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Abstract—The phase of signals backscattered by Ultra High
Frequency (UHF) Radio Frequency Identification (RFID) tags
is generally more insensitive to multipath propagation than
Received Signal Strength Indicator (RSSI). However, signal phase
measurements are inherently ambiguous and could be further
affected by unknown phase offsets added by the transponders.
As a result, the localisation of an agent by using only signal
phase measurements looks infeasible. In this paper, it is shown
instead that the design of a dynamic position estimator (e.g.
a Kalman filter) based only on signal phase measurement
is actually possible. To this end, the necessary conditions
to ensure theoretical local nonlinear observability are firstly
demonstrated. However, a system that is locally observable
guarantees convergence of the localisation algorithm only if the
actual initial agent position is approximately known a priori.
Therefore, the second part of the analysis covers the global
observability, which ensures convergence starting from any initial
condition in the state space. It is important to emphasise that
complete observability holds only in theory. In fact, measurement
uncertainty may greatly affect position estimation convergence.
The validity of the analysis and the practicality of this localisation
approach are further confirmed by numerical simulations based
on an Unscented Kalman Filter (UKF).

Keywords—UHF-RFID, indoor localisation, RFID phase-based
localisation, estimation algorithms, observability analysis.

I. INTRODUCTION

Indoor localisation is currently regarded as an enabling
service for a variety of ICT applications. The set of possible
indoor localisation techniques is really wide, as it includes
solutions for both people and robot tracking in public
environments or in industrial scenarios [1]-[3]. Boosted by
these increasing application domains, several methods and
sensing technologies were proposed for indoor localisation.
In many applications, a given target positioning uncertainty
has to be guaranteed with a high level of confidence [4],
[5]. This result can be achieved by using anchor nodes or
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landmarks providing the moving agent with sporadic, but
accurate information on position and/or orientation in a given
reference frame. The most common technologies for indoor
localisation rely on the Received Signal Strength Indicator
of radio frequency (RF) (especially WiFi or Bluetooth)
signals [6], [7], or on the Time-of-Flight (ToF) measurement
of Ultra WideBand (UWB) [8]-[12], optical [13], [14] or
ultrasonic signals [15]. An overview and a classification of
the existing wireless indoor positioning solutions can be found
in [16], [17]. Alternatively, in the case of robots, Laser Imaging
Detection and Ranging (LiDAR) techniques can be effectively
used [18].

Among the various radio frequency technologies proposed
for indoor localisation, the use of RF IDentification (RFID)
systems based on passive tags is particularly interesting
due to their low cost and to their easy deployment [19]-
[23]. When one or more tags, with known coordinates in
a given reference frame, are detected by the RFID reader
placed on the agent (e.g., a robot), the agent position can
be estimated through dynamic estimation algorithms based
on sensor fusion such as Kalman or particle filters. Beyond
the tag detection data [24], the amplitude of the signals
backscattered by multiple tags and received by te RFID
reader (Received Signal Strength Indicator — RSSI) can be
employed to estimate the agent position through multilateration
or k—nearest neighbour algorithms, once the distance from the
detected reference tags is measured [25]-[27]. Unfortunately,
the distance data based on RSSI measurements are strongly
affected by the multipath propagation and a reliable path
loss model is difficult to derive, especially in scenarios
affected by frequent changes. On the contrary, the phase of
signals backscattered by tags is a more reliable parameter
in rich multipath environments and, consequently, it is more
suitable for localisation purposes [28], [29]. However, the
inherent 27 ambiguity of phase measurements as well as
the unknown offset term due to the transponders and the
reader and antenna components make the implementation of
phase-based positioning algorithms rather challenging [30]. To
address this problem, phase unwrapping techniques can be
adopted if multiple readings with a proper spatial sampling
are collected [31]. In [32], robot localisation is achieved
through a multi-hypothesis Extended Kalman Filter (EKF)
which combines the data from odometry sensors with the phase
of the signals backscattered by the reference tags. The latter
are custom tags placed on the ceiling. However, a calibration
procedure for each reference tag is required to estimate the



phase offset term. Such a method is extended in [33] by
employing both RSSI and phase data. The new algorithm
exhibits higher robustness when the knowledge of the reference
tag positions is limited. Moreover, the phase offset calibration
procedure can be avoided. Experimental results show that a
robot can be localised with an error of about 4 cm in a
4 m x 3 m room by employing just two reference tags. Finally,
the authors state that the method can be employed in rooms
of arbitrary size by deploying a reference tag every 2 m?2.
In [34] the authors propose a phase-based localisation method
for mobile nodes equipped with a UHF-RFID system with a
low-density distribution of reference tags. The on-board reader
collects phase data from a set of passive reference tags during
the mobile node trajectory, by forming a synthetic array. Then,
the phase data are combined with the information acquired by
low-cost kinematic sensors through a sensor fusion approach.
The method can be employed in both indoor and outdoor
scenarios regardless of the reference tag positions.

An alternative possible solution is a nonlinear estimator
reconstructing the state (namely the position of the agent) from
the time series of the observations. However, the existence of a
solution of this kind is not obvious. This paper addresses this
problem as a whole, tackling both theoretical and practical
aspects. The considered system is a unicycle robot equipped
with RFID readers and odometric sensors. In order to localise
itself the robot merges the measurement data from odometers
(that provide information on its relative motion) with the
readings of the RFID reader. However, instead of measuring
the distance from the a set of RFID tags by using RSSI
data, the proposed solution relies on the derivatives (or the
finite differences in the discrete-time case) of such distances
measured on the basis of the phase of the received signal
regardless of the 27 ambiguity typically affecting phase values.
The main contributions of this paper are summarised below.

1) First, the local observability analysis proposed in [35] is
recalled. The main purpose of this analysis is to show
conditions for the existence of an estimator and for
its convergence to the actual state when some a-priori
information on the actual position is available (e.g., on
the basis of probabilistic maps [36]). Since the analytical
tools available are purely theoretical, continuous-time
system and measurement models are adopted.

2) When no a-priori position information is available, a
global observability analysis is needed. Due to the high
complexity of this problem [37], [38], ad-hoc proofs
based on geometric arguments for the global problem are
provided. Moreover, we explicitly take into account the
finite sampling time of a realistic sensing system.

3) Finally, we show and discuss the influence of
measurement uncertainty on global observability, which
is often disregarded in this class of problems. It turns out
that when only the RFID tags are detected, it could be
impossible to reconstruct the path if the robot follows
a straight line because the measurements produced by
two symmetric lines are exactly the same. For more
general trajectories, we show that even if the path
followed is theoretically observable, in practice state-of-

the-art estimators such as the Unscented Kalman Filter
could easily fail to converge (or could converge to
a wrong estimated path) if the random measurement
uncertainty contributions are so large as to make the
trajectories indistinguishable [39]. In these cases, at least
an additional tag is needed to ensure global convergence.

To the best of the Authors’ knowledge, this is the first
theoretical analysis presented on this problem, which is
further complemented by a practical dynamic position tracking
estimator for wheeled robots based on an Unscented Kalman
Filter (UKF) to confirm the correctness of the proposed
analysis. It is worth emphasizing that the use of phase-based
measurements of the derivative of the distances (rather than the
distance values themselves) between mobile agent and UHF-
RFID tags, makes the proposed approach completely different
and hardly comparable with other existing techniques.

The rest of the paper is organised as follows. Section II
defines system and measurement models. Section III recalls
the local observability analysis. Section IV is focused on
global observability analysis once the original system is
discretised and measurement uncertainty is considered. A
position tracking estimator based on an Unscented Kalman
Filter (UKF) for wheeled robots equipped with odometers and
a single-antenna RFID reader is used to confirm the correctness
of the proposed analysis. The corresponding simulation results
are reported in Section V. Finally, in Section VI the main
conclusions are drawn and the future work is outlined.

II. PROBLEM FORMULATION AND MODELS

The purpose of the method described in this paper is to
track the position of a robot moving in an indoor environment
where n RFID tags are placed at known locations. The
robot is assumed to be equipped with encoders on the rear
wheels providing dead reckoning. Each sensor is supposed
to be affected by uncertainties generated by white stochastic
processes with known features. Even though the presented
approach can be applied to a generic platform moving indoor
on an horizontal plane using both ego-motion data and phase
measurements of RF signals backscattered by passive RFID
tags, the reported analysis refers to the case of the robotic
walker FriWalk developed in the project ACANTO'.

A. Platform model

The FriWalk kinematic model is homologous to a unicycle-
like robot. The pose of the wheeled vehicle at time ¢ is
represented by triple (z(t),y(t),0(t)), where (z(t),y(t)) is
the pair of planar coordinates of the mid-point of the rear
axle expressed in the fixed right-handed reference frame
(W) = {Ouw, X, Yw, Zy}. The FriWalk orientation at time
t is given by 6(¢) that is the angle between the forward-
oriented longitudinal symmetry axis of the robot and axis X,.
Thus, for localisation purposes, the robot state can be defined
as s = [r,,0]7 € S, where the explicit reference to time
variable ¢ is omitted for the sake of simplicity and S denotes

'EU Project ACANTO: A CyberphysicAl social NeTwOrk using robot
friends — http://www.ict-acanto.eu/acanto, Feb. 2015



the state space. The inputs to the system are v and w, i.e. the
forward and the angular velocities of the robot, respectively.
The kinematic model is then given by

$ = G(s)u (1)
where

G(s) = |sin(d) 0

0 1

cos(f) O
.

and u = [v,w]T. Observe that (1) is a driftless system.

B. Measurement model

As briefly explained at the beginning of Section II, FriWalk
localisation relies on two measurement devices, i.e., a front
UHF-RFID reader with a single antenna and two incremental
encoders installed on the rear wheels. The angular velocities
w, and w; of the right and left rear wheels can be expressed
as a function of the robot forward and angular velocities v and
w, 1.e.

wr:E—}—lﬁandwl:g—lﬁ, 3)

r  2r r  2r

where 7 is the wheels radius and [ is the rear inter-axle
length. If A, = w,Ts and A; = w;T,s denote the angular
displacements of the right and left wheels, respectively,
measured by the encoders in a sampling period Ts, by
inverting (3), the incremental encoder measurement model for
system (1) can be defined as

he(A,, A) = [Zﬂ = Egﬁ’fﬁjﬂ : @)

The RFID reader is able to measure the phase of the signals
backscattered by each UHF-RFID tag [21]. Therefore, if A is
the wavelength of the RF signal and

di = /(& — )2+ (y — ui)2, (@)

is the distance, at a given time, between the RFID reader
antenna installed on the moving agent and the i-th RFID tag
with Cartesian coordinates (z;,y;) in (W) (see Fig. 1), the
phase delay of the signal received by the reader after being
backscattered by the tag is

4 di
b= =

where ¢; = mod (¢;,27), N is the integer number of half-
wavelengths within distance d; and finally 65’ is a phase offset
due mainly to cables, reader and antenna components and
transponder backscattering [30]. Unfortunately, in practice the
unwrapped absolute phase ¢; cannot be measured directly.
Therefore, N is unknownable and the phased-based measured
distance d" is inherently ambiguous, i.e.

+60 = ¢, + 27N + 67 (6)

/
dl = A+ 64, (7)

¢ 47

where the uncertainty term §¢ = N % + ﬁéf’ in general can be
very large, but it is also approximately constant for distance

Fig. 1. Schematic representation of the FriWalk RFID measurement process
assuming that the RFID antenna is placed in the middle of the rear wheels.

\{ariation_s smaller than half wavelength. Therefore, 5;1 ~ 0 and
d; = d" ~ ¢, ie. the variation in time of the relative
distance between the RFID reader and the i—th tag tends to
be insensitive to phase ambiguity.

In conclusion, by computing the derivative of (5) with
respect to time, the measurement function adopted in the rest
of this paper is

hi(s) = d; = d™ = cos(0)(z — ;) +sin(0)(y — yi)v_ )

V(@ =)+ (y —v:)?

As depicted in Fig. 1, d]* is the component of the
agent’s forward velocity along the line connecting the point
representing the FriWalk position (namely the mid-point of
the rear wheels axle) and the point of the plane where the i—
th tag is located. However, if «; denotes the angle between v
and d; (as shown in Fig. 1) a single measurement based on (8)
inherently returns ambiguous results because d; = v cos(a;) =
vcos(—a;).

III. LoCAL OBSERVABILITY ANALYSIS

The design of a robot position estimator for the
problem described in Section II requires a preliminary local
observability analysis to prove that the initial position of
the robot s(ty) = so can be reconstructed by using both
the sequence of input values (4) (namely the forward and
angular velocity values returned by encoders) and the distance
variations between robot and tags given by (8). In general,
whenever the agent position cannot be reconstructed by
using the measurement data available from a single fixed
position (i.e. static observability), this analysis is mandatory.
If the distance values are based on phase measurements only,
multilateration cannot return a unique position even using an
arbitrary number of RFID tags at known locations due to the
unknown phase terms §¢ defined in Section II-B. Moreover,
even if 6 were known, the vehicle orientation ¢ could not
be observed in any case. Thus, since system and measurement
models are nonlinear, a proper nonlinear observability analysis
is needed. In general, observability is a structural property of
a system and it refers to the possibility to reconstruct the
state of the system by observing its input-output behaviour.
Therefore, if two different initial conditions exist for which
the same input sequence generates the same output sequence,



such initial conditions are indeed unobservable [38]. If the two
initial conditions belong to the same neighbourhood of the
state space, a local observability analysis can be performed;
otherwise a global analysis is needed.

In formal terms, given vector h(s) = [hi(s),...,h,(s)]
consisting of n nonlinear measurement functions (8) associated
with distinct RFID tags, the system is observable if sy can
be uniquely determined from h(sg) and its derivative at time
to [40]. The time derivatives of vector fields extracted from
G(s) in (2) are obtained through Lie-differentiation [38]. The
local nonlinear observability just requires to have a locally
injective function from the observation space (given by h(s)
and its derivative) to the robot state space.

Since the problem with one tag only is clearly unobservable,
the analytical analysis reported in [35] for two tags (assuming
for instance that they are placed on the Y, axis at (x1,y;) =
(0,—1) and (z2,y2) = (0,1)), showed that when the robot
moves over a straight line, namely when y = ztan(f) + {
or y = ztan(d) — [ and w = 0 in (1), a local injective
function cannot be defined, i.e., the same measurement data
(assuming negligible uncertainty) are potentially collected in
both configurations due to their symmetry. While this problem
persists for the global observability presented in Section IV,
it is possible to show that local observability can be achieved
by using geometric arguments [35]. Therefore, the trajectory
followed by the agent is locally unobservable (i.e., an estimator
cannot be designed even using strong a-priori information)
only when the distance between the RFID tags is negligible
compared to the distance from the agent or when the robot
moves along the straight line joining the two passive RFID
tags (indeed, in this case the same measurements based on (8)
are collected). One additional outcome of this analysis (here
not reported for space constraints), is that the second condition
becomes observable when at least three non-collinear RFID
tags are used. However, this is not the case for the first
condition, as confirmed by the simulation results reported in
Section V.

T

IV. ACTUAL GLOBAL OBSERVABILITY FOR TwO RFIDS

The analysis reported above refers to the idealised situation
in which the system and the observer evolution are time-
continuous. In a more realistic scenario, the evolution of
the system and the measurements from the RFID tags can
be observed at discrete-time instants. In this case, it is
useful to write the system dynamics under the reasonable
assumption that the angular velocity and the tangential velocity
remain constant throughout a sampling period 75, yielding the
following discrete—time dynamics:

(k+1)T.
z((k+ 1D)Ty) = x(kTs) + / vcos(6(7))dr

kT,
(k+1)T 9
y((k+ 1)Ts) = y(kTy) + / vsin(0(7))dr ®

s

8((k + 1)T,) = O(kT,) + o Ts.

Introducing for a generic function f(-) the notation f =
f(kTy), using the simple variable transformation 7" = 7 — kT

and considering basic trigonometric properties, it follows that
the first equation in (9) becomes

Ts
/ veos(O(7' + kTy))dr" =
0

vTy cos Oy, ifw=0
L sin (47T) cos (0 + T5) otherwise.
Using the simplified notation zx1 = z((k+1)T5) (i.e. Sgr1 =
[kt1,Yka1,O0kr1)T) and applying the same argument to the
second integral of (9), it results that
_ fxp+vTs cos Oy ifw=0
LA PP 22 sin(47T;) cos(f,+4T,)  otherwise
Y+ 0T sin 6y, ifwo=0 (@10)
Yk+1=—= v o (w . w .
Yy + 25 51n(§TS) sm(&k—f— §TS) otherwise
Opr1="0r+wTs.
Thus, the discrete-time version of measurement function (8)
is the finite difference

hi(sk, sk—1) = di(sg) — di(Sk—1), (11)

where d;(s) = \/(mk —2:)° + (yx —:)” is the Euclidean
distance between the agent and the ¢ — th tag at the k—th
sampling time.

In the rest of this section, we will extend the ideal local
observability analysis to the more-realistic discretised global
observability and provide technical evidence of our findings
in two distinctive scenarios, chosen as a direct consequence of
the discrete dynamics (10).

A. The case of linear trajectories

In Section III, we reported the two tags result stating
that the trajectories are locally observable except for a
few singular configurations. Unfortunately, additional singular
configurations exist if we consider global observability. Of
course, if the system is locally unobservable, it will be globally
unobservable as well, while the converse is not necessarily
true. A first negative result on global observability can be stated
for linear trajectories.

Theorem 1: Consider system (10). The trajectories
generated by the system for w = 0 are not globally
observable.

Proof: Consider the case in which two tags are deployed
along the Y,, axis, i.e. tags coordinates are (0, y;) for i =1,2.
This is not a loss of generality because any system can be
reduced to this condition through a simple transformation
of coordinates. With reference to Fig. 2, suppose that the
agent position is U; at step £ — 1 and moves to point U,
at step k (dash-dotted line). In this example, d;(sp_1), for
i = 1,2 is the length of segment Tag,U;, while d;(sy) is
the length of segment Tag,U,. Therefore, the measurement
functions h;(sg, sk—1) in (11) for ¢ = 1, 2 return the length of
the two segments Tag,Us; — Tag,U; = HU; and Tag,Us; —
Tag,U; = HyUs. Observe that if the robot moves along an
alias trajectory (dashed line), i.e. from point V; to point V5, the




Fig. 2. Evolution of the system along a linear trajectory (dash-dotted line)
and its alias trajectory (dashed line) producing the same measurement values
for (11).

same sequence of measurement data is potentially collected,
being the length of segments FVo and FyVs respectively
equal to H1Us and HyU,. Of course, similar considerations
hold when the robot moves straight from point Us (and the
specular one V) onwards. In summary, if the robot moves
along a line, the measurement data collected along a specular
path with respect to the line joining the two RFID tags ideally
would be the same. Therefore, the two linear trajectories are
indistinguishable by using only the available measurement
data. ]

Remark 1: The same result is easy to see using simple
algebraic considerations. Indeed, given (10), the discrete time
evolution along a line can be written as

xp = xo + kvTscosfy and yr = yo + kvTssinfy, (12)

with measurement functions

hi(sk,sk_l):\/(xo—kvas cos Oy —a:i)2+(y0 +kvTy sin 0, —yi)2—&—

,\/(x0+ (k—1)vT, cos Oy —x;)*+ o+ (k—1)vT, sin g —y,)

(13)
for ¢+ = 1,2. Being x; = 0 (tags on the Y, axis), we can see
that the values of h;(sg, S;—1) remain point-wise equal Vk if
we switch the initial state from (zo,yo,60) to (—xo, Yo, %),
where cos(6y) = — cos(7p) (i.e., symmetric position w.r.t. the
Y, axis, see Fig. 2).

To conclude, whenever the vehicle moves along a straight
line taking measurements from two tags only, it is globally
unobservable, i.e., any dynamic position estimator will
inevitably fail in globally localising the agent in the plane of
motion.

9

B. The case of circular trajectories

Following the same principle of Remark 1, we can verify if
the same problem occurs for circular trajectories, i.e. w # 0
and constant in (10). Through some algebraic steps, the system
evolution can be explicitly written as

xk = o + acos (Y) — acos (kwTs + ),

Yr = Yo + asin (V) — asin (kwTs + ), (14

TABLEI  SETUP SCENARIOS AND RFID TAG POSITIONS.
RFID 4
g RFID 3 ]
3 RFID 2 ]
RFID 1
Tag 1 Tag 2 | Tag3 | Tag 4
[ [m] 0 0 5 5
[y [m] 5 -5 0 0
9V o1 Ts 1 _ Ty
where a = 22 sin (wl) e T and ¢ = w3 +

atan (— sin (wTy) , 1 — cos (wTy)).

Letting Zg = z¢+acos () and go = yo +asin (¥) in (14),
the expression for the measurement function h;(sg, Sk—1)
in (11) for a generic tag in (0,y;) (recall that without loss
of generality the tags are placed along the Y, axis) is given
by

hi(Sk,Sk—1)=

\/[i‘o —a cos(kwTs —l—w)]Q—i— [0 —a sin(kwTs +1) —yi]Q—

Vo —acos((k— )T, +0))%+ o —asin((k— DTt — i’
15)
Contrary to the case of linear trajectories, if we switch
the initial state from sqg = [%0,¥0,00]7 to the specular
So = [~%0,Y0,7]T (marked as U; and Vi in Fig. 2),
we do not obtain the same measurement for h;(sg, Sp—1)-
Interestingly, because v is an even function of w, the same
measurement from sy can only be obtained starting from s,
if w is changed into —w. In other words, in order to obtain
the same sequence of measurement data for two different
and symmetric circular trajectories, the direction of rotation
should be inverted. However, since we are dealing with a
self-localisation problem, the sign of w is assumed to be
known (e.g., from encoder measurements). Thus, the global
observability of circular trajectories is not compromised.

V. SIMULATION RESULTS

To verify the validity of the previous analysis, in this
Section the results obtained with a Bayesian position tracking
algorithm are reported. In particular, due to the strong
nonlinearity of both system and measurement models, a
UKF (whose description is here omitted for space limits) is
preferable [39]. In all the simulations, Gaussian zero-mean
uncertainty contributions are considered.

A. Local observability proof

In a first set of simulations, the sensing range of the RFID
reader is supposed to be unlimited and four different setups are
considered, as subsumed in Tab. I. We use the notation “RFID
1” to denote the ¢-th configuration shown in Tab. I, including 1,
2, 3 or 4 tags respectively. The measurements based on (8) are
sampled with a sampling period of Ts = 10 ms. The standard
deviations of forward and angular velocity fluctuations are
5 cm/s and 0.17 rad/s, respectively. Measurement standard
uncertainty is set to 5 cm/s. In all tests, robot forward velocity
is set to v = 1 m/s, while the state of the system is initialised
randomly (using independent Gaussian probability density
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Fig. 3. Joint PDF for the (z,y) Cartesian coordinates obtained from a single
pair of measures with respect to two RFID tags.
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Fig. 4. RMSE values of the state variables estimated by the UKF in the four
cases shown in Tab. I, when the robot moves straight along axis Y, (which
is unobservable in the scenario with two tags).

functions - PDFs) around a given value sy with standard
deviations equal to 0.5 m along axes X, and Y,, and 0.17 rad
as far as the orientation angle 6 is concerned. To confirm the
validity of the observability analysis reported in Section III, the
joint posterior PDF was computed for a single pair of measures
(i.e., h(s) = [—0.3162,—0.9487] m/s) related to two RFID
tags. By marginalising the joint PDF along 6, the resulting
bivariate PDF for the (z,y) Cartesian coordinates is shown in
Fig. 3.

In the first type of simulated trajectories, the agent moves
straight (i.e., w = 0 rad/s) along axis Y,, from [0,20, —7 /2]
to [0,—20, —7/2]T in 40 s. The Root Mean Square Errors
(RMSE) r,, ry and 79 associated with 100 estimates of state
variables x, y and 6 are plotted in Fig. 4. Observe that at least
three RFID tags are needed for UKF to converge (i.e., to reach
small RMSE values), in accordance with the analysis reported
in Section III.

In the second case study, the agent moves again along a

—RFID 1= RFID 2***-RFID 3=-RFID 4

= 107 1
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Fig. 5. RMSE values of the state variables estimated by the UKF in the four
cases shown in Tab. I, when the robot moves straight along axis X.,.
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Fig. 6. On the left: Circular trajectory centred in (—3, 1) m and with a radius
of 6 m and excerpt of the estimated trajectory at the beginning of the motion.
On the right: RMSE of the state variables estimated by the UKF in the four
cases of Tab. I when the robot moves along the depicted circular trajectory.

straight line for 100 s (i.e., axis X, in this case) starting
from s(tg) = [-50,2,0]7 to s(tf) = [50,2,0]7. The RMSE
values computed over 100 runs show that if one tag only
is considered, the UKF does not converge, as expected (see
Fig. 5). On the contrary, when at least two tags are used, the
RMSE values tend asymptotically to small values (i.e., the
UKEF converges), thus confirming that the system is observable.
Moreover, if w # 0, observability is always achieved even with
two RFID tags. This is confirmed by the simulation results
shown in Fig. 6 for a circular trajectory. Again, the RMSE
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Fig. 7. RMSE of the state variables estimated by the UKF in the in the four
tag setups shown in Tab. I when the robot moves along the circular trajectory
of Fig. 6.

values tend to diverge when just one RFID tag is considered
(due to dead reckoning), whereas they tend to converge when
at least two RFID tags are deployed.

B. Global observability proof

Following the same rationale of the proof for local
observability, here the theoretical results of Section IV for
global observability are verified through simulations. First the
RMSE values for 100 trajectories in the same configurations
presented in the previous Section are reported, although
for different initial conditions of the UKF. Such conditions
are randomly generated (using independent Gaussian PDFs)
around a given value sy with standard deviations equal to 1 m
along axes X,, and Y,, and 7 rad as far as the orientation
angle 0 is concerned. The standard deviations o, = 10 cm/s
for the longitudinal velocity v and o, = 0.17 rad/s for the
angular velocity w are adopted, while the standard uncertainty
of the phase-based measurement of the differences of two
consecutive distance values between the RFID reader and any
tag (in accordance with (11)) is set to o5, = 10 mm. Fig. 6
shows the estimated circular trajectories for the same RFID
tag configurations reported in Tab. I, while Fig. 7 depicts the
corresponding RMSE of the state variables estimated by the
UKF. For linear trajectories moving along the axis, results
similar to those visible in Fig. 4 and Fig. 5 have been obtained.
Hence, they have been omitted for the sake of brevity. In
general, the observability problem can be solved with more
than two RFID tags, even though a slower convergence can be
observed, especially as far as variable # is concerned.

Nevertheless, as discussed in Section IV, the global
observability analysis has indeed peculiar singular cases when
two tags are adopted and needs a specific study. In the

40 —estimated trajectory . I —
—actual trajectory c 0.2 Tag 1
® tag location — — Tag 2
— 20 c
E 20.1
> L] ©
’ 3
20 E 0
40 20 0 20 4 O _ 50
x [m] time [s]
(A)
—estimated trajectory
20 | |—actual trajectory / —0.2 — Tag 1
" tag location .§, — Tag 2
— |
E o0 So.
> . =
g memn
-20
g0
40 20 0 20 40 0 50
x [m] time [s]
(B)
Fig. 8. Agent straight-line trajectory with initial conditions (zo,y0) =

(10, —10) m and 09 = 7 /4 rad. In the scenario A (top graphs) the UKF is
initialised with (—10, —20, 37 /4), while in the scenario B (bottom graphs)
the UKF is initialised with (10, —20, 7r/4). In both cases the starting points of
the actual and estimated trajectories are highlighted with small circle markers.
Also, the innovation terms (graphs on the right side) tend towards zero even if
the estimates are different and may wrongly refer to the trajectory symmetric
to the actual one.

example shown in Fig. 8, the UKF is applied to a unicycle
robot moving along a linear trajectory obtained by setting
w = 0 rad/s in (10). In this example, the forward velocity
of the robot is v = 1 m/s. We assume that the inputs of the
discrete system (10) are affected by zero mean, white Gaussian
process noises with standard deviation of o, = 1 cm/s for
the longitudinal velocity v and o, = 0.035 rad/s for the
angular velocity w. The measurement uncertainty contributions
affecting (11) exhibit also a Gaussian PDF with standard
deviation o5 = 5 mm. The initial state sy of the system (i.e.,
(10 m, —10 m, 7 /4 rad)) is highlighted by circular markers.
The sampling time is 7s = 50 ms. In all the simulations
reported for this Section, the RFID tags labeled as 1 and 2
in Tab. I are considered.

The UKF was initialised with two different set of states,
which are also highlighted by circular markers. As clearly
shown in Fig. 8, in scenario A, whose UKF initial state is
(=10 m,—20 m,37w/4 rad), the estimated state converges
to the line symmetric to the actual trajectory with respect
to the line connecting the two tags. In scenario B, with
initial state (10 m,—20 m, /4 rad), the estimated trajectory
converges to the actual one. In both cases the innovation terms
(namely, the differences between the measurement data and the
corresponding values based on the predicted states) converge
to zero for both tags. Therefore, even if both trajectories
are perfectly consistent with the model, but the position of
the agent (i.e. the state of the system) is clearly globally
unobservable.

On the other hand, even if the circular paths are theoretically
globally observable, measurement uncertainty may completely
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Fig. 9. Agent circular path and corresponding trajectory estimated by the

UKEF for a small measurement standard uncertainty (scenario A with o, =
5 mm) and a higher measurement standard uncertainty (scenario B with o, =
100 mm). In practice, measurement uncertainty may prevent convergence.
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Fig. 10. Agent circular path and corresponding trajectory estimated by the
UKF when the radius is large (i.e., about 20 m). In scenario A (on the left), the
UKF is initialised with a state close to the actual trajectory. In scenario B (on
the right) the UKF is initialised with a state close to the specular trajectory.

disrupt estimation results. Consider, for instance, the scenario
in which an agent moves along the circular trajectory depicted
with a dashed line in Fig. 9. In this case, the forward and
angular velocities of the agent are: v = 1 cm/s and w =
0.0175 rad/s, respectively. Measurement standard uncertainty
changes from scenario A (where it is very low, ie. o, =
5 mm, like in the previous case), to scenario B, where it
reaches o, = 100 mm. The initial state of the system is
(=2 m,0 m,7/2 rad), while in both scenarios the UKF is
initialised with (—0.8 m,—3 m, 1.6 rad).

In Scenario A, the estimated trajectory quickly converges to
the ideal one (i.e., perfectly circular), as shown in the left part
of Fig. 9. This behaviour was consistently observed in multiple
simulation trials. In Scenario B, the estimates generated by the
UKF converge instead to a circle which is shifted down by
roughly 1.5 m (as shown in the right part of the Fig. 9). As
discussed in Section IV, the existence of different equilibria
of the UKF confirms that the practical global observability
depends on the specific measurement functions adopted.

The case shown in Fig. 10 for v = 1 m/s and w = 0.05 rad/s
is even more interesting. These parameters produce an ideal

circular trajectory with radius equal to 20 m (still depicted with
a dashed line). In this example, standard uncertainty values
are: o, = 0.02 rad/s, o, = 10 cm/s and o5, = 0.1 mm. In
this case, the standard deviation of the process noise related to
the odometry measurements is quite high compared to oy,. In
both tests reported in the figure, the actual robot initial state
was (10 m,0 m, —7/2 rad). However, the UKF was initialised
with a different state. In Scenario A (left of the figure) the
filter was initialised with (—7.75 m, —3.35 m, —1.72 rad). In
Scenario B (right of the figure) the filter was initialised with
(—10.59 m, —20.03 m, —1.85 rad). The behaviour in the two
cases is quite different: in Scenario A the filter tracks quite
precisely the state, while in Scenario B the estimated state
settles down on the circle that is symmetric with respect to
the line joining the two RFID tags. This is surprising because,
as explained in Section (IV-B), the same measurement data
can return two symmetric circular trajectories only if the agent
moves in opposite directions (clockwise vs. counterclockwise),
which instead does not happen in the case considered. The
explanation of this anomalous behaviour is based on the
Bayesian nature of the UKF: the high level of uncertainty
on w leads the UKF to rely mainly on the distance variation
measurements instead of the odometry data. As a consequence,
the updates generated by w are virtually cancelled by the
correction generated by the RFID-based measurement data. As
a result, it may happen that the estimated trajectory refers to
a circular motion in the opposite direction with respect to the
actual one. A possible (unintuitive) counteraction to avoid this
problem is to increase o}, so that the odometry becomes “more
credible”, thus shifting the estimates toward the actual path.

C. Realistic scenario

To complete the analysis, the results of some simulations in
a more complex and realistic scenario based on the features of
the Friwalk platform are reported in this Section. The rear
wheels of the Friwalk are equipped with two incremental
encoders AMT-102V with a resolution of up to 2048 pulse
per revolution (PPR). In practice, these data are collected by a
BeagleBone black board via a Controller Area Network (CAN)
bus. From a preliminary characterization of both encoders, we
found that, when the robot moves at speed in the order of 1 m/s,
the standard uncertainty associated with angular and forward
velocities are o, ~ 0.01 rad/s and o, =~ 5 cm/s, respectively.

An onboard Impinj Speedway Revolution R420 UHF-RFID
reader equipped with a CAEN RFID WANTENNA X019
is able to detect UHF signals (865-868 MHz) backscattered
by passive tags within a range of around 5 m from the
reader (e.g., with a receiver sensitivity approximately equal
to -18 dBm). Based on the specifications of the UHF-RFID
kit, the standard uncertainty associated with the difference of
subsequent distance measurement is o = 5.5 mm.

The RFID tags are supposed to be placed over square-
patterned regular grids of different density. In particular, the
distance between pairs of adjacent tags ranges from 1 m to
5 m. A total of 100 random robot trajectories was generated
in a 100 m x10 m corridor by using a path planning algorithm
conceived for assistive robots [41]. In every run, the robot starts
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Fig. 11. Box-and-whiskers plots of the localisation errors computed over

100 trajectories of a robot moving randomly in a 100 m x 10 m corridor for
different distances between pairs of adjacent RFID tags placed over square-
patterned regular grids.

from a randomly chosen point on one side of the corridor
and reaches the other side in about 100 s moving mainly (but
not perfectly) straight, while crossing different intermediate
points. The box-and-whiskers plots of the aggregated UKF
state estimation errors are shown in Fig. 11 for various edge
lengths of the grid of RFID tags. The edges of each box refer to
the 25th and 75th percentiles of the corresponding estimation
errors, whereas the whiskers stretch to the 99th percentile.

In all cases, the random motion of the robot as well as the
fact that more than two RFID tags are always detected, makes
the Friwalk position steadily observable, as confirmed by the
fact that the estimation errors are bounded and very small, i.e.,
between about 2.5 cm and 7 cm with 99% probability along
axes = and y and generally below 1 degree (i.e. 0.0175 rad)
in the worst-case as far as robot orientation 6 is concerned.
These results subsume the observability analysis and prove the
practicality of the proposed localisation approach in realistic
scenarios. Of course, localisation uncertainty tends to grow
as the granularity of the grid of RFID tags become coarser. In
fact, in this case, a lower number of measurements is available
at every time step.

VI. CONCLUSIONS

The distinctive challenging feature of localisation based on
the phase of the RF signals backscattered by UHF-RFID tags is
the inherent ambiguity of phase measurements themselves. We
have presented a complete nonlinear observability analysis for
this challenging problem. As a result of this analysis, singular

configurations are identified and discussed. In particular, the
system is locally observable using three non-collinear RFID
tags, while for two tags, a small subset of straight-line
paths is unobservable. For global observability, we have
considered the critical case when just two tags are used. A
first negative result is that the straight-line paths are always
unobservable, no matter the amount of noise that affect
each measurement. On the contrary, circular trajectories are
globally observable (at least from the theoretical point of
view). However, our empirical analysis shows the crucial role
of measurement uncertainty. Specifically, a large uncertainty
affecting RFID-based phase measurements hamper position
estimator convergence, or even worse, could drive the
estimated state towards a wrong path.

The validity of the analysis and the effectiveness of the
localisation approach were verified using an ad-hoc Unscented
Kalman Filter (UKF). The implementation and the field
experimental validation of the position estimation algorithm,
currently confirmed by some preliminary simulations in a real
scenario, are the objectives of a future work.
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