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Abstract. The spatial and frequency diversity introduced by the recent WiFi standards based
on orthogonal frequency-division multiplexing is exploited for the robust wireless detection of
device-free targets in indoor environments. The arising inverse problem is solved by decomposing
the channel state information by means of a customized strategy based on the principal
component analysis (PCA) for extracting target-dependent components from the WiFi signal.
The experimental validation of the proposed solution pointed out a robust target detection with
failure rates lower than 3 [%] using a single wireless link already deployed in a real office test
field.

1. Introduction

The device-free wireless localization, also known as passive wireless localization, has attracted an
increasing interest in the past few years [1]-[5]. A variety of location-based applications benefit
from the detection and localization of transceiver-free (i.e., not carrying any device) targets,
especially in complex indoor environments occupied by non-cooperative users. Many wireless
technologies have been exploited with different levels of hardware customizations to acquire useful
target-dependent features of the electromagnetic (EM) indoor propagation. The wireless sensor
network (WSN) and the wireless fidelity (WiFi) technologies are two representative examples
widely investigated in the state of the art [6]-[9]. Both of them provide the well-known received
signal strength indicator (RSSI), which has been deeply analysed and exploited for passive
localization thanks to its sensitivity to the perturbations caused by the environment as well
as by the targets’ presence and movements [10]-[12]. More recently, with the introduction of
new WiFi standards like the IEEE 802.11n, which is based on the orthogonal frequency-division
multiplexing (OFDM) and on multiple-input multiple-output (MIMO) antenna configurations,
the channel state information (CSI) has been leveraged by detection and localization algorithms
as a powerful indicator of the EM propagation at multiple subcarrier frequencies [13][14]. The
CSI provides considerably higher information content than the RSSI since the frequency diversity
and the spatial diversity are considered in the estimation of the “channel quality” between
transmitters and receivers. The magnitude and the phase of the CSI have been exploited in
the recent state of the art for wireless localization purposes [15]-[18]. However, most of the
existing solutions aggregate the CSI features in order to define numerical indicators that are
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Figure 1. Architecture of the MIMO wireless system for device-free target detection.

somehow correlated with the presence and position of the targets. Less attention has been given
to the exploitation of both the frequency and the spatial diversity in order to extract and isolate
only the target-dependent features of the CSI and make the target detection more reliable. In this
work, a strategy based on the processing of the CSI is proposed for the truly robust and almost
errorless detection of passive targets. The method is aimed at separating the effects on the
CSI caused by the target from the perturbations caused by the environmental noise and by the
indoor propagation phenomena. Such a challenging goal is addressed by applying the principal
component analysis (PCA) [19] on the outputs of the non-parametric Kruskal-Wallis (KW) test,
which is adopted to estimate the similarity level between the CSI distributions acquired in absence
and in presence of targets. To the best of the authors’ knowledge, such an approach for the
analysis of CSI data has never been proposed in the state of the art. Preliminary experimental
results have pointed out the feasibility to separate those principal components of the CSI, which
are target-dependent and mathematically orthogonal to the remaining signal components. The
isolation of such a subset of principal components has led to a device-free target detection highly
robust to environmental noise, even if a single wireless link between a couple of commercial
WiFi transmitter-receiver is used. A set of experiments have been performed in a real office
environment to detect the presence of users during daily activities. The obtained results pointed
out outstanding detection performance with a failure rate lower than 3 [%]. The mathematical
formulation of the proposed PCA-based approach is reported in Sect. 2, whereas Sect. 3 describes
the experimental validation performed in a real indoor environment. Final conclusions and future
activities on the development of the proposed solution are reported in Sect. 4.

2. Mathematical Formulation

Let us consider a WiFi transmitter and a receiver located in know positions r,, and r,.,
respectively, with the Euclidean norm dros = ||ry — 1|l being the line-of-sight (LOS) link
length and r = (x,y,2) the position vector (Fig. 1). The transmitter is equipped with
atr = 1, ..., Ay, antennas, while a,, = 1, ..., A, receiving antennas are installed on the receiver.
Such a MIMO configuration enables a total number of L = A, X A,, wireless links. The
radio-frequency (RF) propagation of each link is characterized by the CSI formulated as follows

B (1) = of (8) edsinel” O (1)
l=1,.,L;c=1,..,C
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where al(c) and gpl(c) are the amplitude and the phase of the complex CSI values measured at

the c-th frequency carrier of the [-th wireless link, and ¢ is the acquisition time instant. The

CSI amplitudes acquired within a time window are stored in the vector gl(c) = al(c) (t — wAt)|,

w=1,...,W-—1, where At is the sampling time interval and W the number of the last CSI samples
collected in time and stored in the time window. The CSI samples are acquired both in absence

(i.e., gl(c) = A, .) and in presence (i.e., gl(c) = P, ) of targets. The temporal correlations Xfc =

COTTy, [ELC,AI,C] and Kf . = COTTy [El7c,£l7c] are computed, where R, . is a reference absence

cov(g,g)
Ox0y

acquisition, and corry, (g, g) = , where cov (g, g) is the covariance and o the standard

deviation. The corresponding probability density functions (PDFs) p (Xfc) = W XlAc ., and

P (Xfc) = W Xﬁc,w are computed to extract the patterns of the CSI amplitudes in different

absence /presence status. It has been verified in [16] that such PDFs are temporally stable in
static environments, whereas perturbations arise in presence of target motions. In the state of
the art, the target-dependent behaviour of CSI has been often exploited merging and averaging
the information available in the frequency domain (i.e., over the ¢ = 1,...,C frequency carriers)
and in the spatial domain (i.e., considering the | = 1,..., L MIMO links), but without clearly
isolating the target-dependent features of the CSI. In order to address this challenge, the non-
parametric KW test has been adopted. The KW test is commonly adopted in statistics to test
whether two or more samples originate from the same distribution without the assumption that
the residuals have a normal distribution [17]. The proposed approach applies the KW test to

determine the similarity level between the non-normally distributed PDFs p (KlAc> and p (XIP c),

l=1,...,L, ¢c=1,..,C, computed for all the frequency carriers and for all the wireless links.
More in detail, the p-values pj., [ = 1,...,L, ¢ = 1,...,C, given by the KW test applied to the
whole set of C' x L PDFs have been computed at each sampling time instant. If p < exw, exw
being the significance level threshold, the difference between the PDFs is statistically significant,
otherwise they belong to the same family of distributions. In order to identify and extract the
most target-dependent features from the computed p-values, the PCA has been applied to the
set of p-values p;, [ = 1,..., L, and the procedure has been repeated for each carrier frequency
c=1,..,C.

The PCA is defined as an orthogonal linear transformation of data into a new coordinate
system such that the greatest variance of data projection lies on the new coordinates in
decreasing order of magnitude. The transformation is defined by a set of weight vectors (also
called PCA coefficients) mapping each data vector to a new vector of principal vector scores
7. = [n;1=1,..,L],.. Such an orthogonal transformation is aimed to extract the linearly
uncorrelated components existing among the wireless links [ = 1,..., L, pointing out which
subset of components is the most affected by the target presence, across the considered frequency
spectrum. More in detail, the principal components scores

.=l l=1,...L],= PCA{pe; | =1,...,L}; 2)
c=1,..,.C

are computed by the method, where PC' A {-} is the PCA-based transformation of input p-values
providing in output the scores of the principal components [19]. The obtained components 7,
c=1,...,C, are representative indicators of the unknown spatial relations existing among the
multiple wireless links at the different carrier frequencies. Low values of 75, [ = 1,...,L are
an indication of the target presence, which is the cause of lower spatial correlation among the
PDFs of the processed links. Consequently, the temporal analysis of the 7; patterns enables the
real-time target detection.
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Figure 2. (a) Indoor domain for experimental validation of the target detection using one
wireless link, and (b) example of ground truth acquired for detection performance assessment.
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Figure 3. Temporal evolution of the principal components 7; | =1,...,L|._,;, L = 6, versus
the time-varying target absence/presence (u=1,...,U, U = 13).

3. Experimental Validation

The proposed method for device-free target detection has been experimentally validated in a
real indoor test field at the ELEDIA Research Center laboratories, University of Trento, Italy.
The office area reported in Fig. 2(a) has been selected for the target detection experiments. A
commercial WiFi access point (AP) compliant to the IEEE 802.11n standard and with A, = 2
antennas has been used as transmitter, while the receiver has been equipped with the Intel
IWL 5300 network interface card (NIC) [20] using A,, = 3 antennas. The devices have been
installed at the ceiling level (z = 2.6 [m]). A total of L = 6 wireless links working at the
center frequency f. = 2.4 [GHz| and LOS distance dros = 17 [m] between positions r,, and r,.,
have been established in a non-line-of-sight (NLOS) scenario. Thanks to the OFDM adopted by
the wireless communication standard and the features of the receiving NIC, C' = 30 frequency
carriers have been measured during the experiments. The CSI amplitudes have been acquired
with a sampling rate At = 0.5 [s] and stored in a sliding window of W = 40 samples. The size of
the time window has been calibrated to maximize the statistical value of the PDFs as well as to
ensure a short time delay for real-time detection performance. The reference absence acquisition
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Table 1. Detection performance versus the principal components 7, { =1,...,L|._,;, L = 6.

Principal Components || False Negative | False Positive | Failure Rate
7 (7] (%] 6 [%]
=1 99.6 0.0 50.0
=2 81.4 0.0 40.7
=3 64.2 0.0 32.1
=4 33.6 0.0 16.8
=5 21.4 0.4 10.9
=6 3.8 1.2 2.5

has been stored during the night-time with empty indoor site, while the remaining acquisitions
have been acquired with different target absence/presence status, lasted 16 hours during night
and day times. During this time period, the considered domain has been occupied by a variable
number of u = 0, ..., U targets doing regular office activities. The actual target number has been
verified by means of a video-surveillance system recording the detection area as shown in Fig.
2(b). The KW test has been performed on the C' x L = 180 PDFs and it has been iterated
every At sampling interval for the whole duration of the experiment. The obtained p-values
have been compared with the significance threshold iy = 0.05 for preliminary filtering, and
successively they have been adopted as input variables of the PCA. The principal components
[71; 1 =1, ..., L] have been computed for all the carriers ¢ = 1,...,C, C' = 30. For the sake of
brevity, one representative carrier (¢ = 11) has been selected among the others in order to present
the results of the detection. The time evolution of the principal components 7, l = 1, ..., L, L = 6,
is reported in Fig. 3 together with the actual number of targets u = 0,...,U, U = 13. Asit can be
noticed, an evident relation between the target absence/presence and the principal components
index has been obtained. To the best of the author’s knowledge, the relation between the target
presence and the behaviour of such orthogonal components based on the spatial diversity of the
MIMO wireless links has not been investigated in the state of the art. The first components
(e.g., L =1 and [ = 2) are insensitive to the target presence, while the last ones (in particular the
component | = 6), are highly target-dependent even when the monitored area is occupied by a
single target (i.e., u = 1). According to the PCA theory, the first components are those with the
largest possible variance of the input data. Since the values of 7, 1 <[ < 3, are almost stable
regardless the target absence/presence, the input data variability related to the first subset
of components has been associated to the noise of the complex indoor scenario, whereas the
target absence/presence has been inferred from the behaviour of the smallest components (e.g.,
4 <1 < 6). Accordingly, the robustness of the detection has been improved filtering the noisy
components and processing only the target-dependent ones.

The detection performance have been analysed in terms of failure rate  [%], which has been
computed as the average value of false positive and false negative detections. The analysis has
been performed for each principal component assuming a simple thresholding strategy, with the
user-defined threshold 74, = 107 (i.e., the target is detected if 7 < 7). The outstanding
detection performance of the target-dependent principal component 74 respect to the preceding
ones is clearly pointed out by the results reported in Tab. 1. The failure rate rapidly decreased
down to § = 10.9 [%] with [ =5, and to § = 2.5 [%] with [ = 6.

4. Conclusions
The detection of device-free targets has been addressed by means of an innovative inversion
computational method able to identify and extract the target-dependent features of the CSI.
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The spatial diversity of a MIMO TEEE 802.11n wireless link has been exploited to isolate the
orthogonal signal components related to the target presence. The experimental validation has
pointed out a failure rate lower than 3 [%] when the noisy components of the CSI are filtered
out. It has to be noticed that such a robust detection has been obtained by simply applying
a threshold to the principal component values. The proposed method has pointed out the
feasibility to integrate a robust target detection feature on top of existing WiFi architectures
already deployed for indoor wireless connectivity. A more detailed analysis of the frequency
diversity is currently under study to further exploit the properties of the whole CSI frequency
spectrum toward an almost errorless detection of passive targets.
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