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The goal of this paper is to explicitly detect all the arithmetic 
genera of arithmetically Cohen–Macaulay projective curves with a 
given degree d. It is well-known that the arithmetic genus g of a 
curve C can be easily deduced from the h-vector of the curve; in 
the case where C is arithmetically Cohen–Macaulay of degree d, 
g must belong to the range of integers 

{
0, . . . , 

(d−1
2

)}
. We develop 

an algorithmic procedure that allows one to avoid constructing 
most of the possible h-vectors of C . The essential tools are a com-
binatorial description of the finite O-sequences of multiplicity d, 
and a sort of continuity result regarding the generation of the gen-
era. The efficiency of our method is supported by computational 
evidence. As a consequence, we single out the minimal possible 
Castelnuovo–Mumford regularity of a curve with Cohen–Macaulay 
postulation and given degree and genus.
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0. Introduction

In this paper we introduce an algorithmic approach to the search of all possible arithmetic genera 
of an arithmetically Cohen–Macaulay (aCM for short) projective curve of given degree d. This problem 
has been studied in several instances, such as Roberts (1982, Example 4.6), and it has a role in the 
classification of algebraic curves, see for example (Hartshorne, 1994; Nagel, 2003) and the references 
therein.

The arithmetic genus g of a curve appears in the constant term of the curve’s Hilbert polynomial, 
hence it is related to the more general study of the coefficients of Hilbert polynomials (see Hartshorne, 
1966 for a geometrical point of view, and Elias et al., 1996 in the context of local algebra).

In fact, not only does the h-vector encode a lot of information about the geometry of the curve; 
the arithmetic genus of the curve is also easily deduced from it (Hartshorne, 2010, Exercises 8.11 and 
8.12), (Migliore, 1998, Section 1.4). For an aCM projective scheme the h-vector is actually the Hilbert 
function of its Artinian reduction. This result is mainly due to the fundamental paper of Macaulay
(1926) characterizing the Hilbert functions of standard graded algebras.

We stress the fact that the work of Macaulay does not provide an algorithmic solution for the 
problem of deciding whether or not an aCM curve of degree d and genus g exists. This remark has 
been the starting point of our paper. By investigating the set of finite O-sequences of multiplicity d
and its properties we obtain our solution, both computational and theoretical, that relies on some 
closed formula considerably reducing the amount of real computations. We have not been able to 
find analogous results in literature.

As a first step, we provide a very natural combinatorial description of finite O-sequences, by means 
of suitable connected graphs, and we obtain an efficient search algorithm of the arithmetic genera of 
Cohen–Macaulay curves (see Algorithm 1 in Section 2).

Then, for every positive integer d, we denote by Rd = [
0, 

(d−1
2

)] ∩ N the set of integers to which 
the genus of a Cohen–Macaulay curve of degree d must belong, and we focus our attention on smaller 
ranges Rs

d , consisting of the genera of Cohen–Macaulay curves of degree d and h-vector of length s. 
By introducing a convenient total ordering on the set of O-sequences of multiplicity d and length s, 
we can single out each range Rs

d (see Corollary 2.10, Theorem 3.2, Proposition 3.4).
The integers in Rd that cannot be realized as genus of an aCM curve of degree d are called gaps. 

Many of them are located outside every range Rs
d , some others lie near the maximal genus in Rs

d , for 
values of s that can be exactly determined by suitable closed formulas (see Propositions 4.3 and 4.9).

Finally, we provide an algorithm to compute all the genera of aCM curves for a given degree d, 
avoiding to construct all the corresponding O-sequences (see Algorithm 2 in Section 5). The strat-
egy supporting this algorithm combines the previous results together with a sort of continuity in the 
generation of the genera of aCM curves developed in Lemma 5.1 and applied in Theorem 5.4. Experi-
mental computations point out that only a small percentage of integers of Rd needs to be checked by 
the search algorithm (see Tables 1 and 2).

In Section 6, we apply our search algorithm to detect the minimal possible Castelnuovo–Mumford 
regularity of a curve with Cohen–Macaulay postulation and given degree and genus (Proposition 6.1). 
Moreover, we answer to a question posed in Cioffi and Di Gennaro (2011) about the Castelnuovo–
Mumford regularity of even dimensional projective subschemes having the same Hilbert function of a 
Cohen–Macaulay projective scheme (Example 6.3).

1. Generalities on O-sequences and aCM genera

In this section, we state some notation and recall some basic results on O-sequences, referring to 
Bruns and Herzog (1993) and Valla (1998).

Given two positive integers a, t , the binomial expansion of a in base t is the unique writing

a = (k(t)
t

) + (k(t−1)
t−1

) + · · · + (k( j)
j

)
(1.1)

where k(t) > k(t − 1) > · · · > k( j) ≥ j ≥ 1 with the convention that 
(n

m

) = 0 whenever n < m and (n
0

) = 1 for every n ≥ 0. Letting



106 F. Cioffi et al. / Journal of Symbolic Computation 73 (2016) 104–119
a〈t〉 := (k(t)+1
t+1

) + (k(t−1)+1
t

) + · · · + (k( j)+1
j+1

)
,

by an easy computation, one gets (a + 1)〈t〉 > a〈t〉 . A numerical function h : N → N is admissible or an 
O-sequence if h(0) = 1 and h(t + 1) ≤ h(t)〈t〉 for every t ≥ 1.

If h is an admissible function and h(t) = 0 for some t , then h(t + i) = 0 for every i > 0, and h is 
called a finite or Artinian O-sequence. For a finite O-sequence (h0, . . . , hs−1) we assume hs−1 �= 0. The 
integer s is the length of the O-sequence and the integer e(h) := ∑s−1

i=0 hi is its multiplicity.
It is well known that there is a bijective correspondence between the set of finite O-sequences of 

multiplicity d and the set of Hilbert functions of a Cohen–Macaulay standard graded algebra of multi-
plicity d over a field K (Valla, 1998, Theorem 1.5). In fact, all these Hilbert functions can be computed 
from the finite O-sequences. In particular, if the graded algebra is the ring of regular functions on an 
aCM curve C (i.e. a closed subscheme C ⊂ P

n
K of dimension 1), the Hilbert function HC of C is the 

2-th integral of a finite O-sequences h = (h0, h1, . . . , hs−1), i.e. letting HC (0) := H Z (0) := h(0) = 1 and 
H Z (t) = H Z (t − 1) + h(t) for every t > 0, we have

HC (t) = HC (t − 1) + H Z (t), for every t > 0.

Hence, h is the so-called h-vector of C and the Hilbert polynomial of C is pC (z) = dz + 1 − g where, 
after an easy computation, we find that the arithmetic genus of C is

g = 1 + (s − 2)d − p(s − 2) =
s−1∑
j=2

( j − 1)h j ≥ 0. (1.2)

In this situation, we say that HC is an aCM function or a Cohen–Macaulay postulation, pC (z) is an aCM 
polynomial and g is an aCM genus.

Remark 1.1. The following facts are immediate remarks:

(i) the arithmetic genus of an aCM curve is non-negative;
(ii) every positive integer g is the genus of some aCM curve: it is enough to take any O-sequence 

(1, h1, g), with h〈1〉
1 ≥ g;

(iii) if g is the arithmetic genus of some aCM curve Cd of degree d, then there is also an aCM curve 
Cd+1 of degree d + 1 with the same arithmetic genus g; indeed, if h = (1, h1, h2, . . . , hs−1) is the 
h-vector of Cd , then the sequence h′ = (1, h1 + 1, h2, . . . , hs−1) is also an O-sequence and is the 
h-vector of a curve Cd+1 with Hilbert polynomial (d + 1)z + 1 − g . Indeed, the multiplicity of the 
O-sequence h′ is d + 1 and then we apply formula (1.2), in which the integer h1 does not occur. 
From a geometric point of view, this means that Cd+1 can be obtained as the union of Cd and a 
line through a point of Cd .

2. A combinatorial description of finite O-sequences

In this section, we consider a natural structure on the set of all finite O-sequences. This structure 
will entail both our search algorithm of the arithmetic genera of Cohen–Macaulay curves, and some 
useful information about the aCM genera, such as the existence of minimal genera corresponding to 
O-sequences with given length (and multiplicity).

We let ei denote any sequence, of any length, consisting entirely of 0 except 1 in the i-th position. 
Moreover, we introduce the following compact notation for some particular sequences:

(1α0 ,hα1
i1

,hα2
i2

, . . . ,hαk
ik

) := (1, . . . ,1︸ ︷︷ ︸
α0 times

,hi1 , . . . ,hi1︸ ︷︷ ︸
α1 times

, . . . ,hik , . . . ,hik︸ ︷︷ ︸
αk times

).

Definition 2.1. The O-sequences graph is the directed graph G such that:

• the set of vertices V (G) consists of the finite O-sequences;
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Fig. 1. The O-sequence graph G up to multiplicity 7. The dashed edges are edges of G that do not belong to the spanning 
tree T .

• the set of edges E(G) consists of the pairs (h, h′) ∈ V (G)2 s.t. h′ − h = ei for some i (i.e. (h, h′) ∈
E(G) if h′ can be obtained from h by increasing by 1 its i-th entry).

An edge (h, h′) ∈ E(G) from h to h′ is labeled by ei if h′ − h = ei .

Let us consider the map g : G → N that associates with each O-sequence the genus of an aCM 
curve having this O-sequence as h-vector.

Proposition 2.2. The O-sequences graph G is a rooted connected graph without loops. The root is the O-
sequence of multiplicity 1.

Proof. For any h = (1, h1, . . . , hs−1), the sequence h′ = h − es−1 is admissible so that there is an edge 
going from h′ to h. Repeating this procedure, we get the length one O-sequence (1) which cannot 
be the head of any edge, proving that G is connected. There are no loops as each edge increases the 
multiplicity by 1. �
Remark 2.3. Denoted by dG(h) the distance of the node h from the root, we have dG(h) = e(h) − 1.

We are going to define a subgraph T ⊂ G which will turn out to be a spanning tree. In this way, 
we can design ad hoc algorithms to visit the tree in order to quickly find the O-sequences with the 
properties we will look for. The idea for determining T is the one used in the proof of Proposition 2.2. 
For each node of G , we consider only the edge coming from the O-sequence obtained lowering by 
1 the value with the greatest index. Indeed, notice that each O-sequence h (of any length s) has a 
successor in T , as h + es is always a finite O-sequence, whereas the sequence h + es−1 might not be 
admissible.

Definition 2.4. We call O-sequences tree the subgraph T ⊂ G such that:

• V (T ) = V (G);

• E(T ) =
{
(h,h′) ∈ E(G)

∣∣ h′ = h + es or h′ = h + es−1, if h〈s−2〉
s−2 > hs−1

}
.
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Fig. 2. The subgraphs Gs of the O-sequence graph with given length s. Along the grey dotted edges the length increases, so 
such edges of G do not belong to any subgraph Gs . The dashed edges are edges of Gs that do not belong to the corresponding 
spanning tree T s .

In most situations, we will work with O-sequences with given multiplicity (i.e. with nodes of G
at the same distance from the root) or with given length (see Fig. 2). We denote by Gd the set of 
O-sequences of multiplicity d and by Gs the set of O-sequences of length s.

Remark 2.5. As in the spanning tree T each vertex is the tail of at most 2 edges, we have that 
|Gd| < 2|Gd−1|. Moreover, since |G2| = 1, by recursion |Gd| < 2d−2.

Proposition 2.6. The subgraph Gs ⊂ G is a rooted connected graph with root (1s) containing a spanning tree 
T s with the same root (see Fig. 2).

Proof. We need to show that, for any O-sequence h �= (1s) of length s, there exists another O-
sequence of the same length with multiplicity e(h) − 1. If k = max{1 ≤ i ≤ s − 1 | hi > 1}, then 
h = (1, h1, . . . , hk, 1s−k−1) and h′ = (1, h1, . . . , hk − 1, 1s−k−1) is admissible. �
Remark 2.7. Denoted by ds

G(h) the distance of the node h from the root of Gs , we have ds
G(h) =

dG(h) − (s − 1) = e(h) − s.

Gd is not a subgraph of G , as there are no edges of G between O-sequences with the same multi-
plicity. But the edges of G induce the following natural partial order on Gd .

Definition 2.8. Two O-sequences h1 and h2 in Gd are directly comparable if there exists h0 ∈ Gd−1 such 
that h1 = h0 + ei and h2 = h0 + e j , i.e. h1 − h2 = ei − e j . On directly comparable O-sequences we 
consider the order

h1 ≺ h2 ⇐⇒ i < j (2.1)

and denote by ≺ also its transitive closure in Gd .
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Fig. 3. The order relations among directly comparable elements of Gd , d = 1, . . . ,7.

The partial order ≺ gives a natural structure of directed graph to Gd . The edges are all the possible 
pairs (h, h′) ∈ V (Gd)

2 such that h = h′ + e j − ei and j > i (see Fig. 3). As before, we define a spanning 
tree of the graph structure of Gd which allows us to efficiently examine the set of O-sequences with 
given multiplicity. The same procedure is also extended to the set of O-sequences Gs

d with given 
multiplicity d and length s (see Fig. 4). Moreover, we let

hs(d) := (1,d − s + 1,1s−2) and gs(d) := g(hs(d)) = (s−1
2

)
. (2.2)

Proposition 2.9.

(i) The graph Gd contains a spanning tree Td with root the O-sequence (1, d − 1).
(ii) The subgraph Gs

d contains a spanning tree T s
d with root the O-sequence hs(d). Thus, Gs

d is also connected.

Proof. (i) For each vertex h ∈ Gd \ {(1, d − 1)}, the spanning tree Td contains the edge es−1 − e1 going 
from h′ = h − es−1 + e1 to h, where s is the length of h.

(ii) For each vertex h = (1, h1, . . . , hi, 1d−∑i
j=0 h j ) ∈ Gs

d \{(1, d − s +1, 1s−2)} (i.e. i > 1), the spanning 
tree T s

d contains the edge ei − e1 going from h′ = h − ei + e1 to h. �
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Fig. 4. Graph descriptions of O-sequences with given multiplicity and length.

Algorithm 1 The algorithm for searching aCM genera with given constraints on the multiplicity and 
the length of the O-sequences. A trial version of this algorithm is available at http://www.paololella.it/
HSC/Finite_O-sequences_and_ACM_genus.html.

1: procedure genusSearch(g, ̃T )
Input: g , a non-negative integer.

T̃ , a spanning tree chosen among T , Td , T s and T s
d .

Output: an O-sequence h such that g(h) = g (if it exists).
2: stack := {root(T̃ )};
3: while stack �= ∅ do
4: h := removeFirst(stack);
5: if g(h) = g then return h;
6: else if g(h) < g then
7: addFirst(stack, children(h, ̃T ));
8: end if
9: end while

10: end procedure

Corollary 2.10. The order induced on Gd by the total order on N through the map g : Gd → N is a refinement of 
the partial order ≺. In particular, hs(d) = min(Gs

d) with respect to ≺, gs(d) is the minimal genus corresponding 
to an O-sequence of length s and multiplicity d and it does not depend on d.

Proof. If h1 − h2 = ei − e j , then g(h1) = g(h2) + (i − 1) − ( j − 1) = g(h2) + i − j, by formula (1.2). 
Hence, we obtain

h1 ≺ h2 ⇐⇒ i < j �⇒ g(h1) < g(h2)

and the assertion about the minimum follows by Proposition 2.9. �
As the minimal genus gs(d) does not depend on the value of d, from now on we will simply denote 

it by gs .

http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
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Now, we can state the strategy of a general algorithm for searching aCM genera. We choose the 
set of O-sequences corresponding to the considered constraints on multiplicity and length and, more 
precisely, the associated spanning tree T̃ . Then, we perform a depth-first search on the tree using a 
LIFO (Last In First Out) procedure of visit of the vertices. Assume that, at some moment in the search, 
we stored in a list (resp. a stack) the vertices whose existence we know, having visited their parents, 
but that we have not yet visited. We visit the first vertex h in the list (resp. the top of the stack). 
There are three possible alternative actions:

a. if g(h) is equal to the genus we are looking for, then we end the visit returning the O-sequence h;
b. if g(h) is greater than the genus we are looking for, then we can avoid to visit the tree of descen-

dants of h, as the genus increases along the edges (Proposition 2.2 and Corollary 2.10);
c. if g(h) is smaller than the genus we are looking for, then we need to visit the tree of descendants 

of h, so we add the children of h in the tree T̃ at the beginning of the list (resp. at the top of the 
stack) containing the vertices still to be visited.

3. Combinatorial ranges

From now on, we assume d > 2, as Gd has only one element for d ∈ {1, 2}.
For convenience, we let Gd (resp. Gs

d) be the set of all the arithmetic genera of the aCM curves of 
degree d (resp. of degree d with h-vector of length s), i.e. Gd := {g(h) | h ∈ Gd} (resp. Gs

d := {g(h) | h ∈
Gs

d}).

Looking at the graph Gd , we immediately can observe the well known fact that Gd ⊆ {
0, . . . , 

(d−1
2

)}
(see Hartshorne, 1994, Theorem 3.1). Denoting by [a, b] the set of integers {n ∈ N | a ≤ n ≤ b}, we let 
Rd := [

0, 
(d−1

2

)]
. In the range Rd we single out smaller suitable ranges, taking into account also the 

length of the O-sequences.
Recall that, by the partial order ≺ introduced in Definition 2.8 and by Corollary 2.10, we have 

min(Gs
d) = g(min(Gs

d)) = gs = (s−1
2

)
, thus gs < gs+1 and gs+1 − gs = s − 1. In order to obtain an analo-

gous result about a maximum, we extend the partial order ≺ to the following total order on Gs
d .

Definition 3.1. Given two O-sequences h = (1, h1, . . . , hs−1) and h′ = (1, h′
1, . . . , h

′
s−1) of Gs

d , we denote 
by < the total order on Gs

d such that h < h′ if h� < h′
� , where � := max{ j : h j �= h′

j}.

Although the usual order on N does not induce on Gs
d the total order < (see Example 3.3), we 

notice that min≺(Gs
d) = min(Gs

d) with respect to <. Furthermore, we can consider also max(Gs
d) with 

respect to < and obtain the following non-obvious result.

Theorem 3.2. Let h = (1, h1, . . . , hs−1) and k = (1, k1, . . . , ks−1) be two O-sequences of Gs
d. If k < h and 

g(k) > g(h), then there is an O-sequence h̄ ∈ Gs
d such that h̄ > h and g(h̄) > g(k). Thus, max(Gs

d) =
g(max(Gs

d)).

Proof. We can assume s − 1 = max{ j : h j �= k j}, hence hs−1 > ks−1 because h > k. By the hypotheses, 
we have

g(h) =
s−2∑

j

( j − 1)h j + (s − 2)hs−1 <

s−2∑
j

( j − 1)k j + (s − 2)ks−1 = g(k)

which implies there exists the integer t := max{ j ∈ {2, . . . , s − 2} : h j < k j} and so

(1, h1, . . . , ht, ht+1, . . . , hs−2, hs−1)

∧ � � ∨
(1, k1, . . . , kt, kt+1, . . . , ks−2, ks−1) (3.1)

that is
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{ht < kt,

hi ≥ ki, t + 1 ≤ i ≤ s − 2,

hs−1 > ks−1.

Note that k〈t〉
t ≥ h〈t〉

t ≥ ht+1 ≥ kt+1. Hence, we can consider the O-sequence h′ := k −bet +∑s−1
j=t+1 c je j , 

where

b = min

⎧⎨⎩kt − ht,

s−1∑
j=t+1

h j − k j

⎫⎬⎭ and c j = min

⎧⎨⎩h j − k j,b −
j−1∑

i=t+1

ci

⎫⎬⎭
and h′

j ≤ h j for every j > t .
The corresponding genus of h′ is

g(h′) = g(k) − (t − 1)b +
s−1∑

j=t+1

( j − 1)c j > g(k) > g(h).

If needed, replacing the O-sequence k by h′ and repeating the same argument as before, we obtain 
an O-sequence h′ with h′

j = h j for every j > t and g(h′) > g(h). If h′ < h, we can repeat the same 
argument as before until we obtain an O-sequence h̄ with h̄ j = h j for every j > t and h̄t ≥ ht + 1. �
Example 3.3. (a) Consider the two O-sequences h = (1, 6, 4, 2, 1) and k = (1, 4, 7, 1, 1) of G5

14. We have 
h > k and 11 = g(h) < g(k) = 12 as in the hypotheses of Theorem 3.2. In this case, we obtain t = 2, 
b = min{3, 1} = 1, c3 = min{1, 3} = 1 and c4 = min{0, 2} = 0, so that h̄ = k − e2 + e3 = (1, 4, 6, 2, 1)

with genus g(h̄) = 13 > g(k) and h̄ > h.
(b) Consider the two O-sequences h = (1, 13, 3, 3, 3) and k = (1, 6, 13, 2, 1) of G5

23. We have h > k
and 18 = g(h) < g(k) = 20. Applying Theorem 3.2, as t = 2, b = min{10, 3} = 3, c3 = min{1, 10} = 1
and c4 = min{2, 9} = 2, we determine h̄ = k − 3e2 + e3 + 2e4 = (1, 6, 10, 3, 3) > h and g(h̄) = 18 + 2 +
3 = 21 > g(k).

Looking again at the graph Gs , we can find a way to detect g(max(Gs
d)). We first note that, if d < s, 

then Gs
d is empty and if d = s, then we have a unique O-sequence (1s) corresponding to a plane curve 

of degree s, i.e. with genus 
(s−1

2

)
. For d = s + 1 we have the unique O-sequence (1, 2, 1s−2), obtained 

from (1s) by increasing h1 by 1 and corresponding to a curve of degree s + 1 and genus 
(s−1

2

)
. In the 

other cases, we deduce max(Gs
d) assuming to know the O-sequence h = max(Gs

d−1) and consequently 
the genus g(h) = ∑s−1

j=2 h j( j − 1) = max(Gs
d−1) (Theorem 3.2). Next result shows how to find max(Gs

d)

and then g(max(Gs
d)).

Proposition 3.4. Given any d > s ≥ 3, let h = max(Gs
d−1). If ı is the highest index such that h + eı is an 

O-sequence in Gs
d, then max(Gs

d) = h + eı and g(max(Gs
d)) = g(max(Gs

d−1)) + ı − 1.

Proof. By the assumption, we have hı < h〈ı−1〉
ı−1 , so that hı + 1 ≤ h〈ı−1〉

ı−1 and hı+r = h〈ı+r−1〉
ı+r−1 , for every 

1 ≤ r ≤ s − 1 − ı , that is:

h = (1, . . . ,hı ,h〈ı〉
ı ,h〈ı+1〉

ı+1 , . . . ,h〈s−2〉
s−2 )

and

h + eı = (1, . . . ,hı + 1,h〈ı〉
ı ,h〈ı+1〉

ı+1 , . . . ,h〈s−2〉
s−2 ).

For every h′ ∈ Gs
d−1 \ {h}, consider the integer � := max{ j : h j �= h′

j}. Then, we have h′
� < h� and h′

�+r =
h�+r , for every 1 ≤ r ≤ s − 1 − �, because h = max(Gs

d−1). Note that we have � < ı , otherwise h′
� < h�

would imply h′
�+1 ≤ h′〈�〉

� < h〈�〉
� = h�+1, against the definition of �. Therefore,
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Fig. 5. The ranges R4
d for d = 4, . . . , 10. In the picture, the edges on the left are labeled with the corresponding increase of the 

genus.

h′ = (1, . . . ,h′
�, . . . ,hı ,h〈ı〉

ı , . . . ,h〈s−2〉
s−2 ).

If there were an O-sequence h′ ∈ Gs
d−1 such that h′ + eλ > h + eı for some index λ such that 

h′ + eλ ∈ Gs
d , then ı < λ. We have seen that h and h′ certainly have equal entries for indices greater 

than or equal to ı and hı + 1 > hı = h′
ı . But, for indices j > ı , the value h′

j = h j = h〈 j−1〉
j−1 cannot 

be increased by the definition of O-sequences. Thus, we obtain max(Gs
d) = h + eı . The last assertion 

follows by Theorem 3.2 and formula (1.2). �
For every d > 2 and s ∈ {� d

2 � + 1, . . . , d}, we let

hs(d) := (1,2d−s,12s−d−1) and gs(d) := g(hs(d)) = (s−1
2

) + (d−s
2

)
. (3.2)

Then, we have: max(Gs
d) = hs(d), gd = (d−1

2

) = gd(d) and gd−1 = (d−2
2

) = gd−1(d).

Remark 3.5. Another description of the maximal genus of a range Rs
d could be set in terms of min-

imal Hilbert functions with a constant Hilbert polynomial and a given regularity (see Roberts, 1982, 
Examples 4.6 and 4.8 and Cioffi et al., in press). By the way, the combinatorial description we provide 
here arises in a very natural way and gives more information, at least from a computational point of 
view.

The previous results together with those of Sections 2 suggest to consider the following smaller 
ranges in Rd .

Definition 3.6. For every d ≥ s ≥ 2, the set of integers between gs and max(Gs
d) is called (d, s)-range

and denoted by Rs
d (see Fig. 5), i.e. Rs

d :=
{
α ∈ N | (s−1

2

) = gs ≤ α ≤ max(Gs
d)

}
.

Corollary 3.7. For every d ≥ s ≥ 2, the arithmetic genus of an aCM curve of degree d having h-vector of length s
belongs to the range Rs

d.

Proof. The statement follows by Corollary 2.10, Theorem 3.2 and Proposition 3.4. �
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4. Unattainable aCM genera in Rd

Recall that we are denoting by Rd the range 
[
0, 

(d−1
2

)]
and that Gd ⊆ Rd .

Definition 4.1. An integer in Rd \ Gd is called a gap in Rd .

Example 4.2. The integers in the range 
[(d−2

2

) + 1, 
(d−1

2

) − 1
]

are gaps in Rd . More generally, every 
integer of Rd not contained in any (d, s)-range is a gap.

Next result allows us to characterize the consecutive (d, s)-ranges that are separated, i.e. ranges Rs
d

and Rs+1
d such that gs+1 − max(Gs

d) > 1.

Proposition 4.3. For any d > 2, we have

max(Gs
d) < gs+1 − 1 ⇐⇒ 2d + 1 − √

8d − 15

2
< s ≤ d − 1.

Thus, the integers in [max(Gs
d) + 1, gs+1 − 1] are gaps in Rd, for 2d+1−√

8d−15
2 < s ≤ d − 1.

Proof. For s ≥
⌊

d
2

⌋
+ 1, by (3.2) we have:

gs(d) < gs+1 − 1 ⇐⇒ (s−1
2

) + (d−s
2

)
<

(s
2

) − 1.

Hence

gs(d) − gs+1 + 1 = s2−(2d+1)s+d2−d+4
2 < 0 ⇒ 2d+1−√

8d−15
2 < s < 2d+1+√

8d−15
2 ,

and thus gs(d) < gs+1 − 1 if and only if 2d+1−√
8d−15

2 < s ≤ d − 1, because 2d+1−√
8d−15

2 >
⌊

d
2

⌋
, 

2d+1+√
8d−15

2 > d − 1 and 2d+1−√
8d−15

2 > d − 1 implies d < 3.
To prove that there are no other pairs of separated ranges, we notice that gs(d) ≥ gs+1 − 1 im-

plies gs−1(d) ≥ gs − 1, for every s. Indeed, as gs = gs+1 − (s − 1) and gs(d) ≤ gs−1(d) + (s − 2) by 
Proposition 3.4, we have

gs−1(d) − gs + 1 ≥ gs(d) − (s − 2) − gs+1 + (s − 1) + 1 > gs(d) − gs+1 + 1 ≥ 0. �
Example 4.4. For every d ≤ 11, the gaps in Rd are only those described in Proposition 4.3. For d = 12, 
in addition to the gaps described in Proposition 4.3, we find by direct computation a unique further 
gap ḡ = 26, belonging only to the range R8

12 = [21, 28].

Example 4.5. By a direct computation of the finite admissible O-sequences, we note that for d = 15
the integer ḡ = 25 belongs to the ranges R6

15 and R5
15. Nevertheless, whereas for each h ∈ R5

15 we 
have g(h) �= 25, there is h = (1, 3, 3, 4, 2, 2) ∈ R6

15 such that g(h) = 25.

Example 4.5 suggests the following definition.

Definition 4.6. An integer in the range Rs
d is called a hole of the range Rs

d if it is not the arithmetic 
genus of an aCM curve C of degree d with h-vector of length s.

Remark 4.7. Not every hole is a gap. For instance, Example 4.5 tells us that the integer 25 is not a 
gap in R15, although it is a hole of R5

15. While Example 4.4 attests that the hole 26 of R8
12 is actually 

a gap in R12.
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Notice that for s = d − 1, d − 2, d − 3 there are no holes in Rs
d . Now, we detect some values of d

and s for which in the ranges Rs
d there exist certain special gaps and we point out some particular 

holes which are also gaps, belonging to parts of different (d, s)-ranges not overlapping each other.

Lemma 4.8. For every d and s such that 7 ≤
⌊

d
2

⌋
+ 1 ≤ s ≤ d − 4, the integers gs(d) − (d − s − 3), . . . ,

gs(d) − 1 are holes in the range Rs
d.

Proof. As we saw in (3.2), the maximal genus gs(d) in Rs
d arises from the O-sequence hs(d) =

(1, 2d−s, 12s−d−1). In the graph Gs
d , the only edges involving this vertex are ed−2 − e1 and ed−s − e2. 

Hence, by Corollary 2.10, for each h ∈ Gs
d \ {hs(d)}

g(h) ≤ max
{

g
(
hs(d) − (ed−s − e1)

)
, g

(
hs(d) − (ed−s − e2)

)}
= max {gs(d) − (d − s − 1),gs(d) − (d − s − 2)} = gs(d) − (d − s − 2). �

All the holes described in the previous lemma are surely gaps if we consider s > 2d+1−√
8d−15

2 as 
in Proposition 4.3. Indeed, is such cases these holes do not belong to any other range.

Proposition 4.9. In the hypotheses of Lemma 4.8, for every i = 1, . . . , d − s − 3, the hole gs(d) − i is a gap if 
s − 1 − (d−s

2

) + i > 0. More precisely,

(i) the highest hole gd−4(d) − 1 = d(d−11)
2 + 20 is always a gap;

(ii) every hole described in Lemma 4.8 is a gap if s > 2d−1−√
8d−31

2 .

Proof. The hole gs(d) − i is a gap if gs(d) − i < gs+1, i.e.
(s

2

) − (s−1
2

) − (d−s
2

) + i = s − 1 − (d−s
2

) + i > 0. 
The proof of (i) and (ii) is a direct computation. �
Example 4.10. By Proposition 4.9, we find the following gaps in R28: the gap 258 belonging only to 
the range R24

d , 240 and 239 belonging only to R23
d , 224, 223 and 222 belonging only to R22

d and 207, 
208 and 209 belonging to R21

28. Anyway, by a direct computation we find also the gap 188, actually 
the minimal one in R28.

5. Computation of the aCM genera for curves of degree d

Proposition 4.9 gives a characterization of the gaps in Rd belonging to the last part of a (d, s)-range. 
We did not find analogous conditions for gaps belonging to the first part of a (d, s)-range. In particular, 
it seems hard to give a characterization of the minimal gap. Hence, we will look for an algorithmic 
method to recognize the gaps in Rd , avoiding to construct all the finite O-sequences of multiplicity d
thanks to a sort of continuity in the generation of the arithmetic genera. Denote by Gd + a the set of 
all arithmetic genera of the aCM curves of degree d augmented by a non-negative integer a.

Lemma 5.1. Gd ⊇
d−1⋃
j=1

(
G j + (d− j

2

))
.

Proof. Let (1, h1, . . . , hs−1) be an O-sequence of multiplicity j < d corresponding to an aCM 
genus g . Assuming h〈i〉

i > hi+1, for some i ∈ {1, . . . , s − 2}, we can consider the finite O-sequence 
(1, h1, . . . , hi+1 + 1, . . . , hs−1) of multiplicity j + 1, corresponding to the genus g + i. Then, we can 
take also the finite O-sequence (1, h1, . . . , hi+1 + 1, hi+2 + 1, . . . , hs−1) of multiplicity j + 2, corre-
sponding to the genus g + i + (i + 1), and so on. Performing this construction from i = 1 until d − j, 
we reach the desired conclusion. �
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Remark 5.2. By the proof of Lemma 5.1, we can observe that the arithmetic genera determined by the 
O-sequences (1, h1, . . . , hs−1) with hi ≥ hi+1, for every 0 < i < s − 1, are included in those detected by 
Lemma 5.1. For example, we have:

G1 = G2 = {0}, G3 = G2 ∪ (G1 + 1) = {0,1},
G4 = G3 ∪ (G2 + 1) ∪ (G1 + 3) = {0,1,3},
G5 = G4 ∪ (G3 + 1) ∪ (G2 + 3) ∪ (G1 + 6) = {0,1,2,3,6},
G6 = G5 ∪ (G4 + 1) ∪ (G3 + 3) ∪ (G2 + 6) ∪ (G1 + 10) = {0,1,2,3,4,6,10},
G7 ⊃ G6 ∪ (G5 + 1) ∪ (G4 + 3) ∪ (G3 + 6) ∪ (G2 + 10) ∪ (G1 + 15) = {0,1,2,3,4,6,7,10,15}.

Note that for the multiplicity d = 7, we lose the arithmetic genus g = 5 which corresponds to the 
finite O-sequence (1, 2, 3, 1).

Now, we exploit Lemma 5.1 obtaining large sets of aCM genera. To this aim, we define an increas-
ing sequence {md}d≥1 by the following procedure:

if d = 1 then
m1 := 0;

else
M := md−1;
for k = 2, . . . , d − 1 do

if
(k

2

) − 1 ≤ M then

M = max{M, md−k + (k
2

)};
end if

end for
md := M;

end if

Example 5.3. In the following table, we list the values of the sequence {md}d≥1 and compare them 
with the values of g� d

2 �+2, for 1 ≤ d ≤ 45:

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

md 0 0 1 1 3 4 4 7 11 13 18 19 19 25 32

g� d
2 �+2 1 1 3 3 6 6 10 10 15 15 21 21 28 28 36

d 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

md 40 43 52 62 73 85 89 102 116 118 133 149 166 184 203

g� d
2 �+2 36 45 45 55 55 66 66 78 78 91 91 105 105 120 120

d 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

md 208 228 229 229 250 272 295 319 344 370 376 403 431 460 490

g� d
2 �+2 136 136 153 153 171 171 190 190 210 210 231 231 253 253 271

Theorem 5.4 (Continuity). For all d ≥ 1, every integer in {0, . . . , md} is the arithmetic genus of an aCM curve 
of degree d, i.e. {0, . . . , md} ⊆ Gd, and md ≥ g� d

2 �+2 , for every d ≥ 18.

Proof. The first statement holds by Lemma 5.1 and by the definition of md . For the second affirmation, 
note that it is enough to consider odd degrees d. For 18 ≤ d ≤ 36, see the tables of Example 5.3. If 
d ≥ 37, let s := � d

2 � + 2. By construction and by induction, we know that md ≥ md−1 ≥ g� d−1
2 �+2 =(s−2

2

)
. Hence, by the definition of md we get
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Algorithm 2 The algorithm for determining the aCM genera of curves with a given degree. A trial 
version of this algorithm is available at http :/ /www.paololella .it /HSC /Finite _O-sequences _and _ACM _
genus .html.

1: procedure ACMgenera(d)
Input: d, a positive integer.
Output: the list of all possible aCM genera of a curve of degree d.

2: genera := {genera determined applying recursively Lemma 5.1};
3: gaps := {gaps determined applying Proposition 4.3 and Proposition 4.9};

4: undecided :=
{

0, . . . ,
(d−1

2

)} \ (
genera ∪ gaps

)
;

5: for s = 2, . . . , d − 3 do
6: g := min(undecided);
7: while g ≤ upperBound(Rs

d) do
8: if g < lowerBound(Rs

d) then
9: remove(g, undecided);

10: gaps = gaps ∪ {g};
11: else
12: searching := genusSearch(g, T s

d );
13: if searching �= ∅ then
14: remove(g, undecided);
15: genera = genera ∪ {g};
16: end if
17: end if
18: g = next(g, undecided);
19: end while
20: end for
21: return genera;
22: end procedure

md ≥ max
{

md−1,md−(s−2) + (s−2
2

)}
.

Being d odd, we have d − (s − 2) = d − � d
2 � = � d

2 � − 1 = s − 3 ≥ 18. Thus, by induction we obtain 

md ≥ (� s−3
2 �+1

2

) + (s−2
2

)
, because md−(s−2) = m� d

2 �−1 = ms−3 ≥ g� s−3
2 �+2.

Note that 
(� s−3

2 �+1
2

) + (s−2
2

) ≥ (s−1
2

)
if 

(� s−3
2 �+1

2

) ≥ s − 2, that is true for every s ≥ 10. �
Theorem 5.4 gives a lower bound for the value assumed by md , for every d ≥ 18. Anyway, we 

can obtain more information by a full application of Lemma 5.1 which, together with the algorithm
genusSearch (see Algorithm 1), provides an algorithm to compute all the arithmetic genera of the 
aCM curves of degree d, avoiding to construct all the finite O-sequences. The strategy consists of the 
following steps:

Step 1 by Lemma 5.1, we determine recursively the set of integers G̃d ⊂ Rd that are certainly aCM 
genera. Let G̃1 = {0}, we have G̃d = ⋃

i G̃ i + (d−i
2

)
;

Step 2 by results in Section 4 we determine all the integers of Rd that are certainly gaps;
Step 3 using algorithm genusSearch (Algorithm 1) we investigate the remaining integers.

6. An application: Castelnuovo–Mumford regularity of curves with Cohen–Macaulay postulation

In this section, we show how the search algorithm of aCM genera (Algorithm 1) allows us to 
detect the minimal Castelnuovo–Mumford regularity maCM

d,g of a curve with Cohen–Macaulay postu-
lation, given its degree d and genus g . Moreover, by Example 6.3 we give a negative answer to a 
question posed in Cioffi and Di Gennaro (2011, Remark 2.5). A complete solution to the problem of 

http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
http://www.paololella.it/HSC/Finite_O-sequences_and_ACM_genus.html
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Table 1
In this table, we report some numerical information about the integers in Gd up to degree 250. The first column contains 
the number and the percentage of values in Rd which are aCM genera by an application of Lemma 5.1 (without computing 
the O-sequences); in the second column, the number and the percentage of gaps determined applying Proposition 4.3 and 
Proposition 4.9; in the third column, the number and the percentage of values of Rd for which we have to use the procedure
genusSearch to decide whether they are aCM genera; in the last column, the cardinality of Gd and its percentage with respect 
to |Rd|.

d Certain genera Certain gaps Undecided values |Gd|
25 176 (63.77%) 88 (31.88%) 13 (4.71%) 187 (67.75%)

50 835 (71.00%) 289 (24.57%) 53 (4.51%) 870 (73.98%)

75 2033 (75.27%) 558 (20.66%) 111 (4.11%) 2099 (77.71%)

100 3798 (78.29%) 879 (18.12%) 175 (3.61%) 3894 (80.27%)

125 6129 (80.37%) 1244 (16.31%) 254 (3.33%) 6261 (82.10%)

150 9040 (81.99%) 1653 (14.99%) 334 (3.02%) 9207 (83.50%)

175 12 528 (83.24%) 2094 (13.91%) 430 (2.86%) 12 734 (84.61%)

200 16 610 (84.31%) 2574 (13.07%) 518 (2.63%) 16 854 (85.55%)

225 21 276 (85.19%) 3084 (12.35%) 617 (2.47%) 21 560 (86.32%)

250 26 530 (85.92%) 3623 (11.73%) 724 (2.34%) 26 856 (86.98%)

Table 2
In this table, we report the results of a test of Algorithm 2 up to degree 250. The first three columns contain the elapsed time 
(in milliseconds) for Step 1, Step 2 and Step 3 of Algorithm 2. In the fourth column, there is the total time for the execution 
(Step 1 + Step 2 + Step 3). The last column contains the time required for determining the set Gd by performing a complete 
visit of the tree Td (even for d = 75, we obtain an Out Of Memory Error). The algorithms are implemented in the Java
language and have been run on a MacBook Pro with an Intel Core 2 Duo 2.4 GHz processor.

d Step 1 Step 2 Step 3 Algorithm 2 Visit Td

25 37.336 ms 0.164 ms 38.594 ms 76.094 ms 210.769 ms
50 82.774 ms 0.208 ms 212.868 ms 295.850 ms 15 155.87 ms
75 21.734 ms 0.155 ms 458.117 ms 480.006 ms O.O.M.

100 47.529 ms 0.103 ms 1390.027 ms 1437.659 ms O.O.M.
125 104.683 ms 0.279 ms 4684.598 ms 4789.56 ms O.O.M.
150 207.936 ms 0.183 ms 12 610.461 ms 12 818.58 ms O.O.M.
175 546.818 ms 0.227 ms 37 518.036 ms 38 065.081 ms O.O.M.
200 665.378 ms 0.364 ms 73 552.564 ms 74 218.306 ms O.O.M.
225 922.599 ms 0.36 ms 169 042.878 ms 169 965.837 ms O.O.M.
250 1395.378 ms 0.179 ms 359 836.564 ms 361 232.121 ms O.O.M.

detecting the minimal Castelnuovo–Mumford regularity of a scheme with a given Hilbert polynomial 
is described in Cioffi et al. (in press).

Denoting by ρ the regularity of a Hilbert function, i.e. the minimal degree from which the Hilbert 
function and the Hilbert polynomial coincide, we can state the following:

Proposition 6.1.

maCM
d,g = min

{
ρ

∣∣∣∣∣ ρ is the regularity of an aCM postulation
with Hilbert polynomial dt + 1 − g

}
+ 2

Proof. Let f be an aCM postulation with Hilbert polynomial dt + 1 − g and regularity ρ . Then, the 
minimal possible Castelnuovo–Mumford regularity of a curve with Hilbert function f is ρ + 2. As a 
matter of fact, by Cioffi and Di Gennaro (2011, Proposition 2.4) this regularity is strictly greater than 
ρ + 1 and if the curve is aCM, it is exactly ρ + 2. �

By Proposition 6.1, the value of maCM
d,g is determined by applying Algorithm 1 in order to find an 

O-sequence h of multiplicity d and g(h) = g with the shortest possible length. Notice that if the length 
of h is s, then the regularity of �2h is s − 2. Thus, we can rewrite the statement in Proposition 6.1 as
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maCM
d,g = min

{
s

∣∣∣∣∣ s is the length of an O-sequence h
with multiplicity d and g(h) = g

}
.

Example 6.2. Let us consider the curves of degree d = 15 and genus g = 32. There are four O-
sequences of multiplicity d corresponding to aCM curves of genus g:

h1 = (1,4,3,2,1,1,1,1,1), h3 = (1,2,3,4,2,1,1,1),

h2 = (1,3,3,2,2,2,1,1), h4 = (1,3,5,1,1,1,1,1,1).

Hence, the minimal Castelnuovo–Mumford regularity maCM
d,g is 8. Applying the results of Cioffi et al.

(in press) (see http :/ /www.paololella .it /HSC /Minimal _Hilbert _Functions _and _CM _regularity.html), we 
notice that the minimal Castelnuovo–Mumford regularity of any projective scheme with Hilbert poly-
nomial p(t) = 15t − 31 is 7.

More generally, in the case of an aCM function f with regularity ρ and Hilbert polynomial with 
odd degree, we have that the minimal possible Castelnuovo–Mumford regularity of a scheme X with 
H X = f is strictly greater than ρ + 1 (see Cioffi and Di Gennaro, 2011, Proposition 2.4). If the degree 
of the Hilbert polynomial is even, an analogous result does not hold, as the following example shows.

Example 6.3. The following strongly-stable ideal

I = (x2
6, x5x6, x2

5, x4x5, x3x5, x2x5, x1x5, x2
4x6, x3x4x6, x2x4x6, x1x4x6, x2

3x6, x2x3x6,

x1x3x6, x3
2x6, x1x2

2x6, x2
1x2x6, x4

4, x3x3
4, x2x3

4, x4
1x6, x3

3x2
4, x4

3x4, x5
3) ⊂ K [x0, . . . , x6],

where x0 < x1 < · · · < x6, defines a non-aCM surface X ⊂ P
6 with the aCM postulation H X =

(1, 7, 21, 44, . . . , 6t2 − 10t + 21, . . .) of regularity ρ = 4 and the Castelnuovo–Mumford regularity of X
is 5 = ρ + 1.
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