made dimensionless respectively
asp1 =P 12/B; and p2 = P,12/B,, so that a lattice is defined by the parameter
set {a, A1, A2, x,p1,p2}. Note also that the considered lattice structure
includes as a particular case that of a rectangular grid, analyzed in [19].

4.5.1 Incremental constitutive tensor of the equivalent con-
tinuum

The homogenization technique outlined in Section 4.3 for prestressed lattices
of arbitrary geometry can be directly applied to the grid of elastic rods shown
in Fig. 4.5. The incremental constitutive tensor is computed via Eq. (4.23)

3These springs can be seen as added after the lattice has been deformed or as deformed
together with the lattice. In the former case further assumptions need not be introduced, while
in the latter, the effects of the preload on the springs has to be neglected in the interest of
simplicity. The diagonal springs are used in this example to show that microscopic instabilities
may occur before macroscopic.
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and made dimensionless as follows

A -
C= TC(pl, P2, M1, ¢, x, a), (4.34a)
—— ———
prestress microstructure

where ¢ = By/B; (note that Ay = Aq/ \/5), and the non-dimensional tensor-
valued function @(pl, p2, A1, ¢, x, a) can be decomposed as

C(p1, p2, A1, §, 1, @) = CO(p1, p2, A1, §, @) + C3(x, ), (4.34b)

with CS and CS being, respectively, the contribution of the rod’s grid and
the diagonal springs. The full expression for the components of C¢ and
CS with respect to the basis {ej, e2} (sketched in Fig. 4.5a) is the following
(components that have to be equal by symmetry are not reported)

~G
C1111

= ﬁ (sinh (@) (\/p_lpqu cosh (g) (cos(4a) (A%—pgqb) +4A% cos(2a)+11A%+p2¢))

—2sinh (@) (Cos(4a) (A% (1 +p20) - p§¢2) + A% (p1 +p20) (cos2a) +11) + p%cj)z))

+ p14/p2 sinh (@) cosh (g) (cos(4a) (A% - ng{)) + 4A% cos(2a) + 11A% + pzq‘))) ,

e 257 ) g ) -
_2sinh (g) (A{ (p1+p20b) —p§¢2)) +prypasinh (g) cosh (@) (A% —pqu)) ,
@G

1112

= _Z(;ﬂ (sinh (E) (2 sinh (g) (cos(Za) (A% (p1+ng‘b)—p§qb2)+A% (m +p2¢)+p§¢>2)

— \/P1p2¢ cosh (g) (cos(Za) (A% - p2¢) + A2+ p2¢))

+ p1y/p2 sinh (@) cosh (@) (cos(Za) (pqu - A%) - A% - pqu)) ,

C%Zl _ 4CZS a (Sinh (@) (2 sinh (@) (P1P2¢ - COS2 a (A% (pl + p2¢) _ p§¢2))
+y/p1p2¢ cos® a cosh (@) (A% _ p2¢))

+p1y/P2 cos? asinh (g) cosh (@) (A% - PZ‘P)) /

Com = 251% (Sinh (g) (\/ﬁpztb cosh (@) (cos(Za) (pzqf) - A%) + A2+ pzq))
—2sinh (g) (— cos(2a) (A% (p1 +p29) — p§¢2) + A% (p1+p2) + p%qu))

+ p1/p2 sinh (g) cosh (g) (COS(ZQ) (PZ‘P - A%) + A% + Pz@)) ’
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The constitutive tensor ruling the effect of diagonal springs can be written
as

s 5+ 3cos(2a)
R 4sina
S s S S =5 _
sz = C1121 = C1211 = CllZl =G5y =xcosa,
S _AS _ A& _A _A&  _a& _@As o Lo
Cizo = Coi1 = Copp = Ciyyy = C2112 = =Cop = Hksina,
s
Coom = Gy = Copp = Coppy =
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4.5.2 Prestress tensor of the equivalent continuum

The prestress tensor T, equivalent in the continuum to the preload forces
P in the elastic lattice, can be either calculated using equation (4.26) or,
directly, by computing the average normal and tangential tractions along the
faces with unit normal e; and e,. With reference to Fig. 4.5b the following
expression is obtained

Py Py cos? a
= - - e1® e+
Isina Isina
P> cosa Py sina

(e1®ex+ex®ep) + erx®ey. (4.35)

l l

4.5.3 Loss of ellipticity vs micro-bifurcation

With reference to the lattice sketched in Fig. 4.5b, the value of the prestress
state, which is critical for bifurcation of the grid is determined by employ-
ing conditions (4.33) and (4.30), and computing numerically the prestress
multipliers yg and yg. Results are presented as uniqueness domains in the
non-dimensional prestress space {p1, p2} by fixing the set of geometrical
and mechanical parameters {a, A1, Az, k}. The boundary of the stability
domain identifies the “critical’, namely, the first bifurcation of the incremen-
tal equilibrium of the lattice.

The dependence on a, A1, A, x has been analyzed by considering two
grid configurations that will be referred to as the orthotropic grid, with equal
slenderness A1 = A = 10, and the anisotropic grid, characterized by different
slenderness values, A1 = 7 and A, = 15. For each lattice, the influence of
the rods’ inclination is explored by setting o = 7/2, /3, /4, /6, while
the stiffness of the springs is investigated in the range x« € [0,1]. In this
way, the influence of the diagonal bracing on the critical bifurcation mode
is analyzed.

To investigate both macroscopic (infinite wavelength) and microscopic
(finite wavelength) bifurcations, results for the orthotropic grid with a =
11/2 are reported in Fig. 4.6, where critical bifurcation loads p1 and p»
are reported for the cases in which diagonal springs are absent (x = 0,
Fig. 4.6a, b, c) and for a spring stiffness x = 0.2 (Fig. 4.6d, e, f).

The uniqueness domains (Fig. 4.6a and 4.6d) have been computed by
solving equation (4.30) for radial loading paths in the non-dimensional
load space {p1,p2}. To clarify the results of this computation, two critical
boundaries are reported, one with a continuous line and the other with
a continuous-dotted line, referring to bifurcations of long (infinite) and
‘shortest possible” wavelength, respectively. The former occurs when the
infimum of (4.30) is attained at k = 0, while the latter refers to the infimum
computed on the boundary of the reciprocal unit cell, 1, = +7t*. The lo-
cation of the infimum can be visualized, by fixing the loading direction as

“Note that all the possible wavelengths have been considered in the computation of the
stability domain (as expressed by Eq. (4.30)), but in Fig. 4.6a and 4.6d the critical wave vectors
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p =y P, and then by numerically computing the bifurcation surface defined
as det K*(yp, mbi1 + n2bz) = 0 in the space {11, 112, y}. Two radial paths are
considered in Fig. 4.6a and 4.6d, namely, equibiaxial p = {-1/ V2,-1/ \/ﬁ}
and uniaxial p = {-1,0} compression (red dashed lines), and the corre-
sponding bifurcation surfaces are reported in Fig. 4.6b, c and Fig. 4.6e, f,
respectively.

(a) Uniqueness domain (x = 0) (b) Equibiaxial compression (c) Uniaxial compression

Ve =5.69 :
2 !
" 1

P2 ye =171

_5| W stability domain
— macro-bifurcation
—~e— micro-bifurcation

-30 -
=30 -2 20 <15 -0 =3
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(d) Uniqueness domain (x = 0.2)

ve = 15.01

U ¥
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Fig. 4.6. (a) and (d): Uniqueness/stability domains in the loading space {p1, p2} for a
square grid (with equal slenderness of the rods A1 = Ay = 10), when diagonal springs are
absent (upper part) and present (with spring stiffness x = 0.2, lower part). A continuous
(a dotted) contour represents the occurrence of macro (of micro) bifurcations, so that
the shaded regions correspond to strong ellipticity and uniqueness for the equivalent
continuum. In the absence of diagonal springs, macro-instabilities, corresponding to
ellipticity loss, prevail and always occur before micro bifurcations, while when the
diagonal springs are considered, the situation is more complex so that one or the other
instability may be critical. (b, c) and (e, f): with reference to two specific radial loading
paths of equibiaxial and uniaxial compression, shown as red dashed lines in (a) and (d),
the bifurcation surfaces evidence the solutions for failure of ellipticity in terms of critical
dyadsn ® g.

In the absence of diagonal springs, Fig. 4.6a reports the uniqueness
domain, corresponding to strong ellipticity in the solid equivalent to the
lattice, showing that (for every loading direction p) a macro-bifurcation, in
other words an ellipticity loss (referred to the dyad n ® g), is always reached

k have been found to either be at the origin (k = 0) or on the boundary of the reciprocal unit
cell (shortest wavelengths).
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before micro-bifurcation. The latter represents a structural instability for
the lattice that cannot be detected in the equivalent continuum.

For the two radial loading paths shown in Fig. 4.6a, the bifurcation
surfaces Figs. 4.6b,c, show that the minimum values of the load multiplier y
are attained at {n1, 72} = {0, 0}, which corresponds to a macro-bifurcation
for the lattice (associated to an infinite wavelength mode), so that the critical
prestress multipliers yg = 7.71 and yg = 5.69 lie on the border of ellipticity
loss. The two bifurcations correspond respectively to two orthogonal modes
and a single mode.

The presence of diagonal springs complicates the situation as reported
in Fig. 4.6d. In this case the uniqueness/stability domains show that micro-
bifurcations may sometimes occur within the region of strong ellipticity,
which is for instance the case of equibiaxial compression (radial path in-
clined at 45°) and not the case of uniaxial compression (horizontal radial
path). In fact, when the diagonal springs are present, for equibiaxial com-
pression a critical micro-bifurcation occurs, so that Fig. 4.6e shows that
the minimum value of the load multiplier, yg = V272, is attained at four
points, {n1, n2} = {£mn, £n}, all associated to a bifurcation mode with a
finite wavelength, as shown in the inset. For uniaxial compression, Fig. 4.6f,
a macro-bifurcation of the grid, in other words a loss of ellipticity, occurs at
ye = 15.01 and the tangent to the bifurcation surface at the origin singles out
the infinite-wavelength bifurcation mode (shown in the inset and appearing
as a rigid translation).

Further results on uniqueness domains for the orthotropic and the
anisotropic grid are reported in Figs. 4.7 and 4.8, respectively. The strong
ellipticity boundary (corresponding to macro-bifurcation) in the equivalent
solid is denoted with a continuous line, while the circular markers iden-
tify the boundary of the uniqueness/stability region for micro bifurcations,
which remain undetected in the equivalent solid. Moreover, critical bifur-
cation modes have been reported in insets of Figs. 4.7 and 4.8, which refer to
some specific points on the stability boundary (labelled as B1, B>, B3 in the
former figure and By, Bs, Bs, B7, Bg in the latter). The critical loads and the
critical wave vectors for each bifurcation mode are reported in Table 4.1.

From Figs. 4.7 and 4.8 the following features can be highlighted.

e For the orthotropic grid the strong ellipticity boundary is symmetric
with respect to the bisector defined by the condition p; = p,, which
is the principal direction of orthotropy for the grid when A; = A; (a
symmetry which is broken for the anisotropic grid);

e For every value of the grid angle a, the effect of the diagonal springs
essentially consists in an enlargement of the strong ellipticity region
(see the arrow in Fig. 4.8 denoting increasing values of stiffness «);

e The stiffening induced by increasing the spring stiffness x is much
more effective for nearly orthogonal grids (@« = 7/2) than for small
values of inclination & (compare Fig. 4.7a to Fig. 4.7d and Fig. 4.8a to
Fig. 4.8d);



72 Chapter 4. Bifurcation and localization in prestressed lattices: statics

(@) a =m/2 (b) a=7/3

=301

P2

-10

-25 -20 -15 -10 -5 0 -15 -10 =5 0

Fig. 4.7. Strong ellipticity domains (corresponding to macro-bifurcations, continu-
ous lines) and uniqueness domains for micro-bifurcation (circular markers) for an or-
thotropic lattice of prestressed elastic rods with A1 = Ay = 10, at different rod angles a
and stiffness «x of the diagonal springs. Points By, B2, B3 on the stability boundaries have
been selected for the computation of the associated critical bifurcation mode (shown in
the insets). Table 4.1 collects the critical loads and the critical wave vectors for each bifur-
cation mode. At small grid angles, for instance the reported value of a = 1/6, failure of
ellipticity coincides with micro-bifurcation in the lattice, so that the bifurcation mode is
always characterized by an infinite wavelength. For these grid configurations, the direc-
tion of ellipticity loss exhibits a “super-sensitivity’ with respect to the load directionality,
shown in the insets of part (d), reporting the critical dyads n ® g for failure of ellipticity.

e For every value of the spring stiffness «, the deviation from orthogo-
nality of the grid always reduces the size of the strong ellipticity region,
so that the largest strong ellipticity region is attained for a = 7 /2.

From the mathematical point of view, the {p1, p2}-space can be classified by
evaluating the roots associated to the symbol of the equilibrium operator
div C[grad(e)], so that the elliptic, parabolic, and hyperbolic regimes can be
determined. Results of this classification are reported in Appendix B, where
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Fig. 4.8. As for Fig. 4.7, except that A1 = 7, Ay = 15 and that the points on the
stability boundary for which the critical bifurcation modes have been computed are
labeled By, Bs, Bg, B7, Bs. Note also that, the typical microscopic bifurcation modes
of the anisotropic grid exhibit widely different deformations dictated by the prestress
direction (see insets in parts a, b, ¢ corresponding to points labeled By, Bs, Bg, B7, Bg and
compare for instance mode By to Bs or Bg to By).

a few grid configurations have been considered.
The stability boundaries (circular markers in Fig. 4.7 and 4.8), evidence
the following characteristics.

e At small values of spring stiffness «, the first bifurcation is always
global, so that the strong ellipticity and the stability boundaries coincide
independently of the prestress direction; a feature visible for x = 0,0.1
(purple and blue) in Fig. 4.7a and Fig. 4.8a);

e An increase in the spring stiffness x leads to a first bifurcation of local
type (the critical mode is characterized by a finite wavelength), so that
the stability region lies inside the elliptic boundary;
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Label ‘ A1 A2 o K p1 p2 kcr
Bi |10 10 m/2 02 -n* -n® 7wbi+mnby

By 10 10 =/3 03 =716 -1240 mb1+ 7nby
Bs 10 10 m/4 07 —-4.05 -1513 m7b1+ 7nby
By 7 15 mw/2 04 =772 -18.64 mbi+ by

Bs 7 15 mw/2 02 =341 -25091 1tby
Be 7 15 wn/3 03 -698 -2093 mnb;+mby
By 7 15 wn/3 03 =212 -32.40 1tby
Bg 7 15 wn/4 05 -4.00 -30.37 mnby+mby
Beo 7 15 mw/2 0.128 -3.44 -20.62 mbyVm

Table 4.1. Critical bifurcation modes k., for several configurations of the orthotropic
(A1 = A2 = 10) and anisotropic (A1 = 7, Ay = 15) lattice. Plots of the corresponding
deformation fields are reported as insets in Figs. 4.7 and 4.8.

e Fig. 47d and Fig. 4.8d show that, at sufficiently small values of grid

angle (for instance at o = 7/6), failure of strong ellipticity dictates the

first bifurcation independently of the stiffness of the diagonal springs (see

circular markers of the stability boundary overlapping with the elliptic
boundary);

The typical microscopic bifurcation modes of the orthotropic grid are charac-
terized by a pure rotational deformation of the junctions of the grid (see insets
in Fig. 4.7a, b, ¢ corresponding to the points labeled as B1, By, B3);

Typical microscopic bifurcation modes of the anisotropic grid exhibit widely
different deformations dictated by the prestress direction (see insets in Fig. 4.8a,
b, c corresponding to points labeled By, Bs, Bs, B7, Bg and compare for
instance mode By to Bs or Bg to By).

Abifurcation always occurs for every lattice geometry at an equibiaxial
load {p1,p2} = {-n? —-n?} (point By in Fig. 4.7a) regardless of the
values of Ay, Ay, k, and a. This bifurcation can be explained by
the fact that the normalized load PI?/B = —7? corresponds to the
buckling load of a simply supported Euler-Bernoulli beam, and thus,
when all the rods of an arbitrary grid are prestressed at this level, a
purely flexural buckling mode becomes available (shown in the inset
of Fig. 4.7a).

Despite the complex influence of the geometrical and mechanical param-

eters on the stability of the prestressed lattice, two important ‘transitions’
characterize the nature of the first bifurcation, namely:

(i) a macro-to-micro transition of the critical bifurcation mode occurs at

increasing stiffness of the diagonal springs «;

(ii) a micro-to-macro transition of the critical bifurcation mode occurs at

decreasing the rod’s inclination a.
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The above transitions will be exploited in Section 4.6 to investigate the static
response induced by a concentrated force applied to a lattice preloaded
closely to a bifurcation (both global and local bifurcations will be consid-
ered).

4.5.4 A single localization band with a highly tunable incli-
nation

A remarkable characteristic is associated to the micro-to-macro bifurcation
transition obtained at decreasing angle «, namely, a super-sensitivity of the
localization band normal, represented by the unit vector n, with respect to the state
of pre-load, while the localization mode g results only weakly affected.

For instance, at @« = 71/6 and sufficiently high spring stiffness «, the
insets in Figs. 4.7d and 4.8d show that the relative inclinations between the
localization band normal # and the localization mode g strongly vary as a
function of the load state in the lattice.

When the spring stiffness vanishes, x = 0, the localization band is essen-
tially set by the grid inclination as it is almost perfectly aligned parallel to
the inclinations 0 and 7/6, so that failure of ellipticity occurs in a direction
n that is almost orthogonal to the rods. On the contrary, at x = 0.2 a single
localization band occurs, whose inclination strongly depends on the load
directionality and is essentially unrelated to the underlying grid pattern
(shown in the insets corresponding to ¥ = 0.2 in Figs. 4.7d and 4.8d). The
super-sensitivity of the localization direction provides an enhanced tunability of
the macroscopic localization pattern by means of a simple modification of the load
applied to the lattice.

It is worth noting that the localization direction can also be designed
by constructing a lattice with a suitable value of rods” angle «, but this
approach would not be easily reconfigurable, as the structure geometry has
to be defined in advance.

4.5.5 Infinite set of bifurcation wavelengths in a lattice: per-
fect equivalence with the continuum

Loss of ellipticity in a solid occurs at modes of all (namely, infinite,) wave-
lengths, while the corresponding condition in the lattice usually is that bifur-
cation occurs only in a mode involving an infinite wavelength. In this sense
the equivalent continuous body has a response differing from the lattice, a
circumstance which may be expected as a consequence of the homogeniza-
tion procedure, which is applied to a discrete lattice.

Surprisingly, it is shown in the following that special conditions can be
found in which the lattice bifurcates similarly to the equivalent continuum,
by displaying infinite modes, covering every wavelength. In this case a
perfect equivalence between the bifurcation in the lattice structure and failure of
ellipticity in the effective continuum occurs.

For a square grid (with @ = ©/2, Ay = 7, and Ay = 15), the perfect
equivalence was obtained at a fixed value of load by varying the stiffness of
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Fig. 4.9. Conditions showing a perfect equivalence between the lattice and the cor-
responding continuum, so that when the latter looses ellipticity, the former exhibits
bifurcation occurring with infinite modes covering all wavelengths, a situation which
is revealed by the flat line (highlighted in red) in the bifurcation diagram (part a). The
perfect equivalence is obtained through accurate tuning of the stiffness of the diag-
onal springs (x ~ 0.128 for a square grid with A; = 7 and Ay = 15 and a loading
{p1,p2} ~ 3.44{-1, —6}). Part (b) represents a section of the bifurcation surface at 1 = 0
detailing the flat minimum of the curve occurring at ¥ ~ 0.128. Parts (c)-(h) present
selected bifurcation modes documenting a transition at increasing wavelength of the
bifurcation modes from a local bifurcation (c) to a shear-band-type instability (h).

the diagonal springs «, thus obtaining x = 0.128. This value was calculated
by numerically solving equation (4.30) between x = 0.1 and « = 0.2, because
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these two values pinpoint the threshold of separation between macro and
micro bifurcation. For these values of the lattice parameters and loads the
bifurcation mode is unique and involves only the infinite wavelength (macro
bifurcation) along the curved boundary denoted as (G) in Fig. 4.8a, while
on the boundary denoted as (GL) in the same figure an infinite number of
bifurcation modes of arbitrary wavelength is present for every critical loading state,
as detailed for the point B, in Fig. 4.9.

Fig. 4.9a reports the three-dimensional plot in the space {n1, 12, v} satis-
fying the bifurcation condition [of vanishing of the determinant in Eq. (4.30)]
where y is the loading multiplier for {p1, p2} = y{-1, -6}, so that the criti-
cal value yp leading to bifurcation is highlighted as a red line marking the
minimum of the bifurcation surface. A section of this surface at 71 = 0 is
reported in Fig. 4.9b to show the dependence of the critical multiplier on
the stiffness «, so that for ¥ < 0.128 the critical wave vector is k., = 0 (macro
instability), while for k¥ > 0.128 the critical wave vector is k¢, = 7t by (micro
instability), and for k¥ = 0.128 every wave vector of the form k¢, = 12 by (with
arbitrary 7),) identifies a different bifurcation mode occurring at the same
load multiplier yg ~ 3.44. Within this infinite set of bifurcation modes, a few
bifurcation modes (see the labelled points on the red contour of Fig. 4.9b)
are reported in order to show the transition of the bifurcation mode from a
local bifurcation (Fig. 4.9¢) to a global shear-band type instability (Fig. 4.9h).

4.6 Macroscopicand microscopiclocalizations via
perturbative approach

The correlation between the incremental response of the lattice and of the
equivalent solid is now investigated close to the conditions of instability
using the ‘perturbative approach’ introduced in [89]. Following this ap-
proach, the response of the lattice to an applied static concentrated load (in
terms of a force or a force dipole) is numerically evaluated via finite ele-
ments (using the commercial code COMSOL Multiphysics®) and compared
to the response of the equivalent solid by computing the Green’s function
associated to the operator div C[grad(e)].

The two-dimensional Green’s tensor G needed to perturb the equivalent
material and corresponding to a Dirac delta function centred at x = 0is [99]

. 1 -1 R
6@ =~ 3g|n|—1 (49m) 10l - n, (4.36)

where the position vector x has been made dimensionless through division
by the rod’s length [, so that ¥ = x/I. Note that G = GT due to the symmetry
of the acoustic tensor.

Numerical simulations are performed to analyze the lattice by consid-
ering a finite square computational domain of width 350/, where [ is dis-
cretized in 10 finite elements with cubic shape functions. The selected mesh
hasbeen defined by performing a number of simulations with three different
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mesh refinements, namely 5, 10, and 20 elements for /, and then adopting
10 elements, as 20 provided no significant improvement, but substantial
computational burden. As the numerical simulations are meant to be com-
pared to the infinite-body Green’s function, the size of the domain has been
calibrated in order to minimize boundary disturbances with clamped con-
ditions at the four edges of the square domain. The governing equation for
the prestressed Euler-Bernoulli rod, Eq. (4.2b), used in the finite element
scheme has been implemented by modifying the bending moment contri-
bution with an additional geometric term representing the load multiplied
by the transverse displacement of the rod.
The investigation presented below will reveal that:

(i) The localization of deformation connected to macro bifurcation in the
lattice and to failure of ellipticity in the equivalent solid are strictly
similar;

(ii) The lattice response close to a micro bifurcation evidences a ‘micro-
scopic” type of localization, which remains completely undetected in the
homogenized material.

These two different mechanical behaviours are analyzed by exploiting the
macro-to-micro transition of the first bifurcation mode, which is controlled
by the increase in the stiffness of the diagonal springs of the lattice consid-
ered in Section 4.5. The grid is subject now to an equibiaxial compression
loading. Hence, in Section 4.6.1 the lattice is considered in the absence of
diagonal springs (x = 0), while in Section 4.6.2 the lattice is reinforced with
a springs’ stiffness x = 0.4.

4.6.1 Macroscopic bifurcations on the verge of ellipticity
loss

The lattice configurations selected for the following analysis are reported in
Table 4.2, together with the values of the preload pg corresponding to loss
of ellipticity in the equivalent continuum (obtained by numerically solving
equation (4.33) assuming a radial path p = {p1, p1}) or, in other words, to
a macro bifurcation in the lattice. As explained in the previous section,
the stiffness of the diagonal springs is set to zero in order to ensure that a
macroscopic bifurcation is critical. The table reports also the inclination O,
of the normal 7 to the localization band, defined as ng = e1 cos O +e5 sin O.

A comparison is presented between the response of the lattice loaded
with a concentrated force dipole and a dipole Green'’s function of the effec-
tive solid, in terms of maps of incremental displacements. The results are
presented as contour plots in Figs. 4.10—4.13, where the color scale has been
conveniently normalized according to the norm of the computed displace-
ment field. In the upper part of the figures, results pertaining to the discrete
lattice structure are presented, while, in the lower part, results are relative to
the equivalent continuum, obtained via homogenization. The figures from



4.6. Macroscopic and microscopic localizations via perturbative approach 79

Geometry  Rods slenderness ~ Symmetry PE Ocr

Square A =Ar=10 Cubic -5.434{1,1} 0°,90°
(a=m/2) Ay=7,A;=15 Orthotropic -2.071{1,1} 0°
Rhombus A;1=A;=10 Orthotropic -5.345{1,1} 88.2°,151.8°
(a=m/3) A1 =7,Ar=15 Anisotropic -2.043{1,1} 151.4°

Table 4.2. Equibiaxial compression loads pg and inclinations 0. of ng corresponding
to failure of ellipticity in the equivalent material, corresponding to a macro-bifurcation
in the lattice, for different grid configurations (see Fig. 4.5), in the absence of diagonal
springs (x = 0).

() p=08p; (c) p=09pc

(h) p=099py

+

Continuum

Fig. 4.10. Progressive emergence at increasing load of two orthogonal shear bands
visible in the displacement field generated by a diagonal force dipole applied to a square
lattice (with cubic symmetry, A; = Ay = 10, upper part, a-d, simulated via f.e.m.)
compared to the response of the homogenized continuum (lower part e-h). From left to
right the load increases towards failure of strong ellipticity pg. Shear bands are aligned
parallel to the directions predicted at failure of ellipticity (6. = 0°,90°).

left to right correspond to the application of increasing preloads, which ap-
proach the strong ellipticity boundary in the equivalent solid in situations
where failure of ellipticity corresponds also to the occurrence of a macro
bifurcation of infinite wavelength. The part (d) of each figure (p = 0.99pE)
also illustrates a magnification of the lattice response in the neighborhood
of the loading zone, thus disclosing the microscopic deformation pattern
associated to the extreme mechanical response of the material when close
to elliptic boundary.

In the conditions analyzed in Figs. 4.10-4.13, the equivalent solid is
found to be fully representative of the lattice structure, so that approaching
failure of ellipticity the perturbative approach reveals, both in the continuum
and in the real lattice, the formation of localized incremental deformation
in the form of single or double localization bands. These can be horizontal,
vertical or inclined. The correspondence between the behaviour of lattice
and of the equivalent continuum is found to be excellent so that the maps
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(b) p=08py (c) p=09pg (d) p=0.99pg

(f) P*“éﬁn (g) p=0.9pg (h) p=0.99pg

Continuum

Fig. 4.11. As for Fig. 4.10, but for an orthotropic square lattice (A1 =7, Ay = 15), where
a single and vertical, Or = 0°, shear band forms.

(b) p=08pg (¢c) p=0.9pg (d) p=0.99pg

T

Continuum

Fig. 4.12. As for Fig. 4.10, but for an orthotropic rthombic lattice (A1 = A = 10), where
the two localization bands are inclined at angles 0. = 88.2°,151.8°.

reported in the upper part of the figures are practically identical to the
corresponding maps in the lower part of the figures.

4.6.2 Microscopic bifurcations in the lattice and effects on
the equivalent solid

Micro-bifurcations occurring when the equivalent solid is still in the strong
ellipticity range are investigated in this section, with reference to an equib-
iaxially compressed square lattice with cubic symmetry A; = A; = 10 and
diagonal springs of stiffness x = 0.4. With the assumed spring stiffness,
a microscopic bifurcation is critical, namely, it occurs when the equivalent
solid is still in the strong elliptic domain.
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Continuum

Fig. 4.13. As for Fig. 4.10, but for an anisotropic rhombic lattice (A1 = 7, Ay = 15),
where a single localization band forms inclined at an angle 0. = 151.4°.
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Fig. 4.14. Microscopic localization of the bifurcation mode evidenced in the incremental
displacement map relative to a square lattice (cubic symmetry, A = Ay = 10, upper
part) and in the equivalent continuum (lower part) at an equibiaxial compression load
corresponding to bifurcation, pg = {72, —n?}, under the action of a ‘quadrupole’ of
forces applied at the midpoints of the rods. The quadrupole activates a highly localized
‘rotational’ bifurcation mode (labeled as in By in Fig. 4.7a and Table 4.1), which leaves the
lattice and the equivalent solid “macroscopically” almost undeformed, while the inter-
node deformation is predominant at the scale of the unit cell. The latter feature cannot be
detected by the equivalent solid.

The incremental displacement maps in the lattice (at the critical load
for micro-bifurcation) and in the equivalent continuum (still in the strong
elliptic range) generated by the application of a force quadrupole are shown
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in Fig. 4.14, where the upper parts (lower parts) refer to the lattice (to the
continuum) and the parts on the right are a magnification of the zone around
the quadrupole shown on the left.

The figure shows that the incremental response of the prestressed lattice
ishighly localized, so that only a strong magnification reveals buckling of the
elastic rods. Even if the equivalent continuum is not at bifurcation, but still
within the uniqueness/stability domain, the distribution of displacements
in it somehow resembles that in the lattice, so that the homogenization is
still representative of the response of the discrete structure, even though the
inter-node deformation cannot be captured.

(c) p=110p;

s

(d) p=py ') p=1.05py (f) p=1.10py

g

) 5
0 z 7 iz 2 0 T 3 2 0 5 T - 2

Fig. 4.15. Displacement map (a)—(c) and corresponding Fourier transform (d)—(f) show-
ing the response of the lattice at a load corresponding to microscopic instability, p = pp
and beyond, p = 1.05pg, 1.10pp. The slowness contour at null frequency, evaluated
through the bifurcation condition is superimposed in red. While at the critical load the
perturbation is so localized that results almost invisible, at higher loads an ‘explosive’
instability involving the whole lattice and extending up to the boundary of the domain
is clearly observed.

The situation depicted in Fig. 4.14 completely changes when the lattice
is loaded with forces beyond the critical value for micro bifurcation in the
lattice, as shown in Fig. 4.15, only referred to the lattice loaded with a
horizontal force dipole at different biaxial compression loadings (at the
critical load p = pp for micro-buckling and beyond, namely, at p = 1.05pp
and at p = 1.10 pp).

This figure shows displacement maps (upper part) and the correspond-
ing Fourier transform (obtained via FFT of nodal displacements, lower part),
with superimposed slowness contours corresponding to null frequency. The
slowness contour (highlighted in red in the figure) was obtained from the
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bifurcation condition, Eq. (4.29). The fact that the slowness contour is su-
perimposed to the peaks of the transform (reported white in the figure), is a
validation of the good correspondence between calculations performed via
Floquet-Bloch and finite element simulations.

It can be concluded from Fig. 4.15 that, while at bifurcation load the
incremental perturbation induced by the force dipole is practically so small
and highly localized that results almost invisible, an ‘explosive instability’
is found in the lattice, which does not decay and extends to the whole
domain occupied by the structure considered in the analysis. This is a
special behaviour which remains unobserved in the equivalent continuum
(still in the strong elliptic range) and cannot therefore be revealed through
homogenization.

4.7 Conclusions

Homogenization of the incremental response of a lattice of elastic rods,
axially pre-loaded to an arbitrary amount, has been shown to provide a
superb tool for the design of cellular elastic materials of tunable properties
and capable of extreme localized deformations. In particular, the pertur-
bative approach to material instability reveals that strain localization in the
composite is almost coincident with that occurring in the equivalent solid,
which remains unaffected by micro bifurcations, possibly occurring in the
lattice. However, the developed homogenization approach allows the ex-
ploration of geometries and stiffnesses of the composite in a way to inhibit
or promote strain localization with respect to other micro instabilities. The
vibrational properties of the lattice and the ability of the homogenization
scheme to correctly capture them is a final crucial aspect in the design of
cellular materials, that will be addressed in Chapter 5 of this study.
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Bifurcation and strain
localization in prestressed
lattices: dynamic response

Floquet-Bloch wave asymptotics is used to homogenize the in-plane
mechanical response of a lattice grid of elastic Rayleigh rods, possess-
ing a distributed mass density together with a rotational inertia and
subject to incremental dynamics, superimposed to a given state of axial
loading of arbitrary magnitude. In contrast to the quasi-static energy
match (addressed in Chapter 4 of the present study), the vibrational
properties of the lattice are directly represented by the acoustic tensor
of the equivalent solid, without passing through the constitutive tensor
which is instead arrived via energy equivalency. The acoustic tensor is
shown to result independent of the rods’ rotational inertia and allows
directly the analysis of strong ellipticity of the equivalent continuum,
evidencing coincidence with macro-bifurcation in the lattice. On the
other hand, the dynamics of micro-bifurcation corresponds to a vanish-
ing frequency, at finite wavelength, of the lowest dispersion branch of
the lattice. Dynamic homogenization reveals the structure of the acous-
tic branches close to ellipticity loss, and of forced vibrations (both in
physical space and Fourier space) showing low-frequency wave local-
izations. A comparison between the strain localization occurring near
ellipticity loss and the forced vibration of the lattice, both correspond-
ing to the application of a concentrated pulsating force, shows that the
homogenization technique allows an almost perfect representation of
the lattice. Therefore, the presented results pave the way for the de-
sign of architected cellular materials to be used in applications where
extreme deformation are involved.
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5.1 Introduction

A lattice grid of axially-preloaded elastic rods, subject to in-plane incre-
mental kinematics, has been shown (in Chapter 4 of this study, via quasi-
static energy match with an equivalent continuum), to provide a way to the
realization of a material evidencing macroscopic (strain localization) and
microscopic (lattice buckling) instabilities within the elastic range. Such
lattice represents an example of architected cellular material to be used
for large strain applications where instabilities become a major issue. The
latters are investigated in the present chapter within the dynamic range,
thus employing an asymptotic homogenization based on the Floquet-Bloch
wave technique, exploited to a level of generality never achieved so far.
The vibrational properties of a cellular material are deeply affected by the
emergence and development of localized signals, edge waves, and topo-
logically protected modes [2, 10, 11, 76, 107, 108], an example being that
reported in Fig. 5.1, where the dynamic emergence and propagation of dis-
continuity wavefronts (rectilinear and curvilinear) is shown in the so-called
‘pinscreen’, a material (made up of a perforated plate having each hole filled
with a movable pin) on the verge of ellipticity loss.

Fig. 5.1. Discontinuity wavefronts (some rectilinear, other curvilinear) forming during
the (out-of-plane) dynamics of a periodic material (used as a toy, the so-called “pinscreen’,
invented by W. Fleming), which works on the boundary of ellipticity loss (photo taken
at the Exploratorium, San Francisco).

Homogenization techniques based on the asymptotic analysis of wave
solutions dates back to Brillouin [65] and Born [96], and has received sig-
nificant contributions in recent years when the case of random and periodic
media has been considered [21-23, 40, 109-113] and also extended to the
high-frequency regime [114-116]. With the exception of [40], these devel-
opments have been so far produced for the analysis of wave propagation
in continuous materials, not in structures, so that their practical imple-
mentation required the systematic use of numerical techniques (typically
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finite elements). It is shown in the this chapter that low-frequency effec-
tive properties can be derived analytically for lattices composed of rods
(incrementally loaded in-plane) through a direct computation of the wave
asymptotics!. Recent results on beam lattices [40] are here extended to the
case of elastic lattices, axially stressed up to an arbitrary amount, whose in-
cremental dynamics is derived without restrictions on the rods’ constitutive
law and without neglecting the rotational inertia of the rods’ cross section.
The low-frequency asymptotics of the lattice waves is shown to be governed
by the spectral properties of the acoustic tensor associated to the effective
solid and capturing the incremental response of the system.

While the final results coincide with those obtained via energy match, it
is shown that Floquet-Bloch asymptotics leads directly to the acoustic ten-
sor, not to the constitutive operator, of an equivalent, prestressed, solid. In
this way, the correspondence between loss of ellipticity in the continuum
and degeneracy of the acoustic properties in the lattice is directly demon-
strated. Moreover, the elastic rods are characterized by an axial mass density,
equipped with rotational inertia (the Rayleigh model [1, 55, 117]), so that it
is possible to prove that the latter does not influence the vibrational prop-
erties, expressed by the acoustic tensor, of the equivalent continuum. The
homogenization, obtained analytically, is exploited to investigate the lat-
tice response near macro-instability threshold (coincident with the failure
of strong ellipticity of the effective continuum), therefore unveiling micro-
scopic features of lattice dynamics loaded up to the verge of shear band
formation.

The response to the application of a pulsating concentrated force is finally
analyzed in the spirit of [118] and [119], when applied both to the lattice (in
the physical and Fourier spaces) and to the equivalent solid, with special de-
tail on low-frequency wave localizations. The time-harmonic infinite-body
Green’s function (see [119]) of the effective solid is compared to the forced
response of lattice obtained through the finite elements methodology, in
which the application of PML boundary conditions to a finite grid simu-
lates an infinite domain. The acoustic branches of the lattice structure and
its continuum approximation are shown to be in almost perfect agreement,
thus confirming that the lattice is an excellent candidate for the realization
of architected cellular materials to be used to harness micro-buckling and
strain localization, two features which can control the dynamic response of
a structure with tunable functionality [5, 6].

This paper is organized as follows. The mathematical setting for in-
cremental wave propagation is developed in Section 5.2 for an axially pre-
loaded lattice of elastic rods, organized in an arbitrary periodic geometry.
The asymptotic analysis of lattices waves is derived in Section 5.3, leading
to the homogenization result that provides the acoustic tensor associated
to the incremental effective Cauchy continuum. The developed homoge-
nization scheme is applied in Section 5.4 to the same grid of elastic rods
considered in Chapter 4, so that failure of ellipticity and micro-buckling are

1The mathematical setting is two-dimensional for simplicity, but the thee-dimensional ex-
tension is straightforward once the linearized dynamics of the rods is specified.
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investigated now through the analysis of the dispersion characteristics of
the lattice. In Section 5.5, the emergence and characterization of dynamic
strain localization is presented by means of a perturbative approach (ap-
plied to the lattice and the effective continuum), which demonstrates how
the macroscopic localization direction, as well as the number of localization
bands, can effectively be designed through appropriate modifications of the
underling lattice structure.

5.2 Incremental dynamics of preloaded lattices:
governing equations

In this section, the governing equations for incremental wave propagation
in an axially-preloaded lattice of elastic rods are formulated. These are
obtained (i) by solving for time-harmonic vibrations the incremental dy-
namics of a single rod (derived in Appendix C), (ii) by using this solution to
formulate the equations of motions of a single unit cell, and finally (iii) by ap-
plying the Bloch theorem to obtain the equations governing the incremental
dynamics of the infinite lattice.

An infinite two-dimensional lattice structure is considered, composed of
nonlinear elastic rods which are axially preloaded (or prestretched) from an
unloaded reference configuration By to a preloaded configuration 8 used as
reference in an updated Lagrangian formulation of incremental dynamics
(Fig. 5.2).

By introducing a local coordinate sy for each rod of a given unit cell, the
incremental kinematics is described by means of the following fields

ui(sk, t) = {ur(se, t), v(sk, )} 7, Vk e {1,..., Ny},

where Nj is the number of rods in the unit cell, and the two in-plane
displacement components, respectively axial and transverse, are denoted
by ui(sk, t) and vi(s, t), while the rotation of the cross-section O(si, t) is
assumed to satisfy the unshearability condition Ox(sk, ) = v'(sg, t)?. Time-
harmonic solutions are sought, so that, by introducing the circular frequency
w, the dependence on time ¢ can be represented as

we(se, 1) = (s e '@t Vke{l,..,Np}, (5.1)

where 1 (sx) = {ik(sk), 9x(sk)} T are functions of the coordinate si only.

5.2.1 Bloch’s theorem

Wave propagation in an infinite periodic elastic medium can effectively be
analyzed through the application of Bloch theorem. Essentially, the theorem
states that the time-harmonic solutions of the equations of motion possess a

2A dash will be used to denote differentiation with respect to the coordinate sj.
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B: current configuration

By : stress-free configuration

YA

Fig.5.2. A periodic two-dimensional lattice of (axially and flexurally deformable) elastic
rods is considered, preloaded from the stress-free configuration By (upper part, on the
left) by means of a pure axial loading state, transforming 8 to the current, preloaded
configuration 8 (upper part, on the right). The latter configuration, used as reference in
an updated Lagrangian description, can be represented as the tessellation of a single unit
cell along the vectors of the direct basis {a1, a2}. The incremental dynamic response
(lower part where an incremental deformation is shown at three different instants of
time) is defined on B by the incremental displacement field of each rod u(s, t), here
decomposed in an axial and transverse component, u(s, t) and v(s, t).

modulation in space having the same periodicity of the medium, a condition
expressed by the following requirement?

u(x, ) = @(x) el 0, (5.2a)

where k is the Bloch vector and the modulation ¢ (x) is periodic with respect
to the direct basis, so that it satisfies

p(x+njaj)=@(x) V{ni, ny} € Z> Vx € R%.
Eq. (5.2a) can be equivalently expressed as
u(x +njaj, t)= u(x, t) el F0a) (5.2b)

Note that, in the case of a lattice made up of rods, the waveform ¢(x)
(as well as the field u(x,t)) is described by the displacement of the rods
constituting the unit cell, and thus it is defined only for x corresponding to
the location of the structural elements.

The importance of the Bloch’s theorem lies in the fact that it allows the
formulation of the dynamics of an infinite structure by complementing the
equations of motion of a single unit cell with suitable boundary conditions.

*Note that an equation similar to Eq.(5.2b) holds also with the stress field replacing the
displacement field.
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These so-called Floquet-Bloch conditions enforce the periodicity of the lat-
tice, by relating nodal displacements and forces on the boundary of the unit
cell, according to the property expressed by Eq. (5.2b).

5.2.2 Time-harmonic solution of a preloaded elastic rod

The analytic solution is obtained for time-harmonic vibrations of a Rayleigh
rod. In the framework of a linearized theory, the equations of motion
governing the incremental dynamics of an axially pre-stretched Rayleigh
rod are the following

7/(/\0) ﬁ(sl t) - A(AO) MU(S, t) =0, (533)
Y(A0) U(s, t) — yr(Ao) 8”(s, t) + B(Ag) 0" (s, t) — P(Ao) 0" (s, t) =0, (5.3b)

where a superimposed dot denotes time differentiation, y(Ag) is the current
linear mass density, y,(Ao) is the current rotational inertia, Ag is the axial
pre-stretch and P(Ao) the corresponding axial preload (assumed positive
in tension), while A(Ap) and B(Ag) are, respectively, the current axial and
bending stiffness. The analytic derivation of equations (5.3) is reported in
Appendix C, where the formulation provided in Chapter 4 of this work
is extended to the dynamic case. Moreover, the derivation of the current
stiffnesses A(Ag) and B(A¢) from strain-energy functions, as well as the their
identification for rods made up of an incompressible elastic material can
be found in Appendix C. In the following, the parameters y(Ag), v,(Ao),
A(Ap), and B(Ag) will simply be denoted as, y, y,, A, and B, and treated as
independent quantities for generality.

The substitution of Eq. (5.1) into Eq. (5.3) leads to a system of linear
ODE:s for the functions ii(s) and 9(s). As the system is fully decoupled, the
solution is easily obtained in the form

2 o 4 a0
a(s) =Zc;‘e”3/5, (s) = ZC;’elﬁfs, (5.4)
=1 =

where {C¥, Cy,Cl, .., CZ} are 6 arbitrary complex constants and the char-
acteristic roots ‘B;.‘ and ,B;’ are given by

|

@
2= 57

1
Blosa= iﬁ\/‘ig +1@%+ \/P2 +(dA2-2pr)@?+ 12,

with [ being the current length of the rod, @ = w I4/y /A the non-dimensional

angular frequency, p = PI?/B the non-dimensional preload, A = I/V/B/A
the slenderness of the rod, and r = y,A/(yB) is the dimensionless rotational
inertia.
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5.2.3 [Exact time-harmonic shape functions, mass and stiff-
ness matrices

To facilitate the asymptotic expansion, it is instrumental to identify the 6
constants {C}, C},CY, ..., C{}7, with the degrees of freedom at the rod’s ends
(i.e. its nodal displacements). This allows a dimensional reduction through
a direct application of the compatibility conditions at the joints.

For any given rod of length [, the following notation for the nodal quan-
tities is introduced

10)=u1, 90)=0v1, 0(0) =061,

R (5.5)

a(ly=u>, o()=v2, O()=6,,
so that collecting the degrees of freedom at the two ends of the rod in the
vector § = {u1,v1, 61, Uz, vz, 02} 7 yields the solution of system (5.5) in the
form

i(s)=N(s;w,P)q, u(s,t)=N(s;w,P)q(t)=N(s;w,P)tje_i‘"t, (5.6)

which is now a linear function of the nodal displacements g(t) = § e~ “*.

The 2-by-6 matrix N(s; w, P) acts as a matrix of frequency-dependent and
preload-dependent ‘shape functions” which is the exact functional basis in
which the time-harmonic response of the rod can be represented. The rep-
resentation (5.6) can also be considered as the definition of a ‘finite element’
endowed with shape functions built from the exact solution. Moreover,
these time-harmonic shape functions reduce to the quasi-static solution
when w — 0 [so that for vanishing preload, in the limit lim,—o N(s; w, 0)
the usual shape functions for beam elements, employed for instance in [52],
are recovered]. Note that, in the following, N(s; w, P) will simply be denoted
as N(s; w), to simplify notation.

By employing Eq. (5.6), the exact mass and stiffness matrices of a rod
under time-harmonic vibration can be computed. For the k-th rod the kinetic
energy and the elastic strain energy are given by

1% . (%
T = 5 I Vi (tk(sk, )% + Ox(sk, 1)) dsg + 5 I Vr k0 (5K, t) dsk
0 0
Ik

= %flk(f)T ( . Ni(sk; @)T Jx Ni(sk; w)dsk) gr(t)+ (5.7a)

1. e .
+5 gi(t)T (I Vrk bi(sk; @) Tbi(sk; w) dsk) gr(t),
0

&k =

1 lk 7’ 14
EJ (Ak uy(sk, t)* + Br v} (sk, t)7) dsi
0

(5.7b)

I
= % qr(£)T (J By (s; )T E Bk(Sk;w)dSk) qr(t),
0
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where J; and E; are matrices collecting the inertia and stiffness terms,
respectively, while By(sk; w) is the strain-displacement matrix, which are
defined as follows

0

% 0 Ay 0 N :
]k = |:0 )/k:| , E; = [ 0 Bk , Bk(Sk, CL)) = 0 2 Nk(Sk, CL)),

7
Jsy;

and by (sg; w) = [0 a%{] Ni(sk; w) is a row vector containing the derivative

of the shape functions corresponding to the transverse displacement v. Note
that the kinetic energy (5.7a) accounts for translational as well as rotational
inertia of the rod. In addition, the contribution of the axial preload can be
included in the potential energy as (details are provided in Appendix C)

1",
(ng = sz JO 'Uk(Sk, t)z dSk
(5.8)

1 l
=3 qr(H)T (ij bi(sk; )T br(sk; w) dsi | gi(t) .
0

By combining Egs. (5.7b) and (5.8), the potential energy of the k-th rod is
denoted as
V=& +VE. (5.9)

From Egs. (5.7), (5.8) and (5.9) the frequency-dependent mass and stiff-
ness matrices are naturally defined as

I
Mi(w)= | Ni(sk; @)7 Jx Ni(sk; w) ds+
0 " (5.10a)
; j Yok bi(si; @) be(si; @) dsi
0
Iy
Ke(@) = j Bi(s1; )" Ex Be(sy; @) dsit
0 (5.10b)

Iy
P J bi(st; @) bi(s; @) dsi .
0

The matrices for the quasi-static case can be obtained by evaluating the limit
w — 0. In particular, the quasi-static stiffness matrix lim,—,o K¢(w) is found
to be identical to that reported in Chapter 4, where it is used to formulate the
incremental equilibrium and analyze the bifurcation of preloaded lattices.

5.2.4 Equations of motion for the isolated unit cell

As expressions (5.7)—(5.9) govern the incremental dynamics of a single rod,
the kineticand potential energies of a single unit cell can be obtained through
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a summation of contributions from each rod

Nb Nb
T=>%, V=2V,
k=1 k=1

and therefore the equations of motion for an isolated unit cell can be derived
from Hamilton's principle applied to the Lagrangian

L(q,4)=T(4)=V(g)+ W), (5.11)

where g is the vector collecting all the degrees of freedom of the unit cell
and W(q) = f - q is the incremental work done by the internal actions f
acting on the boundary nodes.

The stationarity of the action associated to the Lagrangian (5.11) leads
to the following Euler-Lagrange equations

M(w) §(t) + K(w) q(t) = f(t), (5.12)

where M(w) and K(w) are, respectively, the mass and stiffness matrices of
the unit cell. The global matrices can be easily obtained by assembling the
local matrices expressed by Egs. (5.10) for all the rods in the unit cell.

The assumption that the external action on the isolated unit cell is time-
harmonic, f(t) = fe~'“!, allows a substitution of the time-harmonic re-
sponse g(t) = §e'®*, so to obtain the governing equation for the isolated
unit cell A

Awij=f, (5.13)

with the definition A(w) = —w?M(w) + K(w). Note that the dimension of
the linear system (5.13) is 3N, where N is the number of nodes of the unit
cell.

5.2.5 Application of the Floquet-Bloch conditions

In order to describe the response of the infinite lattice, the governing equa-
tions of the isolated unit cell (5.13) have to be complemented with the
Floquet-Bloch conditions. The application of these conditions to periodic
beam lattices is well-known [52, 120] and is briefly summarized in the fol-
lowing.

(a)

As Eq. (5.2b) requires

g = Gpe’ ), (5.14)

for all pairs of nodes {p, q} such that x,; — x,, is an integer, linear combination
of the lattice vectors {a1, a,}, the relations to be imposed on the degrees of
freedom of the unit cell derive directly from Eq. (5.2b), evaluated at x € JC
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(b)
/'/51 r//,l fl
/

Fig. 53. In order to impose the appropriate Floquet-Bloch conditions required by
Eq. (5.2b), vector q collecting the degrees of freedom of the unit cell is conveniently
partitioned by distinguishing the sets of inner qi and boundary nodes, both located

at corners {g'?, 4", 4™, 4"} and on the edges {4',4%,4", 4"} (a). The corresponding
force vector f is partitioned in the same way (b) and the forces acting on the boundary
nodes have to satisfy equilibrium as well as the Floquet-Bloch conditions (the shift factor

zj= ¢'*% is simply a consequence of Eq. (5.2b)).

and for n; € {0, 1}, hence obtaining

g I 0 0 o0
g' 0 I o0 0
gt 0 0 I 0 A
g*l o o o 1 ||

G=14t=10 =l o o [{9 1, (5.15a)
gl |0 o =z o [|9,
gl o o o z1 |\
gt |0 0 0 ozl
q’t 0 0 0 zyzol|

succinctly written as
G=2k) g, (5.15b)

where Z(k) and 4" are defined according to Eq. (5.15a), and zj = ¢’ k-aj with
j =1,2. In Eq. (5.15a) the vector 4 has been partitioned to denote the inner
and boundary nodes according to the notation sketched in Fig. 5.3. The
same partitioning is also introduced for the force vector f.

A substitution of Egs. (5.15) into Eq. (5.13) provides

AZK)§ =f,

so that a left multiplication by Z(k)", where the superscript " denotes the
complex conjugate transpose operation*, leads to the reduced system

Z()MA(w)Z(k) §" = f*, (5.16)

4The transpose of the conjugate of a matrix M is defined as Mij = Mﬁ, where the bar

denotes the complex conjugate.
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where the following definition is introduced

fi
R R Fl . = f£r
f=20f = Lia
flb+zlfrb+zzflt+21§2frt

Note that the dimension of system (5.16) is smaller than the dimension of
system (5.13). In fact, the imposition of the Floquet-Bloch conditions has
permitted to express the equations of motion of the lattice only in terms of
the reduced variables 4* and f*.

If external loads are not present in the infinite lattice (so that the bound-
ary forces shown in Fig. 5.3b are purely internal actions), Eq. (5.2b) implies
f* = 0 and therefore the following system of equations is obtained, govern-
ing Floquet-Bloch wave propagation within the lattice

A (w, k) §* =0, (5.17)

where the matrix of the reduced system has been defined as A*(w, k) =
Z(k)"A(w)Z(k). Note that this matrix is non-symmetric, but for a conserva-
tive system is always Hermitian, so that A*(w, k) = A*(w, k) and «? € R.

5.2.6 Generalized eigenvalue problem for the lattice dynam-
ics
Eq. (5.17) defines a homogeneous linear system for the unknown vector 4%,
in which the angular frequency w and the wave vector k are for the moment
undetermined.
It is important to note that the matrix-valued complex function A*(w, k)
depends on all the mechanical and geometrical parameters of the unit cell.

Since Eq. (5.17) is homogeneous, all non-trivial solutions are obtained by
imposing the condition

flw, k) = det(A*(w, k)) =0, (5.18)

that defines, although implicitly, the dispersion relation, relating w and k as
w(k). For every given wave vector k and for each of the corresponding roots
w(k) obtained from Eq. (5.18), the non-trivial solutions of Eq. (5.17) provide
the modes of the Floquet-Bloch waves propagating through the lattice at
each frequency. This means that the vector 4" is an implicit function of w
and therefore of k, so that the dependence on k can be made explicit so that
Eq. 5.17 is rewritten as

A (w(k), k) §*(w(k), k)=0. (5.19)
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5.3 Incremental dynamics of preloaded lattices:
asymptotic analysis

The scope of this section is the analysis of the low-frequency long-wavelength
asymptotic behaviour of the lattice dynamics, which will enable the identi-
fication of the effective continuum material.

5.3.1 Wave propagation in a prestressed Cauchy continuum

Before introducing the homogenization technique, it is essential to recall
here the fundamental equations governing incremental wave propagation in
a prestressed hyperelastic continuum. An appropriate form of the equations
for the prestressed continuum has to be selected, to result compatible with
the formulation of the lattice dynamics introduced in Section 5.2. Specifi-
cally, itis observed that the equations of motion for the lattice are (i) obtained
in the context of a linearized theory, and (ii) referred to a preloaded refer-
ence configuration, therefore, the dynamics of the unknown ‘equivalent’
continuum has to be formulated in the context of the incremental theory of
nonlinear elasticity by means of a relative Lagrangian description [99]. This
is based on incremental constitutive laws relating the increment of the first
Piola-Kirchhoff stress S to the incremental deformation gradient L = grad u

S =CJ[L], (5.20)
through the elasticity tensor C
C=E+IrT in components Cijkl = Eijkl + (31‘ij[ , (5.21)

where T is the Cauchy stress, defining here the prestress, and E is a fourth-
order tensor endowed with the left and right minor symmetries and the
major symmetry. Moreover, Eq. (5.21) implies that the number of unknown
components of C is at most 9 for a 2d material and 27 for the 3d case.

In the absence of body forces, the incremental equations of motion for
the continuum can be written in the usual form

Div S = pyii, (5.22)

where u is the incremental displacement field and pj, > 0 the mass density.
Assuming the usual plane wave representation for incremental displace-
ment, Eq. (5.22) leads to the following eigenvalue problem

(4©k) - prw2t) a =0, (5.23)

governing the wave propagation in a homogeneous Cauchy material whose
acoustic tensor A(©) (k) is defined with reference to the unit vector k as

ASD (k) = kg Cpgrs ks -
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The eigenvectors a represent the wave amplitudes, while the eigenvalues
wﬁ are the roots of the characteristic equation
ful@n, k) = det(A© (k) — pp w?1) = 0. (5.24)

Note that the subscript / differentiates wy, (k) from w(k), so that the former
defines the angular frequency of a wave propagating through the equivalent
homogeneous Cauchy continuum, while the latter the dispersion relation
of the lattice.

5.3.2 Asymptotic expansion of Floquet-Bloch waves

A perturbation method is now developed for the equations governing wave
propagation in a lattice made of prestressed elastic rods, through a gen-
eralization of the technique proposed by Born [96] for lattices involving
only point-like mass interactions. A rigorous link is established between
the low-frequency solutions of Eq. (5.19) and spectral characteristics of the
equivalent continuum governed by Eq. (5.23).

The important point is that a wave propagating in an homogeneous
Cauchy continuum can be seen as a special case of a Floquet-Bloch wave
that is characterized by:

e a linear dispersion relation, so that writing k = € n (with n being a unit
vector), the following condition is obtained

w(en) = a)S,l) €, (5.25)

where a)ill) depends only on the direction n;

e a spatially uniform modulation
@r(x)=a(k). (5.26)

In general a periodic structured medium does not satisfy these properties for
every wave vector k, but its response can be analyzed about the point k = 0
and compared with the constitutive equations of the continuum, Egs. (5.25)-
(5.26). In fact, the linear relation (5.25) can be considered as the first-order
term in the asymptotic expansion of the dispersion relation w(e n) centered
at € = 0 (so that {w, k} = 0) and along the direction n of the k-space. This
asymptotic expansion, truncated at the N-th term is

wen) ~ ol e+ 0P e+ ..+ 0™ eN = SN(w)(e). (5.27)
In the above expansion the O(e”) term vanishes because the point {w, k} = 0
certainly satisfies the dispersion equation (5.18). This follows from the fact
that, setting {w, k} = 0, Eq. (5.19) becomes

A*(0)§(0) = Z(0)"K(0)Z(0) 4°(0) = 0, (5.28)
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so that, since the matrix Z(0) prescribes equal displacements on correspond-
ing sides of the unit cell (preventing rigid rotations), the only possible so-
lutions 47(0) correspond to 2 rigid-body translations, which represent the
nullspace of K(0) without rigid rotations. These rigid translations are es-
sentially the limit of the eigenmodes @ (x) for ||k|| — 0. Their derivation
requires first the construction of the asymptotic expansion of ¢(x), in com-
plete analogy to Eq. (5.27),

Pen(®) ~ @V @)+ (x) e+ P () 4.+ 0L (x) N = SN (@)(e), (5.29)

and then the computation of the limit € — 0. As a result, the zeroth-order

term of the waveform (pf?) is indeed umniform in space (independent of x),
and therefore the acoustic properties of the equivalent Cauchy continuum
have to satisfy

wp(en) = a)L)e (5.30a)
aen)=¢?  VneR?, (5.30b)

conditions which define an “acoustic equivalence” between the lattice and
the continuum.

An effective method to obtain the series expansions (5.27) and (5.29) is
outlined in the following. As the waveform ¢y (x) for a lattice made up
of rods is governed by the vector of degrees of freedom 4, solution of the
eigenvalue problem (5.19), the expansion of §*(w(k), k) is performed along
an arbitrary direction # in the k-space

7 (w(en), en) ~ (0) + q,,(l) €+4, D2y , (5.31)

so that the first term q;“” can be used to identify the left-hand side of
Eq. (5.30b). To this end, the matrix A*(w(k), k) is expanded as

A w(en),en) ~AD AV A@ 2y (5.32)

so that the eigenvalue problem (5.19) is rewritten through a substitution of
the series representations (5.31) and (5.32) as

A0+ A e+ AP 2+ )G+ 3V e+ P v ) =0 (539)
Since the dispersion relation w(k) is formally inserted in the above ex-

pansions, Eq. (5.33) has to be satisfied for every value of €, which means
that the left-hand side has to vanish at every order in €. Thus the following
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sequence of linear systems is obtained

0e: 449 =0,
O(el) . A"'(O) q"(l) +A"(l) q*(o) 0,

]*0 ~*(2 !*l ~#(1 1=e2 ~+(0 0
0(62): n()qn() n()Qn() n()Qn()_ ’

P *(] J * *#(]—
oE: A" a"+ > a5 =0, vj>o,
h=1
which has to be solved for the unknown vectors 4,, ‘D1t is clear that the
computation of these vectors starts from the solution of the zeroth-order
equation and then, sequentially, the higher-order terms are to be obtained.

At the j-th order, the matrix of the linear system is A:l(o) and multiplies the

*(f)

unknown vector 4, so that the constant term (not involving the unknown

U )) contains all the previously determined vectors {4,, o ., ;(j _1)}. More-
over, it is important to observe that the terms An(] ) in the expansion (5.32)
can be computed explicitly once the series SY (w)(€) has been determined.

It is recalled that, as shown by Eq. (5.28), the matrix of each linear system
A;(O) is singular and it has a two-dimensional nullspace spanned by two
linearly independent vectors, #; and #,, which represent the two in-plane
rigid-body translations.® Thus, every linear combination in the form

" =it +arty,  V{ay,a) € B2, (5.35)
is a solution of the zeroth-order equation in (5.34). This implies that the

matrix A:,(O) is not invertible, so that the solvability of the j-th linear system
depends on the form of its right-hand side, which has to satisfy the following
condition, known as the Fredholm alternative theorem

j .
ZA::“qL“_h))'y=o, vy ekerd)”),  Vi>0, (536
h=1

or, equivalently, using Eq. (5.35), the condition

h=1 h=1

j
#(h) ~* ‘—h
S ) =,

j .
Sah q:,”"”) ‘tp=0, Vj>0.

In principle, Egs. (5.34) and (5.36) are sufficient to compute the series
representations (5.31) and (5.27), thus making conditions (5.30) explicit.

5Since t1 and #, describe two arbitrary rigid translations, #; and #; can be conveniently
chosen as the rigid translations aligned parallel to e1 and ey, respectively.
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5.3.3 The acoustic tensor for a lattice of elastic rods

The perturbation method outlined in Section 5.3.2 is general enough to
provide, up to the desired order, the series representation of the acoustic
properties of a preloaded lattice subject to incremental dynamics.

It will be proved in the following that it is always possible to employ the
above-described perturbation technique to construct an eigenvalue problem
governing the propagation of waves in a lattice (where elements are subject
to both axial and flexural deformation) in the low-frequency and long-
wavelength regime. In particular, this eigenvalue problem will possess the
following properties:

(i) the eigenvalues identify the first-order term a)g) of both acoustic
branches of the dispersion relation;

(ii) the eigenvectors govern the zeroth-order term of the Floquet-Bloch
waveform for both acoustic waves, through coefficients {a1, a»} in the
linear combination (5.35);

(iii) the algebraic structure of the problem is exactly equivalent to that gov-
erning wave propagation in a Cauchy material, Eq. (5.23).

The construction of the above eigenvalue problem allows the rigorous definition of
the ‘acoustic tensor for a lattice of elastic rods” and from the latter the identification
of the elasticity tensor representing a material equivalent to the lattice. In fact,
this eigenvalue problem defines eigenvalues and eigenvectors satisfying the
conditions of acoustic equivalence, Eq. (5.30).

In order to construct the eigenvalue problem, the solution of the sequence
of the linear systems (5.34) is pursued up to the order O(e?). The equations
involve the following terms of the series (5.32)

A0 = zO KO Z0)

A = ZOMKOZD | 70 g 70
* " (5.37)
AR = Z0"KOZD 4 O KO 7P,

+ ZO"KOZ0) _ 70" 1070 (a)g))z ,
where a series expansion has been introduced for the matrices K(w(e n)),
M(w(en)) and Z(e n) as € — 0. It is important to note that:

(i) up to the order O(e?), only the zeroth-order terms of the matrices K
and M (which correspond to the quasi-static limit, K 0 = limg_0 K(w),
MO =1lim,,_,o M(w)) are present;

(ii) the zeroth-order matrix Z(®, and consequently A*©), is independent

)

of the direction n (owing to continuity); while A:fl is linear in n, A:,(Z)

is quadratic in n;
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(iii) the linear term a)f}) starts to appear at order O(e?).

In the following, the first and second-order equation in the sequence of
equations (5.34) are considered and their solvability conditions derived,
Eq. (56.36). By means of Eq. (5.35), the first-order equation in the se-
quence (5.34) reads as

oy : AOGY L AV (art) +arty) =0, (5.38)
and its solvabilty condition requires
*(1) _ (1) _
t-Ay (it +aot) =0, A, (ot +azt) =0,

two conditions which are always satisfied. In fact, a use of Eq. (5.37); yields
a0t =t (207KOZ) + 71 KOZ0) 1,

a scalar product which vanishes because Z¥#; is a rigid-body translation,
so that it cannot produce any stress, hence K©Z©¢; = 0. Since Eq. (5.38) is
always solvable, all its solutions can be expressed in the form

G = aatim) + anty(n)  Vi{ar, a2} € R, (5.39)
where t] and t) are the solutions of the following two linear systems
AOtm+A =0, AOm+A =0.

Note that #] and ¢t/ are defined up to an arbitrary rigid-body translation.
By employing Egs. (5.35) and (5.39), the linear system of order O(e?)
reads as

0@ : A0 = 0 (AL m)+AP 1) - AV () +AP ), (5.40)

which (because A*? is singular) admits a solution if and only if the right-
hand side is orthogonal to both #; and #;, namely

ar (A ) + A1) - t1+ (A () + AP ) 1 =0,
(1) ./ *(2 *(1) o7 *(2
(A ) + AP 1) - b+ (A () + AP h) 1 =0,
that in matrix form can be written as®

At + A0 b (A B0+ A7 h) 1 {al}z{o} 541)
@ m+Ah) (A gm) + AP ) 1| laz) 10f 7T

®Note that vectors t]’. (n) may contain an arbitrary rigid-body translation. This would appar-

ently lead to a non-uniqueness in the form of Eq. (5.41), because the terms ¢; - A:,(l)tlf (n) are

present. This lack of uniqueness is only apparent, because ¢; - A:,(l) t;=0.
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Up to order O(e') the coefficients {a1, az} and the linear term a)ﬁ,l) re-

main completely arbitrary, but now they have to satisfy the system (5.41) in
order to make Eq. (5.40) solvable. In fact, the homogeneous system (5.41)
represents an eigenvalue problem with eigenvectors {1, @} and eigenval-

2
ues (a),(})) . To see this more explicitly, expressions (5.37) can be substituted

into Eq. (5.41) to obtain”

=

t- RVt + () - KO (n) - KDty + #)(n) - KOE(n) a1} N
t1- Rt + t(n) - KOE(n) - ROty + t5(n) - ROty (m) | |2

loaf 1o}

(5.42)
_ (a)m)z t1- MOt t,-MOt
n t - M(O)t2 ty - ]\4(0)152

with the following definitions

RO = zO"gOZz0 g0 _ Zg)'* KOZD  §O = 7O A0 70

Eq. (5.42) is an eigenvalue problem, and the following properties can be
deduced:

(i) As the matrices K©, 125}’ and M© are real and symmetric, also the

2

C . ) 1
matrices E and I are real and symmetric, hence the eigenvalues (a),(1 ))
are real;

’

(ii) Since Z©, t; and t, are independent of n and Zf,l), t{(n) and t(n) are
all linear in n, each component of the 2-by-2 matrix X is a quadratic
form in n;

(iif) The components of the 2-by-2 matrix I' admit the following simplifi-
cations

- MOt =t -MOt, =0, #-MOt; =t,- MOt = p,|C],

where pj = I%I Z,ihl vk Ix and |C| are, respectively, the average mass
density of the lattice and the area of the unit cell. Note that the
matrix I contains only terms in the form ¢; - MO tj, where t; are rigid
translations, and therefore the rotational inertia of the rods plays no role
(recall the definition (5.10a)).

Finally the eigenvalue problem (5.42) can be written in the standard form

[A(L)(n) - pu (wf}))21 a=0, (5.43)

7The resulting expression has been simplified using again the property K0 Z©¢; = 0.
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where & = {a1, @2} T and tensor AV (n) reads

1 |t -RPt + () - ROt () t2-RPty + £)(n) - KO (n)
ICl |t1- Rt + #/(n) - ROE(n) £2- Kty + £)(n) - KO (n) |
(5.44)
It is important to note at this stage, that the eigenvalue problem (5.43)
has exactly the same structure of Eq. (5.23). Furthermore, tensor AL (),
the “acoustic tensor of the lattice’, uniquely defines the eigenvalues and
eigenvectors appearing on the right-hand side of the equivalence condi-

AV () =

tions (5.30), so that wy, = a);l)e and a = <p£,°) = a. This implies that the acoustic
equivalence holds if and only if the ‘acoustic tensor of the lattice’ coincides with
the acoustic tensor of the Cauchy material. Therefore, the equivalent Cauchy
continuum has to satisfy the acoustic equivalence condition (valid for every
unit vector n)

A© @) = AD@). (5.45)

It is important to note that the equivalence condition has been obtained
without introducing restrictive assumptions on the lattice structure, so that
the homogenization method is completely general and includes a generic state
of axial preload acting on the lattice. Moreover, the presented technique can
easily be extended to three-dimensional lattices.

5.3.4 Identification of the incremental constitutive tensor
equivalent to a preloaded lattice

The perturbation method developed in Section 5.3 leads to the determina-
tion of the acoustic tensor of an effective Cauchy continuum, equivalent to
the low-frequency response of a preloaded lattice of rods. As the method
is entirely based on the dynamics of the periodic medium, the acoustic
tensor is obtained directly, without any prior computation of the effective
constitutive tensor, which is instead traditional in standard energy-based
homogenization techniques [97, 98, 121-123].

In this section the steps for retrieving the incremental (or ‘tangent’)
constitutive tensor C are outlined from the acoustic tensor given by Eq. (5.45).

As the condition (5.45) has to hold for an arbitrary direction of propaga-
tion, it can equivalently be expressed by applying the Hessian with respect
to n on both sides of Eq. (5.45) to obtain

aZAEJF)(n)

o’ (5.46)

Cikji + Cigjx =
where the right-hand side can be regarded as a data defined by the lattice
structure, namely, the Hessian of tensor (5.44). By considering the sym-
metry with respect to the {k, [} indices, Eq. (5.46) provides a linear system
of 54 equations in a three-dimensional setting or 12 equations in a two-
dimensional setting, while the rank of the system is found to be 26 or 8,
respectively. By recalling that the unknown tensor C has the form (5.21), it
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is clear that, if the system is solvable, all but one of the unknown compo-
nents of C can be determined as these are 27 for a three-dimensional lattice
and 9 for a two-dimensional.

In order to solve for the identification, results obtained by Max Born [96]
can now be generalized to prove that:

(i) the system is solvable when the equations of motions of the lattice
satisfy the rotational invariance and

(ii) the solution is unique, except for the spherical part of the prestress
(i.e. trT/3 in 3d and tr T/2 in 2d) which remains undetermined for
the system (5.46), but can be determined by matching the first-order
incremental work introduced in Chapter 4.

5.4 Bifurcation and loss of ellipticity in a lattice
of preloaded elastic rods

In order to demonstrate the effectiveness of the homogenization method
developed in Section 5.3, the condition of loss of ellipticity for a preloaded
two-dimensional grid lattice of elastic rods is derived and analyzed.

The geometry of the reference configuration is sketched in Fig. 5.4 and
is composed of two sets of rods, inclined at an angle a and characterized
by an axial stiffness A; = Ay = A and slenderness ratios Ay = [VA/By,
Ay = IWA/B;, where the subscripts 1 and 2 are relative to the horizontal
and inclined rods, respectively. For simplicity, the linear mass density is
assumed to be the same for both rods y; = y2 = y, while the rotational
inertia contribution has been shown in Section 5.3.3 to be negligible for
the homogenization result. The resulting grid of rods is also considered

€2

Py

Fig. 5.4. Current configuration of a rhombic lattice of preloaded elastic rods, with the
associated unit cell C highlighted. The direct basis for the lattice is denoted by the pair
of vectors {a1,a}. Labels 1, 2, and S denote the horizontal rods, the inclined rods,
and the diagonal springs, respectively. The stiffness of inclined springs, the axial and
flexural rigidity of the rods, the preloads P1 and P;, as well as the grid angle a can all
be varied to investigate different incremental responses.

stiffened by diagonal linear springs (Fig. 5.4), whose stiffness ks is conve-
niently made dimensionless by introducing the parameter k¥ = kg//A. In
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this configuration, the lattice is subject to a preload state defined by the
axial forces P; and P, made dimensionless respectively as p1 = Py1%2/By
and p> = P»I%/B,. Hence, a lattice configuration is completely defined by
the parameter set {p1, p2, A1, A2, k, a}. Note also that the lattice structure
considered includes the simpler case of a rectangular grid that has been
analyzed in [19].

5.4.1 Macro and micro bifurcations as degeneracies of the
dispersion relation

The effect of the diagonal reinforcement (springs labeled with S in Fig. 5.4)
on the bifurcation of the lattice has been systematically investigated in Chap-
ter 4 of this study, where it has been shown to play a fundamental role in
determining the wavelength critical for bifurcation. Specifically, it has been
demonstrated that an increase in the spring stiffness induces a transition of
the critical bifurcation from macroscopic to microscopic, and in particular
the bifurcation is characterized by an infinite wavelength when x = 0.

Fig. 5.5. The dispersion surfaces, computed for states of preload of increasing magni-
tude (from left to right), demonstrate the difference between macroscopic (upper part)
and microscopic (lower part) bifurcations occurring in a square grid of elastic rods.
The stiffness of the diagonal springs can be tuned to cause a switching of the critical
bifurcation mode from macroscopic (low spring stiffness) to microscopic (high spring
stiffness). The four surfaces reported in the upper part refer to equibiaxial compression
of a square grid with A1 = Ay = 10 and not reinforced with springs, thus experiencing
an infinite-wavelength bifurcation corresponding to the vanishing slope of the acoustic
branches at the origin (when the preload reaches a critical value pg = {-5.434, —5.434}).
The four surfaces reported in the lower part refer to the same grid but reinforced with
springs (x = 0.4), which induces a ‘stiffening’ of the acoustic branches at the origin and
therefore a critical bifurcation occurs, at a preload pp = {-n?,-n?}, when the lowering
of the dispersion surface causes the generation of a zero-frequency wave with non-null
wave vector (corresponding to a finite wavelength buckling).
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On the other hand, it can be argued that the dynamical setting formu-
lated here may provide a more direct mechanical interpretation of the sig-
nificant difference between macroscopic and microscopic bifurcation, com-
pared to a static analysis. In fact, as the homogenization scheme introduced
in Section 5.3 proves that the long-wavelength asymptotics for waves prop-
agating in the lattice is governed by the acoustic tensor of the effective
medium, Eq. (5.44), it becomes now clear that a macro-bifurcation in the
lattice has to be equivalent to failure of ellipticity in its equivalent contin-
uum. Hence, a macro-bifurcation occurs when the velocity of the acoustic
long waves of the lattice vanishes along some directions. Moreover, a clear
interpretation of short-wavelength bifurcations (micro-bifurcations) is also
provided by the analysis of the dispersion relation of the lattice (5.18), in-
terpreted now as a function of the preload state. The latter can be used to
identify the condition of buckling in the lattice as the ‘propagation’ of a Bloch
wave at vanishing frequency. In fact, regardless of the critical wavelength,
macro and micro bifurcations can be visualized by plotting the evolution of
the dispersion surfaces along a loading path up to loss of stability.

The essential difference between the two kinds of bifurcation is exempli-
tied in Fig. 5.5 for two square grids (@ = m/2 and A = A, = 10), one without
diagonal springs (upper row in the figure) and the other with k¥ = 0.4 (lower
row in the figure), subject to equibiaxial compression (p1 = p2) of increasing
magnitude (from left to right in the figure).

The dispersion surfaces (plotted in the non-dimensional space {ki/, k»!, (0}
with ) = w [4/y/A and y, = 0) show that the macro-bifurcation in the grid with-
out springs occurs with the progressive lowering, and eventually vanishing, of the
slope of the acoustic branches at the origin, while the dispersion surface attains
non-null frequency for every other wave vector. On the contrary, the micro-
bifurcation occurring in the grid reinforced with springs is characterized by
non-vanishing slope of the acoustic branches at the origin, but instead the
preload-induced lowering of the dispersion surface causes the generation
of a zero-frequency wave with non-null wave vector (corresponding to a
finite wavelength buckling). These dispersion surfaces can be considered
the dynamic counterpart of the bifurcation surfaces presented in Chapter 4
of this study.

Failure of ellipticity and the consequent emergence of strain localization
in the lattice is now investigated following the following steps:

(i) the acoustic tensor A©(n) of the homogenized continuum is ana-
lytically calculated as an explicit function of the set of parameters
{p1,p2, M1, A2, %, a};

(ii) loss of ellipticity is analyzed for cubic, orthotropic, and completely
anisotropic lattices by identifying the prestress states leading to a
vanishing eigenvalue of the acoustic tensor, while the corresponding
eigenvector identifies the localization mode;

(iii) the ellipticity domain in the {p1, p2}-space and its dependence on
lattice parameters {A1, Ay, a} is determined;
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(iv) the predicted directions and modes of strain localization are compared
with the maps of displacements resulting in the equivalent elastic ma-
terial from the application of a concentrated pulsating force (the time-
harmonic Green'’s function), thus following the so-called “perturbative
approach to localization” introduced in [89];

(v) the behaviour of the equivalent elastic solid is validated through nu-
merical simulations (with finite elements) of the forced low-frequency
response of the corresponding preloaded lattice.

5.4.2 Acoustic tensor, eigenvalues, eigenvectors, and ellip-
ticity domain

With reference to the basis {e1, e, }, the acoustic tensor A(C)(n) for the contin-
uum equivalent to the homogenized response of the lattice shown in Fig. 5.4
is represented (in two-dimensions) as

AO @) = A(ff)(n) e1®ep + A(C)(n) e ® ex+

(C) (5.47)
[ (n)ex® e +A (n)ez ®ey,

where the components, computed via Eq. (5.44), are found to be

A(C)(") (1111 12 + hi11o manp + hip n3) AJL,
A(C)( )= A(C)(n) (1211 12 + h1o12 nanp + hiopa n3) A/,
A(C)(") (2211 12 + hao1p nanp + haooo n3) A/,

where the components £, are function of the parameter set {pl s P2, A1, g,

«, a}. Using the same notation as in Chapter 4, the contribution of the rods’

grid and the springs are denoted as hl] . and hz] 41» Tespectively, so that

hija(p1, p2, A1, ¢, &, @) = i (1, p, Ax, ¢, @) + By (e, @) (5.48)

where ¢ = B,/B; (note that A, = Aq/ \/5). The full expression for the
functions hiij ; and hisjk ; is the following

G
hllll

Sdsina (51 (@) (\/_pch cosh(‘/p_) (4A2 cos(2a)+11A2+cos(4a)( 1 p2¢)+p2¢))

~2sinh (g) (143p1 + 443 cos(2a)(p1 + pagh) + costda) (A3p1 + pagy (A3 - pagy)) +

pach (llA% +p2(/)))) +p1+/pz sinh ( \/5_) osh ( \/;ﬂ_) (4A2 cos(2a) +

11A% +cos(4a) (A% - pz(P) + p2¢>)) ,
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1S, = 4CZS’X (si (\/_) (\/_pqu cosh ( ‘/p_) (A2 +cos(2a) (A2 Pz(b) + P2¢)

—2sinh (@) (A%m + cos(2a) ( 1+ p2o ( Pz¢)) +p2¢ (Af + P2‘7))))

+ p1y/p2 sinh (@) cosh (g) (A2 + cos(2a) ( p2¢) + p2¢)) ,
hlG122 = ZS;na (si (\/_) (\/_pqu cosh ( \/p_) (A2 + cos(2a) (A2 pztp) + p2¢)
—2sinh (g) (A%pl + cos(2a) (A%pl +p2¢ (A% - pqu)) +p2¢ (A% + pqu)))

+ p1y/p2 sinh (g) cosh (g) (A% + cos(2ar) (A% - pz¢) + PZKP)) ,

hlG211 4CZS a (plx/ﬁcosz a sinh (ﬂ) cosh (@) (A% - p2¢)

—smh( ) VPIp2 cos? acosh(\/p_)(p o- )

(
o (3320} 0 (3
i

+sinh(@) (cos(Za)( 1p1+P2fP( 1~ P29

4sina

)
h16212 0 (2!’1\/_«:05 asmh( ) (52) %_ 2‘1’
|

+ smh( Pz) 24/pip2¢p cos? a cosh (\/p_) (A% - Pz(f’)
+2sinh (\/_) ((Pl +p29) ( ( 1~ qub)) — cos(2a) (Alm +p2¢p (A% - P2¢))))) ’
hS,, = w (sinh (@) (2 sinh (@) (Afpl +p2¢p (A% - P2<7’))

+\/_p2qbcosh(\/p_) (pz¢ Az))+P1\/ESinh(g)COSh(g) (pz(P—A%)),

WS, =
5 Slin - (sinh (@) (rp2¢ cosh ( \/p_) (A3 +8p1+cos(4a) (p2g—A3) +4p2g cos(2a)+3p29))
~2sinh ( ‘/p_) (8171 — cos(4a) ( i+ p2o (/\% - P2¢)) +4py¢p cos(2a)(2p1 + p2op) +
p1 (A%+8P2(i>) +p2¢ (Af+3r]2¢))) +p1y/p2 sinh (g) cosh (@) (A%+
8p1 +cos(da) (p2¢> —Af) +4py b cos(2a) +3p2¢)) )
ye

2212

L (smh (@) (z sinh (@) (- cos2a) (A2pr+pag (A2=pa) ) +p1 (A3 +2p20) +

pat (A +p29)) - VP pz¢>cosh(\/p_) (A +cos(a) (pac - Az)*”z‘f’))
— p14/p2 sinh (g) cosh (g) (A% + cos(2a) (P2¢ - A%) + P2¢)) ’
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5320
_2 Zina (sinh (@) (Zsinh (@) (A2p1—cos(2a) (A2p1+p2g (A2-pag) ) +p2g (A3 +p29)))
~ Vpip2¢ cosh (g) (A2 + cos(2a) (pag - A7) + p2¢))
~ P1vpzsinh (@) cosh (@) (A3 + cos(2a) (p2 - A3) +P2<P)),
where

d= e_%(‘/ﬁ+‘/ﬁ)[\% ((g\W (vVP1-2) +\/p_1+2) (CW— 1) p2o —Z(G‘M— 1) p1 (C‘@—l)
+(e‘/ﬁ—l)p1 (6\@+1)\/p_2).

The components his]. .- tuling the effect of diagonal springs, can be written

as
s _ 5+3cos(2a) s s

i = % dsina hing =2k cosa, hiyy = Kcosa,
. S _38 _.5 _ 1 . s .5

Wiy, = Ksina, W10 = h3p1y = hopyy = ssina,  hiy, = hyy, =0.

2

An inspection of the above expressions shows that the dependence on
the prestress state is quite complex for the components hiijl and that the
limit for p — 0 yields the acoustic tensor of the unloaded grid

’1713(1) S, = 12sin a cos? a/ (A2 + A2) +csc(a) + cos® a cot(a)

;ig}) WS, = 2sin® a cos a (cot’(a) (A2 + A3) +12) / (A2+A3),

rljig}) hS,, = sin® a (cot*(a) (A? + A2) +12) / (AT +A7),

’1713}) h$,,, = cosa (cos(2a) (AT + A3 — 12) + AT + A] +12) / (2A2 +2A3) ,
lim 15 = sina (cos(2a) (A} + A7 ~12) + A} + ) [ (a3+43),

’liiir}) K, =sin® acosa (A2 + A2 - 12) / (A2+A),

lim iy, = sina (cos(2a) (A7 + A3 ~12) + A} + A7 +12) [ (a2 +243)
lim i, = sinasin(2a) (A} + A3 ~12) [(a2+43),

lim fizz2 = sina (- cos(2a) (A3 + A3 = 12) + AT+ A2 +12) [ (203 +2A3) .
p*)
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For the special case of a square grid a = 7/2 and in the absence of
prestress, the acoustic tensor can be further simplified into

A 12n
: C 2
,1112}) Al )(n)|a=n/2 =7 ny+ A2 A2 e1 ®e+
A 12nmny A 12712 5
T A2 A2 (e1®ez+e2®el)+7 A2 A2 +n;| e2®en.

It is recalled that the homogenized Cauchy material is defined to be
strongly elliptic (SE) when the acoustic tensor is positive definite,

g-A®9m)g >0, Vg#0, Vn#0 = (SE), (5.49)
while ellipticity is defined as the non-singularity of the acoustic tensor,
detA©m)#0, Vn+#0 = (E). (5.50)

As shown in Section 5.3.3, the acoustic tensor resulting from homoge-
nization is symmetric, which implies that its eigenvalues are always real.
This means that, letting {c%, c%} be the eigenvalues of a symmetric A©(n),

(SE) is equivalent to the strict positiveness of the eigenvalues, ¢ > 0, ¢3 > 0,
and (E) is equivalent to the condition of non-vanishing eigenvalues, ¢ #
0, C% # 0 (for all unit vectors n).

Geometry  Rods slenderness ~ Symmetry PE Ocr

Square A1 =A2=10 Cubic -5.434{1,1} 0°,90°
(a=m/2) A1 =7,A,=15 Orthotropic -2.071{1,1} 0°
Rhombus A1=A;=10 Orthotropic  -5.345{1,1} 88.2°,151.8°
(a=m/3) A1 =7,Ay=15 Anisotropic -2.043{1,1} 151.4°

Table 5.1. Loss of ellipticity for different geometric configurations of the preloaded
grid-like lattice (Fig. 5.4) in the absence of diagonal springs (« = 0). The symmetry class
is referred to the unloaded configuration. The preload pg and the localization direction
ng = cos(Ocr)eq +sin(Ocr)er are obtained by solving the loss of ellipticity condition (5.51)
(assuming a radial path p = {p1,p1}) and therefore identifies a material state on the
elliptic boundary.

The objective is now to characterize failure of (E) by studying the eigen-
values of (5.47) as functions of the preload state applied to the grid-like
lattice. To this end, solutions are sought for the following loss of ellipticity
condition

C%(n/p) C%(”MP) =0, (551)

where n is the usual unit vector defining the direction of propagationand p =
{p1, p2} is a vector simply collecting the preload parameters. In Eq. (5.51) the
dependence on the geometric parameters {a, A1, A} is omitted for brevity

and moreover, without loss of generality, it is assumed that c% < cg. For
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@ pr=py=-5434, A=Ay =10, a=7/2 (b)p1=p2=-2.071, Ay =7, Ay =15, a = 7/2

200 gpge 27

(©p1=p2=-5345 A1 =Ny =10, a=n/3 (d)p1=p2=-2.043, A1 =7, Ay =15, a =7t/3

20° 00°
1050 % 75° 1050 %0 75°

PAVAVAY, 250 g 285° PAVEVAY, 250 g 285°

Fig. 5.6. Polar plots of the lowest eigenvalue of the acoustic tensor (5.47), for a prestress
state at 50% (dashed gray line) and 100% (continuous blue line) of the limit value for
ellipticity loss (pg reported in Table 5.1). A square lattice and a rhombic lattice are
considered with A1 = A = 10and Ay =7, Ay = 15. The prestress state for ellipticity loss
is represented on the the elliptic boundary of Fig. 5.7 as the terminal point of the loading
path (gray dashed arrow). In the orthotropic cases, both for squared and rhombic
lattices, the loss of ellipticity is characterized by the vanishing of the eigenvalue of the

acoustic tensor along two directions denoted as né and n%, with the associated wave
amplitudes reported as gé and gé. The fully anisotropic cases, displays the vanishing of

the eigenvalue along a single direction "113' Note that for the rhombic lattice the relative
orientation of ng with respect to gg shows that the mode of localization is neither a pure
shear nor a pure expansion wave, but a mixing of the two. Conversely, the square lattice
always reaches loss of ellipticity through the formation of pure shear bands.

every solution {ng, pr} of Eq. (5.51), the eigenvector g = g(ng) associated
to the vanishing eigenvalue can be computed. Vectors ng and gg will be
respectively referred as the direction (more precisely, the normal to) and mode
of the strain localization band.

It can be directly verified that in the absence of preload, p — 0, the grid-
like lattice considered has c% > 0 and c% > 0, so that (SE) holds, except in
the case of an extreme material, where the stiffness of the the rods becomes
vanishing small, as in [106]. Due to the symmetry of A©(n), it follows
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that, starting from the unloaded state p = 0 with rods of finite stiffness and
continuously varying the prestress, the material remains (SE) as long as (E)
holds. Therefore, solutions of Eq. (5.51) are sought as pairs {ng, pr} such
that pg represents the terminal point of a path starting at p = 0 and entirely
contained in the (SE) domain; in other words, pg is on the boundary of the
(SE) domain. The set of these points pg is referred as the elliptic boundary.

In order to explore loss of ellipticity for lattice configurations charac-
terized by different symmetry classes, a square and a rhombic grid are
considered, respectively with @ = 71/2 and a = 7/3. For both examples, the
following sets of slenderness values are selected A1 = A =10, and A =7,
Ay =15.

In Table 5.1, for each geometry considered, the first solution of Eq. (5.51)
for equal prestress components p; = p, are reported together with the
associated directions of localization, denoted as ng = cos(0;)e1 + sin(O;)es.
Note that the symmetry class is referred here to the unloaded configuration,
so that the symmetry of incremental response may change as an effect
of loading. With the assumed values for grid angle @ and slenderness,
the cubic, orthotropic, and fully anisotropic cases (10 constants for planar
elasticity) can be investigated.

In order to better visualize the direction ng and the associated mode g,
a polar plot of the square root of the lowest eigenvalue c;(n, p) is reported
in Fig. 5.6, for the cases listed in Table 5.1, at two levels of preload, namely
0.5 pe (dashed gray line) and pg (continuous blue line). In Fig. 5.6a the
square lattice with A1 = Ay = 10 is subject to a isotropic prestress in the
two directions, p; = p2, and therefore the cubic symmetry is maintained in
the prestressed state. Owing to this symmetry, ellipticity is lost along two
orthogonal directions n} and nZ. Moreover, the associated wave amplitudes

gé and g}zE are perpendicular to the vector n]lE and n% respectively, hence
indicating that the modes of localization are pure shear waves, the so-called
shear bands.

For the orthotropic square lattice (A1 = 7, Ay = 15), the polar plot is
given in Fig. 5.6b. In this case, owing to the orthotropy, waves propagating
along the horizontal and vertical direction possess different velocities and
therefore ellipticity is lost when the smallest of these velocities vanishes,
leading to a single shear band (in this case with a normal ny, aligned parallel
to the horizontal direction).

Quite remarkably, the shear wave responsible for the ellipticity loss is the one
propagating along the direction of the ‘stiffer’ elastic link (having the lowest slen-
derness), while intuitively a ‘shear mechanism’ would be expected in the direction
of the ‘soft’ elastic link. This effect will be confirmed and explained further
with the computation of the forced response in Section 5.5. Moreover, it is
worth noting that the shear band directions for the square lattice, both cubic
and orthotropic, are aligned parallel to the directions of the rods forming
the lattice.

For the rhombic lattice with A; = A = 10 and isotropic preload, shown
in Fig. 5.6c, the mechanical behaviour is orthotropic and therefore two di-
rections of localization are obtained. The associated wave amplitudes gl
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and gz both have respectively a component orthogonal and parallel to the
vector nl and n2, so that a ‘mixture” of shear and compression waves is
involved.

The fully anisotropic version for the rhombic lattice (Fig. 5.6d) can be
obtained by changing the slenderness values (A1 = 7, A, = 15), so that
one of the two localizations is suppressed, while the other is preserved. It
is also worth noting that, in contrast to the square case, the directions of
localization for the rhombic lattice are not perfectly aligned parallel to the
rods’ normal, instead, they result slightly inclined, as will be confirmed by
the computations reported in Section 5.5.

5.4.3 The effect of the prestress directionality on the ellip-
ticity loss and localization directions

In the previous section, the loss of ellipticity has been determined for the
four lattice’s configurations reported Table 5.1, under the assumption of
isotropic preload p; = p2. This hypothesis is now removed to explore the
influence of the ‘directionality’ of the preload state on the ellipticity loss,
in terms of number and direction of strain localizations. The analysis is
performed by computing the full set of solutions {ng, pg} of Eq. (5.51), to
determine the elliptic boundary in the {p1, p2}-space, for several values of
rods’ inclination a and slenderness A1 .

Fig. 5.7a and 5.7b show the ellipticity domains computed, respectively,
for the orthotropic (A1 = A, = 10) and the anisotropic grid (A1 =7, A, = 15).
The following observations can be drawn.

(i) The elliptic region is unbounded for tensile (positive) preload and
bounded when at least one of the preloads is compressive (negative);
this is an expected feature, as the contribution of a tensile preload to
the potential energy, Eq. (5.8), is positive definite;

(ii) any deviation of the angle a from 71/2 reduces the size of the elliptic
region,

(iif) in the orthotropic case, the domain is symmetric with respect to the
bisector p1 = p, (Fig. 5.7a);

(iv) the elliptic boundary appears to be smooth everywhere except at a
corner point;

(v) the anisotropy induced by different values of slenderness causes the
corner to move; the elliptic region is reduced in size along the direction
of the smallest slenderness.

In the same figure, the region of positive definiteness (PD) of the elastic
tensor, X - CX > 0 VX # 0, is also reported. Surprisingly, the (PD) region is
found to be independent of the rods’ angle a.

The directions of localization in terms of critical angle 6., are reported
in Figs. 5.7c and 5.7d for different values of the lattice inclination a, with



114 Chapter 5. Bifurcation and localization in prestressed lattices: dynamics

@) A=Ay =10 (b) A1 =7, Ay =15
oF
(PD)
0
«
— 7/8
@
— /6
_af
P2 — /4
/3
Orthotropic response
4t Pl /2
&
& —_—
—6f 2
00 p=038p; ¢ p=09p, 38k p=0.99p; 00 p=0.8p; ©® p=09p; ¥k p=099p;
. . . I . . . I . .
-6 -4 -2 0 2 -2 -1 0 1 2
b1 P
© A1 = Ag =10 (A =7 A =15
100° 100°

I P R B B 000 L 1 [ I TR | [ I 1
170°180°  190°  200°  210°  220°  230°  240°  250° 260° 270° 280° 170° 180° 190°  200°  210°  220°  230°  240°  250°  260° 270°  280°

v i

Fig. 5.7. Ellipticity domains for the grid-like lattice of preloaded elastic rods, computed
for different values of rods’ angle a and for both (a) orthotropy (A1 = Ay = 10) and (b)
full anisotropy (A1 = 7, A2 = 15). The region of positive definiteness of the elasticity
tensor C is also reported (orange region). The loading path (gray dashed arrow) refers
to condition of isotropic preload p1 = p» on which the markers (in red for the case
a = n/2 and green for a = 1/3) identify the preload levels used in the computation
of the forced response (Section 5.5). Parts (c) and (d) report the relationship between
the direction in the preload space (defined by the angle i = arctan(p1, p2), see part (a))
and the dyad ng ® gg defined by the angles 0., and 0 singling out, respectively, the
direction of ellipticity loss and of the localization mode (i.e. ng = cos Ocre1 + sin Ocrez
andgg = cos Oge; + sin Ogez). Notice that the case of localization along two directions
(corresponding to the jumps visible in the graphs of part (c) and (d)) only occurs for
a prestress state at the corner point of the elliptic boundary, which corresponds to an
incrementally orthotropic material behaviour.

the purpose of quantifying the influence of the loading path (parameterized
by means of the angle ¢ = arctan(p1, p2)). These plots show that only one
localization occurs, except for a loading direction corresponding to a corner
point on the elliptic boundary, where two simultaneous localizations occur.
Even though this is expected for the orthotropic case (due to symmetry), the
anisotropic grid can also exhibit a sort of ‘orthotropic’ response (displaying
two localizations) when a proper value of preload p; # p» is applied (along
the dashed black line of Fig. 5.7b). Furthermore, the angle between the
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vectors nlli’2 and the horizontal axis (Fig. 5.7c and 5.7d), which identifies the
direction of the localization bands, depends weakly on the prestress (except

at the corner point of the elliptic boundary), namely, the directions of n}lf
follow the orientations of the grid’s ligaments, even if they result slightly

misaligned.

5.5 Time-harmonic forced response near the el-
liptic boundary

The analysis of the homogenized continuum, equivalent to a preloaded
grid of elastic rods (presented in Section 5.4) predicts that the incremental
response can display strain localizations due to prestress-induced loss of
ellipticity. In this section, the homogenization is validated through compar-
isons between the actual low-frequency forced response of the lattice (sim-
ulated numerically with a finite element technique) and the time-harmonic
Green’s function (which can be found in [119]) for the equivalent contin-
uum, both computed at increasing levels of the preload, so that the elliptic
boundary is approached. The comparison is performed for the four geomet-
ric configurations reported in Table 5.1 and for four prestress levels, namely
{0,0.8,0.9,0.99} p (with pg being the prestress state leading to ellipticity
loss), which are marked on the loading path of Fig. 5.7a and 5.7b.

The lattice response is numerically analyzed using the COMSOL Mul-
tiphysics® finite elements program in the frequency response mode. A
square finite-size computational window with a width of 350 unit cells
(of dimension 350/;, with I; denoting the cell edge) is considered, with a
perfectly matched layer (PML) along the boundaries, so that here waves
are not reflected, rather absorbed, and the response of an infinite body is
simulated.

A pulsating concentrated force, in-plane applied, is considered acting at
the center of the computational domain. For a given load, the complex dis-
placement field u(x), with horizontal and vertical components u1(x1, x2)
and us(x1, x2), is computed and the results are plotted in terms of the
modulus of the displacement associated to its real part only, Or(x1, x2) =

V(Ru1)? + (Ruy)? (the plots of the imaginary part of the displacement is
omitted for brevity).

In all the following analyses the frequency of the pulsating force is set to
be O = wl4/y/A =0.01, a low value providing a reasonable match, in term
of acoustic properties, between the effective continuum and the lattice. In
fact, it is important to note that the mismatch between the two is different
from zero for any non-vanishing frequency, even though vanishing in the
limit O — 0. In particular, as the elliptic boundary is approached, this
mismatch is expected to become wider for those waves propagating along
the direction of ellipticity loss. This is easily explained by the fact that,
as the linear term in the dispersion relation tends to vanish (in a direction
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Fig. 5.8. Slowness contours and dispersion surfaces for a rhombic anisotropic lattice
with A1 = 7, Ap = 15 (in blue) and for the effective Cauchy continuum (in red) at
frequency Q = 0.01. The evolution of the contours and dispersion surfaces induced
by a compressive preload of equal components p; = p; along two inclined directions
(the considered loading path is depicted in Fig. 5.7b) demonstrates that the nonlinear
dispersion of the lattice is negligible, except when the material is very close to the elliptic
boundary, namely, for a prestress above 0.9 pg. The comparison between the behaviours
of the lattice and its equivalent continuum shows a great agreement.

ng), the nonlinear dispersion of the lattice becomes non-negligible for any
non-vanishing frequency.

By considering for instance the rhombic anisotropic grid (A1 =7, Ay =
15), the deviation between the responses of the lattice (reported in blue
in Fig. 5.8) and its equivalent continuum (reported in red in Fig. 5.8) can
be visualized in terms of slowness contours computed at the frequency
Q = 0.01. By comparing the contours for the four preload states, it can be
appreciated that these are superimposed up 0.9 pg, so that the nonlinear
dispersion of the lattice becomes non-negligible only when the material is
very close to the elliptic boundary, namely, at a preload 0.99 pg, and only
for waves close to the direction of ellipticity loss. It is also worth noting
that when p = pg, the slowness contour of the lattice (reported in blue) is
always contained inside the contour of the continuum (reported in red), so
that the nonlinear dispersion implies that waves speeds are slightly higher
for the lattice than for the effective Cauchy medium.

5.5.1 Square lattice

Cubic and orthotropic square grids are considered, subject to a pulsating
diagonal force (inclined at 45° with respect to the rods’ axes), with the
purpose of revealing the emergence of strain localizations aligned parallel
and orthogonal to the rod axes.

The case of cubic symmetry (A; = Ay = 10) is analyzed in Fig. 5.9, where
the displacement field, numerically computed for the square grid (subject
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Fig. 5.9. The displacement field generated by a pulsating diagonal force (denoted with
a red arrow and applied to the square lattice with cubic symmetry, A1 = Ay = 10)
is simulated via f.e.m. [parts (a)-(d)] and compared to the response of the homoge-
nized continuum [parts (e)-(h)] at different levels of prestress p (preload path shown in
Fig. 5.7a). Note the emergence of two orthogonal shear bands, aligned parallel to the
directions predicted at failure of ellipticity, see Fig. 5.6a.

to a pulsating concentrated force, upper row), is compared to the response
of the homogenized continuum (analytically solved with applied the same
concentrated force, lower row), for four values of prestress (increasing from
left to right, p1 = p» = {0, -3.347, —4.891, —5.380}). As the elliptic boundary
is approached, the emergence of two strain localizations becomes evident
and confirms the predicted vanishing of an eigenvalue (wave speed) re-
ported in Fig. 5.6a.
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Fig. 5.10. Deformed configurations of a square lattice (A1 = Ay = 10) near (the zone is
indicated in Fig. 5.9d) the point of application of a pulsating force (denoted with a red
arrow) at a level of prestress close to the elliptic boundary (p = 0.99 pg). The pattern
shows a motion resulting from the superposition of two shear localizations induced by
a pulsating diagonal load.

By taking different snapshots of the displacement map at different in-
stants of time during the dynamic response of the grid and near the point
of application of the pulsating force, it is possible to detect the actual lo-
calization mode activated by the applied diagonal force. In fact, deformed
configurations calculated in the grid (the zone is indicated in Fig. 5.9d)
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through a finite element simulation and plotted in Fig. 5.10 reveal a charac-
teristic motion resulting from the superposition of two shear localizations
emanating from the loading point.

(b) p=08pg

it

Continuum

Fig. 5.11. The displacement field generated by a pulsating diagonal force (denoted with
a red arrow and applied to the orthotropic square lattice, A; =7, Ay = 15) is simulated
via f.e.m. [parts (a)—(d)] and compared to the response of the homogenized continuum
[parts (e)—(h)] at different levels of prestress p (preload path shown in Fig. 5.7b). Note
the emergence of a single vertical strain localization, actually a shear band, as predicted
in Fig. 5.6b.

The square grid displays a strain localization into a single shear band
when the slenderness values of the two orthogonal elastic links are set to be
different, thus breaking the cubic symmetry, but preserving orthotropy. The
response of the grid with A; =7 and A, = 15 is reported in Fig. 5.11 for four
preload states corresponding to p1 = p2 = {0, -1.657, -1.864, —2.050}. As
already revealed by Fig. 5.6b, a single vertical shear band emerges, thus con-
firming the counter-intuitive result obtained in the previous section, namely
that the shear wave responsible for the ellipticity loss is the one propagating along
the direction of the ‘stiffest’ elastic link (which possesses the lowest slender-
ness). The mechanism underlying this effect is revealed by analyzing the
actual deformed configuration of the grid reported in Fig. 5.12 (plotted at
different instants of time and obtained via f.em. simulations). The figure,
which refers to the zone indicated in Fig. 5.11d, reveals that the vertical
strain localization emerges from a prevalent bending deformation of the
‘soft” vertical links accompanied by an approximately rigid rotation of the
‘stiff’ horizontal rods, which is allowed by a large rotation at the nodes.

The comparison between the responses of the grid and of the homog-
enized continuum that has been presented in Figs. 5.9 and 5.11 shows an
almost perfect agreement from low to high prestress levels, up to values
close to the elliptic boundary. Nonetheless, the slowness contours reported
in Fig. 5.8 shows a mismatch between the responses of the lattice and of
the equivalent continuum, which becomes clearly visible when the lattice
is close to the failure of ellipticity. This can be revealed by considering the
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Fig.5.12. Deformed configurations of the square lattice (A1 = 7, Ay = 15) near (the zone
is indicated in Fig. 5.11d) the point of application of a pulsating concentrated force (de-
noted with a red arrow) at a level of prestress close to the elliptic boundary (p = 0.99 pg).
The pattern shows the characteristic motion of a single vertical shear band localization
induced by the pulsating load. It can be noticed that the localization emerges from a
prevalent bending deformation of the ‘soft’ vertical links and an approximately rigid
rotation of the ‘stiff” horizontal rods allowed by a significant rotation of the junctions.

(a) Cubic square lattice (A1 = Az = 10) (b) Orthotropic square lattice (A1 =7, Ay = 15)
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Fig. 5.13. Fourier transform of the complex displacement fields of the cubic (a) and
orthotropic (b) square lattice subject to a diagonal force in the center and a prestress
state of p = 0.99 pg (i.e. close to the elliptic boundary). The slowness contours of the
lattice (dashed green) and the effective continuum (dashed red) are superimposed to
highlight the Bloch spectrum of waves excited by the forcing source. Note that the
strong focus of the spectrum indicates that few plane waves, namely those ‘slow” waves
that are close to cause the ellipticity loss, prevail on the response as it expected for a
material near the elliptic boundary. In fact it is worth noting that for the orthotropic
grid (b) the waves propagating vertically remains mostly inactivated compared to the
ones propagating horizontally.

lattice’s complex displacement field (reported in the last column of Figs. 5.9
and 5.11, prestressed at p = 0.99 pg), computing its Fourier transform and
superimposing this to the corresponding slowness contour. This is reported
in Fig. 5.13, where the Fourier transform shows that, for both considered
square grids, the Bloch spectrum of waves excited by the diagonal load
matches the slowness contour of the lattice (reported in green) and is also
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highly focused around the directions of ellipticity loss where it is at the
maximum distance from the contour of the continuum (reported in red).
It is worth noting that the strong focus of the spectrum confirms the fact
that few plane waves, namely those ‘slow” waves that are close to cause the
ellipticity loss, prevail on the response, as it is expected for a material near
the elliptic boundary.

5.5.2 Rhombic lattice

In the previous section, the square lattice was shown to display only local-
izations in the form of pure shear bands perfectly aligned parallel to the
elastic ligaments. However, on the basis of the analysis performed in Sec-
tion 5.4, the formation of localizations is expected along different directions
and with different deformation modes when a rhombic grid is considered,
a # 1/2.

In order to investigate the response of the orthotropic (A1 = Ay = 10)
and anisotropic (A1 = 7, Ay = 15) rhombic lattices (o« = 1/3), both hori-
zontal and vertical concentrated forces will be considered, so to observe a
dependence of the number of strain localizations on the loading orientation.
Furthermore, in contrast to what happens in the square grid, the directions
of localization are expected to occur with a slight misalignment with respect
to the directions of the rods, as predicted in Figs. 5.6c and 5.6d.

In Fig. 5.14 the displacement field computed via f.e.m. for the orthotropic
rhombic lattice (horizontally and vertically loaded with a pulsating force and
reported on first and third row from the top of the figure) is compared to the
response of the homogenized continuum (reported in the second and fourth
row) at four values of preload (increasing from left to right) corresponding
to p1 = p» = {0, —4.276, -4.811, -5.292}. By comparing Figs. 5.14a-5.14d to
Figs. 5.14e-5.14h and Figs. 5.14i-5.141 to Figs. 5.14m-5.14p, the agreement
between the lattice response and its homogenized continuum becomes ev-
ident at each state of lattice’s preload. With reference to a prestress state
p = 0.99pg (last column on the right of the figure), while two localiza-
tion bands are activated by the vertical force, only one is generated by the
horizontal force.

Note also that the slight misalignment between the localization direction
and the rod angle remains hardly visible until the material is close to elliptic
boundary (compare for example the case of vanishing prestress, Fig. 5.14a,
to the case p = 0.99 pg, Fig. 5.14d).

The localization modes are analyzed in Fig. 5.15 by inspecting the lattice
deformation computed via f.e.m. at different temporal instants through
snapshots taken in the neighbourhood of the loading point [two zones are
considered, which do not include the concentrated force and are shown in
Fig. 5.14 parts (d) and (I)]. By comparing the localization band induced
by the horizontal load (upper row of Fig. 5.15) to the one generated by the
vertical force (second row in Fig. 5.15), it is clear that the horizontal band is
characterized by an almost perfectly straight wavefront, while the inclined
band displays a periodic modulation along the front. This modulation is
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Fig.5.14. The displacement field generated by a pulsating horizontal force (denoted with
a red arrow and applied to the orthotropic rhombic lattice, A1 = Ay = 10) is simulated
via f.e.m. [parts (a)—(d)] and compared to the response of the homogenized continuum
[parts (e)—(h)] at different levels of prestress p (preload path shown in Fig. 5.7a). The
same comparison is reported in parts (i)—(1) and (m)—(p) for a pulsating vertical force.
Note that, even though ellipticity is lost along the two directions predicted in Fig. 5.6¢c,
the activation of strain localization depends on the orientation of the load, so that two
bands are activated by the vertical force, while only one is generated by the horizontal
load. Furthermore, note that the directions of the localization bands (with angles of

the normal equal to O, = 88.2°,151.8°) is slightly misaligned with respect to the rod’s
inclination.

due to the superposition of the two localization patterns that are activated by
the vertical force, where the inclined band prevails on the almost horizontal
one, as can be seen in Figs. 5.141 and 5.14p.

The relative contribution of the two localizations can be further investi-
gated through a Fourier transform of the lattice response, to be compared
with the Bloch spectrum generated by the forcing source. Fig. 5.16 shows
the Fourier transform of the field generated in the rhombic grid when the
material is close to the elliptic boundary (p = 0.99 pg). Fig. 5.16a and 5.16b



122 Chapter 5. Bifurcation and localization in prestressed lattices: dynamics

Fig. 5.15. Deformed configurations of the rhombic lattice (A7 = A> = 10) near (the
zones are indicated Fig. in 5.14 parts d and 1) the point of application of a pulsating
concentrated force, at a level of prestress close to the elliptic boundary (p = 0.99 pg).
The pattern on the first (the second) row shows the motion of the localization induced
by the pulsating horizontal (pulsating vertical) load. Note that the effect of the load is
the generation of bands almost parallel to each other and possessing almost constant
amplitude, except for a modulation of the inclined localization (shown in the lower row).
In both cases the deformation mode is mostly of shear-type even though an ‘expansion’
component is also present, as indicated by the vectors gg, Fig. 5.6c.

correspond, respectively, to the Fourier transform of Fig. 5.14d and Fig. 5.141.
The two sharp peaks of Fig. 5.16a clearly show that the source is emanating
pure plane waves propagating almost vertically (0. = 88.2°) (the slight tilt
exactly matches the sub-horizontal wavefronts of the response). Instead,
the four peaks of Fig. 5.16b demonstrate that two families of plane waves
are activated: the prevailing ones propagate along the inclined direction
(Ocr = 151.8°) while the vertically-propagating waves result dimmer (in
agreement with the response of Fig. 5.141).

Results obtained with the same setting used to generate Fig. 5.14 (relative
to an orthotropic rhombic lattice) are reported in Fig. 5.17, which now refers
to an anisotropic thombic lattice (A1 = 7, Ay = 15), for four values of prestress,
p1=p2=0,-1.634,-1.839,-2.023.

For a complete anisotropic material only a single localization is expected
to occur and in the case of the anisotropic grid considered the localization di-
rection has been predicted in Fig. 5.6d to occur at an inclination 6, = 151.4°
of the band normal. However, similarly to the case of the orthotropic grid,
the activation of the localization depends on the orientation of the perturb-
ing force. This can be observed by comparing the lattice response generated
by a horizontal and a vertical pulsating force, both reported in Fig. 5.17 and
showing that strain localization is absent when a horizontal force is applied,
regardless of the prestress level (see Figs. 5.17a-5.17h). On the other hand,
the vertical concentrated force triggers an inclined localization when the
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Fig. 5.16. Fourier transform of the complex displacement fields of the rhombic lattice
(reported in Fig. 5.14 parts d and 1, with A; = Ay = 10) subject to an horizontal (a)
and vertical (b) pulsating force applied at a prestress close to the elliptic boundary,
p = 0.99pg. The slowness contours of the lattice (dashed green) and of the effective
continuum (dashed red) are superimposed to highlight the Bloch spectrum of waves
excited by the forcing source. Note that the sharp peaks are aligned to the directions of
ellipticity loss as predicted in Fig. 5.6¢. In part (a) the horizontal concentrated force only
activates waves propagating at 6., = 88.2°, while in (b) the vertical concetrated force
generates four peaks along the directions 0., = 88.2°,151.8°. This is well in agreement
with the responses reported in Figs. 5.14d and 5.141.

material is brought close to ellipticity loss (see Figs. 5.17i-5.17p).

Results reported in Figs. 5.18 and 5.19, referred to the anisotropic thombic
lattice have been obtained with the same setting of Figs. 5.15 and 5.16,
referring to the orthoptropic case.

Fig. 5.18 shows that, as only one localization band is present, the de-
formation pattern is characterized by the generation of essentially straight
wavefronts propagating outwards from the localization band. The genera-
tion of these parallel waves is perfectly captured by the sharp peaks in the
Fourier transform of the lattice response, reported in Fig. 5.19. Fig. 5.19a
and 5.19b correspond, respectively, to the Fourier transform of Fig. 5.17d
and Fig. 5.171. The two sharp peaks of Fig. 5.19b, sitting at the long tips
of the contour aligned parallel to the direction 0., = 151.4°, clearly shows
that the response induced by the vertical force involves pure plane waves
propagating with fronts inclined at O, = 151.4° — 90° = 61.4° with respect
to the horizontal axis.

It is also important to note that waves do not propagate vertically when
the load is vertical while these are the only waves composing the response
triggered by a horizontal force (see the peaks on the short tips of the contour
in Fig. 5.19a). This is in agreement with the fact that localization is not gener-
ated by the horizontal force and the ‘slow waves’ leading the homogenized
continuum to ellipticity loss remain inactive.
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(c) p=0.9pg (d) p=0.99py

(f) p=08py () p=09p; (h) p=0.99py

(i) p=08pg

(n) p=08py (0) p=09p; (p) p=0.99p;

Continuum

Fig. 5.17. As for Fig. 5.14, except that an anisotropic rhombic lattice (A1 =7, Ay = 15) is
considered, for four different levels of preload (the path is shown in Fig. 5.7b). Note that,
even though ellipticity is lost along the direction predicted in Fig. 5.6d (with normal
angle 0. = 151.4°), the activation of the strain localization depends on the orientation
of the applied pulsating force, so that the band is activated by the vertical force while
localization is inhibited when the grid is loaded horizontally.

5.6 Conclusions

An analytic formulation has been developed for the dynamics of lattices of
elastic rods (with distributed mass density and rotational inertia) subject to
axial forces of arbitrary amount, incrementally loaded in the plane. This for-
mulation leads, through an asymptotic expansion of Floquet-Bloch waves,
to a low frequency approximation for an equivalent Cauchy elastic material
which turns out to be coincident with that determined on the basis of an
energy match (see Chapter 4 of this study).

The developed technique can be employed to systematically analyze
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Fig. 5.18. As for Fig. 5.15, except that an anisotropic rhombic lattice (A1 =7, Ay = 15)
is considered, for four different levels of preload (the path is shown in Fig. 5.7b). The
zone reported in the figure is shown in Fig. 5.171. The pattern shows the motion of the
localization induced by the pulsating vertical load, which generates waves emanating
outwards from the localization band, parallel to each other, and possessing an almost
constant amplitude. The deformation mode is mostly of shear-type even though an
‘expansion’ component is also present, as indicated by the vector gg reported in Fig. 5.6d.

(a) Horizontal loading (b) Vertical loading
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Fig. 5.19. As for Fig. 5.16, except that an anisotropic rhombic lattice (A1 =7, Ay = 15) is
considered and the Fourier transform refers to the displacement fields reported in Figs.
5.17d and 5.171. Localization is absent when the pulsating force is horizontal, (a), as the
waves sitting on the long tips of the contours remain inactive. The vertical force triggers
two peaks along the direction 6 = 151.4°, which is in fact the direction normal to the
localization band, (b). The Fourier transform is in perfect agreement with the responses
shown in Figs. 5.17d and 5.171.

arbitrary lattice geometries and preloaded configurations, therefore pre-
dicting both local and global material instabilities, in other words micro-
buckling and strain localizations. Loss of ellipticity has been analyzed
for a skewed grid-like lattice, to (i) explore cubic, orthotropic and fully
anisotropic homogenized material responses, (ii) compute the elliptic do-
main of the homogenized continuum as a function of lattice parameters,
(iif) analyse the structure of the acoustic branches close to ellipticity loss,
and (iv) investigate forced vibrations (both in physical and Fourier spaces)
revealing low-frequency wave localizations. The homogenization is proven
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to yield a superb approximation to the behaviour of the rod’s lattice, except
when micro-buckling occurs, which remains undetected in the equivalent
continuum.
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Tuning a dynamic interface
by designing its slenderness

This appendix presents a different strategy of obtaining the dynamic inter-
faces presented in Chapter 3. In fact, the effect of total reflection, negative
refraction, and wave channeling can also be obtained without prestress, but
through a proper choice of the slenderness A of the beams. The drawback
of this strategy is that the tunability of the system is lost, as the material
domain has to be preconceived for a specific application, by assigning the
appropriate slenderness to each structural element.

The results obtained with this strategy are reported in Fig. A.1, illus-
trating the case of total reflection, wave trapping, and negative refraction.
Fig. A.la shows how a signal induced by a moment (of out-of-plane axis),
pulsating at the frequency () = 3.43, applied to a lattice with beams of slen-
derness A = 10 is totally reflected by a structured interface made of beams
with slenderness A = 20. Taking advantage of this total reflection effect, it
is possible to channel waves along a path by applying a pulsating moment,
inside of a layer of beams with slenderness A = 10, embedded in a lattice of
beams with A = 20, as highlighted in Fig. A.1b.

By swapping the slenderness values of the ambient lattice and the struc-
tured interface of the above example, the negative refraction effect is ob-
tained, at a frequency ) = 2.5, Fig. A.1c. Note that the dynamic response
induced by a pulsating moment displays a strong localization along two
preferential directions inclined at +45°. Part of the generated waves is re-
flected by the interface and part is transmitted. It is possible to see how the
refracted waves is essentially split into two channels: one with positive and
the other with negative angle of refraction. The different angles of refrac-
tion are due to the different response of the single Bloch-wave components
generated at the source. It can be noticed that the part of the signal that
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is negatively refracted across the interface reconstructs a dim image of the
source on the opposite side of the domain.

(@

Fig. A.1. (a) Total reflection of a signal generated by a moment (which pulsates at the
frequency () = 3.43 and is applied to a lattice with beams of slenderness A = 10) at a
structured interface made of beams with slenderness A = 20. (b) Trapping of a wave
generated by an applied moment, located inside a narrow layer of beams of slenderness
A =10 embedded in a lattice with slenderness A = 20. (c) Negative refraction of a wave
generated by an applied moment (pulsating at the frequency () = 2.5), located inside a
layer of beams of slenderness A = 10, embedded in a lattice of beams with A = 20.
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Regime classification of the
effective continuum

The mathematical classification of the PDE describing the incremental equi-
librium of the equivalent solid provides valuable information on the number
of localizations available on the elliptic boundary. In fact, the partial dif-
ferential equations governing the equilibrium of the effective continuum, in
the absence of body forces,

divC|[grad v] =0, (B.1)

can be classified according to the following general criterion. Referring to a
two-dimensional setting, a solution of the system (B.1) is selected in a wave
form,

v = gexpli(x1 + Qx2)], (B.2)

where g is the wave amplitude and () a complex angular frequency. A
substitution of (B.2) in the governing equation (B.1) yields the following
linear algebraic system

C12120% +2C1112Q + Crany C12220% + (C1122 + C1201)Q + Cran | [ 41 _ 10
C12200? + (Cy122 + C1221)Q + Cr111 C202202 +2C2120Q + Corn g2 0)"

This system has non-trivial solutions if and only if the determinant of the
coefficient matrix is equal to zero, a condition yielding the characteristic
equation in the form of a quartic

114Q4 + 2&393 + QQQZ + 21119 +ap = 0, (B3)
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Fig.B.1. Regime classification of equilibrium PDE for the effective continuum equivalent
of a rhombic elastic lattice as that sketched in Fig. 4.5 but without diagonal springs. The
upper parts (a, b) refer to an orthotropic material (A; = Ay = 10) material, while the
lower parts (c, d) to a completely anisotropic material (A1 =7, A = 15). The left parts
(a, c) refer to a grid with inclination a = 71/6 and the right a = 7/8 (b, d). Note that the
Hyperbolic and Elliptic regions ‘touch” at a point.

where

2
ag = Cipy — C1212Con02,
a3 = (Ci122 + C1221) Ci222 — C1212C2120 — C1112C022,

2
a3 = (Ci122 + Ci221)” + 2C1121C1222 — C1212Co121 — 4C1112C0122 — C1111Con0z ,
a1 = —C1121 (Cr122 + Ci221) + C1112C121 + C1111Co122,

2
ao = Ci151 — C1111Co121 -

The nature of the roots (); of the quartic (B.3) defines the regime classification
according to the following nomenclature [99, 124]:

e In the elliptical regime all the roots (); are complex;
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e In the hyperbolic regime all the roots (); are real;
e In the parabolic regime two roots are real and two roots are complex.

According to this criterion, the regimes for the grid-like lattice of prestressed
elastic rods have been classified and the results are shown in Fig. B.1 for both
orthotropic (A1 = Ay = 10) and anisotropic (A1 =7, Ay = 15) case. For the
sake of brevity, only the case x = 0 is reported.

Note that the elliptic region ‘touches’ the hyperbolic domain only at a
point.
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Linearized equations of
motion of an axially
pre-stretched rod

The linearized dynamics of an axially stretchable Rayleigh elastic rod can
be obtained through a linearization (around a stretched equilibrium config-
uration) of the equations governing the dynamics of large deflections and
flexure of an elastic rod.

Stress-free o {u(s, D), (s 1)} Axially pre-stretched

x0 € (0,1p) P s € (0, \olo) P

Fig. C.1. Stress-free and current stretched configurations of the rod model used in Chap-
ter 4and 5. The current configuration is assumed to be free from flexure and stretched by
Ag under the action the axial load P. The pre-stretched equilibrium configuration is then
assumed as reference in order to obtain the linearized equations of motion governing
the incremental displacement fields {u(s, t), v(s, t)}. The rotation of the cross-section is
not sketched, as it is assumed to be constrained by the unshearability condition (C.2).

Denoting the stress-free, straight configuration of the elastic rod with
a local axial coordinate xq (see Fig. C.1), the potential energy and kinetic
energy are defined in the reference configuration as

lo
V= L (Va(A) + P (x) = Pu'(x0, 1)) dxo, (C.1a)

1 IO ‘ . .
T = 7 J (o (it(xo, £)* + 9(x0, £)?) + yr,0 O(x0, £)?) dxo , (C.1b)
0



134  Appendix C. Linearized equations of motion of an axially pre-stretched rod

where Iy, Yo, and ;g are the initial length, linear mass density, and rotational
inertia, while 13 and 1, are strain-energy functions for, respectively, axial
and flexural deformations. The axial and transverse displacement fields
{u(xop, t), v(xo, t)} are defined as sketched in Fig C.1, while the rotation of the
cross-section is assumed to be constrained by the unshearability condition

Ul
0 = arctan (1 - u’) (C2)

The axial stretch A and the curvature y are defined by the kinematics of
an extensible unshearable rod as

A= (1+u'(xg,t))cos O(xg, t) + v’ (xp, t) sin O(xg, 1), (C.3a)
’ J U/(-XO/ t)
X = 0 (Xo, t) = a—xo (arctan (m)) , (C3b)

where in (C.3b) the unshearability constraint (C.2) has been explicitly sub-
stituted.

The linearized response around straight, but axially stretched, configura-
tions can be obtained through the second-order expansion of the function-
als (C.1) with respect to the independent displacement fields {u, v} around
the deformed configuration {ug, vo} = {(Ag — 1)x0, 0}. Hence, by substitut-
ing (C.3) into (C.1) and neglecting an arbitrary constant term, the following
expansion is obtained

lo
V(up + du, vy + 6v) ~‘[ (¢ (Ao) = P) 61/ (xg, t)dxo+
0
lo

* % P (Ao)ou’ (xo, t)*dxo+
0

1 (¥, (Ao) L Y0 )
+ = 6V’ (xg, t)” + ——=—00"(x0, t)" | dxo,
ZJO ( pP (x0,t) 12 (xo0,1) 0

(C4a)
T (ug + ou,vg + 6v) ~

(C.4b)

1 . . 0.,
5 Jo (yo (611 (x0, t)* + 50(x0, £)?) + %60 (xo, t)z) dxg,

where it has been assumed that residual bending moment is absent in the
unloaded configuration ¢/(0) = 0.

As the first-order term of (C.4a) has to vanish when the configuration
{up, vo} = {(Ao — 1)xp, 0} satisfies equilibrium, the prestretch Ay is the so-
lution of the condition ¢’ (19) — P = 0, indicating that the applied load P
is indeed equal to the axial preload. Moreover, it is important to note that
the second-order term of (C.4a) involves the strain energy functions only
in terms of second derivatives, ¢/(1¢) and 7(0), evaluated on the straight



Appendix C. Linearized equations of motion of an axially pre-stretched rod 135

stretched configuration.

It is now instrumental to update the reference configuration from the
stress-free configuration to the stretched configuration, so that the second-
order functionals (C.4) can be adopted to govern the incremental response
of the rod. This can be performed by changing the variable of integration
from x( to the current stretched coordinate s = Apx¢ and expressing the
fields {u, v} as functions of s. Thus, the second-order terms in eqs (C.4)
become

1
V(1o + o1, vo + 60) ~% J P (Ao)Ao 81/ (s, t)2ds+
0 (C.5a)

1 ! ’ 2 ” ” 2
43 L (P(Sv (5, )% + Y(0)Ag 50" (5, t) ) ds,

T (uo + ou,vg+ 6v) ~

(00 o o e oy L VR0 e
E J‘O (A_O (6M(S,t) + 60(5, t) )+ A_Oév (S, t) ds 7

(C.5b)

where [ = Agl is the current rod’s length and the symbol ’ has to be under-
stood as differentiation with respect to s'. It is worth noting that, as 6u’(s, t)
and 6v”(s, t) are, respectively, the incremental axial strain and curvature,
the corresponding coefficients are effectively the current value of axial and
bending stiffness, so that they can be concisely denoted as 1/ (10)Ao = A(Ao)
and ¢?/(0)A¢ = B(Ag), both functions of the current axial stretch Ay.

As the second-order functionals (C.5) have been derived from the large
deformation theory, they describe the correct incremental response of the
rod superimposed upon a give pre-stretched state. Therefore, the correct
form of the equations of motion governing the incremental displacements
can be derived employing the following functionals

I
V(u,v) = %J A(No) (s, )2 ds+

0 l (C.6a)
+ % L (Pv'(s, t)* + B(Ao) 0" (s, t)?) ds,
1
T(u, ) = % L (K—‘; (ii(s, 1) + 3(s, )?) + %‘)v'(s, 12| ds, (C.6b)

where now the fields {u(s, t), v(s, t)} are the current incremental fields and
the dependence of the current stiffnesses A(Ag) and B(A¢) on the current axial
stretch is highlighted. Note that the linear mass density appears divided by
the prestretch, indicating that the current density governs the incremental
inertia of the rod, in fact the conservation of mass requires yo/A¢ = y(Ao),
where y is the current linear mass density of the stretched rod. Similarly,
the current rotational inertia is denoted as 0/ Ao = y+(Ao).

Note that, with a little abuse of notation, the symbols for the functions {u, v} have been
maintained even though the independent variable has changed from xg to s.
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The governing equations (5.3) used in Chapter 5 for the incremental dy-
namics of the rod are directly obtained through the application of Hamilton's
principle on the Lagrangian £ = 7 —V constructed using the second-order
functionals (C.6). Similarly, the incremental equilibrium equations (4.2) em-
ployed in the static analysis of Chapter 4 are directly obtained from (C.6a)
by imposing the first variation 0V (u, v) to vanish.

C.1 Example of a rod made of incompressible hy-
perelastic material

The incremental potential (C.6a) has been derived with reference to a rod
model defined by two arbitrary strain-energy functions governing the cur-
rent stiffnesses A(A¢) and B(Ap). It is now shown that these two parameters
can be evaluated explicitly for every incompressible elastic material selected
to model the lattice’s rods.

The incremental constitutive response of a rectangular block of incom-
pressible material, deformed under plane strain and initially isotropic can be
described (when a uniaxial stress state prevails in the current configuration)
through [99]

. u . . Jdu .
511=(2[J*—T1)8—x1 +p, 522=2[.1*8—x§ +p,

where §; j is the increment of the first Piola-Kirchhoff stress and u; are the
incremental displacements, . the incremental modulus (corresponding to
shearing inclined at 45° with respect to the axes), T; the current uniaxial
Cauchy stress (T, = 0), and p the incremental Lagrange multiplier associated
to the incompressibility constraint. Assuming that plane stress prevails
incrementally, Sy, = 0, and using the incompressibility constraint, p can be

eliminated to yield

. d
S =~ T (C7)

By considering the incremental equilibrium along the x; direction

3311 9512

o Tom

an integration over the current thickness / of the block and a subsequent
substitution of Eq. (C.7) lead to

h/2 . h/2 2
| @dz—(zlu*—mf 8u1d2— (C3)

where the assumption of vanishing traction at x, = +h/2 has been used.
The incremental flexural equilibrium can also be retrieved. To this pur-
pose, for a perturbation from the current unixial stress state, Biot [125] has



C.1. A rod made of incompressible hyperelastic material 137

shown that the incremental equilibrium requires

&2 h/2 . &2 h/2
m I - x2511 dX2 + Tlm J w2 Uus dXQ =0, (C9)
1Y~ 1Y~

where the first integral can be recognized to be the incremental bending
moment.

By adopting the incremental kinematics of an Euler-Bernoulli beam (sat-
isftying the unshearability condition)

) =u) - 29 e = o), (€10)

and using (C.7), the axial and flexural equilibrium equations (C.8) and (C.9)
become

2%u(xq) _
xf

W oto(x) .. d%v(x) _
12 gx} ! ox} B

(4. — T1)h 0, (C.11a)

(44 — T1) 0. (C.11b)

By noting that T1/ is the resultant axial load, so that T1h = P, the direct
comparison between equations (C.11) and (4.2) provides the identification
of the current stiffnesses A(Ag) and B(Ag) as

A(Ao) = (4p«(A0) — To(A0)h(Ao),

; (C.12)
B(Ao) = (4p(Ao) — T1(Ao))h(Ao) /12,

where the explicit dependence on the current pre-stretch Ao has been high-
lighted. For instance, for a Mooney-Rivlin material p. = yo(/\é +Ay 2)/2 and
T, = ,uo(Ag - /\52), and expressions (C.12) become

A(Ao) = po(Ao +3A5%)hg,  B(Ag) = po(Ay" +345°)h;/12.

with ho = h/A¢ being the initial thickness, and pg the initial shear modulus
of the material.
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