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Transport of solutes in porous media at the laboratory scale is governed by an Advection

Dispersion Equation (ADE). The advection is by the fluid velocity U and dispersion by

DdL = UαdL, where the longitudinal dispersivity αdL is of the order of the pore size.

Numerous data revealed that the longitudinal spreading of plumes at field scale is

characterized by macrodispersivity αL, larger than αdL by orders of magnitude. This

effect is attributed to heterogeneity of aquifers manifesting in the spatial variability of

the logconductivity Y . Modeling Y as a stationary random field and for mean uniform

flow (natural gradient), αL could be determined in an analytical form by a first order

approximation in σ 2
Y (variance of Y ) of the flow and transport equations. Recently, models

and numerical simulations for solving transport in highly heterogeneous aquifers (σ 2
Y > 1),

primarily in terms of the mass arrival (the breakthrough curve BTC), were advanced. In all

cases ergodicity, which allows to exchange the unknown BTC with the ensemble mean,

was assumed to prevail for large plumes, compared to the logconductivity integral scale.

Besides, the various statistical parameters characterizing the logconductivity structure as

well as the mean flow were assumed to be known deterministically. The present paper

investigates the uncertainty of the non-ergodic BTC due to the finiteness of the plume size

as well as due to the uncertainty of the various parameters on which the BTC depends.

By the use of a simplified transport model we developed in the past (which led to accurate

results for ergodic plumes), we were able to get simple results for the variance of the BTC.

It depends in an analytical manner on the flow parameters as well as on the dimension

of the initial plume relative to the integral scale of logconductivity covariance. The results

were applied to the analysis of the uncertainty of the plume spatial distribution of the

MADE transport experiment. This was achieved by using the latest, recent, analysis of

the MADE aquifer conductivity data.

Keywords: solute transport, heterogeneous porous formations, breakthrough curve (BTC), uncertainty, MADE

experiment, stochastic subsurface hydrology
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1. INTRODUCTION

Aquifers pollution by various contaminants constitutes a major
threat to fresh water resources all over the world. Unlike
the accessible surface water bodies, groundwater pollution is
detectable by wells which cover a limited zone and often respond
after a large portion of the aquifer is already contaminated.
Furthermore, the process is slow, occurring over periods of tens
of years and cleaning by natural attenuation or remediation,
whenever possible, is also slow. Under these circumstances,
transport mathematical models, which may help analyzing field
findings on one hand and predicting solute future spreading on
the other, are of crucial importance.

There are various modes of quantification of transport.
In this study we focus on characterization of solute plumes
longitudinal spreading by the BTC (breakthrough curve)M(x, t)
at vertical control planes located at longitudinal distance x =

const, normal to the mean flow direction. An alternative and
related measure is the longitudinal mass distribution m(x, t) as
function of distance x, for a given time t. We limit the scope
to inert solutes (tracers) and to constant mean head gradient J
(natural gradient flow), a setup of interest for many applications
and an essential first step toward analysis of more complex
configurations. For the benefit of the reader not familiarized
with the groundwater transport theory, we recapitulate in the
following a few essential developments.

The traditional modeling of transport was based on column
laboratory experiments (Bear, 1979) for which the macroscopic
(at the pore, Darcy, scale) concentration C(x, t) satisfies the
advection dispersion equation (ADE)

∂C

∂t
+ U

∂C

∂x
= DdL

∂2C

∂x2
(1)

where U = q/n is the macroscopic flow velocity (q-specific
discharge, n-effective porosity) at the Darcy’s scale and DdL is the
longitudinal dispersion coefficient. For the large Peclet number
Pe0 = Ud/D0 (d-pore scale, D0-molecular diffusion coefficient)
encountered in applications it was found thatDdL = αdLU, where
αdLis the pore scale dispersivity, of order d (Bear, 1979).

FIGURE 1 | The spatial distribution of Y = lnK in a cross section of the Columbus Air Force Base aquifer, where the MADE transport experiment took place (Boggs

and Rehfeldt, 1990; Boggs et al., 1992). It is seen that K = exp(Y ) has anisotropic structure and varies by several orders of magnitude.

Field findings (for a recent compendium see Zech et al.,
2015) have revealed that the longitudinal αL (derived for instance
with the aid of the spatial moments of aquifer plumes) is
larger than αdL by orders of magnitude; αL was coined as
longitudinal macrodispersivity in the literature. The contrast
has been attributed to the impact of aquifers heterogeneity,
manifesting primarily in the spatial variation of the hydraulic
conductivity K(x). For illustration we present in Figure 1 the
spatial distribution of Y = lnK in a cross section of the
Columbus Air Force Base aquifer, where the MAcro Disperion
Experiment (MADE) took place (Boggs and Rehfeldt, 1990;
Boggs et al., 1992). It was obtained by interpolating among the
measured values provided by Bohling et al. (2012) at a relatively
dense set of points. A few significant features of the aquifer
in Figure 1 are worth mentioning: (i) K varies by orders of
magnitude, (ii) the spatial distribution of K is seemingly erratic
and difficult to be captured by smooth interpolators, (iii) the
zones of different K are elongated in the horizontal direction,
the aquifer being coined as anisotropic at the field scale (notice
that for clarity of representation the scale of reduction is smaller
in the vertical direction with respect to the horizontal one, such
that these zones are more elongated than how they appear in
the figure).

The above features have a dramatic impact upon the spreading
of plumes of solutes. For illustration we represent in Figure 2

the concentration spatial distribution obtained by a numerical
solution of the advective transport equation (in 2D). The velocity
field V(x) was derived by a numerical solution of the flow
equation for a K field statistically similar to that of Figure 1,
with logconductivity variance σ 2

Y = 6, under conditions of
constant mean head gradient J. The transport equation was
solved by using a Smooth Particle Hydrodynamic (SPH) scheme,
which is virtually free of numerical diffusion (Boso et al., 2013),
for Pe = I/αdL = 1000 (I is the longitudinal integral scale
of logconductivity).

A few qualitative features of distribution of C in Figure 2

are: (i) for an initial rectangular pulse of constant C = C0, the
plume becomes highly fragmented with time and of progressive
spreading, (ii) the plume splits, with quicker advancing “fingers”
in zones of high K , and practically stagnant solute in regions of
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FIGURE 2 | Numerically simulated concentration field (in 2D) after an instantaneous injection within a thin (linear) source perpendicular to mean flow (indicated by a

red vertical line at x/I = 5, with I the longitudinal integral scale of logconductivity), of dimensions Ly = 80 I and Lx = 0.25 I at time tU/I = 10; the other parameters are

σ2
Y
= 6 and Pe = I/αdL = 1000. The plume is seemingly erratic, with clear fingering patterns and stagnant regions.

low K, (iii) like the K field (see Figure 1) the plume is seemingly
erratic and defies a representation by smooth functions but, at the
same time, it makes the identification of point concentration at a
given location an elusive goal, (iv) in contrast, global measures
like the mass arrival at vertical planes over the entire domain (the
BTC M) smooth out the variations and the extent of spreading
can be quantified for instance by αL, (v) it was found that the
presence of the pore scale dispersion (primarily the vertical one)
causes mixing which affects the local C, but has a minor effect
onM (Fiori and Dagan, 2000) and (vi) space averages likeM are
the ones of interest in many applications, e.g., those in which the
goal is to determine the mass of solute pumped by wells which
intercept the plume (Fiori et al., 2016).

This state of affairs has motivated the emergence around 40
years ago (for a review see for instance the books by Dagan,
1989; Gelhar, 1993; Rubin, 2003) of a new discipline, namely
stochastic subsurface hydrology. In its frame the hydraulic

logconductivity field Y(x) is modeled as a stationary random
space function whose univariate distribution and two point
covariance are characterized by a few parameters: the geometric
mean KG, the variance σ 2

Y and the horizontal I and the vertical
Iv < I integral scales, respectively. As a consequence, the
steady Eulerian velocity V(x), is also a random space function,
of constant mean U(U, 0, 0). The statistics of V are obtained by
solving the flow equations for conditions of constant mean head
gradient J(J, 0, 0) and random K(x). Similarly the concentration
field C(x,t) is random and so are its global measures like the BTC
M(x, t). The latter is obtained by solving the transport equation
with advection by the random V and dispersion by the local pore
scale dispersion tensor. Unfortunately, heterogeneity renders
point concentration C(x, t) highly uncertain with a coefficient of
variation that is controlled by pore-scale dispersion and reduces
slowly with time (Fiori and Dagan, 2000). Uncertainty reduces
considerably when global measures are used, such as M(x, t),

Frontiers in Environmental Science | www.frontiersin.org 3 June 2019 | Volume 7 | Article 79

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Fiori et al. Prediction Under Uncertainty in Groundwater Transport

or the sampling volume has dimensions comparable with the
integral scales of Y , thereby making the ensemble mean 〈C(x, t)〉
a reliable and robust measure, similarly to M (Bellin et al., 1994;
Tonina and Bellin, 2008). If the point concentration is of interest,
such as in risk assessment for example, uncertainty can be
reduced by focusing on the probability that a given concentration
threshold is exceeded, irrespective of the position where this
occurs, rather than focusing on a given fixed location where
the ensemble mean concentration provided a unreliable estimate
(Bellin and Tonina, 2007). Another option is by conditioning
on available data (e.g., Y , head, concentration etc), for which,
however, several conditioning points are needed in order to
significantly reduce uncertainty. In any case, as previously stated
our study focuses on the BTC M which is relevant to many
applications and is quite robust and less prone to uncertainty
than point concentration.

A common adopted assumption is that transport is ergodic in
the sense thatM (or similar global attributes) in a realization can
be exchanged with the ensemble mean 〈M〉. This is a basic tenet
in many branches of physics and engineering, e.g., molecular
diffusion driven by Brownian motion or effective properties of
composite materials. It is justified by the large contrast between
the microscopic length scales and the macroscopic ones of
interest in applications. For groundwater transport ergodicity
implies that the solute plume samples a sufficiently large aquifer
volume compared to the integral scales so as to encounter
zones of various K, representative of the entire population. Since
typically I and Iv are of the order of meters and solute plumes of
tens of meters, the contrast is not so large and ergodicity may
be not obeyed and prediction of M by models is subjected to
uncertainty. This feature differentiates transport by groundwater
from the traditional pursuit of the effective properties solely,
prevalent in the literature on heterogeneous media.

Similarly, it is common to assume in applications that the
various parameters and variables like J, U, KG, σ 2

Y , I are
known. In reality, in the field they are only estimated and
subjected to uncertainty as well, impinging on the uncertainty
ofM.

The aim of the present study is to provide a discussion
of uncertainty in modeling transport in three-dimensional
heterogeneous aquifers, with application to the MADE transport
experiment (Zheng et al., 2011) as a platform for discussion;
we summarize what we have learned in the last two decades
or so, in view of applications, with a particular focus on
uncertainty due to plume sampling (i.e., non-ergodicity) and
incomplete knowledge of parameters that are both important
for MADE. A novel analytical formulation is also proposed for
assessing uncertainty due to lack of ergodicity by the plume.
It is emphasized that this is not a review paper and we build
primarily on our developments in modeling flow and transport
in three-dimensional heterogeneous formations.

The plan of the paper is as follows: section 2 provides an
overview of concepts development and paper aims, recapitulating
some of our recent developments in transport of ergodic plumes;
section 3 addresses the modeling of uncertainty in the prediction
of the BTC, the main topic of the paper; section 4 presents
the application of the uncertainty analysis to the MADE-1

experiment, relying on the latest published data; finally, section
5 summarizes and concludes the study.

2. BACKGROUND AND MATHEMATICAL
PRELIMINARIES

2.1. The K Structure
As already mentioned above, we limit the study to stationary
random Y(x). For sedimentary formations of concern here, the
histogram of Y = lnK was found to fit a normal univariate
distribution f (Y), of mean 〈Y〉 = lnKG and variance σ 2

Y (see
for instance the analysis of MADE data by Fiori et al., 2015;
Bohling et al., 2016) which we adopt here. At the lowest order,
the spatial structure is captured by the two point covariance
CY (x1, x2) = σ 2

Yρ(r) where ρ is the autocorrelation and
r = x1 − x2 is the distance vector between the two points
respect to which the covariance is computed. In turn, the
assumed axisymmetric ρ is characterized by the finite horizontal
I and vertical Iv integral scales, respectively. The Y field is
often assumed to be multivariate normal (multi-Gaussian), and
then the structure is completely characterized by 〈Y〉 and CY .
This is a very convenient representation which is commonly
adopted in numerical simulations or analytical approximations.
For other types of structures higher multipoint correlations are
required for a complete statistical characterization. Thus, in our
past numerical simulations of 3D flow and transport (see for
a summary our recent paper Jankovic et al., 2017) we have
generated a few fields which share the same f (Y) and I, Iv
but differ at higher order as manifested for instance by the
spatial connectivity of zones defined by classes of K. Thus,
we considered besides the multivariate normal (multi-Gaussian)
one, two Y fields devised by Zinn and Harvey (2003), obtained
by transformations which led to more connected or disconnected
zones of large conductivity. Besides, we investigated extensively
flow and transport in a structure we coined as MIM (Multi-
Indicator-Model): rectangular blocks which tessellate the space
or spheroidal inclusions of dimensions 2I in the horizontal and
2Iv in the vertical directions, respectively, and are of independent
K = exp(Y). Unlike the three previous ones, the connectivity of
different classes of K values is the same.

It is worthwhile to note that even for thoroughly monitored
aquifers like that of MADE, field data do not generally allow for
determining statistical parameters beyond f (Y) and ρ, i.e., KG,
σ 2
Y , I, and Iv and even those are estimated within ranges of values.

2.2. Flow
We consider here steady flow governed by

q = −K ∇h (Darcy’s law),

∇ · q = 0 (continuity) → ∇ · (K∇h) = 0 (2)

where h (x) is the head. With the assumed constant porosity n
(which is much less variable than K), the velocity V also satisfies
∇ · V =0. The boundary condition of interest here is the one
of constant head, such that the head gradient has components
J(J, 0, 0). Consequently the mean velocity U(U, 0, 0) is also
constant and its fluctuation u(x) is stationary. The relationship
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U = Kef J/n defines the effective conductivity and its dependence
on the structural parameters is the subject of a vast literature (see
e.g., Renard and De Marsily, 1997).

Analytical approximate solutions of the statistics of the h and
V fields, as well as Kef , were obtained in the literature (e.g.,
Dagan, 1989; Rubin, 2003) by a first order approximation in
σ 2
Y , presumably valid for weak heterogeneity. In contrast, based

on numerical simulations, with values of the logconductivity
variance up to σ 2

Y = 8, we have recently presented (Zarlenga
et al., 2018) the dependence of the Kef components on σ 2

Y for
different e = Iv/I and for the above different structures, as
well as by the first order approximation. A striking result is that
the first order approximation of the horizontal component Kefh

is quite accurate for σ 2
Y < 2, which reinforces what already

observed for the velocity covariance function and the spatial
plume moments in an early works by Bellin et al. (1992) and
Salandin and Fiorotto (1998).

2.3. Transport (General)
We consider injection of a solute over an area A0 in the
plane at x = 0. A thin plume with total mass M0 is
modeled as a Dirac pulse of infinitesimal duration δ(t) at
x = 0 (extension to arbitrary spatial or temporal initial
distributed plumes is straightforward); following the definitions
of Kreft and Zuber (1978) injection may be in resident or flux
proportional mode. Thus, the initial mass densitym0 = dM0/db
is constant and equal to M0/A0 for uniform initial resident
concentration while it is given by the variable and random
m0(b) = [V0(b)/V̄0](M0/A0) for the flux proportional one.
Here b(by, bz) is a coordinate in A0, V0(b) =Vx(0, by, bz) and
V̄0 = (1/A0)

∫

A0
V0(b)db is the mean velocity over A0, which

for sufficiently large A0 is equal to the mean velocity U.
We adopt the boundary condition of flux proportional initial

condition which applies to many cases e.g., injection by wells
as it was the case for field experiments including MADE. It
simply states that solutes initially occupy preferential zones
of high conductivity. We also adopt the detection in the flux
proportional mode (Kreft and Zuber, 1978), i.e., the BTC
defined by M(x, t) = M0 −

∫ x
0

∫ ∫

nC(x, y, z, t)dxdydz =
∫ t
0 dt

∫ ∫

nVx(x, y, z)C(x, y, z, t)dydz, where integration in y, z is
over the cross section of the domain. The issue related to injection
and detection conditions and their impact on transport was
extensively discussed in past work (see e.g., Kreft and Zuber,
1978; Dagan, 2017; Fiori et al., 2017). If it satisfies the ADE
(1) with initial condition M(0, t) = M0H(t) (where H is the
Heaviside step function), the solution for the semi-bounded
domain is given by the CDF of the Inverse Gaussian (IG)
distribution (Kreft and Zuber, 1978):

M(x, t)

M0
=

1

2

{

erfc

[

x− Ut

2(DLt)1/2

]

+ exp

(

Ux

DL

)

erfc

[

x+ Ut

2(DLt)1/2

]}

(3)
with DL the longitudinal macrodispersion coefficient, whereas
the relativemass flux is given by the Inverse Gaussian (hereinafter

IG) distribution

µ(x, t)

M0
=

1

M0

∂M

∂t
=

x

2(πDLt3)1/2
exp

[

(x− Ut)2

4DLt

]

(4)

In the frame of random walk transport theory, the Inverse
Gaussian distribution pertains to a first arrival process (see, e.g.,
Redner, 2001), i.e., the detection plane at x serves as an absorbing
boundary. Note that IG is a special case of the more general
Tempered One-Sided Stable distribution (TOSS) with exponent
1/2 (Cvetkovic, 2011).

We proceed now with reviewing the results we obtained
recently for ergodic transport in heterogeneous aquifers.

2.4. Transport (Summary of Results for
Ergodic Plumes)
The starting point for our recent developments are the
systematic accurate numerical simulations (see Jankovic et al.,
2017, and reference therein) of flow and transport in 3D;
they are recapitulated in the Appendix of Jankovic et al.
(2017) and only briefly here. The K field was generated for
a lognormal univariate distribution and two point covariances
CY of integral scales I and Iv, with different values of the
anisotropy coefficient e = Iv/I. The complete characterization
of the structures was achieved by a variety of different
models: multi-Gaussian, the previously mentioned connected
and disconnected fields, spheroidal inclusions and rectangular
blocks tessellating the space (MIM). The BTC was finally
calculated by large-scale numerical simulations, for a variety
of parameters (logconductivity variance, Peclet number, control
plane distances etc.).

A striking result (Jankovic et al., 2017, Figure 3) was that for
the various structures the bulk of M (say M/M0 < 0.95) did
not differ significantly among structures, proving indeed that
M is a very robust measure. Furthermore, the simple model

FIGURE 3 | Comparison of the proposed solution (11) with the results of

Cvetkovic et al. (1992) (Figure 5C), for σ2
Y
= 0.5, x/I = 20 and a few values of

the size of the initial plume (Ly/I = Lz/I = H). The figure displays the cumulative

mass M and the bands M± σM predicted by the present approach (blue lines)

over the original Figure 5C of Cvetkovic et al. (1992).
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(3), with the macrodispersivity given by the well-known first-
order approximation DL = αLU, αL = σ 2

Y I, agreed well with
the bulk of the BTC derived numerically (Fiori et al., 2017)
while it underestimated the late arrival time of the tail of a
few percents of M. However, the tail prediction is anyway quite
imprecise. In particular, it was found that the IG model behaves
similar to the MIMSCA (Multi Indicator Model Self Consistent
Approximation) that we developed in the last 20 years (e.g.,
Dagan et al., 2003; Fiori et al., 2007), that is more accurate for
the prediction of late mass arrival.

Thus, the IG model (3) is quite effective in capturing the
behavior of the bulk of the BTC, for a wide range of flow and
transport parameters; the model depends on a few parameters
characterizing the permeability structure (σ 2

Y , I) and the flow
(J,Kef ). It is emphasized that the first-order approximation was
applied to deriving the longitudinal macrodispersivity αL while
M(x, t) (3) itself depends non-linearly on σ 2

Y and is different
from the Gaussian distribution; the two coalesce for small σ 2

Y or
large tU/I.

Summarizing, the simple formula (3), with DL given by
the first-order approximation, is a very robust model that can
be safely used in applications, e.g., as a screening tool for a
preliminary assessment of the BTC. We note that a similar,
simple approach, although with parameters based on numerical
simulations, was proposed by Hansen et al. (2018).

We move now to the central topic of the present study, the
uncertainty of prediction of the BTC.

3. UNCERTAINTY OF BTC PREDICTIVE
MODELING

3.1. A Few Sources of Uncertainty
Transport predictions by the above modeling approach is prone
to several sources of uncertainty, the major ones being:

(i) Uncertainty in medium characterization, and its
representation in general. Field data are generally scarce
and even the identification of fundamental and basic
quantities like KG (geometric mean of K) and σ 2

Y is difficult
and error prone. This is even more true for higher order
measures, like e.g., the covariance (or variogram) and I,
based on the assumption of stationarity which is also hard
to validate. As a matter of fact, multipoint correlations
are needed for a full characterization of K, which is a
prohibitive task for applications (Boso and Tartakovsky,
2016). Alternative models like facies identification by using
the indicator variogram (Ritzi, 2000) requires identification
of zones of connectivity of K classes, which again is feasible
only for highly monitored aquifers. Fortunately, global
measures like 〈M〉 are quite robust in 3D and adopting for
instance the common multi-Gaussian structure model does
not affect significantly the bulk of the BTC (Bianchi and
Pedretti, 2017, 2018).

(ii) Uncertainty due to the limited domain sampled by the
plume. Thus, the initial plume may not be so large, as
discussed in the previous section, and non-ergodicity issues
may emerge (Kitanidis, 1988; Dagan, 1990; Andričević and

Cvetković, 1998; Attinger et al., 1999). As a consequence,
the quantities of interest, including M, are random, and
uncertain due to non-ergodic behavior emerges. As it was
found in the past and confirmed by the developments of
the following section, uncertainty for small plumes can be
quite large. Instead, the uncertainty related to the size of
the sampling volume (Fiori et al., 2002; Bellin and Tonina,
2007; Severino et al., 2010) is not relevant for the transport
scenario investigated here in which solute is detected at a
large control plane at distance x from the source.

(iii) Uncertainty in the modeling approach. This is a highly
debated issue in the literature, and various models have
been advanced during the years. However, our recent
developments summarized in the previous section, based
on accurate and systematic 3D numerical simulations which
were not available in the literature for the high σ 2

Y values,
show that for global, upscaled, measures like 〈M〉, the ADE
with upscaled first-order longitudinal macrodispersivity
αL = σ 2

Y I, solved under the conditions of flux proportional
injection and detection, offers a simple and quite accurate,
physically based solution.

(iv) Parametric uncertainty. Besides the uncertainty of the
adoptedK model, the same is true for the other hydrological
parameters controlling transport, like e.g., the mean
velocity. Parametric uncertainty is expected to have an
important impact on predictions because of the limitations
of measurements and the significant impact of parameters,
like U.

(v) Additional uncertainty may stem from unsteadiness,
spatial non-uniformity of the mean head gradient, partial
knowledge of the plume initial condition etc. These
sources of uncertainty are rather case specific and less
prone to a general analysis (see e.g., Bellin et al., 1996;
see e.g., Dagan et al., 1996).

According to the above discussion, the major sources of
uncertainty for transport in mean uniform flow are likely (ii) and
(iv), i.e., possible non-ergodicity of the plume and parametric
uncertainty; this is particularly true for the MADE experiment,
as shown in the sequel. Thus, in the following we shall focus
on the uncertainty quantification originating from (ii) and (iv).
Furthermore, we shall apply the uncertainty analysis to MADE,
that is a well-known benchmark, very useful for a thorough
discussion on uncertainty in applications.

3.2. Quantifying Uncertainty Due to
Non-ergodic Effect
3.2.1. General

We follow here the theoretical framework and the notations of
Cvetkovic et al. (1992) and Dagan et al. (1992). Focusing on the
BTC M we may write for flux proportional injection over an
area A0

M(t; x)

M0
=

1

A0

∫

A0

V0(b)

V̄0
H[t − τ (x, b)]db (5)

where we remind that V0 is the local velocity at the location b

within A0 and V̄0 = (1/A0)
∫

A0
V̄0(b)db≈ U. It is also reminded
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that in (5) H is the Heaviside step function and τ (x, b) is the
random travel time to the control plane at x of a fluid particle
injected at x = 0 within A0. The travel time is related to the

random velocity field by dτ/dx =
(

Vx[x, η(x), ζ (x)]
)−1

where y =
η(x, b), z = ζ (x, b) are the equations of a streamline originating
at b within the plane A0 at x = 0. In words, (V0(b)/V̄0) H[t −
τ (x, b)](db/A0) in Equation (5) marks the contribution of the
particle originating at b to the mass that crossed the control
section at x until the time t = τ .

The expected mass 〈M(t; x)〉 is easily calculated from
(5), yielding

〈

M(t; x)
〉

M0
=

1

A0

〈∫

A0

V0(b)

V̄0
H[t − τ (x, b)]db

〉

= G1 (t; x) (6)

where G1 =
∫ t
0 f (τ ) dτ , is the cumulative travel time

distribution, where τ is weighted by the injection velocity V0

(Cvetkovic and Dagan, 1994). Here f (τ ) =
∫

(V0) f (τ ,V0)d(V0)
is the marginal pdf of τ , with f (τ ,V0) being the joint pdf of τ

and V0 .
Formula (6) is the well-known result (Shapiro and Cvetkovic,

1988) that the mean mass arrival is the CDF of travel time.
Furthermore, in view of the findings of section 2.3, it is seen that
G1(τ ) is the CDF of the Inverse Gaussian distribution Equation
(3) and the pdf g1 = dG1/dτ is the Inverse Gaussian (4).

After recapitulating these preparatory steps we move now,
along Dagan et al. (1992), to the derivation of the variance ofM

σ 2
M(t; x)

M2
0

=

〈

M2(t; x)

M2
0

〉

−
〈M(t; x)〉2

M2
0

(7)

Considering the expression (5) for the massM we may write

〈

M2(t; x)

M2
0

〉

=
1

A2
0

〈∫

A0

∫

A0

V0(b)V0(b
′)

V̄2
0

H[t − τ (x, b)]H[t − τ (x, b′)]db db′
〉

(8)

Thus, by taking advantage of the linearity of the ensemble mean
operator and considering Equation (6) we arrive at

σ 2
M(t; x)

M2
0

=
1

A2
0

∫

A0

∫

A0

G2

(

t; x, b− b′
)

db db′ − G2
1 (t; x) (9)

where G2 is the bivariate travel time CDF, which is given

by G2

(

t; x, b− b′
)

=
∫ t
0

∫ t
0 g2

(

τ , τ ′; x, b− b′
)

dτdτ ′, with
g2

(

τ , τ ′; x, b− b′
)

being the marginal joint pdf of travel times
τ , τ ′of two particles injected at b and b′, respectively.

The general result (9) by Dagan et al. (1992) has served
Cvetkovic et al. (1992) to effectively compute σ 2

M(x, t) by
adopting a few assumptions: the bivariate g2 is lognormal, the
travel time moments were derived from the velocity field by a
first order approximation in σ 2

Y , A0 is a square. Two quadratures,
which were carried out numerically, were needed to complete
the derivation.

The above approach can be generalized to compute the
covariance ofM (CM) at two different times t1, t2, leading to

CM (t1, t2; x)

M2
0

=
1

A2
0

∫

A0

∫

A0

G2

(

t1, t2; x, b
′ − b′′

)

db′db′′

− G1(t1; x)G1(t2; x) (10)

with G2

(

t1, t2; x, b− b′
)

=
∫ t1
0

∫ t2
0 g2

(

τ , τ ′; x, b− b′
)

dτdτ ′.

3.2.2. Simplified Derivation of σ
2
M
(x, t) and

Comparison With Numerical Simulations

The derivation of the two particles covariance needed in (9)
is complex and requires additional information, like e.g., the
shape of the two particles covariance and its moments. Also, the
calculation of σ 2

M along (9) requires a few numerical quadratures,
as done by Cvetkovic et al. (1992). We simplify the calculations
by using the basic properties of the MIMSCA model which, as
mentioned above, led to very good agreement with the numerical
solution of 〈M〉.

Consider the covering of the input area A0 by rectangles
of sides 2I and 2Iv in the y and z directions, respectively.
Following the MIMSCA model, the travel time of particles
originating within an areal element in A0 is the same whereas
they are statistically independent for particles originating from
different elements. This is the only property we use in the
present derivation.

With the above assumption, the calculation of (9) can
be considerably simplified. The detailed derivations are given
in Appendix A, leading to the final result (A.8), that is
reproduced here

σ 2
M = M2

0 ω (L)G1 (t; x) [1− G1 (t; x)] (11)

where the weight function ω is given by

ω (L) = �

(

Ly

I

)

�

(

Lz

Iv

)

(12)

with Ly, Lz the sides of the rectangular injection area, i.e., A0 =

LyLz and

�(ℓ) =















(

1−
ℓ

6

)

for ℓ < 2

1

ℓ

(

2−
4

3ℓ

)

for ℓ > 2
(13)

In particular ω ≃ 1 for A0/(IIv) ≪ 1 (maximal uncertainty
for small source) and ω ≃ (IIv/A0) for A0/(IIv) ≫ 1 (ergodic,
practically deterministic).

Thus, σ 2
M is given by an analytical expression supposed to

apply to highly heterogeneous formations which separates the
effect of spreading represented by the IGG1 (3) withDL = σ 2

Y IU,
one hand, and the weight function ω accounting for the size of
the injection area on the other hand.

As a first test of (11) we compare it in Figure 3 with the
results of Cvetkovic et al. (1992) described above (σ 2

Y = 0.5,
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FIGURE 4 | Comparison of solution (11) with the numerical simulations of Jankovic et al. (2017), which were carried out for single realizations and a large source H =

Ly/I = Lz/I = 90. The comparison is achieved by dividing the initial plume in subdomains of H = 2, 5, 10, 15, 30 regarded as independent realizations, a proxy for

Monte Carlo simulations. The BTC M and its standard deviation (SD) for the multivariate normal field at two Control Plane distances (6I and 18I) and two degrees of

heterogeneity (σ2
Y
= 2 and σ2

Y
= 8) are represented. The SD predictions by the simplified model (11) are represented by the dashed lines.

x/I = 20, Ly/I = Lz/I = H) and it is seen that the agreement
if very good in spite of the different methodologies. A more
stringent test is carried out by comparison with the numerical
simulations of Jankovic et al. (2017), which were carried out
for single realizations for the large H = Ly/I = Lz/I = 90.
This was achieved by dividing A0 in subdomains of H ≃

2, 5, 10, 15, 30 regarded as independent realizations, a proxy for
Monte Carlo simulations. The results are displayed in Figure 4,
where both the BTC and its standard deviation (SD) for the
multivariate normal field at two Control Plane distances (6I
and 18I) are represented. The SD predictions by the simplified
model (11) are also displayed (dashed lines). It is seen that, in
spite of the limited number of realizations for some cases (9
for Ly = Lz = 30I) the agreement is quite good, even for

the largest σ 2
Y = 8. The behavior is very similar for other K

structures examined (e.g., connected/disconnected and blocks,
as described in section 2.4; not shown in the figure). Thus, the
simple model proposed here can be an effective tool for the
prediction of the BTC uncertainty due to the non-ergodic effect
(i.e., finite size of the plume compared to the heterogeneity
length scales).

It is worthwhile noting that for a small plume (ω close
to unity) uncertainty affects its time of arrival at the control
plane (de Barros et al., 2011; de Barros, 2018). In contrast, for
a large plume the practically deterministic prediction reflects
the spreading of the BTC. For intermediate cases the two
effects are combined, and they are incorporated in the simple
function ω (12).
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3.3. Impact of Parametric Uncertainty
Even under the basic assumptions of stationarity, steadiness and
mean flow uniformity the mean BTC (Equation 3 with DL =

σ 2
Y IU) depends on a few parameters. Thus, U = JKef /n depends,

besides the mean gradient J, on KG and σ 2
Y since Kef /KG depends

on σ 2
Y as well as on the structure (Renard and De Marsily, 1997).

Of course the knowledge of these parameters is not needed if
Kef is determined for instance directly by pumping tests and/or
U by flowmeters. In all cases these parameters are affected by
uncertainty due to measurement errors, insufficient data etc. The
same is true for the parameters influencing themean BTC namely
σ 2
Y and I besidesU. Finally, the uncertainty quantified by σ 2

M (11)
depends on the additional parameter A0, reflecting the initial size
of the plume.

The uncertainty of these parameters impacts that of M in
addition to the non-ergodic effect. However, the magnitude
depends on the availability of data and their precision, which is
aquifer specific. In the following section we shall examine the
impact of parametric uncertainty for the Columbus Air Force
Base aquifer where the MADE experiment took place and for
which a relatively large amount of data is available.

Nevertheless, we may make a few statements on the relative
impact of various parameters based on the numerical simulations
and theoretical developments. Thus, as mentioned above, Fiori
et al. (2017) and Jankovic et al. (2017) have already found that
〈M〉 is quite insensitive to the structure (as characterized by
connectivity), whereasU, and to a lesser extent heterogeneity σ 2

Y ,
has a larger impact. Rather than a general discussion we defer the
analysis to the MADE case in the following.

4. ANALYSIS OF THE MASS DISTRIBUTION
AT THE MADE-1 EXPERIMENT

The first experiment conducted at the Columbus Air Force Base
(MADE-1) represents the ideal platform for discussing the above
issues regarding uncertainty of solute transport predictions in
aquifers. In terms of the quantity and quality of investigations,
regarding both aquifer characterization and plume monitoring,
the MADE-1 experiment represents a benchmark for analyzing
groundwater transport; it has motivated a large body of research
work, from the testing of innovative measuring techniques to the
development of novel theoretical frameworks. For such reasons,
after more than 30 years, MADE is still providing insight and
topics of discussion in the scientific community, as witnessed for
instance by the recent 2015 AGU Chapman conference (Gómez-
Hernández et al., 2016). Before discussing uncertainty, along
the previous lines, we briefly recapitulate in the following the
main features of the MADE-1 experiment, as well as the flow
and transport parameters that shall be used in the present work,
together with their uncertainty measures. More details can be
found in the original papers (Boggs and Rehfeldt, 1990; Boggs
et al., 1992) and the review (Zheng et al., 2011).

The experiment took place in a highly heterogeneous
sedimentary aquifer at Columbus, Ohio (USA). A plume
was injected in a relatively small area of the domain,
and the plume movement, along the natural gradient, was

TABLE 1 | Mean and standard deviation (SD) for the MADE-1 parameters

employed in the present work.

Symbol Parameter Mean SD

σ2
Y

Logconductivity variance [–] (*) 5.9 0.77

I Horizontal integral scale [m] (*) 9.1 1.94

Iv Vertical integral scale [m] (*) 1.8 0.33

KG Geometric mean of hydraulic

conductivity [m/d] (*)

0.58 0.13

n Porosity [–] (**) 0.31 0.08

J Mean hydraulic gradient [–] (**) 0.0036 –

U Mean velocity [m/d] (estimated) 0.026 0.009

Data are taken from Bohling et al. (2016) (*) and Boggs et al. (1992) (**); in the case of

the data from Bohling et al. (2016), the SD was calculated from their 95 % confidence

intervals after assuming a normal distribution for all parameters except KG, for which

lognormality was assumed. The SD for the mean velocity was estimated from Darcy

formula U = KefJ/n, assuming Kef /KG and J as deterministic.

continuously monitored for about 2 years by a dense network
of multilevel samplers. The relevant transport quantity that was
analyzed at the MADE-1 experiment is the longitudinal mass
distribution m (x; t), which was first analyzed and presented
by Adams and Gelhar (1992). Six snapshots were analyzed, at
t = 49, 126, 202, 279, 370, 503 days since injection. The mass
distribution was derived by calculating the solute mass (after
interpolation of concentration measurements) within a moving
window of 10 m length, at spatial intervals of 5 m. The striking
feature of m is its skewed shape, very much different from
the presumed symmetrical Gaussian behavior, that was mainly
caused by the highly heterogeneous velocity field induced by the
complex aquifer system; such feature has motivated subsequently
a flurry of theoretical developments to explain it. Despite this
dense grid of samplers, mass recovery was incomplete, except for
the snapshot at t = 126 d, and the mass recovery continuously
decreased after it, down to 43% in the last snapshot at t = 503 d
[the topic is discussed by Fiori (2014)].

In the following, the longitudinal mass distribution at
MADE is modeled by the aid of the model (3). Following
Adams and Gelhar (1992), the mass distribution is calculated
within a moving window of 1 = 10m, i.e., m (x; t) =

(M (x+ 1/2; t) −M (x− 1/2; t)) /1, with space intervals of
5m (x = 0, 5, 10, 15, ...). The parameters to be used in the model
were inferred from different studies and are presented in Table 1;
the standard deviation (SD) is also reproduced, when available.
Of particular relevance is the analysis of Bohling et al. (2016)
of the K values based on DPIL measurements, that superseded
a previous analysis by same authors (Bohling et al., 2012). This
study analyzed the conductivity field at an unprecedented detail
and resolution, and constitute the best available conductivity
analysis of MADE data so far.

The mean velocity is calculated by U = KGJǫ/n, with
KG, J, n, ǫ the geometric mean of K, the mean hydraulic gradient,
the mean porosity and the effective conductivity ratio ǫ =

Kef /KG, respectively. Unfortunately, ǫ cannot be measured and
it is variable, as a function of the particular conductivity structure
at hand (the matter is discussed in Zarlenga et al., 2018). An
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estimate of ǫ was provided by the formula (5) derived by Zarlenga
et al. (2018) based on extensive 3D numerical simulations,
obtaining ǫ = 3.93; this results in the estimated U = 0.026 m/d.
The SD of U is calculated by a perturbation approach over the
parameters KG, n, hence assuming J and ǫ as deterministic; as a
consequence, the standard deviation of U appearing in Table 1 is
likely underestimated.

4.1. Prediction of Mass Distribution and
Uncertainty Due to Non-ergodic Effects
Before embarking on the analysis of the spatial mass distribution
(the snapshots), it is worthwhile to estimate the non-ergodic
effect on the uncertainty of the BTC M(x, t), although the latter
was not determined experimentally. According to Equation (11)
the maximal value of σM/M0 is obtained by differentiating
with respect to t and is reached for G1 = 1/2. This leads to
(σM/M0)max = ω1/2/2. We show in the sequel that for MADE
plume initial size the estimate is ω = 0.148, i.e., (σM/M0)max =

0.19. Thus, the width of the band 〈M〉/M0 ± σM/M0 reaches its
maximum at the time for which 〈M〉/M0 = 1/2 and its size is
±0.19. diminishing to zero for 〈M〉/M0 → 0, 1. However, a direct
comparison with the experimental results (the snapshots) needs
reformulation in terms of spatial distribution.

Along the lines of section 4, the longitudinal mass distribution
at MADE is given by

m (x; t) =
M (x+ 1/2; t) −M (x− 1/2; t)

1
(14)

wherem is the longitudinal mass distribution aggregated over the
spatial interval 1 = 10 m.

The expected value and variance ofm for non-ergodic plumes
can be derived with the same procedure of section 3.2.2 , and
detailed in Appendix A. The detailed derivations are given in
Appendix B, and we reproduce here the final result

〈m (x; t)〉

M0
=

G1 (x+ 1/2; t) − G1 (x− 1/2; t)

1
(15)

σ 2
m(x; t) = ω (L)

〈

m(x; t)
〉

(

M0

1
−

〈

m(x; t)
〉

)

In (15), G1 is given by (3), as previously explained, although any
alternative model can be used. As discussed in Fiori et al. (2017),
the time of the snapshots at the MADE experiment was very
small in dimensionless terms, namely tU/I = 0.15 − 1.0, posing
doubts regarding the use of a constant DL in (3). Therefore, the
pre-asymptoticDL, as predicted by the first order approximation,
was employed here; the issue is discussed in Fiori et al. (2017)
and it is further elaborated in Appendix C, leading to the revised
formula (C.3), for the travel time CDFG1 that shall be used in the
present analysis.

The formula (15) for σ 2
m requires the vertical and transverse

dimensions of the initial plume, Ly and Lz . The distances between
the injection wells and the width of the screens in the wells are
not reliable estimates of Ly and Lz as the plume underwent a
significant expansion in all directions soon after the injection,
as visible in the early snapshots. Figure 6a of Adams and Gelhar
(1992) shows that after 9 days the vertical size of the plume was

around 8 m, much larger than the vertical size of the screen of
the wells. Also, Figure 4a from the same paper suggests that,
again after 9 days from the injection event, the size of the plume
was already about 40 m wide. Thus, in the following we assume
Ly = 40 m and Lz = 8 m as the initial sizes of the plume; such
estimates are rather rough and uncertain, but there is no other
way to accurately assess them. With those estimates of Ly, Lz ,
and those of I, Iv of (1), the variance reduction factor due to
the finite size of the plume appearing in (15) is ω (L) = 0.148
(Equations 12, 13).

Figure 5 displays the experimental longitudinal mass
distribution at the MADE-1 experiment for the six snapshots
presented by Adams and Gelhar (1992); black lines); the blue
solid line depicts the theoreticalm (x; t) (Equation 15), while the
dashed lines represent the bounds m + σm (green) and m − σm
(orange). It is seen that the theoretical model captures quite well
the experimental mass distribution at MADE; the result is not
entirely new as a similar comparison was made in Fiori et al.
(2017), although the updated estimates of Bohling et al. (2016)
and the more accurate spatial aggregation over the 1 interval
was made here for the first time. The direct comparison between
experiment and theory is made difficult by the overestimation
of mass in the first snapshot (around 200% of the injected mass
was recovered) and the incomplete mass recovery for increasing
time. Still, the model captures the peak and its timing quite
accurately in most of the snapshots, all the approximations and
uncertainties notwithstanding.

It is seen that the bands of uncertainty, described by the
bounds m ± σm (dashed lines), are rather wide for all snapshots
(note that m is subject to the constraint

∫ ∞

0 m(t)dt = 1).
The bounds tend to increase with time; as a matter of fact
the behavior is quite expected in view of the nature of the
analytical solution (15): the broader is the distribution, the
larger is the uncertainty. The wide bounds of uncertainty pose
doubts regarding the applicability of analytical solutions, based
on stochastic approaches, that implicitly assume ergodicity; in
such cases, it is advisable to present results together with the
bands of uncertainty, as done here. Although the bands can be
rather wide, like the present MADE case, the representation of
Figure 5 in terms of prediction and bands of uncertainty may
be of definite help in applications, for instance the case of risk
assessment and plume management.

Uncertainty can in principle be constrained by some
conditioning of the solution, e.g., based on available K data. Still,
the impact of conditioning permeability at a point is generally
limited to a domain of the order of the integral scales of Y
(see e.g., Dagan, 1985), which has a minor effect on M for
a large plume unless the grid of measurements is dense and
covers the advancing plume. For small plumes conditioning may
be more effective in reducing uncertainty if the measurements
grid covers the trajectory. In any case, conditioning requires
a theoretical model more complex that (3), posing additional
computational burden that may not be otherwise required for
simple preliminary (screening) analysis.

The relative good agreement of m (solid blue line) with
experiments is quite surprising in view of the large uncertainty,
as represented by the upper and lower limits (the dashed lines) of
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FIGURE 5 | Uncertainty due to non-ergodic effects: the experimental longitudinal mass distribution at the MADE-1 experiment for the six snapshots presented by

Adams and Gelhar (1992); black lines); the blue solid line depicts the theoretical m (x; t) (15), while the dashed lines represent the bounds for non-ergodicity

uncertainty m+ σm (orange dashed line, “High”) and m− σm (green dashed line, “Low”). G1 in solutions (15) is given by (C.3). Mass recovery in the experiments was

206, 99, 68, 62, 54, and 43% at snapshots t = 49, 126, 202, 279, 370, 503 days, respectively.
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the figures; it may suggest that the initial size of the plume was
indeed large enough to adequately sample the range of velocity
variations in the aquifer, hence more in favor of ergodicity, and
the estimates of Ly and Lz (that we recall were roughly estimated
from the profiles of Adams and Gelhar, 1992) might perhaps be
too conservative.

4.2. Parameter Uncertainty
Parameter uncertainty impact is assessed here by a simple first
order analysis, that provides the variance of mass distribution m
due to parametric uncertainty

σ 2
m =

Np
∑

i=1

(

pi
∂m

∂pi

)2

CV2
pi
=

Np
∑

i=1

s2
(

pi
)

CV2
pi

(16)

where the function s is the sensitivity, and it represents the
relative variation of the solution to changes in the generic
parameter pi

(

i = 1, ...,Np

)

. The procedure is justified by the
relatively small coefficient of variation of the parameters, that is
below 0.35 for all parameters (see Table 1).

It is instructive to analyze first the sensitivity function s
(

pi
)

,
(Equation 16), as function of the generic parameter pi. Figure 6
illustrates the sensitivity pertaining to the relevant parameters
σ 2
Y ,U, I, Iv for the snapshot t = 202 d (the sensitivities for

the other snapshots are similar). It is seen that the sensitivity
displays an antisymmetric behavior, which is determined by the
constraint that the area underneath the curve m is unitary.
Hence, increasing a parameter has opposite effects in different
segments of the mass distribution. The behavior is similar for
all parameters except Iv, that contributes through the anisotropy
ratio (see Appendix C) and hence has opposite effects with
respect to I. The curves of Figure 6 indicate that themost relevant
parameter for uncertainty is the mean velocityU, followed by the
logconductivity variance σ 2

Y and the horizontal integral scale I;
the impact of the vertical scale Iv is rather small. This finding
already suggests what are the parameters requiring amore careful
and precise estimate in order to reduce uncertainty, with the
mean velocity playing an important role; the issue was also
mentioned in section 3.1.

The bands of parametric uncertaintym±σm, along the model
(16), are represented in Figure 7 for the six snapshots of the
MADE-1 experiment. Comparison with Figure 5 indicates that
the parametric uncertainty effect is smaller than the one due to
non-ergodic behavior (section 3.2).We remind, however, that the
bands may be wider as the variance of the mean velocity U is
expected to be larger than the one estimated here, and reproduced
in Table 1; this issue was discussed in section 4.1. The behavior of
the uncertainty bands observed in Figure 7, with a central area
where the bands shrink, is easily explained by the antisymmetric
shape of the sensitivity, as previously discussed. The width of the
uncertainty bands increases with time, just like the case illustrated
in Figure 5.

The analysis of parametric uncertainty is indeed a first and
relative easy (if data are available) estimate of possible prediction
errors. However, as shown here, it may be not the main source
of uncertainty. It is worth noting that Cvetkovic et al. (2015)
discussed the global sensitivity including mass transfer reactions.

FIGURE 6 | The sensitivity function s, Equation (16), as function of the

parameters σ2
Y
,U, I, Iv for the snapshot at t = 202 days, MADE-1 experiment.

5. SUMMARY AND CONCLUSIONS

Spreading of solute plumes in aquifers, as quantified for instance
by the longitudinal macrodispersivity αL, is much larger than the
one observed in laboratory experiments (pore scale dispersion).
This enhancement is caused by the spatial variability of the
conductivity K, which in the context of stochastic subsurface
hydrology, is modeled as a random space function. The paper
considers flow which is uniform in the mean (natural gradient
flow of velocity U) and inert solutes. Transport is quantified
by the BTC M(t, x) at control planes at x as well as the
associated spatial longitudinal mass distribution m(x, t). The
logconductivity Y = lnK is modeled as stationary, of normal
univariate pdf (parameters KG and σ 2

Y ) and axisymmetric
covariance of horizontal I and vertical Iv integral scales. The latter
are much larger than the pore scale, which explains the above
findings. Flow and transport variables, solutions of the flow and
transport equations, are consequently random as well.

Most of the transport models developed in the past, aiming at
prediction of M, were underlain by the ergodic hypothesis, valid
for plumes of large extent at the I, Iv scales. As a consequence,
the one realization M is approximately equal to the ensemble
mean 〈M〉.

The paper investigates the uncertainty of M (or m) in
three dimensional formations, as quantified by the variance σ 2

M .
Among the various sources of uncertainty, we deal with two:
primarily with the non-ergodic effect present for finite plumes,
as encountered in many applications. Besides we consider the
impact of uncertainty of parameters like U, KG, σ 2

Y , I. Indeed,
the latter are affected by measurement errors even in extensively
monitored aquifers.

The non-ergodic effect on transport was investigated in
the past by adopting the first-order approximation in σ 2

Y in
solving the flow and transport equations (weakly heterogeneous
formations). One of our main aims here is to extend the analysis
to highly heterogeneous aquifers for which σ 2

Y ≤ 8. The
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FIGURE 7 | Parametric uncertainty: the experimental longitudinal mass distribution at the MADE-1 experiment for the six snapshots presented by Adams and Gelhar

(1992), black lines; the blue solid line depicts the theoretical m (x; t) (15), while the dashed lines represent the bounds for parametric uncertainty m+ σm (orange

dashed line, “High”) and m− σm (green dashed line, “Low”). G1 in solutions (15) is given by (C.3).

Frontiers in Environmental Science | www.frontiersin.org 13 June 2019 | Volume 7 | Article 79

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Fiori et al. Prediction Under Uncertainty in Groundwater Transport

investigation is based on our work in the last 15 years on ergodic
transport, both by extensive and accurate numerical simulations
not available in the past for three-dimensional configurations,
as well as by simplified models. This was done for a few types
of heterogeneous structures, differing in the connectivity of
K classes. One of our main results was that 〈M〉 is a very
robust predictor whose bulk can be modeled by the Inverse
Gaussian CDF, with travel time variance given by the first
order approximation.

The main novel theoretical contribution is the development
of a simple analytical model to compute σ 2

M . It combines
the above Inverse Gaussian distribution with an analytical
function of the size of the injected plume relative to the
integral scale, covering the spectrum from small plumes to
ergodic ones. The result is illustrated by depicting the bands of
uncertainty delimited by 〈M〉 ± σM (Figure 4) as dependent on
σ 2
Y . While the present contribution is limited to non-reactive

transport, the methodology can be easily extended to reactive
solutes, along the lines of Cvetkovic and Dagan (1994) and
Fiori et al. (2002).

A major part of the paper is devoted to application of the
concepts to the MADE aquifer (σ 2

Y ≃ 6) transport experiment,
which has become a platform for groundwater contaminant
transport modeling in the last 30 years. We present the observed
snapshots of m(x, t), functions of x for a few values of t, as well
as the bands of uncertainty related both to non-ergodic effects
and uncertainty of parameters. The analysis relies on published
recent analysis of field data, based on renewed characterization
campaigns, and it represents a major overhaul of our previous
analyses of theMADE-1 experiment. The results indicate that the
most relevant parameter for uncertainty is the mean velocity U,
followed by the logconductivity variance σ 2

Y and the horizontal
integral scale I. This finding suggests what are the parameters
requiring a more careful and precise estimate in order to
reduce uncertainty.

The main conclusion of the study is that, even for thoroughly
characterized aquifers (like MADE) prediction of transport
is affected by uncertainty; in particular, the major source of
uncertainty for the MADE-1 experiment seems to be the non-
ergodic behavior, i.e., the finite size of the plume with respect
to the directional correlation scales of hydraulic conductivity.
Uncertainty is prone to be even greater for the common, less
detailed, sites data available in practice.

The above finding, and the general argumentation brought by
the present work, enforces the conclusions from past work that
estimating uncertainty of prediction should become an integral
part of solving aquifer contamination problems, toward risk
analysis. To that aim, characterization efforts should be directed
toward reducing uncertainty of most influential parameters like
the mean velocity U. Due to the prevailing scarcity of data
in practice, it is advisable to use simple models, at least for
screening scenarios.

The envisaged main future developments which may
contribute to uncertainty and risk reduction are 2-fold. On one
hand improvement of characterization technology may provide
a detailed and large volume of data which may need analysis
relying on Big Data treatment approach. On the other hand,
numerical models of flow and transport in which the detailed
aquifer architecture is based on conditioning on the large number
of data should also be devised. At present, simple models like
the ones presented here may serve for preliminary and
screening analysis.
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