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We address characterization of many-body superradiant systems and establish a fundamental
connection between quantum criticality and the possibility of locally estimating the coupling con-
stant, i.e extracting its value by probing only a portion of the whole system. In particular, we
consider Dicke-like superradiant systems made of an ensmble of two-level atoms interacting with a
single-mode radiation field at zero effective temperature, and address estimation of the coupling by
measurements performed only on radiation. At first, we obtain analytically the Quantum Fisher
Information (QFI) and show that optimal estimation of the coupling may be achieved by tuning
the frequency of the radiation field to drive the system towards criticality. The scaling behavior
of the QFI at the critical point is obtained explicitly upon exploiting the symplectic formalism for
Gaussian states. We then analyze the performances of feasible detection schemes performed only
on the radiation subsystem, namely homodyne detection and photon counting, and show that the
corresponding Fisher Informations (FIs) approach the global QFI in the critical region. We thus
conclude that criticality is a twofold resource. On the one hand, global QFI diverges at the critical
point, i.e. the coupling may be estimated with the arbitrary precision. On the other hand, the FIs
of feasible local measurements, (which are generally smaller than the QFI out of the critical region),
show the same scaling of the global QFI, i.e. optimal estimation of coupling may be achieved by
locally probing the system, despite its strongly interacting nature.

I. INTRODUCTION

Quantum phase transitions (QPTs) occur at zero tem-
perature and demarcate two statistically distinguishable
ground states corresponding to different quantum phases
of the system [1]. In the proximity of the critical point,
small variations of a parameter driving the QPT cause
abrupt changes in the ground state of the system. Criti-
cality is, thus, a resource for precision measurements [2]
since driving the system to the critical region makes it
extremely sensitive to perturbations, either affecting an
internal parameter such as its coupling constant, or due
to fluctuations of environmental parameters, e.g. tem-
perature fluctuations.

It is often the case that those parameters are not di-
rectly measurable. In these cases, the determination of
their values should be pursued exploiting indirect ob-
servations and the technique of parameter estimation.
In this situations, the maximum information extractable
from an indirect estimation of the parameters is the so-
called Fisher Information (FI), which itself determines
the best precision of the estimation strategy via the
Cramer-Rao theorem [3]. Upon optimizing over all the
possible quantum measurements one obtains the Quan-
tum Fisher Information (QFI), which depends only on
the family of states (density operators) describing the
ground state of the considered system [4, 5] as a function
of the parameter of interest. In turn, the QFI sets the
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ultimate quantum bound to precision for any inference
strategy aimed at estimating a given parameter.

In the recent years, the connection between quan-
tum criticality and parameter estimation has been ad-
dressed from differente perspectives [6–12], showing that
the QFI is indeed (substantially) enhanced in correspon-
dence of the critical point [2]. The fundamental interpre-
tation of this relationship lies in the geometrical theory
of quantum estimation, for which Hilbert distances be-
tween states are translated into modifications of the phys-
ical parameters [6–8]. Criticality as a resource for quan-
tum metrology has been investigated in several critical
systems [9–12]. Nonetheless, finding an optimal observ-
able which also corresponds to a feasible detection scheme
is usually challenging, especially for strongly interacting
systems where the entangled nature of the ground state
usually leads to an inseparable optimal observable.

In this paper we consider the superradiant QPT oc-
curring in the Dicke model, which describes the strong
interaction of a single-mode electromagnetic field and an
ensemble of two-level atoms [13]. The radiation mode
in the superradiant phase acquires macroscopic occupa-
tion as a consequence of cooperative excitation of the
atoms in the strong coupling regime. The Dicke QPT
has been extensively studied in the past years consid-
ering also generalizations of the original work of Dicke
[14–16], or focussing on the quantum-cahotic properties
of the system [17, 18]. Recent theoretical studies concern-
ing entanglement and squeezing of the Dicke QPT have
been carried on [19], also in relation to the QFI of radia-
tion and atomic subsystems separately [20]. Some imple-
mentations in cavity-QED [21] and circuit-QED [22, 23]
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systems, together with computing applications via mul-
timodal disordered couplings [24], have been proposed.
Eventually, recent experimental realizations of the Dicke
QPT involving Bose-Einstein condensates in optical cav-
ities [25], cavity-assisted Raman transitions with Rb87

atoms [26] or NV-centers in diamond coupled to super-
conducting microwave cavities [27], have been performed.

Motivated by the renewed experimental and theoreti-
cal interests in the Dicke QPT, we address the charac-
terization of its coupling constant and analyze in details
whether optimal estimation is possible using only feasible
local measurements, i.e. whether the ultimate precision
allowed by quantum mechanics may be achieved by prob-
ing only a portion of the whole system.

The paper is structured as follows. In Sec. II we
introduce the properties of Gaussian states and sym-
plectic transformations, together with some elements
of quantum estimation theory (QET) in the Gaussian
continuous-variable formalism. In Sec. III, we briefly
review the Dicke model at zero temperature, establish
notation and find the Gaussian ground states of the two
phases of the system. In Sec. III B we evaluate the QFI
as a function of the radiation-atoms coupling parameter
and discuss its properties. Eventually, in Sec. IV we
present our main results concerning the analysis of the
FI associated to two locally feasible observables, homo-
dyne detection and photon counting. We will show that
these feasible measurements allow to achieve optimal es-
timation of the coupling parameter by probing only the
radiation part of the system.

II. TOOLS OF QUANTUM ESTIMATION
THEORY FOR GAUSSIAN STATES

In this section we briefly introduce the formalism of
Gaussian states for continuous-variable bosonic systems
and of symplectic diagonalization of quadratic Hamilto-
nians [28–30].

A. Gaussian states and symplectic transformations

A system composed by M bosonic modes is described
by quantized fields âm satisfying the commutation re-

lation [âm, â
†
l ] = δm,l. An equivalent description is

provided, through the Cartesian decomposition of field
modes, in terms of position- and momentum-like oper-
ators x̂m = (âm + â†m)/

√
2 and p̂m = i(â†m − âm)/

√
2.

Introducing the vector of ordered quadratures ~R =
(x̂1, p̂1, · · · , x̂M , p̂M )T and the symplectic matrix

Ω =
M⊕
m=1

ωm, ωm =

(
0 1
−1 0

)
, (1)

the commutation relations become [Ri, Rj ] = iΩij . The
state %̂ of a system of M bosonic modes can be de-
scribed in the phase space by means of the character-

istic function, defined as χ[%̂](~α) ≡ Tr[%̂D̂(~α)], where

D̂(~α) =
⊗M

m=1 exp{αmâ†m − α∗mâm} is the displacement
operator and ~α = {α1, . . . , αM}, with complex coeffi-

cients αm = (α
(r)
m + iα

(i)
m )/
√

2 and {α(r)
m , α

(i)
m } ∈ R. It

is responsible for rigid translations of states in the phase
space, allowing to express any coherent state as a dis-
placed vacuum state |~α〉 = D̂(~α)|0〉. Equivalently, in the
cartesian representation, the displacement operator can

be written in the compact form D̂(~Λ) = exp{−i~ΛTΩ~R},
with ~Λ = {α(r)

1 , α
(i)
1 , . . . , α

(r)
M , α

(i)
M }, acting on the vector

of quadratures as D̂†(~Λ)~R D̂(~Λ) = ~R+ ~Λ.
A density operator %̂ describing the state of a system

of M bosonic modes, is called Gaussian when its charac-

teristic function χ[%̂](~Λ) ≡ Tr[%̂D̂(~Λ)] is Gaussian in the

cartesian coordinates ~Λ and reads

χ [%̂] (~Λ) = exp

{
−1

2
~ΛTΩσΩT ~Λ− i~ΛTΩ〈~R〉

}
, (2)

or, equivalently, when the associated Wigner function has
the Gaussian form

W [%̂]( ~X) =
exp

{
− 1

2 ( ~X − 〈~R〉)Tσ−1( ~X − 〈~R〉)
}

πM
√

Det[σ]
, (3)

the two being related by the Fourier transform

W [%̂]( ~X) =
1

(2π)2M

∫
d2M~Λ exp{i ~ΛTΩ ~X}χ [%̂] (~Λ). (4)

A Gaussian state is completely determined by the first-

moments vector 〈~R 〉 and the second moments encoded
in the covariance matrix (CM) σ, of elements

σij =
1

2
〈RiRj +RjRi〉 − 〈Ri〉〈Rj〉, (5)

which allows to write the Heisenberg uncertainty relation
as σ + i

2Ω ≥ 0. The purity µ = Tr[%̂2] of a Gaussian
state is expressed in terms of the CM by the relation
µ = (2M

√
Det[σ] )−1.

A property of Gaussian states, which will reveal to be
useful in the following calculations, is that the reduced
density matrix, obtained by means of the partial trace
operation over the degrees of freedom of a subsystem,
keeps its Gaussian character [31]. For instance, exploit-
ing the Glauber representation of a density operator of a

bipartite state, with cartesian coordinates ~Λ = (~Λa1 ,
~Λa2)

%̂a1a2 =
1

(2π)2

∫
R4

d4~Λ χ[%̂a1a2 ](~Λ)D̂†(~Λ), (6)

together with Tr[D̂(~Λa1)] = (2π)δ(2)(~Λa1), then the re-
duced density operator %̂a1 is a Gaussian state with

an associated characteristic function χ[%̂a1a2 ](~Λa1 , 0) =

Tr[%̂a1D̂(~Λa1)].
To become more familiar with these concepts, we

list here some examples of Gaussian states. A single-
mode system in a equilibrium with a thermal environ-
ment is described by the density operator ν̂th(n̄) =



3∑∞
k=0 n̄

k(1 + n̄)−(1+k)|k〉〈k| expressed on the Fock ba-
sis {|k〉}∞0 . The corresponding covariance matrix is
σth = (1 + n̄)/2, with n̄ the number of average thermal
photons. Other examples include the classes of coher-
ent states and squeezed states, for which the uncertainty
relation σ + i

2Ω ≥ 0 is saturated with 〈∆x̂2〉〈∆p̂2〉 =

1/4. All coherent states have 〈∆x̂2〉 = 〈∆p̂2〉 = 1/2,
whereas squeezed states possess a covariance matrix of
the kind σsq = 1

2Diag(e2r, e−2r), where 〈∆x̂2〉 6= 〈∆p̂2〉
and r ∈ R is a real squeezing parameter. A generic
squeezed state is obtained from the vacuum by applying
the unitary operator Ŝ(ξ) = exp{(ξ(â†)2−ξ∗â2)/2}, with
complex squeezing parameter ξ = reiψ. The most gen-
eral single-mode Gaussian state is a displaced squeezed
thermal state (DSTS) described by the density operator

%̂ = D̂(γ)Ŝ(r)ν̂th(n̄)Ŝ†(r)D̂†(γ). For two-mode systems
such a general form does not exist, but a relevant subclass
of bipartite Gaussian states is given by the squeezed ther-

mal states %̂a1a2 = Ŝ2(ξ)ν̂th(n̄1) ⊗ ν̂th(n̄2)Ŝ†2(ξ), where

Ŝ2(ξ) = exp{ξâ†1â
†
2 − ξ∗â1â2} is the two-mode squeezing

operator.
An important property of Gaussian states is related
to transformations induced by quadratic Hamiltonians.
Gaussian states preserve their Gaussian character under

symplectic transformations of coordinates ~R → F ~R + ~d,

where ~d is a vector of real numbers, leaving unchanged
the Hamilton equations of motion and fulfilling the sym-
plectic condition FΩFT = Ω. Thus, the first-moment
vector and the CM of a Gaussian state follow the trans-
formation rules

〈~R〉 → F 〈~R〉+ ~d , σ → FσFT . (7)

Moreover, symplectic transformations originate from
Hamiltonians at most bilinear in the field modes
(quadratic) and the diagonalization process of these
Hamiltonians goes under the name of symplectic diago-
nalization, which transforms the coordinates by preserv-
ing canonical commutation relations. Symplectic trans-
formations possess the property of unitary determinant
Det[F ] = 1. As an example, consider a thermal state

ν̂th(n̄) evolving under the single-mode real squeezer Ŝ(r).
The associated symplectic matrix is F = Diag(er, e−r)
and, according to Eq. (7), the CM transforms as σ =
1
2 (1 + 2n̄)Diag(e2r, e−2r), which is the CM of a squeezed
thermal state.

In the light of the properties of symplectic transforma-
tions and writing the CM of Gaussian bipartite states in

the most general way as σ =

(
A C
CT B

)
, it is possible to

identify four symplectic invariants given by I1 = Det[A],
I2 = Det[B], I3 = Det[C] and I4 = Det[σ]. The sym-
plectic eigenvalues of a CM can be expressed in terms of
these invariants as

d± =

√
I1 + I2 + 2I3 ±

√
(I1 + I2 + 2I3)2 − 4I4

2
, (8)

from which we can straightforwardly rewrite the uncer-
tainty relation as d− ≥ 1/2. Pure Gaussian states have
I4 = 1/16 and I1 + I2 + 2I3 = 1/2. The separability of
the two subsystems is formalized in terms of the criterion
of positivity under partial transpose (ppt) [32], which
can be written in terms of the symplectic invariants as
d̃− ≥ 1/2, where

d̃± =

√
I1 + I2 − 2I3 ±

√
(I1 + I2 − 2I3)2 − 4I4

2
(9)

are the symplectic eigenvalues of the CM of the partially
transposed density operator describing a bipartite Gaus-
sian state. A measure of entanglement is, thus, provided
by the logarithmic negativity [33]

EN (σ) = max{0,− ln 2d̃−}, (10)

which quantifies monotonically the amount of violation
of the ppt-criterion.

B. Local QET

Whenever a parameter of a physical system is not di-
rectly accessible by an observable, it is always possible
to infer its average value by means of classical estima-
tion theory inspecting the set of data {x} of an indirect

measurement. Let us suppose that an observable X̂ is
measured on the considered physical system described
by a parameter-dependent density operator %̂λ. A set
of data {x1, . . . , xm}, corresponding to the possible out-

comes of X̂ , is then collected according to the distribution
p(x|λ) = Tr[%̂λX̂ ] provided by the Born rule, which de-
scribes the conditional probability to obtain an outcome
x given the value of the parameter λ. The value of the
parameter λ is then inferred from the statistics of an es-
timator λ̄ = λ̄(x1, . . . , xm), evaluating its average value
E[λ̄] and variance Varλ = E[λ̄2] − E[λ̄]2 (valid for any
unbiased estimator E[λ̄] = λ). From classical estima-
tion theory, optimal estimators saturate the Cramér-Rao
bound

Varλ ≥
1

mFX̂ (λ)
, (11)

where the FI FX̂ (λ) is the maximum information ex-

tractable from a measurement of the observable X̂ and
reads

FX̂ (λ) =

∫
R

dx p(x|λ)
(
∂λ
[

ln p(x|λ)
])2

. (12)

The ultimate limit to the precision in an estimation pro-
cess is given the quantum Cramér-Rao bound

Varλ ≥
1

mH(λ)
, (13)

where the QFI H(λ) does not depend on measurements
but only on the probe state %̂λ. The QFI is the result of
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a maximization over all the possible observables on the
physical system and it is such that H(λ) ≥ FX̂ (λ). The

QFI is analytically computable as H(λ) = Tr[%̂λL̂2
λ], i.e.

in terms of the hermitean operator L̂λ called symmetric
logarithmic derivative (SLD), implicitly defined as

∂λ%̂λ ≡
L̂λ%̂λ + %̂λL̂λ

2
. (14)

The SLD operator represents the optimal positive-
operator valued measurement (POVM) saturating the
Cramér-Rao bound (13).

Criticality at a QPT is a resource for quantum estima-
tion as a small change in the parameter λ yields a drastic
change in the ground state at the boundary of the critical
parameter, thus allowing the QFI to diverge. It is, thus,
desirable to find an optimal observable maximizing the
FI to the values of the QFI in order to achieve the best
precision in the parameter estimation.

In the context of Gaussian states it is possible to derive
analytical expressions for the QFI and the SLD operator
[34], which depend on the physical parameters character-
izing the state of the system. Exploiting the notions out-
lined in Sect. II A and redefining the partial derivation
as ∂λ(f) ≡ ḟ , the QFI and SLD for a generic Gaussian
state read

H(λ) = Tr
[
ΩT σ̇ΩΦ

]
+ 〈 ~̇R 〉

T

σ−1〈 ~̇R〉 (15)

Lλ = ~R TΦ~R+ ~R T ~ζ − ν, (16)

where ν = Tr[ΩTσΩ Φ] is related to the property of the

SLD (14) to have zero-mean value Tr[%̂λL̂λ] = 0. For
pure Gaussian states all the quantities in Eqs. (15)-

(16) are easy to compute and read Φ = −σ̇ and ~ζ =

ΩTσ−1〈 ~̇R〉.
In the following we will apply these tools to the Dicke
model, in order to exploit the predicted QPT, and the
corresponding ground states, for the estimation of the
coupling parameter λ.

III. DICKE QUANTUM PHASE TRANSITION
FOR QUANTUM ESTIMATION

In this section we describe the Dicke QPT in the Gaus-
sian formalism, suitable for establishing a tight connec-
tion with local estimation theory performed with mea-
surements typical of quantum optics. In particular we
derive the Gaussian ground states corresponding to the
normal and superradiant phases, computing the amount
of entanglement and the scaling behaviors of the associ-
ated QFI and SLD.

A. The superradiant QPT

The Dicke model [13] describes the interaction between
a dense collection of N two-level atoms (spin objects)

with transition frequency ω0, assumed to be equal for
all the spins, and a single radiation mode (bosonic field)
of frequency ω, which is characterized in terms of anni-

hilation and creation operators, â1 and â†1 respectively.
The coupling between the two quantum systems is suit-
ably described within the dipole approximation, where
each atom couples to the electric field of radiation with
a coupling strength λ:

Ĥ(1,2) = ω0Ĵz + ωâ†1â1 +
λ√
N

(â†1 + â1)(Ĵ+ + Ĵ−). (17)

Overall, the atomic subsystem can be described as a pseu-
dospin of length N/2 by the collective spin operators

Ĵz = 1
2

∑N
i=1 σ̂

(i)
z and Ĵ± =

∑N
i=1 σ̂

(i)
± , where {σ̂(i)

z , σ̂
(i)
± }

is the set of Pauli matrices that completely characterize
single two-level systems.

The diagonalization of Hamiltonian (17) is performed
employing the Holstein-Primakoff (H-P) representation

of the atomic spin operators [35, 36], namely Ĵ+ =

â†2

√
N − â†2â2, Ĵ− =

√
N − â†2â2 â2 and Ĵz = â†2â2 − N

2 ,

where â2 and â†2 are bosonic fields satisfying [â2, â
†
2] = 1.

As will become soon clearer, the bosonic fields {â1, â2}
are allowed to have macroscopic occupations in such a
way that â1 → â1 − α

√
N and â2 → â2 + β

√
N with

{α, β} ∈ R. Now, we consider the thermodynamic limit,
for which the ratio N/V is constant as N,V →∞, being
N the number of atoms and V the corresponding occu-
pied volume, and expand the H-P representation keeping
only the terms proportional to

√
N . Applying stabil-

ity considerations, for which linear terms proportional to√
N must vanish [36], we obtain the expression for the

displacing parameters α = ± λ
ω

√
1− k2

β = ±
√

1−k
2

(18)

where we introduced the dimensionless critical parameter

k ≡
{

1 for λ < λc
λ2
c

λ2 for λ > λc
(19)

and the critical coupling strength λc ≡
√
ω ω0/2. As

it is now clear, the macroscopic occupation of the two
subsystems individuates the phase transition between a
normal phase for λ < λc and a superradiant phase for
λ > λc. The Hamiltonian of this system can be cast
in diagonal form (see Ref. [18]), by introducing a new

couple of bosonic modes {b̂−, b̂+} which satisfy the com-

mutation relations [b̂−, b̂
†
−] = [b̂+, b̂

†
+] = 1, and describe

two independent harmonic oscillators

Ĥ(−,+) = ε−b̂
†
−b̂− + ε+b̂

†
+b̂+ +

+
1

2

(
ε− + ε+ − ω −

ω0

k

)
− ω0(1 + k2)

2k

N

2
,

(20)
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where the eigenfrequencies are given by

2ε2
± = ω2 +

ω2
0

k2
±

√[
ω2

0

k2
− ω2

]2

+ 16λ2 ω ω0 k . (21)

The diagonalization in Ref. [18] can be obtained by per-
forming the symplectic transformation F = F3 ◦ F2 ◦ F1:

F1 = Diag

(
1√
ω
,
√
ω,

1√
ω̃
,
√
ω̃

)
F2 =

(
cos θ I2 − sin θ I2
sin θ I2 cos θ I2

)
F3 = Diag

(
√
ε−,

1
√
ε−
,
√
ε+,

1
√
ε+

)
.

(22)

Symplectic matrix F1 corresponds to a local squeez-

ing Ŝ
(1)
loc = Ŝ(− log(

√
ω)) ⊗ Ŝ(− log(

√
ω̃)) applied to

the quadratures of the atomic and photonic subsystems,
with ω̃ = ω0(1 + k)/2k. Then the rotation Û(θ) =
exp{−iθ(x̂1p̂2 − x̂2p̂1)} is associated to the symplectic
matrix F2 (I2 is a 2 × 2 identity matrix) and allows to
eliminate the interaction term in the Hamiltonian upon
the choice of the angle 2θ = tan−1

[
4λ
√
ω ω0 k k

2/(ω2
0 −

k2 ω2)
]
. Eventually, a second local squeezing Ŝ

(2)
loc =

Ŝ(log(
√
ε−) ⊗ Ŝ(− log(

√
ε+)), related to the symplectic

transformation F3, completes the diagonalization. The
ground state of the diagonalized Hamiltonian Ĥ(−,+) is
the vacuum state |ψ〉 ≡ |0〉−⊗|0〉+, with CM σψ = I4/2.

Accounting for the displacement D̂12 ≡ D̂1(α
√
N) ⊗

D̂2(−β
√
N) responsible for the macroscopic occupation

of the original modes {â1, â2} in the superradiant phase,
the form of the Gaussian ground state |Ψ〉 is straightfor-
wardly obtained by means of the transformation |Ψ〉 =

D̂12ÛF |ψ〉, where ÛF ≡ Ŝ(1)
loc Û(θ) Ŝ

(2)
loc is the unitary evo-

lution of the modes associated to the symplectic trans-
formation F . The corresponding CM σ ≡ σΨ and first-

moment vector 〈~R〉 are derived using Eqs. (7):

σ = FσψF
T =

σ11 0 σ13 0
0 σ22 0 σ24

σ31 0 σ33 0
0 σ42 0 σ44

 (23)

〈~R〉 = (α
√

2N, 0,−β
√

2N, 0)T , (24)

��� ��� ��� ��� ���
�

�

�

�

�

���

λ

� �

-

FIG. 1: (Color online) Plot of the logarithmic negativity
EN (λ) (blue solid curve) and of the lowest symplectic eigen-

value d̃−(λ) (red dashed curve) of the partially transposed

CM. The dashed gray line at d̃− = 0.5 represents the thresh-
old of separability, under which the state is entangled. Pa-
rameters: ω = ω0 = 1 and λc = 0.5 (gray vertical line), in
units of ω0.

where

σ11 =
ω

2

(
cos2 θ

ε−
+

sin2 θ

ε+

)
σ22 =

1

2ω

(
ε− cos2 θ + ε+ sin2 θ

)
σ33 =

ω̃

2

(
cos2 θ

ε+
+

sin2 θ

ε−

)
(25)

σ44 =
1

2ω̃

(
ε+ cos2 θ + ε− sin2 θ

)
σ13 = σ31 =

√
ω ω̃ sin 2θ

4

(
1

ε+
− 1

ε−

)
σ24 = σ42 = − sin 2θ

4
√
ω ω̃

(ε− − ε+) .

The ground states |Ψ〉 describing the two phases, are
now completely characterized as Gaussian states by their
Wigner function (3), and the corresponding CM (23) and
first-moment vector (24) are now expressed in terms of
the physical parameters {λ, ω, ω0, N}. We notice that
the dependence on the size N of the atomic subsystem is
contained only in the first-moment vector (24).

In both phases the ground state is a pure Gaussian
state (µ = 1), with d± = 1/2, since it has been obtained
by a symplectic transformation of the vacuum state |ψ〉.
When the coupling λ between the two subsystems gets
stronger, the two become increasingly entangled, as wit-
nessed by the logarithmic negativity (10), which quanti-
fies in a monotonic way the violation of ppt-criterion for
the separability of a bipartite state. As it is shown in Fig.
1, the atomic and radiation subsystems get increasingly
entangled as their coupling approaches the critical value
λc. The already established result that entanglement en-
hances the precision of a measurement [37, 38] will be
confirmed in the following, where we will adopt the QET
approach to the considered critical system.
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B. QFI and SLD

Once the ground states in the two phases are known,
it is possible to study the behavior of the QFI, as a func-
tion of the coupling parameter λ driving the QPT and
the tunable radiation frequency ω, which sets the criti-
cal point λc. We point out that in our model λ and ω
are considered independent on each other, for the sake
of simplicity, but that in some experimental realizations
(see, e.g., Ref. [25]) they may be related to the tunable
parameters of an external pumping.

Referring to Eq. (15), it is possible to analytically eval-
uate the QFI in the two phases, but we report here only
the limiting behaviors in proximity of the critical value
λc. In particular, the leading term in the series expansion
of the QFI approaching the critical parameter from both
the two phases, is H(λ) ∼ [2

√
2(λ− λc)]−2, whereas the

main limiting cases are displayed in Table I. At the crit-
ical point the QFI for the whole radiation-atoms system
diverges with a second-order singularity, thus highlight-
ing the possibility to estimate the parameter λ (in the
ideal thermodynamic limit) with infinite precision. By
tuning λc with ω, it is possible to obtain the highest pre-
cision for every value of the coupling parameter λ, as the
behavior of the QFI at λc is left unvaried (see Fig. 2). We
point out that the second term in Eq. (15) is non-zero in
the superradiant phase, in particular the QFI behaves in
the thermodynamic limit as a linear increasing function
of N , with finite-size corrections of the order N−1/2, for
every value of the coupling λ. Nonetheless, at the critical
point λc the dominant contribution to H(λ) is ruled by
the coupling parameter (see Table I).

Now we compute the SLD operator in the two phases
and analyze the asymptotic behaviors, with respect to
λ, at the critical point. In the normal phase the second
term of Eq. (16) is null, since the amplitudes of the
displacements (18) are zero. In both phases ν = 0
and the main term of the SLD has the same dependence

��� ��� ���
λ�

�

�
�(λ ) (� ��� )

FIG. 2: (Color online) Plot of the QFI as a function of λ,
where all the quantities are computed in units of ω0 and N =
100. Resonance condition: ω0 = ω = 1 (solid blue curve) with
λc = 0.5. Off-resonance condition: ω = 0.25 (dashed orange
curve) with λc = 0.25.

TABLE I: Limiting behaviors of the QFI in the normal and
superradiant phases at λ→ λ±c , λ→ 0 and λ→∞.

Normal phase Superradiant phase

λ→ λc
1

8(λ−λc)2
+O

[
1

|λ−λc|

]
1

8(λ−λc)2
+O

[
1

|λ−λc|

]
λ→ 0 4

(ω+ω0)2
+O[λ2] —

λ→∞ — 4N
ω2 +O

[
λ−4

]

|λ− λc|−3/2, namely

~R T (−σ̇)~R ∼
4
√
ω ω0

8
√

2
√
ω2 + ω2

0

1

|λ− λc|3/2
(x̂′1− x̂′2)2, (26)

where ~R′ = F1
~R is the vector of quadratures transformed

according to the local squeezing employed in the Hamilto-
nian diagonalization (22). In the superradiant phase the
linear term of the SLD, dependent also on the number
of atoms N , is constant very close to the critical point,
namely

~RT ~ζ ∼

√
32N

ω3ω2
0(ω2 + ω2

0)

(
ω2

0 p̂
′
1 − ω2 p̂′2

)
, (27)

in such a way that, ultimately, the SLD diverges at λc
as in Eq. (26), but still more slowly than the QFI (see
Table I for comparison). Since the SLD is associated to
the optimal POVM saturating the quantum Cramér-Rao
bound (13), we note that Eq. (26) contains a combina-
tion of position quadratures relative to both the atomic
and radiation subsystems, confirming the highly entan-
gled nature of the two (see Fig. 1).

In the next section we will show that it is still possible
to optimally estimate the parameter λ around the critical
point, by means of locally feasible measurements.

IV. OPTIMAL LOCAL MEASUREMENTS

The main results of this work are examined in depth
in this section and concern the possibility to probe one of
the two subsystems (radiation mode or atomic ensemble)
with local and handy measurements, in order to retrieve
the optimal FI. In particular, we address the two most
known and employed optical techniques for measuring
and characterizing a single-mode radiation, namely ho-
modyne detection and photon counting.

A. Homodyne detection

Since all the information about the radiation mode is
encoded in its Wigner function, it is possible to recon-



7

TABLE II: Limiting behaviors of the FI for homodyne-like detection of both radiation Fx̂(φ)(λ) and atomic Fŷ(φ)(λ) subsystems

(with respect to QFI), in the normal and superradiant phases at λ→ λ±c , λ→ 0 and λ→∞.

Normal phase Superradiant phase

λ→ 0 λ→ λ−c λ→ λ+
c λ→∞

Fx̂(φ)(λ)/H(λ) 2[ω+(ω+ω0) cos(2φ)]
2

ω2(ω+ω0)2
λ2 +O[λ3] 1 +O[

√
|λ− λc|] 1 +O[

√
|λ− λc|] cos2 φ+O[λ−4]

Fŷ(φ)(λ)/H(λ) 2[ω0+(ω+ω0) cos(2φ)]
2

ω2
0(ω+ω0)2

λ2 +O[λ3] 1 +O[
√
|λ− λc|] 1 +O[

√
|λ− λc|] O[λ−6]

struct the corresponding Gaussian state %̂ using the ho-
modyne tomography technique, i.e. repeatedly measur-
ing the field mode quadratures according to the set of
observables

x̂(φ) =
âe−iφ + â†eiφ

√
2

≡ Û†(φ)x̂ Û(φ), (28)

where Û(φ) ≡ e−iφ â†â is a phase-shift operator. The
probability distribution of the possible outcomes of
a quadrature-measurement px(φ) = 〈x|Û(φ)%̂ Û†(φ)|x〉,
corresponds to the marginal distribution

px(φ) =

∫
R

dpW [%̂](x cosφ− p sinφ, x sinφ+ p cosφ),

(29)
where the Wigner function W [%̂](x, p) of the reduced
state of the radiation mode (see Sec. II A) %̂ =
Tr2[|Ψ〉〈Ψ|] is Gaussian with second and first moments
given by

σ =

(
σ11 0

0 σ22

)
(30)

〈~R〉 = (α
√

2N, 0)T . (31)

In Fig. 3 we show the Wigner function associated to
the radiation subsystem, together with the marginal dis-
tributions corresponding to homodyne measurements of
the position x̂(0) and momentum x̂(π/2). From the se-
quence of frames at different values of λ, the QPT is evi-
dent, where the field mode essentially undergoes a strong
squeezing around λc and then a displacement for λ > λc.

We now evaluate the FI associated to the homodyne
measurement probing the Gaussian ground state of the
radiation mode, as a function of the parameter λ driv-
ing the QPT. Since the probability distribution (29) has
Gaussian form with mean value 〈x̂(φ)〉 = cosφ〈x̂(0)〉 and
variance σ(φ) = cos2 φσ11 + sin2 φσ22, it is straightfor-
ward to derive a general expression for the FI (12) valid
for both the normal and superradiant phases

Fx̂(φ)(λ) =
2σ(φ)〈x̂(φ)〉2 + σ̇2(φ)

2σ2(φ)
. (32)

The scaling behaviors of the FI, compared to the QFI,

are listed in Table II for both the normal and superradi-
ant phases. It is remarkable that a measurement only on
a part of the system, namely the radiation mode subsys-
tem, provides the optimal value of the FI in proximity of
the critical point. Homodyne detection results to be an
optimal local measurement, easily feasible with standard
optical techniques, able to provide the best performances
in parameter estimation and to capture the quantum crit-
icality. In Fig. 4 we show that for different values of the
angle of the measured quadrature x̂(φ), at the critical
point λ → λ±c FI diverges with the very same scaling
behavior of QFI, saturating the quantum Cramér-Rao
bound (13). The only exception, which do not invalidate
the homodyne measurement, is that exactly at φ = π/2
the FI is no longer optimal at λc, even though its di-
verging character (see the insets in Fig. 4) represents
a high precision measurement according to the classical
Cramér-Rao bound (11). Besides, we point out that the
FI, in the superradiant phase and in the thermodynamic
limit, scales as a linear function of N , with finite-size cor-

FIG. 3: (Color online) Wigner function W [%̂](x, p) of the radi-
ation mode state at different values of λ = 0.3 (a), λ = 0.499
(b), λ = 0.6 (c) and λ = 1.5 (d). Marginal distributions, cor-
responding to the probability for the position and momentum
quadratures, respectively px(0) and px(π/2), are also shown.
The values of the chosen parameters are ω0 = ω = 1 and
λc = 0.5 (in units of ω0), in the superradiant phase N = 100.
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λ
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FIG. 4: (Color online) Plot of the ratio between FI for homo-
dyne detection and QFI, as a function of λ. The insets show
the behavior of the FI (solid curves) and the QFI (dashed
curve), both diverging at the critical parameter λc. The ar-
rows indicate the increasing values of the quadrature angle
φ = 0, π/3, π/2 (solid curves). Upper panel: resonance con-
dition with ω0 = ω = 1 and λc = 0.5. Lower panel: off-
resonance condition with ω0 = 1, ω = 0.25 and λc = 0.25. In
both cases the set of parameters is in units of ω0 and N = 100.

rections of the order N−1. Thus, the ratio between QFI
and FI plotted in Fig. 4 is essentially independent on N ,
for every value of the coupling λ.

Analogously, a homodyne-like detection of the atomic
subspace, corresponding to measure the generic compo-
nent Ĵ(φ) ≡ Ĵx cosφ + Ĵy sinφ of the collective atomic
spin in the {x, y}-plane, results to be optimal at the crit-
ical coupling λc. The only differences are: (i) in the limit
λ → 0, the atomic and radiation frequencies, ω0 and ω,
are interchanged and (ii) in the limit λ→∞, the FI goes
to zero (see Table II).

Interestingly, the electromagnetic field quadratures ap-
pear in the limiting expression for the SLD (26), thus con-
firming the optimal character of the chosen homodyne-
type detection employed to probe just one of the two
subsystems.

B. Photon counting

Another typical observable used to probe the electro-
magnetic field is the photon number operator

N̂1 ≡ â†1â1 =

∞∑
n=0

n|n〉〈n|

∞∑
n=0

n p(n) = Tr[%̂ N̂1],

(33)

where p(n) = 〈n|%̂|n〉 is the probability to detect a pho-
ton in the Fock state |n〉. Photon counters capable of
discriminating among the number of incoming photons
are commonly employed in quantum optical experiments
[25, 39, 40]. As we mentioned in Sec. II A, the partial
trace of a Gaussian bipartite state, is a single-mode Gaus-
sian state which can be cast in the general form of a DSTS
%̂ = D̂(γ)Ŝ(r)ν̂th(n̄)Ŝ†(r)D̂†(γ). The analytic and gen-
eral expression for the photon number probabilities [41],
applied to the state of the radiation subsystem with CM
and first-moment vector given by Eq. (30) and Eq. (31),

� � � � � ��
�

�

��-�

��-�

�(�)

λ = ���

λ = ����

(�)

�� �� �� �� �� �� ��
�

����

����

����

����

����

�(�)

λ = ����

λ = ���

(�)

FIG. 5: (Color online) Logarithmic plot of photon number
probability distributions (34) of the radiation ground state
in the normal phase (a), with ω0 = ω = 1 and λ = 0.3, 0.49.
Photon number probability distributions (34) of the radiation
ground state in the superradiant phase (b), with ω0 = ω = 1,
N = 100 and λ = 0.55, 0.7. The mean values of the distribu-
tions, Eq. (36), are specified with dashed vertical lines.
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λ
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�

�
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FIG. 6: (Color online) Plot of the mean energy of the ra-
diation mode subsystem (dot-dashed curve) as a function

of the coupling parameter λ. Three contributions to 〈N̂1〉
are showed: mean thermal photons n̄ (solid curve), mean
squeezed photons ns (dashed curve) and mean coherent en-
ergy |α|2N (dotted curve).

respectively, reads

p(n) = R00(−1)n2−2n(Ã+ |B̃|)n×

×
n∑
k=0

H2k(0)H2n−2k

(
i C̃
[
Ã+ |B̃|

]− 1
2

)
k!(n− k)!

[
Ã− |B̃|
Ã+ |B̃|

]k
,

(34)

whereHm(x) are Hermite polynomials. All the quantities
appearing in Eq. (34) depend only on first- and second-
moments as follows:

R00 =
2 exp{− 〈x̂1〉2

1+2σ11
}√

(1 + 2σ11)(1 + 2σ22)

Ã =
4σ11σ22 − 1

(1 + 2σ11)(1 + 2σ22)

B̃ =
2(σ22 − σ11)

(1 + 2σ11)(1 + 2σ22)

C̃ =

√
2 〈x̂1〉

1 + 2σ11
.

(35)

In Fig. 5 we plot the probability distributions for the
photon number characterizing the ground states of the
two phases. In the normal phase, the reduced ground
state for the radiation subsystem is a squeezed thermal
state with typical photon number distribution peaked in
n = 0, whereas in the superradiant phase it acquires
macroscopic occupation due to the non-zero displacement
amplitude (18). The general expression of the mean pho-
ton number of a generic single-mode Gaussian state in the
DSTS form is

〈N̂1〉 = ns + n̄(1 + 2ns) + |γ|2. (36)

It is possible to identify an intensive contribution to
〈N̂1〉 given by the mean number of thermal photons
n̄ =
√
σ11σ22 − 1/2 and the fraction of squeezed photons

��� ��� ��� ��� ���
λ

���

���

���

���

���

���
/�

����� ��� �����
λ

���

��

���
/�

FIG. 7: (Color online) Plot of the ratio between FI for a
photon-count measurement and QFI, as a function of λ. The
inset shows a magnification around the critical parameter λc,
showing in a clearer way that the observable N̂1 is optimal.
The values of the parameters (in units of ω0) are ω0 = ω = 1,
λc = 0.5 and N = 100 in the superradiant phase.

ns = sinh2 r, with r = Log( 4
√
σ11/σ22). The extensive

contribution is provided by the amplitude of displace-
ment γ = α

√
N , depending on the number of atoms. As

plotted in Fig. 6, it is evident how, in proximity of the
phase transition, the mean photon number dramatically
increases due to a strong degree of squeezing and a high
thermal component. Only in the superradiant phase the
extensive contribution |α|2N dominates far away of the
critical parameter, due to an increasing coherent state
component (see also Fig. 3(d)). We point out that even in
the thermodynamic limit, although in the normal phase
the extensive contribution is not present, in the proximity
of the critical point a non-negligible fraction of squeezed
thermal photons should be measured by a photodetector.

The FI information associated to the observable (33)
is given by Eq. (12) expressed in discrete form

FN̂1
(λ) =

∞∑
n=0

[∂λp(n)]
2

p(n)
. (37)

In Fig. 7 we show the behavior of the FI associated
to a photon-count measurement compared to the QFI.
Even though numerical simulations necessarily imply a
cut-off value of the dimensionality of the Fock space in
evaluating the series in Eq. (37), making the numerical
calculations awkward around λc, it is evident that the ob-
servable N̂1 tends to be optimal at the critical coupling.
We can, thus, strengthen our main result, according to
which optimal parameter estimation around the region
of criticality can be achieved even by probing only a part
of the composite system.

V. CONCLUSIONS

We have analyzed the superradiant QPT occurring in
the Dicke model in terms of Gaussian ground states with
the help of the symplectic formalism. In this framework,
we have addressed the problem of estimating the coupling
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parameter, investigating whether and to which extent
criticality is a resource to enhance precision. In partic-
ular, we have obtained analytic expressions and limiting
behaviors for the QFI, showing explicitly its divergence
at critical point. Upon tuning the radiation frequency
we may also tune the critical region and, in turn, achieve
optimal estimation for any value of the radiation-atoms
coupling.

Besides, we studied two feasible measurements to be
performed only onto a part of the whole bipartite sys-
tem, homodyne-like detection and photon counting. The
remarkable result is that by probing just one of the two
subsystems, namely the radiation mode or the atomic
ensemble, it is possible to achieve the optimal estima-
tion imposed by the quantum Cramér-Rao bound. No-
tice that this is a relevant feature of the system, in view
of its strongly interacting nature and of the high degree of
entanglement of the two subsystems at the critical point.
The possibility of probing the system accessing only the
radiation part is of course a remarkable feature for prac-
tical applications.

Motivated by relevant and fruitful experimental inter-

ests, recently arisen in connection to the realization of
exotic matter phases, we believe that a quantum estima-
tion approach, as the one outlined in this work, can be
profitably employed in quantum critical systems. The
gain is twofold, since (i) criticality is a resource for the
estimation of unaccessible Hamiltonian parameters and
(ii) the search for optimal observable providing high-
precision measurements allows a fine-tuning detection of
the QPT itself. The analysis may be also extended to fi-
nite temperature and to systems at thermal equilibrium.
Work along these lines is in progress and results will be
reported elsewhere.
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