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Abstract 

The recent advance in generative modeling in particular the unsupervised learning of data distribution is 

attributed to the invention of models with new learning algorithms. Among the methods proposed, 

generative adversarial networks (GANs) have shown to be the most efficient approaches to estimate data 

distributions. The core idea of GANs is an adversarial training of two deep neural networks, called generator 

and discriminator, to learn an implicit approximation of the true data distribution. The distribution is 

approximated through the weights of the generator network, and interaction with the distribution is through 

the process of sampling. GANs have found to be useful in applications such as image-to-image translation, 

in-painting, and text-to-image synthesis. In this thesis, we propose to capitalize on the power of GANs for 

different remote sensing problems. 

The first problem is a new research track proposed to the remote sensing community that aims to generate 

remote sensing images from text descriptions. More specifically, we focus on exploiting ancient text 

descriptions of geographical areas, inherited from previous civilizations, and convert them the equivalent 

remote sensing images. The proposed method is composed of a text encoder and an image synthesis module. 

The text encoder is tasked with converting a text description into a vector. To this end, we explore two 

encoding schemes: a multilabel encoder and a doc2vec encoder. The multilabel encoder takes into account 

the presence or absence of objects in the encoding process whereas the doc2vec method encodes additional 

information available in the text. The encoded vectors are then used as conditional information to a GAN 

network and guide the synthesis process.  We collected satellite images and ancient text descriptions for 

training in order to evaluate the efficacy of the proposed method. The qualitative and quantitative results 

obtained suggest that the doc2vec encoder-based model yields better images in terms of the semantic 

agreement with the input description. In addition, we present open research areas that we believe are 

important to further advance this new research area. 

The second problem we want to address is the issue of semi-supervised domain adaptation. The goal of 

domain adaptation is to learn a generic classifier for multiple related problems, thereby reducing the cost 

of labeling. To that end, we propose two methods. The first method uses GANs in the context of image-to-

image translation to adapt source domain images into target domain images and train a classifier using the 

adapted images. We evaluated the proposed method on two remote sensing datasets. Though we have not 

explored this avenue extensively due to computational challenges, the results obtained show that the 

proposed method is promising and worth exploring in the future. The second domain adaptation strategy 

borrows the adversarial property of GANs to learn a new representation space where the domain 

discrepancy is negligible, and the new features are discriminative enough. The method is composed of a 

feature extractor, class predictor, and domain classifier blocks. Contrary to the traditional methods that 

perform representation and classifier learning in separate stages, this method combines both into a single-

stage thereby learning a new representation of the input data that is domain invariant and discriminative. 

After training, the classifier is used to predict both source and target domain labels. We apply this method 

for large-scale land cover classification and cross-sensor hyperspectral classification problems. 

Experimental results obtained show that the proposed method provides a performance gain of up to 40%, 

and thus indicates the efficacy of the method.               

Keywords 

Domain adaptation, Generative adversarial networks, Image classification, Retro-remote sensing, 

Representation learning, Text-to-image synthesis.  
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Chapter 1 

1. Introduction 
Mankind has continuously devoted time and energy to better understand its surrounding environment. To 

this end, we collect and process different types of data. One way of collecting data is to use instruments 

that can gather information about an object or a phenomenon without being in contact. Such is the aim of 

remote sensing. In a broader definition, remote sensing includes sensing the Earth’s magnetic field, 

atmosphere or human body temperature [1]. It also includes instruments that do not present information in 

the form of an image. However, for the scope of this work, we use the following definition [1]: 

“Remote sensing is the practice of deriving information about the earth’s land and water surfaces using 

images acquired from an overhead perspective, using electromagnetic radiation in one or more regions of 

the electromagnetic spectrum, reflected or emitted from an earth’s surface.” (J. B. Campbell, 2002, page 

6 [1]) 

Such information can then be utilized by several applications to discover and manage natural resources, 

monitor changes, and preserve our environment. 

The remote sensing process involves illuminating a target and collecting the incident radiation using 

sensors. Based on the source of illumination, remote sensing systems are categorized into active and passive 

systems. Active systems (Figure 1.1) illuminate the target with their own source of energy. The sensor emits 

radiation towards the target to be investigated. Then, it detects and measures the reflected radiation from 

the target. Such sensors have the ability to obtain measurements anytime, regardless of the time of the day 

or season. Examples of active systems include sonar, synthetic aperture radar (SAR), and Lidar. Passive 

systems (Figure 1.1) on the other hand require external sources of energy to illuminate the target, and the 

sensors collect the reflected/re-emitted energy. In most cases, the sun is considered as a source of energy. 

The availability of such systems is limited by the presence of the source itself. An ordinary camera is an 

example of passive systems. 

 
Figure 1.1. Active vs Passive Remote sensing systems. 
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1.1. History of Remote Sensing 

Based on the definition provided above, the origin of remote sensing can be traced back to the beginning 

of photography in the early 1800s. The first aerial photograph was acquired by Gaspard-Félix Tournachon 

(1829 - 1910). He acquired an aerial photo of a small village near Paris from a tethered hot-air balloon, 80 

meters above the ground [2]. However, the world’s oldest surviving aerial photo is a picture of Boston taken 

from a hot-air balloon by James Wallace Black in 1860 (Figure 1.2). In addition to balloons, kites and 

pigeons were used as acquisition platforms. The invention of airplanes and improvement in photographic 

technology in the subsequent years led to the acquisition of the first aerial photograph (over the Italian 

landscape near Centocelli [1]) from an airplane by Wilbur Wright in 1909. Airplanes provided the capability 

to control speed, altitude, and direction for the systematic acquisition of aerial photographs [1]. Although 

both cameras and airplanes were not tailored to be used together [1], the technology was extensively applied 

for military reconnaissance and surveillance operations during the First World War (1914-1918). 

 
Figure 1.2. Aerial picture of Boston, USA acquired in 1860 (source: [2]). 

Post WWI, camera designs were improved and became more suitable for use in aircrafts [1]. Besides the 

military, government programs also started using aerial photography for topographic mapping, soil survey, 

geologic mapping, forest surveys, and agricultural statistics. The development continued during the Second 

World War (1939-1945) with researches developing the means to utilize other regions of the 

electromagnetic spectrum for remote sensing [1]. Furthermore, skills gained by pilots, camera operators 

and photo-interpreters during the war time were transferred (after the war) into business, scientific, and 

governmental programs to utilize aerial photography for a broad range of problems. 

The technological advancement continued to the Cold War Era with the development of the CORONA 

strategic reconnaissance satellite [1] to collect imagery from space. During this era, as more sophisticated 

technologies were developed, the military started to release superseding technologies for civilian 

applications. The first satellite named Television Infra-Red Observation Satellite (TIROS-1) (Figure 1.3) 

designed for civil application was launched on April 1, 1960. It demonstrated the feasibility of monitoring 

earth’s cloud cover and weather patterns from space. The development further continued with the launch 

of Landsat 1 in 1972, the first of many Earth-orbiting satellites to study and monitor the earth’s surface. It 

provided repetitive images of large land areas in several regions of the electromagnetic spectrum. 

Currently, there are several earth observation (EO) satellites orbiting around the earth. They have the 

capability to acquire images of the earth’s surface with a spatial resolution of as high as 30 centimetres and 
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an average revisit time of less than a day. For instance, the Landsat 8 (Figure 1.4a) is an American EO 

satellite launched in 2013. Its payload is composed of an operational land imager (OLI) (Figure 1.4b) and 

a thermal infrared sensor (TIRS) (Figure 1.4c). The OLI has nine spectral bands and provides global 

landmass coverage at a spatial resolution of 30 meters (visible, near infrared (NIR), and short-wave infrared 

(SWIR)) and 15 meters in the panchromatic channel. Whereas, the TIRS has two spectral bands that acquire 

images at a spatial resolution of 100meters. The European space agency (ESA) has also a program named 

SENTINEL that aims to replace satellites nearing the end of their operational life or decommissioned 

satellites to ensure continuity of data.  Each SENTINEL mission focuses on different aspects of earth 

observation: SENTINEL-1, SENTINEL-2, and SENTINEL-3 are used for Ocean and land monitoring 

while SENTINEL-4, and SENTINEL-5 are dedicated to air quality monitoring. WorldView 3 (launched in 

2013) is the highest resolution (31 centimetres) commercial satellite. It collects data using the panchromatic, 

multispectral, and SWIR regions of the EM spectrum. It also has on board CAVIS (Cloud, Aerosol, Vapour, 

Ice, and Snow) instrument. Moving forward, the next generation of EO satellites (such as the WorldView 

legion) aim to improve the revisit time (for some locations) by up to forty times per day [3]. 

 

Figure 1.3. TIROS-1 the first weather satellite that demonestrated the feasibility of monitoring Earths cloud cover 

and waether pattern from space (source: [4]). 
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a. Schematic diagram of 

Landsat 8. 

b. Schematic diagram of the 

OLI sensor. 

c. Schematic diagram of the 

TIRIS sensor. 

Figure 1.4. Schematic diagram of the Landsat 8 satellite and onboard sensors (source: [5]). 

Beside space born acquisition platforms, remote sensing applications utilize images acquired from 

manned/unmanned aircrafts. Since the first aerial photograph from manned aircraft, the potential advantage 

of aerial photography is understood by the military and extensively used for reconnaissance during the 

World War I, World War II, the Cold War, and up until now. Thanks to advances in technology, unmanned 

aerial vehicles (UAVs) also became useful for aerial photography. Similar to most technologies, the 

development and use of UAVs was started in the military and later made available for civilian applications. 

Currently, there are UAVs ranging from small (Leslaur LF602) in size, which are being used by hobbyists 

to take pictures and videos during leisure activities, to big (the MQ-9) that are being used for reconnaissance 

operations. Compared to manned aircrafts UAVs are controlled remotely and do not require human on 

board. This makes them more attractive to acquire images in dangerous/inaccessible areas. Besides, they 

are flexible, efficient, low cost and useful to acquire extremely high resolution (EHR) images, making them 

an effective complement to manned aircraft and satellite-based remote sensing. 

Until now, we have discussed about the different types of image acquisition platforms and how the 

technology evolved. However, these platforms are nothing without the image sensors on-board, as they are 

the ones that acquire the data. Although the basic concept of photography has been around since the 5th 

century B.C.E. [6], the first portable camera is developed in the 17th century. The world’s first photograph 

was recorded in 1826 by a French inventor Joseph Nicéphore Niépce. This led to a number of other 

experiments and a rapid progress in photography. In the 1880s the first commercial camera was developed 

by Kodak. The development further continued with the invention of Polaroid cameras (cameras that 

produce instant images) and modern-day digital cameras (professional and embedded in smart phones) that 

can capture high-quality images. The advance in camera technology also enabled the use of spectrums 

outside the visible region, most notably the infrared and the microwave spectrums, during the Second World 

War. Although the basic knowledge and potential use of these regions was understood the preceding 150 

years, wartime research and operational experiences provided the theoretical and practical knowledge to 

utilize the non-visible spectrum for remote sensing application. Furthermore, scientists from NASA 

developed instruments that could create images of the earth’s surface at unprecedented levels of spectral 

detail [1]. These new instruments, also called hyper-spectral cameras, were capable of collecting 

information in very precisely defined regions of the spectrum. 

The technological advance in image acquisition sensors and platforms for remote sensing applications have 

significantly improved our ability to collect earth’s information at an unprecedented level. This resulted a 

remarkable growth in the volume, velocity and variety of data collected, effectively entering the big data 
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era [7]. The term big data refers to the collection of large and complex datasets that require more efficient 

algorithms and models, compared to traditional approaches, to extract meaningful information. Big data is 

mainly characterized by three features (also called the 3 Vs) [7]: volume, velocity and variety. Volume 

refers to the size of the dataset collected by earth orbiting space-born and airborne sensors. In the context 

of remote sensing, variety refers to the multi-spectral, multi-temporal, and multi-sensor data acquired. 

Whereas, velocity is all about the speed of remote sensing data generation and with which it is analysed. 

Having massive amount of data is becoming an economic asset and an important resource in remote sensing 

applications, such as natural hazard monitoring, urban planning, and climate change. However, it also 

brings challenges such as managing the massive and diverse amount of data generated from different 

sources, designing data storage systems, developing efficient data representation techniques, fusing data 

from different sensors, and developing big data visualization methods to better understand the data [8].   

1.2. Some Open Issues in Remote Sensing  

The current fleet of satellites orbiting the Earth’s surface combined with manned/un-manned aerial vehicles 

collect diverse and massive amount of data. After acquisition, the data goes through different processing 

stages before generating meaningful information. The main stages are composed of a pre-processing stage, 

value-added processing, and information abstraction [8]. Radiometric correction, geometric correction, 

image enhancement for removing noise and correcting inconsistencies are applied in the pre-processing 

stage. The value-added processing deals with orthorectification, fusion, mosaicking, and fine correction. 

Whereas, the final stage converts the raw data into application usable formats such as 

classification/segmentation maps, normalized difference vegetation index (NDVI), and leaf area index 

(LAI). After, RS applications exploit this data to generate quantitative and qualitative information, such as 

vegetation cover in a given area, area damaged by a disaster, and temporal change in a given area. 

Although the amount of data generated by RS technologies is brining additional challenges, current research 

issues in the remote sensing community mainly focus on the information abstraction stage. This stage 

requires developing application dependent mathematical models for the purpose of mapping the raw data 

into usable format. In this section, we discuss a couple of well-established research problems followed by 

emerging research trends in the remote sensing community. 

Image search and retrieval is an area of research that focuses on developing models/algorithms that retrieve 

image/s from a huge collection of digital images based on a query data. Early retrieval methods used 

metadata information such as geographical location, time of acquisition, and/or sensor type to retrieve 

images [9]. Such methods rely on manually annotated keywords and hence, they are very imprecise and 

inefficient as they do not take into account the visual content of the images. Content-based image retrieval 

(CBIR) systems, on the other hand, take an image as an input and retrieve the most similar image/s. CBIR 

models mainly focus on finding visually discriminative image features and then, compute the similarity 

between the image features [9]. Thus, the main focus is on designing/selecting the appropriate feature 

extraction techniques and the most suitable similarity metric. In addition, researchers also attempted to 

include user feedback in the retrieval process to capture user intention and return query results accordingly 

[9]. 

Remote sensing image classification is a well-established research area that deals with learning a mapping 

function from an image space to label space. That is, the function takes an image as an input and outputs 

class label/s, such as grass, building, and road, to which the image belongs. Applications such as land 

use/cover, object detection, and urban monitoring rely on classification models to drive meaningful 

information from the images. Pixel-wise classification is a classic technique that considers an image as a 

collection of pixels with spectral information and performs per-pixel classification [10]. However, the 

assumption that a pixel represents a single object becomes invalid when dealing with medium to very high-
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resolution images. In order to solve this, researchers proposed object-based models. Object based methods 

assume that a group of pixels form an object, and the classification is done based on the features extracted 

from the group. These features represent the characteristics related to the objects. The most common feature 

extraction techniques include the Histogram oriented gradients (HOG) [11], Haar feature [12], and Scale-

invariant feature transform [13].     

The current trend on image classification is learning discriminative features from the data itself, as opposed 

to manually engineering features. This is achieved thanks to artificial neural networks (ANNs). Neural 

networks are algorithms, inspired by the human brain, that learn data patterns from examples. They are 

composed of an input layer, one or more hidden layers, and an output layer. They have the capability to 

learn discriminative features and perform complex classification tasks. Thanks to the availability of large 

real-world datasets (such as the ImageNet [14]) and high-performance computing devices, the research on 

ANNs have moved towards developing deeper and complex models (also called deep learning models) that 

have the capability to learn hierarchical features similar to the mammalian vision system. Such models have 

shown to be efficient, surpassing the human level object recognition performance on some datasets, and are 

being employed in real world applications such as autonomous driving, surveillance, and medical image 

analysis. 

The problem of classification can be either unsupervised or supervised. Unsupervised classification 

partitions a dataset into clusters of smaller samples with common characteristics. For example, images of 

grass belong to one group, and images of building belong to another group. Examples of unsupervised 

classification algorithms include k-means clustering, hierarchical clustering, and mixture models. 

Supervised classification methods, on the other hand, require a training set composed of image and label 

pairs to learn a function that predicts the label for unseen examples (also called test samples). Classical 

supervised algorithms include the k-nearest neighbour, support vector machines (SVM) and neural 

networks. There are two main issues with supervised learning: collecting enough labelled training samples 

and model performance when there is domain shift. Supervised models require sufficient number of labelled 

examples in order to have acceptable performance in the prediction phase. The number of examples 

required mainly depends on the complexity of the model. For instance, SVMs yield very good performance 

with thousands of samples. Whereas, modern deep learning models require hundred thousand/millions of 

samples to yield adequate performance on a classification task. However, collecting labelled samples is a 

manual process that is time consuming and costly. The other issue is performance of a model on the face 

of domain shift between the training and test samples. In the context of remote sensing, such a shift can 

occur when training and test images are acquired at different times, using different sensors, and/or at 

different geographical locations. In this scenario a trained model is likely to give poor performance on the 

test samples. This issue can be addressed though transfer learning.         

Transfer learning is a branch of machine learning that aims to make use of knowledge gained while solving 

one problem to another related problem. In the case of labelled sample shortage, transfer learning 

approaches propose to use an existing related labelled dataset to train a model and then, adjust the 

parameters using the training samples of the problem at hand. For instance, training a neural network with 

many hidden layers requires having enough labelled samples as there are many parameters to be learned. 

Such trained network can be applied to another dataset with small labelled samples as a fixed feature 

extractor or can be fine-tuned. In the case of fixed feature extractor, the output of the last hidden layer is 

used as a new representation for the input image and a generic classifier is trained. In the case of fine-

tuning, weights of the whole network or part of it can be updated using the training data from the problem 

at hand. 

Domain adaptation (DA) is a type of transfer learning that aims to learn domain invariant models. That is, 

the model performs well even if there is a domain shift between the training, usually called source domain, 
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and test data usually called target domain. A practical example is to have a classification model that 

generates land cover maps for images of a given area acquired during winter and spring seasons. Depending 

on the availability of labelled samples for the target domain, we can have supervised, semi-supervised, and 

unsupervised DA models. Supervised DA models assume there are enough labelled samples from the target 

domain to be used for training. On the other hand, semi-supervised models assume labelled samples are 

available only for the source domain data and unlabelled data is available for the target domain. Hence, 

they try to exploit labelled source data and unlabelled target samples in the learning process. On the 

contrary, unsupervised DA approaches consider a scenario in which there are no labelled samples from 

both domains, and this makes it very challenging.  

One of our objectives in this thesis is to develop semi-supervised DA approaches. More specifically, most 

of the existing work in unsupervised DA approaches focus on learning a new representation space where 

the domain discrepancy between the source and target domains is minimized. After, a classifier trained 

using source domain labels is used to predict target domain labels. However, there can be a scenario in 

which source and target sample features are domain invariant in the new space but not discriminative 

enough. The other issue is that the new features are just vectors in a high dimensional space that are difficult 

to interpret. For instance, if we consider images and perform domain adaptation in a new space, the output 

will be difficult to interpret. But, if we perform the domain adaptation in the image space, the result will be 

another image that can be easily understood and see the effect of the model. Therefore, we present and 

evaluate different models to address the issue of learning domain invariant and discriminative features as 

well as domain adaptation in the input space.      

The current technological progress in earth observation technologies is bringing additional challenges to 

the research community. The huge amount of data collected requires designing efficient storage systems 

and models that make use of the data available. So far, studies in remote sensing images focus on scene 

classification, object recognition, and image segmentation. Such studies provide information about the 

presence or absence of objects in an image. However, information about objects’ attributes and their spatial 

relationship is ignored. Image captioning aims to fill this gap. It is a new research area in the remote sensing 

community that aims to generate more information from images. The main idea behind image captioning 

is to generate comprehensive descriptions that summarize image content using machine learning 

techniques. Having these concise descriptions can benefit several applications. For instance, image retrieval 

can make use of these sentences to retrieve semantically similar images. Scene classification also benefits 

from such descriptions as they have additional information that can improve classification performance.    

From a methodological perspective generative modelling is another area of research that gained much 

attention recently. The goal of generative models is learning/approximating (either explicitly or implicitly) 

the distribution from which a dataset is samples. Methods such as Variational auto encoders [15], PixelRNN 

[16], and Generative adversarial networks (GANs) [17] are examples of algorithms developed to 

approximate data distributions. These models have found to be useful for application such as data 

augmentation, image inpainting, image-to-image translation, text-to-image synthesis, and many more 

applications. As part of this work, we focus on the text-to-image synthesis application and propose a new 

research track named Retro-remote sensing to the remote sensing community. 

Retro-remote sensing aims to use machine learning models to convert ancient landscape descriptions into 

images. That is, before the invention of imaging technologies and acquisition platforms mankind used to 

record information about the surrounding environment in the form of handwritten descriptions and hand 

drawn maps. Thus, our goal is to convert such information (more specifically, we focus on the text 

descriptions written by geographers and/or travellers) into equivalent images. Such images can have three 

main applications. This first application goes with the saying “A picture is worth thousand words.” That is, 
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the generated images can be used as a pictorial summary of the description. Today, we have several 

algorithms that take images as input and extract meaningful information. However, we cannot apply these 

algorithms directly to the ancient descriptions as data modality is different. Hence, by converting the 

descriptions into images we can directly apply existing image-based algorithms and extract the required 

information. Retro-remote sensing can also have interdisciplinary applications. Researchers in the area of 

Landscape Archaeology and Historical geography can make use of such images for their studies. 

The next section discusses the methodological approach exploited in this research to address the two main 

research problems (semi-supervised domain adaptation and Retro-remote sensing) that we have tried to 

address.                                              

1.3. Proposed Solutions 

The goal of generative models is to approximate the distribution from which a given dataset is sampled. 

Among the methods proposed, Generative adversarial networks (GANs) have attracted significant 

attention. GANs formulate the generative modelling problem as an adversarial competition between two 

deep neural networks: a generator and discriminator. The generator network is tasked with synthesizing 

realistic-looking data. Whereas, the discriminator network takes an input (either real or synthesized 

samples) and classifies them as real or fake. The ultimate goal of the generator is to output samples that 

confuse the discriminator. That is, it will not be able to say whether the input is real or fake. The most 

commonly used real-world example is the game between a counterfeiter and detective. The counterfeiter is 

analogous to the generator trying to produce fake currency. The detective is similar to the discriminator in 

that it identifies the fake currency from the real one. At the end of the game, the counterfeiter learns to 

produce notes that cannot be distinguished by the detective. By learning to generate realistic-looking 

samples the generator is implicitly approximating the distribution from which the training set is sampled. 

Since introduced in 2014, GANs have found to be useful in applications such as image inpainting (missing 

area reconstruction) [18], image-to-image translation [19], image super-resolution [20] and many more 

applications.  

In the original formulation of GANs, the input the generator is a latent vector sampled from a simple 

distribution (uniform and normal distributions are commonly used). Then, this vector is mapped to a 

realistic sample. However, the process of mapping does not allow to control the output of the generator. In 

order to solve this, the authors in [21] proposed Conditional GANs (CGANs). CGANs take additional 

information such as class labels, images, or text, besides the latent vector, to guide the synthesis process. 

That is the generated image should be realistic-looking and agree with the conditioned information.  

In this thesis, we propose to capitalize on the power of CGANs to generate images of the far past form the 

corresponding text descriptions (Retro-remote sensing). This problem can be split into two sub-problems: 

text encoding and image synthesis. The goal of text encoding is to learn a function that maps an input text 

description into a d-dimensional vector. The requirement here is that the information such as type of objects, 

their attributes, and the spatial relationship between the objects should be encoded properly. Whereas, the 

image synthesis attempts to decode the text encoder outputs into images that have semantic agreement with 

the input description. We present two methods, namely multi-label encoder and doc2vec encoder, to convert 

text descriptions into vectors, and CGAN based approaches to convert these vectors into pixel-based data. 

In order to validate the proposed method, we collect and utilize ancient text descriptions and satellite 

images.      

In the context of semi-supervised domain adaptation, we propose using CGANs to perform domain 

adaptation in the input space. That is, the generator is conditioned with images from the source domain and 

attempts to modify them in such a way that they have target domain image attributes. The discriminator, 

on the other hand, will identify if the input images are real or synthesized target domain images. After the 
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CGAN training, the generator network is used to convert source domain samples into target domain 

samples. Since the source domain samples are labelled, the converted images are used to train a classifier 

which is eventually used to predict target domain labels. Using GANs for domain adaptation has two 

benefits. The first is that since the output is an image it is easily interpretable. The second advantage is that 

the generator can be used to synthesize unlimited target domain samples which is potentially useful if one 

wants to train complex models. In this scenario, we use aerial image classification problem to validate the 

proposed method. 

One of the core ideas behind GANs is the adversarial training scenario. Capitalizing on this, the authors in 

[22] proposed a representation learning method called Adversarial neural networks (AdNNs) for semi-

supervised domain adaptation problems. The method aims to learn a new representation space onto which 

the domain discrepancy between source and target domains is negligible and the new features are 

discriminative. The method is composed of a representation learning block, a class classifier, and a domain 

predictor. The representation block maps source and target inputs to a common latent space. The classifier 

takes labelled source domain samples and learns class boundaries. The domain classifier, on the other hand, 

tries to distinguish whether an input sample is from a source or target domain. Hence, the goal of the 

representation block is to learn features that are both discriminative and domain invariant. After training, 

the representation block along with the class classifier is used to predict target domain labels.  

In this work, we propose using AdNNs for two problems. This first problem deals with semi-supervised 

domain adaptation for large-scale land cover classification. Here, we apply AdNNs in cases where we have 

spatial, temporal, and spatio-temporal domain adaptation problems. In addition, we evaluate the suitability 

of the method for multi-target domain adaptation (learning a single classification model for multiple 

domains) problem. In the second problem, we modify the cost function for the domain classifier and apply 

the AdNN network to classify hyperspectral images that are characterized by a domain shift due to spatial, 

temporal, and acquisition sensor.   

Overall, the main contributions of this research are as follows: 

1) We present a new research track that aims to extend remote sensing images to the pre-sensor era. 

2) We present a domain adaptation approach that minimizes the domain discrepancy between source 

and target domains in the input space. 

3) We present a semi-supervised domain adaptation method for large-scale land cover classification 

and hyperspectral image classification problems. 
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Chapter 2 

2. Generative adversarial networks 
This chapter presents a recently proposed class of generative models called Generative adversarial networks 

(GANs) that are pillars of our work. First, we present a general introduction to the field of generative models 

and discuss how it differs from discriminative modeling. Then, we will discuss the theory, mathematical 

formulation, and different algorithms proposed for GANs.  

2.1. Generative modeling 

Generative modeling is a branch of machine learning that aims to learn a probabilistic model that captures 

the process in which a dataset was observed [23]. Such models provide a way to generate synthetic data 

points. Suppose we have a dataset containing images of cars. Through generative models, we can synthesize 

new realistic-looking images of cars unseen in the dataset. To better understand generative modeling, we 

will compare it with discriminative modeling. 

Discriminative models learn a mapping function from an input space to a label space. Suppose, we have a 

binary classification problem that outputs either an object (for example a car) is present or absent, hence 

discriminative. Such model takes labelled data as an input and learns a function that maps the input to one 

of the classes (either car or not car). After training, the model is used to predict the class for unseen data. 

On the contrary, generative models require unlabeled samples and model the probability of observing those 

samples. Mathematically, discriminative models estimate the probability of a label � given an observation 

� (�(�|�)) and generative models estimate the probability of observing a sample � (�(�)). The process of 

discriminative and generative modeling is shown in Figure 2.1.  

 

  

a) Discriminative models b) Generative models  

Figure 2.1 Discriminative vs Genrative models. Discriminative modeles learn decision boundaries (red curve) 

between classes (black and yellow circles represent car and solar pannel classes). Whereas, generative models learn 

to approximate data distribution. 

The recent advance in the area of generative modeling is parametrizing such models with deep neural 

networks, also called deep generative models (DGM). We can categorize such models into explicit and 

implicit density estimation models. Explicit density estimation models are those that provide a 
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parameterized density distribution to model the observed variable �. The main difficulty here is to find an 

appropriate model that captures complexity of the data while maintaining computational complexity [24]. 

Some approaches in this category consider carefully designing a computationally tractable function while 

others consider using intractable density functions and using an approximation to learn the parameters of 

the function. Implicit density estimation models, on the other hand, offer a way to train the model and 

interact indirectly, usually by sampling from the model [24].  Figure 2.2 shows the taxonomy of deep 

generative models along with some specific examples.  

The basis of this research is using GANs for different remote sensing applications and they fall into the 

implicit density estimation models category. We discuss the working mechanism of GANs in the next 

section. 

 

Figure 2.2 Taxonomy of deep generative models. 

2.2. GANs: working principle  

Generative adversarial networks (GANs) [17] approximate the distribution from which a dataset is sampled 

through a deep neural network. The main working principle behind GANs is to train two deep neural 

network architectures (also called a generator and discriminator) in an adversarial manner. The architecture 

of a GAN is shown in Figure 2.3. The generator is tasked with synthesizing realistic-looking samples and 

the discriminator is tasked with discriminating between the real and synthesized (fake) images. Thus, 

generator’s goal is to synthesize realistic looking images that cannot be distinguished by the discriminator. 

Through this process, the generator network learns an approximate distribution ������ of the true data 

distribution �����. 

Deep generative models

Implicit density Explicit density

Tractable density Approximate density

Fully visible belief networks 
(FVBNs)

Masked Autoencoder for 
distribution estimation (MADE)

PixelRNN

Variational Autoencoder 
(VAE)

Boltzmann machine

GAN

Generative stochastic 
network (GSN)
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Figure 2.3 Architecture of a GAN network. 

Formally, the generator is represented by a function � with parameters �� and the discriminator is 

represented by a function � with parameters ��. The input to the generator is a latent vector � sampled 

from a simple distribution, uniform and normal distribution are commonly employed. Whereas, the input 

to the discriminator is an image � sampled either from the real distribution or the generator. Both � and � 

are differentiable with respect to their corresponding parameters. The loss used for training is dependent on 

the parameters of both � and � but, during training, each network has control only over its own parameters. 

Thus, the discriminator minimizes the cost function ��(��, ��)  by updating only its parameters ��. 

Contrarily, the generator updates its parameter �� to maximize the cost function ��(��, ��). The training 

process is formulated as a minimax game between the two networks. The solution to the minimax game is 

a Nash equilibrium with a tuple (��, ��) that is a (local) minimum �� with respect to �� and  a (local) 

minimum �� with respect to �� [17]. 

Mathematically, � is represented by a binary classifier that employs the standard cross-entropy loss 

function (Equation 2.1) to learn the optimal parameters. At eat each training iteration, mini-batches of real 

and generated image samples are fed to the discriminator for predicting corresponding labels (1 for real 

samples and 0 for fake/generated samples). The discriminator updates its parameters by back-propagating 

the average mini-batch loss computed using Equation 2.1. In the simplest form of the game, the generator 

minimizes the negative of the discriminator’s cost function (Equation 2.2), which is equivalent to a 

maximization of the cost function, to learn the optimal parameters (Equation 2.3). Both � and � employ 

gradient-based optimization algorithms for learning. 

��(��, ��) =  −
1

2
{��~�����

log �(�) + ��~��
log(1 − �(�(�)))} 2.1 

�(��, ��) =  −��(��, ��) 2.2 

��∗
= arg min

��
max

��
�(��, ��)    2.3 

Given that the two networks have sufficient capacity, the global optimum to the minimax game is achieved 

when �����  =  �� (�(�) being drawn from the same distribution as �) [17]. For any given generator � the 

goal of the discriminator is to maximize the value function �(��, ��), and this maximum is attained when 

value of the discriminator is as shown in Equation 2.4. At this optimal discriminator the generator loss 

function is equivalent to the Jenson-Shannon (JS) divergence between the model and true data distributions 

(Equation 2.5). The global minimum for � ,on the other hand, is achieved when ��  =  �����. At this point 

G

 �

 �  ��

Real

Fake

Notation:
�: Real samples
��: Generated images
�: Latent vector
D: Discriminator
G: Generator
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 �∗(�) predicts ½ for all samples � (in other words � is maximally confused and cannot distinguish 

between real and generated samples), and the loss becomes −2 ��� 2. Interested readers can refer [24] for 

the proof. 

��
∗ (�) =  

�����

����� + ��
 2.4 

�(��
∗ , �) =  −2 log 2 + ��(�����|| ��) 2.5 

��������, ��� =
�

�
��(�����|| ��) +

�

�
��(��||��)  2.6 

where �� average distribution with density 
����� � ��

�
 and �� is the Kullback-Leibler divergence. Given 

two distributions �� and ��, the KL divergence is defined as follows:  

�����|| ��� = ∫ ��(�) log
��(�)

��(�)�
  2.7 

Although the cost function in Equation 2.1 is useful for theoretical analysis, in practice it does not perform 

well. The main reason is that during the initial training stages the discriminator is able to distinguish the 

generated samples from the real samples easily. This leads to a very small (zero) loss value for the generator 

resulting in the generator’s gradient to vanish, also called the vanishing gradient problem. To solve this, the 

authors in [17] proposed a heuristic approach that still relies on the cross-entropy loss function but instead 

of flipping the sign of the discriminator’s cost it flips the target used to reconstruct the generator cost 

function. Accordingly, the generator loss is modified as show in Equation 2.8. The intuition of this cost is 

that the generator maximizes the log-probability of the discriminator being mistaken instead of minimizing 

the log-probability of the discriminator being correct. Although this version of the game is not minimax, it 

ensures that both players have strong gradient during the training process.     

�� =  −
1

2
��~��

log �(�(�)) 2.8 

Besides the vanishing gradient problem, GANs have other problems. The first problem is that achieving 

the Nash equilibrium is difficult. In game theory, the Nash equilibrium is a state in which no payer improves 

its individual gain by changing strategy while keeping other players strategy unchanged [25]. For GANs 

this is equivalent to the optimal point for the minimax equation in 2.3. However, the GAN game uses a 

non-convex cost function and has continous parameters in extreamly high-dimensional space [26]. In 

addition, it uses a gradient based optimization technique to obtain the optimal paramters. Since such 

optimization is designed to obtain a minimum value of the cost function, it may fail to converge when used 

to seek the Nash equilibrium [26].  

Mode collapse or the Helvetica scenario is a failure of GANs that occur when the generator learns to 

synthesize a specific class of samples very well (for example images of dogs from different angles), 

therefore easily fooling the discriminator, as opposed to learning complex real-world data distributions. To 

better understand this, consider an extream case where � is updated extensively while � is kept constant. 

In this scenario, � learns to output the optimal image that fools � the most (the most realistic images from 

�’s perpective) and the gradient with respect to the generators input (�) will approach to zero. When we 

restart training �, it learns that this point comes from � but has no mechanism to check if there is diversity. 

Thus, the gradient from � pushes this point around the space forever, resulting in the algorithm not to 

apporimate the true distribution.   
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Finally, the objective function is also not a good metric to understand the training process, there is no way 

of knowing when to stop training, and it is difficult to compare the performance of multiple models. This 

makes training GANs very difficult and requires manually following the training progress. 

The research progress towards solving these problems and stabilizing the training process can be 

categorized into heuristic approaches that aim to improve convergence and principled approaches that 

propose alternative divergence measures. Some of the heuristic approaches include feature matching, mini-

batch discrimination, historical averaging, one-sided label smoothing, and virtual batch normalization [26]. 

Feature matching aims to improve stability GANs by using a new cost function for the generator. Instead 

of maximizing the output of the discriminator, the generator uses a new cost function (Equation 2.9) that 

measures statistical similarity between the generated samples and real samples. One way to achieve this is 

training the generator to match the expected value of intermediate features of the discriminator network. 

���~�����
�(�) − ��~��

���(�)��
�

�
 2.9 

where �(�) represents activations of an intermediate layer in the discriminator. Mini-batch discrimination 

on the other hand attempts to deal with the issue of mode collapse. The authors in [26] pointed out that the 

discriminator processes samples individually and has no mechanism to tell whether the generated images 

are dissimilar or not. When mode collapse happens, the discriminator belives a single point from the 

generator is highly realistic but gradient descent is unable to differentiate identical outputs. This results in 

the algorithm not to converge to the correct distribution. With mini-batch discrimination, instead, the 

discriminator measures similarity between examples in a mini-batch and use it as a side information, which 

could potentially avoid mode collapse. As stated in [26], one way of computing such value is to add a 

minibatch layer that takes the output of an intermediate layer in the discriminator as input and computes 

the similarity between the samples. This similarity is computed separately for the real and generated 

samples. The output of this layer is then concatenated with the intermediate feature to be used as an input 

to the next layer.  

Historical averaging is another approach that updates both discriminator and generator parameters � at a 

given iteration taking into account historical updates (updates from previous iterations). In this approach, 

the cost function for each payer is modified to include a term �� −
�

�
∑ �[�]�

��� �
�
, where �[�] is the 

parameter at time �. Intutively, this is equivalent to penalizing the parameters when changing dramatically 

in time.  

The other branch towards solving the problems in GANs is using alternative divergence measures to train 

the model. For instance, the authors in [27] generalize the GAN training objective to arbitrary f-divergence 

measures showing that the original GAN formulation is a special case of an existing more general 

variational divergence measure. In another work, Mao et.al [28] adopted the least square loss for both the 

discriminator and generator networks. They also showed that minimizing this objective function is 

equivalent to minimizing the Pearson �� divergence, a type of f-divergence measure. Energy-based GANs 

(EBGANs) [29] on the other hand consider the discriminator as an energy function that attributes low 

energy to the real samples and high energy to the generated samples. The authors structured the 

discriminator as an auto-encoder network that measures the mean squared reconstruction error. This error 

is combined with the hinge loss to form the objective function for �. Wasserteing GAN (WGAN) [30] is 

another family of GANs that uses the Wasserstein distance for divergence measure. Arjovskey et.al [30] 

showed that Kullback Leiber (KL) and Jenson-Shannon (JS) divergence measures are either undefined or 

the gradient is zero when there is no overlap between two distributions whereas the Wasserstein distance 
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offers smooth measures. With this in mind, they proposed to use the Wasserstein-1 distance for training 

GANs. Our work also relies on WGAN and hence, we will describe them in detail in a separate section.      

2.3. GANs: applications 

Since introduced in 2014, GANs have been applied to several problems. The main application of GANs is 

to generate realistic-looking samples. Here, we focus on selected application of GANs for computer vision 

problems. Some of these applications include image super-resolution, image-to-image translation, image 

and video generation, text-to-image synthesis, etc. Image super-resolution is a task of estimating high 

resolution (HR) image from its low resolution (LR) counterpart. To that end, the authors in [20], [31] 

developed a GAN network that is capable of generating photo-realistic samples for single-image super-

resolution problem. In [20] the authors introduced a perceptual loss that is a combination of the adversarial 

loss and a content loss term to train the network. The adversarial loss pushes the generated images to the 

natural image manifold while the content loss measures perceptual similarity between the low resolution 

and the equivalent high-resolution synthesized images. [31] attempted to address the problem of artifacts 

observed in the work of [20] by improving the network architecture, adversarial loss, and perceptual loss 

components. An example of image super-resolution generated by both methods is shown in Figure 2.4. 

 

Figure 2.4 A comparison of single image super-resolution results for SRGAN and ESRGAN (Source [31]). 

Image-to-image translation is another application area where GANs have excelled. The main idea here is 

that to translate an image from one domain to another. Practical applications include gray-scale image to 

RGB conversion, map to satellite image conversion, style transfer between images, and many more. The 

first work in this regard is the pix2pix model proposed by Isola et.al [19]. In this work, the authors explored 

conditional GANs (CGANs) as a general-purpose solution to the problem. As a follow-up, [32] proposed a 

novel adversarial loss that improves image quality as well as a new multi-scale GAN architecture capable 

of generating images of size 2048 × 1024. However, both models require paired images for training, which 

is hard to find [33]. To address this, models proposed in [34]–[36] use an encoder-decoder framework for 

the generator to impose cycle consistency (the ability to go between domains back and forth) and use 

unpaired images for training. StarGAN [37] is another model that addresses unpaired image-to-image 

translation problem in a multi-domain setting. Some examples of image-to-image translation results are 

shown in Figure 2.5.  
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Research in the area of text-to-image synthesis has also gotten significant attention due to the development 

of GANs. Reed et.al [38] proposed a conditional GAN model that generates plausible images from text 

descriptions. The encoded text description is used as conditional information to guide the process of 

synthesis. StackGAN and StackGAN++ [39], [40] are also a text-to-image synthesis models that split the 

problem into primitive shape and color generation in the first stage followed by a high-resolution image 

synthesis (from the first stage) in the second stage. In [41] the authors proposed a novel attention-based 

GAN that uses not only the encoded vectors of an input sentence but also fine-grained word-level 

information to modify specific regions of the image based on the relevant words to those regions. In 

addition, the authors included a multimodal similarity measure that computes image-text matching in the 

generator cost function. An example of text-to-image synthesis results are shown in Figure 2.6. The topic 

of Retro-remote sensing that we are trying to address is a text-to-image synthesis problem in the context of 

remote sensing. To the best of our knowledge, this is the first work in our community.  

 

Figure 2.5 Example of image-to-image translation results from cycleGAN(Source [34]). 

 

Figure 2.6 Example of text-to-image synthesis using StackGAN(Source [42]). 

2.4. Wasserstein GAN (WGAN)  

As we have explained in Section 2.2, the original formulation of GANs measures the �� divergence between 

the real distribution ����� and the model distribution �� (as shown in Equation 2.5). If the discriminator is 

trained to optimality, the error will go to zero and �� distance saturates. This happens when the supports of 

the distributions are disjoint or lie in a low dimensional manifold [43], resulting in a perfect discriminator. 

This, in turn, results in the generator updates to get worse [43]. One way of dealing with disjoint 

distributions problem is to add noise (for instance Gaussian noise) to the model distribution. However, the 
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noise degrades the quality of samples and makes them blurry [30]. Noting this, Arjovsky et.al [30] showed 

that the Wasserstein-1 metric has interesting properties when optimized compared to other divergence 

measures used in the context of learning distributions and proposed an approximated version of the distance 

as a cost function to train GANs.  

The Wasserstein-1, also called the Earth mover’s (EM) distance between two distribution ����� and �� is 

defined as 

�������, ��� = inf
���������,���

�(�,�)~�[‖� − �‖] 2.10 

where Π(�����, ��) is the set of all joint distributions �(�, �) whose marginal distributions are 

respectively ����� and ��. Intuitively, if we consider the distributions as a pile of “masses”, �(�, �) 

indicates how much mass should be transported from � to � in order for � to follow the same distribution 

as �. The EM distance then measures the optimal cost to transform the distributions. Since the inf (infimum 

or the greatest lower bound) in Equation 2.10 is intractable, the authors used the Kantorovich-Rubinstein 

dual form in Equation 2.11.  

�������, ��� = sup
‖�‖���

��~�����
[�(�)] − ��~��

[�(�)] 2.11 

where the sup (supremum or the least upper bound) is over all 1-Lipschitz functions �: � → ℝ. Thus, if � 

is a family of functions parameterized by ��� and 1-Lipschitz continuous, we can convert the supremum 

into a maximization as follows: 

�������, ��� = max
���

 ��~�����
[��(�)] − ��~��

[��(�)] 2.12 

This process yields the estimate of �������, ��� assuming that the supremum is achieved for some ���. 

Thus, in WGANs the discriminator performs a maximization of Equation 2.12. The output of the 

discriminator is a real number and not a probability. This number is interpreted as a value that tells/criticizes 

how far the generated images are compared to the real images. Thus, the discriminator is referred to as a 

critic. The generator, on the other hand, minimizes the following cost function: 

min
��

 −��~��
[��(�(�))] 2.13 

The function � in the Wasserstein metric is required to be 1-Lipschitz continuous. A real-valued function 

�: ℝ → ℝ is said to be �-Lipschitz continuous, if there exists a real constant � ≥ 0 such that for all 

��, �� � ℝ, 

|�(��) − �(��)| ≤ �|�� − ��| 2.14 

In order to satisfy this criterion, the authors of WGAN proposed a simple method where parameters of the 

discriminator are clipped into a compact space [−�, �] (where � is a constant value) after each gradient 

update. However, they have noted that weight clipping is not an efficient way of enforcing the constraint. 

If � is large, it will take time to train the critic to optimality. Contrarily, if � is small it can lead to the 

vanishing gradient problem, especially in big networks [30]. Thus, careful tuning of � is required. Besides 

this, Gulrajani et.al [44] showed that weight clipping leads to optimization difficulties and introduced a 

gradient penalty term in the discriminator cost function (Equation 2.15).  
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�� = ��~�����
[��(�)] − ��~��

�����(�)�� − ����~���
[(‖∇����(��)‖� − 1)�] 2.15 

where � is a hyper-parameter used to balance the contribution of the gradient penalty. For a differentiable 

function to be 1-Lipschitz the norm of its gradient should be at most 1 everywhere. Equation 2.15 applies 

a softer version of this constraint by sampling a point �� along straight lines between samples generated 

from ����� and �� and using the average norm of the gradient with respect to the points as a regularization 

term.  

Compared to vanilla GANs, WGAN does not require maintaining a careful balance between the 

discriminator and generator training, and it does not require careful selection of the network architecture. 

In fact, the discriminator can be trained to optimality in order to estimate the distance continuously. The 

mode collapse problem observed in GANs is also drastically reduced with WGANs. The biggest advantage 

of WGANs is, however, plotting the loss values provides meaningful information about the training 

progress and can be used to tune hyperparameters. It is also remarkably related to the quality of the samples 

generated. 

In summary, the objective of this thesis is to capitalize on the potential application of GANs, more 

specifically WGANs, for the Retro-remote sensing problem and utilize the Wasserstein-1 distance 

formulation for semi-supervised domain adaptation problems in the context of remote sensing applications.  
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Chapter 3 

3. Retro-Remote sensing 

3.1. Motivation 

Before the invention of imaging and space technologies, humans used to picture the world through artistic 

drawings, also called cartography, and/or text descriptions. Cartography is defined as the study and practice 

of making maps. It is one of the ancient methods in which people documented and exchanged spatial 

information. Cartography traces back to the Babylonians where maps containing topological features such 

as hills and valleys are carved onto clay tablets [45]. Greek mapmakers also produced paper map of the 

known world for navigation. Chinese cartographers, on the other hand, created maps of towns, river 

systems, and locations, as early as 4th-century B.C.E [45]. European cartographers  produced symbolic 

maps, which became outdated with the invention of the Portolan Chart, representing the conception of the 

world at the medieval time. The early 15th to 17th century also called the age of discovery, contributed to 

the creation of maps depicting new areas, such as America, explored by cartographers, merchants, and 

explorers. Moreover, cartography became simple and accurate with the development of accurate 

cartographic techniques and the invention of tools such as the compass, telescope, and printing press [45]. 

Cartography in the 20th century relies on the detailed visual information acquired from the constellation of 

satellites orbiting the earth’s surface. 

Beside cartography, geographers and/or travellers such as Strabo, Leo Africanus, and Pausanias described 

the places they traveled and the world known to them through writing. Pausanias is a Greek traveler and 

geographer who lived in the second century AD. He is known for “The Description of Greece”, a work that 

describes topographical features of areas and man-made objects such as temples, sanctuaries, and tombs in 

ancient Greece. Leo Africanus, on the other hand, provided a general description of Africa and the 

civilization in the 16th century.  

Extracting meaning full information from such data can provide useful insight about the past. One way of 

doing this is to develop algorithms that ingest such data and output the desired information. However, 

researchers have developed several algorithms for remote sensing applications that rely on images. Thus, 

an alternative solution is to convert the ancient remote sensing data into images and utilize existing 

algorithms. This is the goal of Retro-remote sensing. More specifically, our objective is developing machine 

learninng models that convert the ancient text descriptions into equivalent images. We strongly believe that 

this approach has potential benefits to remote sensing applications.  

3.2. Problem definition 

The problem of Retro-remote sensing is multimodal, in the sense that there are multiple plausible outputs 

for a given description, and requires dealing with heterogeneous data types: text and images. In general, 

such problem can be divided into two sub-problems: encoding input text descriptions into �-dimensional 

vectors and converting the encoded vectors into equivalent images. A given text description can have three 

levels of information. The first level of information is the different types of objects mentioned in the 

description. Each object can have associated attribute information (such as color, size, shape, etc.), which 

is considered as a second-level information. Finally, the third level is the spatial relationship between 

different objects expressed in the description. Thus, the goal of a text encoder model is learning a function 

��(. ) that takes such a description (which can be composed of one or more sentences) as an input and 

outputs a �-dimensional embedding (���ℝ� ) that represents the concept in the description. Learning text 

embedding models is a widely explored research area in the field of Natural language processing. Thus, we 

use methods proposed in this field. 
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The second sub-problem is dealing with the decoding of text encoder outputs into semantically similar 

images. That is, ideally, we want the different levels of information described in the input text to be visually 

present in the synthesized images. Therefore, this step requires finding a suitable function ��(. ) that 

performs the decoding. To achieve this, we rely on the power of generative adversarial networks (GANs) 

as a decoding model. A general block diagram of the retro-remote sensing problem is shown in Figure 3.1. 

 

Figure 3.1 Block diagram of the proposed method. In this work, the text encoder is implemented using a pre-trained 

doc2vec encoder. Whereas, a GAN network generator is used to synthesize corresponding images. 

3.3. Literature review 

Retro-remote sensing is a new research track we are proposing to the remote sensing community. However, 

there are other related works from the computer vision community and we present a review of these works. 

Early works dealing with the text-to-image synthesis problem mainly rely on image retrieval techniques 

[46], [47]. That is, they retrieve images related to keywords or phrases from a given description and spatially 

adjust them in a way that the message in the description is conveyed. The major limitation of such methods 

is that they lack the ability to generate new image contents [48]. 

The recent progress towards unsupervised deep learning models, particularly in deep generative models, 

have enabled the ability to synthesize realistic-looking images by using suitably trained neural network 

models. To this end, Yan et.al [49] considered an image as a composite of foreground and background  

layers, and proposed a layered generative model using conditional variational auto-encoders to synthesize 

the visual contents by using visual attributes extracted from a natural language description. The 

disentangled representation in the model allows to control the input attributes and generate images of 

diverse background and/or foreground. However, the generation is limited by the input attributes. 

More recent works on the text-to-image synthesis use GANs and sequential models as their main drivers to 

generate realistic-looking images from natural language descriptions. The alignDRAW model in [50] used 

recurrent variational auto-encoders to generate images conditioned with the corresponding caption. The 

visual attention mechanism included in the model allowed to decompose the generation process into a series 

of steps. However, the generated samples are not realistic enough. The model proposed in [38] uses 

conditional GANs to generate images from text descriptions. The novelty of this work is that the cost 

function used for training explicitly models whether the real training images match the input text 

descriptions.  

Subsequent works on text-to-image synthesis using GANs focus on developing advanced network 

architectures mainly to enhance the semantics of the generated images, generate high-resolution images, 

diversify the generated images, and to add a temporal dimension to the generated images [48]. For instance, 

Dong et.al [51] improved upon the work of [38] by proposing an encoder-decoder architecture for the 

generator of a conditional GAN network. The encoder is used to encode the real image and text pairs, while 
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the decoder decodes encoder output. The discriminator, on the other hand, conditioned on the text features 

is tasked with identifying real and fake images. Compared to [38], they have added an additional loss term 

in the cost function to keep irrelevant features (e.g. background) from source images. The authors of MC-

GAN [52], on the other hand, proposed to separate the background of a source image and synthesize a new 

image that is a combination of the background and an object described by an input text. The proposed 

method allows users to input their own base image and generate new images while preserving the 

background of the base image.   

Due to the fact that training GANs to generate high-resolution images is very challenging, StackGAN [39] 

and StackGAN++ [40] considered a two-stage approach where coarse (low resolution) images are generated 

in stage-I and refined in stage-II. StackGAN++ is an improved version of StackGAN to enhance the quality 

and resolution of the generated images through multi-stage generator and discriminator networks arranged 

in a tree-like structure. While both models are conditioned with a global sentence vector, AttnGAN [41] 

implements an attention mechanism to improve details at different regions of the image. More specifically, 

the model allows the generator to draw different regions of the image based on the words relevant to the 

region. The authors also proposed a deep attention multimodal similarity model to measure word-level 

image-text matching loss for training the generator. HDGAN [53], on the other hand, follows a hierarchical 

approach to generate images. The proposed architecture is composed of a single stream generator with 

hierarchically nested discriminators at the intermediate levels of the generator. In such setup, the generator 

competes with multiple hierarchical discriminators that learn hierarchical discriminative features, which in 

turn allows the generator to guarantee semantic consistency and image fidelity [53]. 

Odena et.al [54] demonstrated that using auxiliary classifier in the discriminator (the discriminator outputs 

class labels besides real and fake classes) increases the diversity of generated samples. TAC-GAN [55] 

explores this idea for text-to-image synthesis. That is, the generator conditioned with the text description 

outputs an image and the discriminator also conditioned with the text description outputs whether an image 

is real or fake and predicts its class. The work in [56] also followed the same approach but changed the 

class predictor in the discriminator to a regressor that outputs values ranging from 0 to 1 corresponding to 

the semantic relevance between the image and text. The main advantage of this method is that the generated 

images are not limited to certain classes and semantically match the input text description [48]. So far, the 

methods proposed quantify semantic matching between the image and text indirectly. Contrarily, 

MirrorGAN [57] measures semantic matching in the text space. That is, by learning to re-describe the 

generated images. The architecture is composed of a semantic text embedding (STEM), a global-local 

collaborative attentive module for cascaded image generation (GLAM), and a semantic text regeneration 

and alignment module (STREAM) modules. Scene Graph GAN [58] proposes representing text 

descriptions using visual scene graphs and utilize them to synthesize the corresponding image. Differently 

than the other methods, this method uses graph convolution to process the input graphs. The output of the 

graph convolution is a scene layout made up of bounding boxes and segmentation masks for objects. 

Besides generating an image/s for a given description, GANs have also found application in generating 

videos from text descriptions [59]–[62]. The main goal of such models is to add temporal dimension to the 

output images and form meaningful action with respect to the description. They mainly follow a two-step 

approach where images matching the “actions” of text description are generated first followed by an 

alignment procedure to ensure temporal coherence [48].      

3.4. Proposed solution 

In this section, we present the different methods we proposed for both the text encoder and the image 

generator network.  
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3.4.1 Text encoder 

As we have stated in Section 3.2, the goal of the text encoder is to convert a text description into a �-

dimensional vector in such a way that the different levels of information available are encoded properly. 

To that end, we considered two approaches: multi-label encoding and doc2vec encoder. Multi-label 

encoding is a simple scheme in which a given text description is represented by a binary code. 0s and 1s in 

the code represent the absence and presence of objects of interest in the description. Thus, the size of the 

encoded vector corresponds to the number of objects one is interested to synthesize. In this scheme, we are 

only considering the first level of information (objects of interest) and discarding object attributes (level 2) 

and the spatial relationship between multiple objects (level 3). We will discuss the results and the impact 

of such an encoding scheme on the generated images in Section 3.7.  

Text embedding is an active area of research in the Natural language processing (NLP) community. Bag-

of-words or Bag-of-n-grams [63] is a commonly employed method to convert a given text into a fixed-size 

vector. This method divides a text into n-grams (a sequence of n-token words) and represents it by the 

frequency of occurrence of the n-grams. The main disadvantage of this method is that it does not consider 

the order in which words appear in the text, thus losing semantic information. Alternatively, there are word 

[64], [65] and sentence level [66] encoding  methods proposed by the community. Since our objective is to 

generate a fixed-size embedding for a description composed of one or more sentences, we choose to work 

with the Doc2vec [67] encoder. 

Doc2vec encoder is an unsupervised model that learns a fixed-size embedding for a text composed of one 

or more sentences. To better understand this method, we first discuss the word2vec [64] embedding model. 

The word2vec is a neural network-based language model that learns word-level embedding. It exists in two 

flavors: The Continuous Bag of Words (CBOW) and Skip-gram. The CBOW model predicts the current 

word given its neighbors whereas the Skip-gram model uses the current word to predict the neighboring 

words. Here, we present the working principle of the CBOW word2vec model.  

Given a sequence of words ��, ��, ��, … , �� and a window size � that defines the context size (that is the 

context words {����:���, ����:���}), a simple word2vec model trains a neural network (Figure 3.2) with a 

single hidden unit to predict the target word ��. For instance, given a sentence “It is a huge flat plain 

covered by sands and with only some small rocky hills every now and then” and a window size of 1, the 

model takes the one hot encoding of the context words flat and covered as an input and outputs the 

probability of the word plain to be in that position. During training, the predicted output is compared with 

the target word to measure the error and update weights using backpropagation. There is no non-linearity 

in the hidden layer (i.e. no activation function is used). The output layer, on the other hand, uses a 

hierarchical softmax activation to output probability values. After training, output of the hidden layer is 

used as a vector representation of a given word. 
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Figure 3.2 The word2vec model with CBOW training method. 

Doc2vec is an extension of the word2vec model with the goal of modeling the concept or context of a 

paragraph from which the target word is taken. To achieve this, doc2vec model adds a paragraph vector 

that is used to predict the target word together with the context words. It can be considered as an additional 

context word. After training, the paragraph vectors are can be used as representations of a paragraph, which 

can then directly used in machine learning tasks. Figure 3.3 shows a framework for learning paragraph 

vectors. Thus, for our work, these paragraph vectors serve as conditional information to the GAN network 

and guide the synthesis process. 

 

Figure 3.3 Doc2vec model with a distributed memory method. 
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3.4.2 Image generator 

The output of the text encoder goes to the image generator module which converts it to an equivalent image. 

Ideally, we want the module to synthesize semantically similar and diverse images for an input description. 

To this end, we train a GAN architecture. The generator of the GAN takes a latent vector � and the output 

of the text encoder �� as an input and outputs equivalent images ����� ℝ�×�×�, where �, �, and � are 

the height, width and channels, respectively, of the output images. With regard to the architecture, the 

generator is a cascade of a fully connected (FC) layer (reshaped) followed by several deconvolution layers 

till the desired output size is reached. 

The discriminator, on the other hand, takes real or generated images � � ℝ�×�×� and corresponding text 

embedding and outputs a value measuring how far the generated images are from the real images, which is 

then used to update the weights of the architecture. In terms of architecture, we use a cascade of 

convolutional layers that are symmetric with the generator followed by an FC layer and the output layer. 

With regard to where to add the text embedding in the discriminator, we use two approaches. In the case of 

multilabel encoder, we concatenate the text embedding with the last FC layer. However, in the case of the 

doc2vec embedding, we show that concatenating the embedding at the FC layer is not efficient and instead 

we perform depth-wise concatenation at the last convolution layer. After the concatenation, we add a 

convolutional layer followed by the usual FC and output layers. We will present the specific architectures 

used in this work along with the discriminator conditioning schemes and other training parameters in 

Section 3.6. 

In order to train the architecture, we use the Wasserstein GAN cost function in a conditional setting. In 

addition, following the work of [38] we add an additional term in the cost function. Since we have (image, 

text) pairs as an input, we want the discriminator to maximize the distance of (real image, right text) 

distribution from both the (fake image, right text) and (real image, wrong text) distributions (Equation 3.1). 

Whereas, the generator will be updating its parameters to minimize the distance of (fake image, right text) 

distribution to the (real image, right text) distribution (Equation 3.2). In doing so, the generator will learn 

to synthesize not only realistic samples but also semantically matching samples. 

max
��

 ��~�����
[�(�, ��)] − ��~��

[�(�, ��)] − ��~�����
[�(�, ��)] 3.1 

min
��

−��~��
[�(�, ��)] 3.2 

where �� and �� are the right and wrong text descriptions, respectively, corresponding to an image �. 

3.5. Dataset description 

Training a GAN architecture for Retro-remote sensing requires a dataset composed of (image text) pairs. 

As this work is a pioneer, the first task was to collect an appropriate dataset. The collection is divided into 

two steps. In the first step, we collect landscape descriptions written by travelers and/or geographers before 

the invention of imaging technologies. Next, we download satellite images and write corresponding 

descriptions according to the style observed in the ancient descriptions.  

3.5.1 Historical books 

In order to get ancient landscape descriptions, we mainly referred to three books: “The Geography of 

Strabo: An English Translation, with Introduction and Notes” by Duane W. Roller [68], “Pausanias, 

Description of Greece” with an English translation by W.H.S Jones [69] (volumes VI, VII, and VIII), and 

“The History and Description of Africa: and of the notable things therein contained” by Leo Africanus [70] 

(volume I). 
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The first book, originally written in Greece and completed nearly two thousand years ago, was intended for 

the Greeks and Romans to better understand the environments they lived, moved, and/or were interested to 

move in. At its core, the book describes topographic, demographic, and ethnographic data about the 

inhibited world, starting from the southwest corner of the Iberian Peninsula to India and then back west to 

Egypt. An excerpt of text taken from this book describing the harbor of Alexandria, Egypt is shown below: 

“Pharos is an oblong islet, against the mainland, making a harbour with two mouths. The shore is in the 

form of a bay, putting forward two promontories into the open sea, and the island is situated between them 

and closes the bay, for its length is parallel to it. The eastern promontory of Pharos is more toward the 

mainland and its promontory (called Lochias Promontory), and thus makes a small mouth. In addition to 

the narrowness of the passage in between, there are also rocks, some under water and others projecting 

from it, which at all hours make the waves strike them from the open sea rough. The extremity of the islet 

is also rock, washed all around, and there is a tower on it marvellously constructed of white stone, with 

many stories and named after the island.” 

The above text contains topographic objects (highlighted in bold) such as sea, island, bay, islet, and others. 

It also provides information such as the relative size of objects (highlighted with blue font) and their relative 

position with the other objects (highlighted with red font). The second book, whose original version was 

written in the second century, describes the topology of Attica, the Peloponnese, and central Greece mainly 

focusing on the sanctuaries, statues, tombs, and the legends connecting with them. It is believed that this 

book was mainly intended to be used as a guide-book by tourists. The following is an excerpt taken from 

this book: 

 “There are roads leading from Mantineia into the rest of Arcadia, and I will go on to describe the most 

noteworthy objects on each of them. On the left of the highway leading to Tegea there is, beside the walls 

of Mantineia, a place where horses race, and not far from it is a race-course, where they celebrate the 

games in honour of Antinoiis. Above the race-course is Mount Alesium, so called from the wandering (alé) 

of Rhea, on which is a grove of Demeter. By the foot of the mountain is the sanctuary of Horse Poseidon, 

not more than six stades distant from Mantineia.” 

Similarly, this text contains both man-made and natural objects (highlighted in bold) and provides 

information such as the spatial location of an object from other objects (highlighted with red font) and the 

distance of an object from another object. Originally written in Arabicke and Italian by John Leo Africanus 

in 1550 and translated into English by John Pory in 1600, the third book provides a general description of 

Africa and the civilizations in the sixteenth century. An excerpt taken from this book is shown below: 

“The kingdome of Quiloa situate in nine degrees towarde the pole Antarticke, and (like the last before 

mentioned) taking the denomination thereof from a certaine isle and citie both called by the name of Quiloa; 

may be accounted for the third portion of the lande of Zanguebar. This island hath a very fresh and coole 

aire, and Is replenished with trees always greene, and with plenty of all kinde of victuals. It is situate at the 

mouth of the great riuer Coauo which springeth out of the same lake from whence Nilus floweth, and is 

called also by some Quiloa, and by others Tahiua, and runneth from the saide lake, eastward for the space 

of sixe hundred miles, till it approacheth neere the sea, where the streame thereof is so forcible, that at the 

very mouth or out-let, dispersing it selfe into two branches, it shapeth out a great island, to the west whereof 

vpon the coast you may behold the little isle and the citie arme of the sea”  

Similar to the examples from the other books, this excerpt also contains natural objects (highlighted in bold) 

such as a sea, lake, and an island, and gives information about the shape and spatial relationship of objects. 
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3.5.2 Training set collection 

After going through the three books above, we selected 43 text descriptions that contain one or more natural 

objects. Since the excerpts are old, some of them contain words that are written in traditional English. 

Therefore, we converted these words to the equivalent modern English words. Focusing only on natural 

objects, the selected texts contain 27 different objects. Among the 27 objects present in the texts we decided 

to work on objects that occur with a frequency of five or more and that can be identified in low-resolution 

images. In Table 3.1 we list these objects along with their frequency of occurrence. 

Objects # of occurrences 

Mountain 29 

Sea/Ocean 23 

Forest/Tree/Wood 15 

Island 14 

Grass 12 

Lake 10 

Coast 9 

Promontory/Cape 9 

Plain 8 

Rock/Stone 7 

Hollow/Valley 6 

Gulf/Bay 5 

Sand/Desert 5 

Hill 5 

Table 3.1 Types of natural objects present in the selected texts and their frequency of occurance. 

Training a GAN for our problem requires to have (image, text) pairs. However, we are considering ancient 

texts and imaging technology was not present at the time. To solve this issue, we considered working with 

satellite image archives. Among the available earth observation satellites, we decided to use images 

acquired from the MODIS satellite. This mainly because of the ancient texts we have that describe spatially 

large areas and the limitation on the capacity of GANs to generate very high-resolution images. MODIS 

images, on the other hand, are characterized by a spatial resolution of 500 meters and thus can represent a 

wide area with few pixels (relative to Landsat and Sentinel images). Overall, we downloaded 12 MODIS 

images of size 2400 ×  2400 from the Europe and Mediterranean areas (as the texts selected describe these 

areas) and cropped patches of size 100×100. The patches are extracted in a way that each they contain more 

than one objects of interest listed in Table 3.1. In addition, the patch size considered roughly covers the 

area described in the ancient texts.  Overall, we cropped 70 image patches and wrote the corresponding text 

descriptions for them in such a way that the ancient style observed in the descriptions is emulated. Figure 

3.4  shows an example of the original MODIS image (left), the extracted patch (middle), and the text 

description written for the crop. 
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In order to increase the training set, we applied data augmentation such as flipping and rotating operations. 

Since, some of the descriptions have directional information (such as Northwest, East, and South) we 

modified them to reflect the augmentation operations. That is, the center of an image is considered as a 

reference point and the top, bottom, right, and left are assigned as North, South, East, and West directions, 

respectively to be used in the modification process. Such modification is especially necessary when we are 

using the doc2vec text encoder. In the case of multi-label encoding, we are only interested in which objects 

are present in the text, thus the modification is not used. 

 

Figure 3.4 Example of a training patch and the corresponding description. 

3.6. Experimental setup 

3.6.1 Text encoder model setup 

As we have mentioned in Section 3.4, we have two text encoding approaches. The first approach, multi-

label encoding, is a binary representation of an input text description. We are interested in 14 types of 

objects (listed in Table 3.1) and each object will have a value 1 if it is present in a description otherwise 0. 

An example of such an encoding system is shown in Table 3.2 for the following text descriptions. 

Text 1: “Western of Lemonum there is a plain, which goes on until the ocean. This area was exploited for 

salt extraction and wine production after the annexation to the empire. 120 stadia far from the coast there 

is an islet called Yeu by the barbarians, which is uninhabited.”  

Text 2: “The Argolic gulf separates Arcadia to the southwest and Argolis to the north and east. It is around 

300 stadia long along the sea. The territory is quite poor in term of vegetation and is instead mostly covered 

by rocks. There are many hills in both the zones extending on side of the gulf and a few little islets not far 

from the coast.  

Training a doc2vec model requires having a large corpus of descriptions, which we do not have. Instead, 

we used a pre-trained doc2vec model on the full collection of English Wikipedia [71]. Thus, given an input 

paragraph, the model outputs a paragraph vector of dimension 300. This output is then concatenated in both 

the generator and discriminator of the GAN network. 
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Index Objects Text 1 Text 2 

1 Mountain 1 0 

2 Sea/Ocean 1 1 

3 Forest/Tree/Wood 0 0 

4 Island 0 0 

5 Grass 1 0 

6 Lake 0 0 

7 Coast 1 1 

8 Promontory/Cape 0 0 

9 Plain 0 0 

10 Rock/Stone 0 1 

11 Hollow/Valley 0 0 

12 Gulf/Bay 0 0 

13 Sand/Desert 0 0 

14 Hill 0 1 

Table 3.2 Examples of multi-label text encoding scheme. 

3.6.2 GAN network setup 

The input to the generator is a concatenation of the latent noise of dimension of 26 sampled from a uniform 

distribution in the interval [−1, 1] and the text encoder output. In the case of multi-label encoding the 

dimension is 14 while for the doc2vec encoder this dimension is 300. During the experiments, we 

considered noise vector sizes ranging from 20 to 100 and we found that a vector size of 26 gives better 

results in terms of the synthesized images agreeing with the conditioned information. This input is then 

connected to a fully connected (FC) layer which has 3136 neurons and the output of this operation is 

reshaped to 7 × 7 × 64 3D feature map. We selected the initial size of the feature maps to be 7 × 7 in order 

to have output images with a size that is close to the real image patches (which have size 100 × 100 ). The 

choice of the initial feature map size is a tradeoff between having more deconvolution layers versus the 

number of parameters at the input FC layer. That is, using smaller initial feature map size will result in 

having more deconvolution layers and results in ouput images of size much larger than true image patches. 

On the other hand, using a larger initial image size can reduce the number of intermediate deconvolution 

layer but the number of parameters at the FC layer will increase significantly.  

The FC layer is followed by 3 deconvolution layers with 32, 16, and 8 kernels of size 5 × 5, respectively. 

The deconvolution is applied with a stride of 2 to increase the size of the image to the desired output. The 

output layer is also a deconvolution layer with a kernel size of 5 × 5, stride 2, and 1 kernel. The output of 

the generator is a grayscale image of size 112 × 112 after which we apply center cropping to match the 

dataset patch size. Except for the output layer, which uses tanh activation function, neurons in all other 

layers use a ReLu activation. The architecture of the generator network is shown in Figure 3.5. It is 
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noteworthy that the configuration reported here is among the many architectures we tried and the one that 

gave us better results.  

The discriminator takes input images (real or fake) of size 100 × 100 and outputs a value measuring how 

far the real and generated images are. With regard to the architecture, we have two variants depending on 

the text encoder type utilized. For the case of multilabel encoder, and the discriminator (Figure 3.6) is a 

stack of 3 convolutional layers with 8, 16, and 32 filters, respectively and an FC layer with 100 neurons. 

Text encoder output is concatinated with this FC layer output. In the case of the doc2vec encoder, the 

discriminator (Figure 3.7) has four convolutional layers with 16, 32, 64, and 128 filters, respectively. The 

last convolution layer is followed by an FC layer with 100 neurons which in turn is connected to a linear 

output layer with one neuron. Here, the output of the doc2vec encoder is concatenated (depth-wise) on the 

third convolution layer. That is, the vector is repeated to form a 3D feature map whose spatial size is the 

same as that of the third convolution and the depth (number of channels) is equal to the size of the vector. 

We use similar kernel sizes as in the generator and a strided convolution (with a stride of 2) to reduce the 

feature maps spatially. Leaky ReLu is the activation function employed in the discriminator. Other training 

parameters are as follows: 

 The mini-batch size is set to 64. 

 Both � and � are trained iteratively. For every � training � is trained 5 times. 

 We used RMSProp optimizer [72] for learning and the learning rate is set to 0.0001 

 Batch normalization [73] is applied to the output of every layer, except the output layers, to stabilize 

and speed up the training.  

 Input images are scaled in the range of [−1,1]. 

 Weight clipping is applied to enforce the Lipschitz constraint with the parameter� � [−0.01, 0.01]. 

 Number of epochs is set to 2500.   

 

Figure 3.5 Generator of the GAN architecture implemented for training. 



RETRO-REMOTE SENSING 

32 

 

Figure 3.6 Architecture of the discriminator employed for the multilabel encoding. 

 

 

Figure 3.7 Architecture of the discriminator employed for the doc2vec encoding. 

3.7. Experimental results 

3.7.1 Qualitative results (Multi-label encoding) 

After training the GAN architecture, we conducted a visual qualitative evaluation of the generated images 

by comparing them with the training set images to understand whether they contain objects of interest or 

not. Since the images are low resolution and we are synthesizing gray scale images, the visual comparison 

relies on the similarity of texture information. Accordingly, the first evaluation scheme is to condition the 

generator with training set descriptions and evaluate the generated images in comparison to the training 

images. Additionally, we also provide examples of training set texts along with the training corresponding 

training image and the synthesized images. Form Figures 3.8-3.10 it is possible to see that the generated 

images are realistic and have natural shapes and textures, though the contrast is not as good as that of the 

training set. 
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The second evaluation scenario is to check whether the generator is simply memorizing training set images 

or learning to generate a new one. To achieve this, we considered two approaches. The first approach is to 

take advantage of the text encoding scheme. That is, since we are using only objects of interest to synthesize, 

we can evaluate the generator by synthesizing single objects such as sea, coast, mountain, etc. To this end, 

we generated images for two (virtual) text descriptions having only mountain and coast as objects. The 

results of this operation are shown in Figures 3.11 and 3.12. Both Figures show that the synthesized images 

(right) contain texture information that resembles the training set samples  (left) containing similar objects 

(i.e mountain and coast). The second approach is to condition the generator with the ancient text 

descriptions (test set) and synthesize corresponding images. The results of this approach are shown in 

Figures 3.13 to 3.16. Similar to the previous cases these figures also show that the generated images contain 

textures that agree with the objects described in the respective text descriptions.  

One thing that is common to all these results is that although the generated images contain objects of 

interest, the semantic agreement with respect to the corresponding descriptions is no there. This is mainly 

due to the encoding scheme that disregards the second and third levels of information that are essential to 

the semantics. In the next subsection, we show that this issue is resolved by using an appropriate encoder. 

 

Figure 3.8 Example of grayscale images from the training set (left) and multilabel-GAN generated grayscale samples 

(right). 

 

Figure 3.9 Examples of grayscale images generated by the multilabel-GAN conditioned with the text description 

shown in the left. Objects of interest are highlighted in bold-italics. 
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Figure 3.10 Examples of grayscale images generated by the multilabel-GAN conditioned with the text description 

shown in the left. Objects of interest are highlighted in bold-italics. 

Figure 3.11 Grayscale images that contain mountain label from the training set (left) and multilabel-GAN generated 

grayscale images (right) using mountain as only label to condition the generator.      
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Figure 3.12 Grayscale images that contain coast label from the training set (left) and multilabel-GAN generated 

grayscale images (right) using coast as only label to condition the generator. 

 

Figure 3.13 Examples of images (right) synthesized by the multilabel-GAN conditioned with the ancient text 

description (left) taken from “The geography of Strabo”. Objects of interest are highlighted in bold-italics. 
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Figure 3.14 Examples of images (right) synthesized by the multilabel-GAN conditioned with the ancient text 

description (left) from taken from “The geography of Strabo”. Objects of interest are highlighted in bold-italics. 

Figure 3.15 Examples of images (right) synthesized by the multilabel-GAN conditioned with the ancient text 

description (left) taken from the book by Leo Africanus. Objects of interest are highlighted in bold-italics. 
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Figure 3.16 Examples of images (right) synthesized by the multilabel-GAN conditioned with the ancient text 

description (left) taken from “Pausanias, Description of Greece”. Objects of interest are highlighted in bold-italics. 

3.7.2 Qualitative results (doc2vec encoding) 

Similar to the evaluation scheme above, we conduct a visual assessment of the generated images by 

comparing them with the training set images. We also analyze some specific text descriptions and 

corresponding synthesized images to show that the network is not just memorizing samples rather it is 

learning to generate samples. Figure 3.17 shows a comparison of training patches (left) associated with 

descriptions and the corresponding synthesized images using the model. Looking at these images tell us 

that the model is capable of synthesizing semantically similar samples with the training patches. Images 

generated for specific training set descriptions (Figures 3.18-3.19) also tell the semantic similarity of the 

generated images with that of the training images and also among themselves. In addition, we can also see 

that the generated images are not just a memorization of the corresponding training image/s. 

Unlike the multi-label encoding scheme, evaluating the model with virtual encodings are difficult since the 

method also utilizes other available information. Alternatively, we encoded the test set descriptions (the 

ancient ones) and synthesized the corresponding images. Accordingly, the results in Figures 3.20-3.21 

assert that the generated images are semantically similar and contain texture information that relates to the 

specific objects cited in the descriptions. 
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Figure 3.17 Example of a training images (left) and generated images (right) with the doc2vec-GAN. 

 

Figure 3.18 Example of a training text (left), corresponding ground truth patch (shown by the red arrow), and 

generated images (right) with the doc2vec-GAN. 
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Figure 3.19 Example of a training text (left), corresponding ground truth patch (shown by the red arrow), and 

generated images (right) with the doc2vec-GAN. 

 

Figure 3.20 Example of ancient text (left) and the generated images (right) with the doc2vec-GAN. 

 

Figure 3.21 Example of ancient text (left) and the generated images (right) with the doc2vec-GAN. 



RETRO-REMOTE SENSING 

40 

3.7.3 Quantitative results 

With regards to the quantitative evaluation, we considered two approaches where one is subjective and the 

other one is based on texture similarity analysis. In the case of multi-label encoding, we considered 

generating images for the ancient text labels and manually evaluating the percentage of images that agree 

with the conditioned information. To that effect, we synthesized 16 images for each of the 43 text 

descriptions and evaluated the average number of images that agree with at least one, two, and three labels 

of the conditioned information and the average images that do not agree with the conditioned labels. That 

is, in the case of at least one we check if there is a texture that is similar to at least one of the objects cited 

in a description. Similarly, in the cases of at least two and at least three, we consider existence of at least 

two and at least three textures, respectively, corresponding to the cited objects. 

# of Objects Accuracy (%) 

At least one  96.5 

At least two 74.4 

At least three 44.8 

Complete disagreement 3.5 

Table 3.3 Qunatitative evaluation of the generated images forthe ancient text description with the multi-label encoding 

scheme. 

The result of this analysis is presented in Table 3.3. It turns out that almost all of the synthesized images 

agree with at least one of the conditioned objects and only a small number of images disagree with the 

conditioned information. However, the agreement accuracy decreases as the number of objects considered 

increases. We believe that this is due to the small number of training images and the capacity of the 

generator to synthesize complex images. Having multiple objects in an image increases the complexity of 

the image which potentially requires a more sophesticated model. 

For the case of the doc2vec encoder model, we modified the precision and recall (Equations 3.3-3.4) 

measures to fit this work and evaluated the generated images. 

��������� =  
# �� ���

# �� ��� + # �� ���
 3.3 

������ =  
# �� ���

# �� ��� + # �� ���
 3.4 

where ��� is the number of objects in the synthesized image, ��� represents synthesized objects in a given 

image which are not mentioned in the input description, and ��� stands for objects that are missing in the 

synthesized image but described in the text. Accordingly, we trained 10 independent models and 

synthesized images for each of the training and ancient text descriptions. We report the mean and standard 

deviation values obtained for the aforementioned performance measures in Table 3.4. Though they are 

subjective, the performance values reported in Table 3.4 (for both the training and ancient text descriptions) 

indicate that there is high correlation between the synthesized images and the corresponding input 

description. In addition, the standard deviation values confirm the semantic similarity of the generated 

images. 
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 Training set Ancient text 

 Precision Recall Precision Recall 

Mean 0.93 0.91 0.88 0.83 

Standard deviation 0.012 0.008 0.009 0.026 

Table 3.4 Precision and Recall values obtained for images synthesized using the training and test set (ancient) text 

descriptions using the doc2vec model. 

In addition to the subjective quantitative measures, we considered quantifying the similarity between the 

generated and training images using the structural texture similarity metric (STSIM) [74]. The STSIM 

measure extends the structure similarity metrics (SSIM) [75] by adding a broader set of subband image 

statistics to account for texture characteristics. SSIM compares two images or image patches by 

multiplicatively combining the luminance, contrast, and structure statistics terms. STSIM (Equation 3.5) 

multiplicatively combines the horizontal and vertical autocorrelation coefficients along with the luminance 

(Equation 3.6) and contrast (Equation 3.7) terms. 

�����(�, �) = �(�, �)
�
��(�, �)

�
���,�(�, �)

�
���,�(�, �)

�
� 3.5 

�(�, �) =
2���� + ��

��
� + ��

� + ��

 3.6 

�(�, �) =  
2���� + ��

��
� + ��

� + ��

 3.7 

��,�(�, �) = 1 − 0.5����(0,1) − ��(0, 1)��
�

 3.8 

��,�(�, �) = 1 − 0.5����(1,0) − ��(1, 0)��
�

 3.9 

��(0, 1) =
�����,� − ������,��� − ����

��
�  3.10 

where � and � two images or image patches. ��(0,1) is the first order horizontal correlation coefficient. 

The � and � are the mean and standard deviations corresponding to the images.     

In order to apply the STSIM similarity metrics, first we computed the hamming distance between encoded 

test and training descriptions to select semantically closest (with the smallest hamming distance) training 

images. Once the images are selected we computed the STSIM value between each of the sixteen images 

per description generated for the ancient texts and the closest training images selected using the hamming 

distance. From Figure 3.22, it is evident that the generated images for most of the test text descriptions have 

an average similarity of more than 70% to the semantically closest images in the training set. However, the 

similarity of the generated images for some of the text descriptions (descriptions 26, 27, 41, and 43) is 

lower compared to the others. This is because, the semantically closest images have a higher hamming 

distance compared to the closest images selected for the other text descriptions. 
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Figure 3.22 Bar graph depicting the average structural texture similarity of generated images for ancient text 

descriptions with respect to the semantically closest training images. 

3.7.4 Comparative study 

In order to assess the advantage of the doc2vec encoder with respect to the multi-label encoder, we 

conducted both qualitative and quantitative asessment of the results using both approaches. For the 

qualitative comparison, we used training set and ancient text descriptions shown in Figures 3.18 and 3.20. 

From the synthesized images in Figures 3.23 and 3.24 (left) using the multi-label encoding scheme, there 

is significant difference between individual images, though objects of interest are synthesized. On the other 

hand, the doc2vec encoder is able to encode additional information, such as attributes and spatial 

relationship, of objects which resulted in visually consistent synthesized images (Figures 3.24 and 3.24 

(right)).  

 

Figure 3.23 Example of images generated with the multilabel-GAN method (left) and the doc2vec-GAN (right) for 

the text description shown in Figure 3.18. 
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Figure 3.24 Example of images generated with the multilabel-GAN method (left) and the doc2vec-GAN (right) for 

the text description shown in Figure. 3.20. 

The quantitative comparison is conducted by evaluating the ratio of agreement between the generated 

images and the conditioning information. Accordingly, the results (Table 3.5) obtained show that the 

proposed method is capable of synthesizing images that have a high semantic agreement in comparison to 

the multi-label method. This is even more evident when we take into account the synthesis of descriptions 

with more than one object. In addtion, to this the generated images seem to have better contrast than that 

multi-lable encoding results. Of course, the architecture is slightly different than that of the multilabel 

encoding and this might have played a role in the improved contrast as well as in the ability to synthesize 

complex images. 

 

# of Objects Multi-label encoding Doc2vec encoding 

At least one 96.5 97.84 

At least two 74.4 89.72 

At least three 44.8 81.47 

Table 3.5 Accuracy (in %) comparison of the multi-label and doc2vec encoding schemes on the generated images.    

In addition to the encoding scheme comparison, we have also conducted a quantitative evaluation of the 

generated images using the doc2vec encoder but with different conditioning scheme. That is when 

conditioning the discriminator with the doc2vec encoder output according to Figures 3.6 and 3.7. This 

shades light on the advantage of conditioning at the convolution layer. Comparing the precision and recall 

results in Tables 3.4 and 3.5, it turns out that adding the conditioning information at the convolution layer 

(as in Figure 3.7) improves the correlation between the generated images and the conditioning information. 
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 Training set Ancient text 

 Precision Recall Precision Recall 

Mean 0.79 0.78 0.79 0.68 

Standard deviation 0.03 0.03 0.05 0.06 

Table 3.6 Precision and Recall values for images generated using the training and test set (ancient) text descriptions 

by conditioning the discriminator with the doc2vec encoder outputs according to the Figure shown in 3.7.  
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Chapter 4 

4. Semisupervised Domain Adaptation 

4.1. Motivation 

Supervised classification is a well-researched topic in the remote sensing community. The objective of such 

models is learning a function that maps an input data into one of the desired output classes/labels, and it 

requires having sufficient amount labeled training set. The number of labeled samples required depends on 

the complexity of the model. For example, the availability of massive datasets is one of the reasons for the 

success of the deep learning classification models. In addition, most classification models require samples 

coming from the domain under study. In the context of remote sensing, labelled sample collection is 

conducted through a ground survey or photo-interpretation by an expert [76]. Hence, collecting sufficient 

labelled samples is costly, time-consuming and sometimes not feasible. Besides, obtaining new labelled 

samples for each problem is not realistic. Thus, retaining an existing model and transferring the knowledge 

gained to another similar problem is essential. 

Domain adaptation (DA) is a transfer learning approach that aims to learn a classification model that 

performs well in the face of a distribution a shift between two or more (related) datasets. If we consider 

remote sensing data, such shift happens when the datasets are acquired with sensors having different 

characteristics, at different times (for instance winter and summer), and/or at different geographical 

locations. By learning domain invariant models, we can reduce the cost of labelling and avoid the need to 

collect labelled samples for related problems. Moreover, the new generation of remote sensing technologies 

have resulted in massive unlabeled data from which we can benefit by developing more robust domain 

invariant models.          

4.2. Problem definition 

Let us consider two domains, called source and target domains, from an input space �, output space �, and 

associated with a joint probability distribution ��(�, �) and ��(�, �), respectively. The two distributions 

define classification problems on respective domains, where � is an input (such as images) and � is an 

output (such as land-cover types). Samples from source domain are denoted by (��
�, ��

�) and the dataset is 

represented as {(��
�, ��

�)}���
� . Where ��

� and ��
� are the observation samples and corresponding labels. 

Similarly, samples from target domain are denoted by (��
�, ��

�) and the dataset is represented 

as ����
�, ��

���
���

�
. Where ��

� and ��
� are the observation samples and corresponding labels. DA is a particular 

case of transfer learning where the distributions change while the input and output spaces are unchanged. 

The goal is to adapt a classifier trained using source domain samples to predict target domain labels. A 

pictorial illustration of the DA problem is shown in Figure 4.1. 
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Figure 4.1 A pictorial illustration of the domain adaptation problem. The symbols in the blue circles represent samples 

from different classes. Samples of the same class from source and target domains have the same color but different 

shape to indicate they are from different domains.    

Based on the availability of labels, DA approaches can be categorized as supervised, semi-supervised, and 

un-supervised [76]. Supervised methods consider the availability of labelled samples from both source and 

target domains but they assume that the number of target domain labelled samples is much less than (� <

< �) that of source domain samples. Thus, the goal is to capitalize on the source domain samples for making 

target domain prediction. Semisupervised approaches, on the other hand, consider the case in which labelled 

sample is only available from the source domain. This setting is challenging, and the methods assume that 

source and target domain distributions are close enough to ensure that source samples are useful [76]. 

Finally, unsupervised DA methods tackle the most difficult challenge in which there are no labels from 

both domains. Thus, the goal is to match marginal distributions ��(�) and ��(�) regardless of the learning 

task [76]. 

In this chapter, we present different approaches for semi-supervised DA problem. Thus, we limit the review 

of state of the art towards such methods in the context of remote sensing.  

4.3. Literature review 

Here, we follow the same taxonomy as in [76] and present recent semi-supervised domain adaptation 

approaches proposed in the remote sensing literature. The first group of methods focus on obtaining features 

that are robust to the shifting factors, and a classification model is trained using these features. To that end, 

they apply feature selection techniques in which a subset of features that are invariant to the domain shift 

are selected from the original set of features and then, used to train a classifier. For instance, the authors in 

[77] proposed a multi-objective cost function to select a subset of features that are spatially invariant and 

discriminative in both supervised and semi-supervised settings. The proposed objective function combines 

class separability measure Δ  (to select discriminative features) and invariance measure � (to select spatially 

invariant features). The algorithm depends on the class prior probabilities to estimate �. In the semi-

supervised setting, target domain class priors are estimated using the Expectation maximization (EM) 

algorithm [78] and incorporated into the invariance term. 

The second category of methods propose learning a joint latent space where all the domains are treated 

equally (i.e a latent space where the domain discripancy is negligible), and a classification model trained 

using source samples in the new space is used to predict target domain labels. Such methods need to have 

properties such as the ability to align unpaired data, deal with data of different dimensionality, and align 

multiple domains. Among the methods proposed in this category, [79] presented an N-D probability density 

function (pdf) matching technique to align a pair of multi-temporal remote sensing images. The proposed 

Source domain Target domain Source and Target domains 
after DA
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method takes into account the correlation between spectral channels while adapting the multidimensional 

histogram of the two images. In [96] and [97], the transfer component analysis (TCA) is analyzed in a semi-

supervised setting to project source and target samples into a common latent space that preserves the data 

manifold from the original space and the feature and label dependency. In the context of change detection, 

Volpi et.al [82] used a regularized kernel canonical correlation analysis transform (kCCA) to perform pixel-

wise alignment of multi-temporal cross sensor images.  

Manifold alignment (MA) techniques proposed in [83]–[85] also aim projecting samples from both domains 

into a common space while preserving local manifold structures of the datasets during the transformation. 

[83] modifies the semi-supervised minifold alignment (SSMA) [86] method by using semantic ties instead 

of labels. In [84], two alignment methods were proposed for multi-temporal hyperspectral image 

classification. The first method uses source manifold  as a prior to learn a joint manifold embedding. 

Whereas the second approach uses bridging pairs (source samples that have a high possibility of sharing 

the same class) to link local-manifolds of the two domains. [85] extends the work in [84] to imrove the joint 

global manifold while minimizing the effect of spectral changes in local clusters. As opposed to the above 

approaches, where the manifolds are made up of the sample points, Tuia et.al [87] proposed to reduce the 

samples into centroids using clustering, and apply graph matching to align the centroids.  In [88], the authors 

proposed a three-layer domain adaptation technique for multi-temporal very high resolution (VHR) image 

classification problem. The proposed layers are composed of two extreme learning machine (ELM) layers, 

one for regression and the other for multi-class classification, followed by a spatial regularization layer 

based on the random walker algorithm [89]. 

The recent approach towards remote sensing image classification focuses on training deep learning models. 

The goal of these methods is learning discriminative hierarchical features. Furthermore, they have also 

shown to learn features that are useful for transfer learning problems. With this view, there are several 

works that capitalize on the power of deep learning models for domain adaptation. [90] uses a pre-trained 

convolutional neural network (CNN) model to generate initial feature vectors for source and target domain 

data. Then, these features are used as an input to a domain adaptation network made of fully connected 

layers. This network is optimized with a cost function that combines the cross-entropy loss on labeled 

source data, the maximum mean discrepancy (MMD) to measure distribution discrepancy, and a graph 

Laplacian regularization term [91] to preserve the geometrical structure of target data. The approaches 

proposed in [92]–[95] learn a DA model with three sub-modules: a feature alignment network, a classifier 

network, and a domain similarity network. All sub-modules are deep learning models based on CNN or 

fully connected (FC) layers. The main factor distinguishing the respective approaches is the cost function 

employed for domain similarity measure. In [92], the domain similarity network is tasked with maximizing 

the similarity coeffieint of homogeneous samples and minimize that of hetrogeneous samples. Whereas, 

[93]–[95] follow an adversarial approach in which the binary cross-entropy loss is minimized by the domain 

similarity module while the feature alignment module aims to maximize this cost function, hence 

adversarial.        

The methods proposed above validated efficacy of their methods mostly on multi-temporal and/or spatially 

disjoint multispectral/hyperspectral remote sensing images. However, very large ground-level labeled 

image datasets, such as the ImageNet [14], have become publicly available. Leveraging such datasets for 

domain adaptation can reduce the problem scarcity of labeled samples in the remote sensing community. 

With this aim, Sun et.al [96] proposed a novel transfer sparse subspace analysis (TSSA) framework that 

finds a common embedding space where the domain shift between ground-view datasets and over-head 

view dataset is minimized. TSSA aims at finding a new latent space where the distance between the source 

and target data distributions is minimized while preserving the original statistical properties and self-

expressiveness properties of the data.   
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Methods that fall in the third category aim training a classifier using source domain samples and update its 

parameters by taking advantage of unlabeled samples from the target domain. Most of the methods in this 

category assume that the two domains share the same set of classes and features [76]. Accordingly, the 

authors in [97] explored the possibility of using a binary hierarchical classifier for the transfer of knowledge 

between domains. The classifier is updated using the Expectation Maximization (EM) algorithm to account 

for the change in the statistics of the target domain. Methods proposed in [98]–[102] consider modifying 

the formulation of support vector machines (SVMs) to incorporate knowledge from unlabeled target 

domain samples in order to obtain a robust classifier. The authors in [103] formulated the problem of DA 

as a multitask learning problem where regularization schemes are used to learn a relation across tasks. In 

contrary to the previous methods, where the source and target domains are assumed to share the same 

classes, Bhirat et.al [104] considered the problem of DA where there is a class difference between the 

domains. The authors employed change detection techniques to identify whether new classes have appeared 

or existing classes have disappeared.  

An alternative approach to the third category of DA strategies is to incorporate additional expert knowledge 

through active learning (AL) strategies [105]–[110]. AL methodologies provide the user a way to interact 

with the models by asking to provide labels for the most informative target samples [76]. These labels are 

then used to gradually modify the optimal classifier trained on source domain samples. Such methods help 

in dealing with strong deformation or the appearance of new objects in the target domain. Thus, the main 

objective of methods in this category is the selection of informative samples so that a few additional samples 

are used to update the classifier effectively. 

4.4. Semisupervised adversarial domain adaptation 

Most semi-supervised representation learning methods for domain adaptation learn a domain invariant 

representation in two stages. In the first stage, both source and target domain samples are mapped to a new 

latent space where the domain discrepancy is negligible by using a function �(�). In the second stage, a 

classifier is trained using labeled source domain samples in the new space and is used to predict labels of 

target domain samples. Although the proposed methods consider preserving data geometry in the 

transformed space while learning the mapping function, there is the possibility that the new features may 

not be discriminative enough, which can result in low classification accuracy. Hence, taking into account 

the discriminative capability of features in the new space while learning the mapping function is vital, and 

there are few methods proposed in this regard. 

Domain adversarial neural network (DANN) is a DA strategy that combines both representation and 

classifier learning stages and falls in the category of DA methods that learn a joint latent space. Thus, the 

aim of DANN is learning a new mapping function in which both domain invariance and discriminative 

properties are taken into account during the learning process. The architecture of a DANN (Figure 4.2) is 

composed of three blocks: Feature extractor, Class predictor, and Domain classifier. The feature extractor 

is a standard feed-forward network that learns a mapping function �: � → ℝ� that transforms the input to 

the new �-dimensional representation and has learnable parameters ��. Similarly, both the class predictor 

and domain classifier are feed-forward networks that learn mapping functions �: �(�) → ℝ�  

and �: �(�) → ℝ�, where � and � are the number of classes and domains, respectively. Both the class 

predictor and domain predictors have learnable parameters �� and ��, respectively.  
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Figure 4.2 Block diagram of a DANN architecture. The output of the feature extractor is a representation of an input 

in the new latent space, which is then directly fed to the class and domain classifiers. 

The objective of the class predictor is to learn a mapping from the input space to the space of class labels 

while the objective of the domain classifier is to learn a mapping from input space to the space of domains. 

That is it predicts whether an input is sampled from source or target domains. During training, weights of 

the classifier are updated to minimize the classification error and weights of the domain predictor are 

updated to minimize the domain classification error. On the other hand, the aim of the feature encoder is 

twofold: minimizing the class prediction error and updating its parameters in such a way that the domain 

variance between source and target domains is minimized. In order to accomplish this, the feature encoder 

maximizes the domain classifier loss. That is, when the domain classifier tries to minimize domain 

classification error, thereby increasing its ability to discriminate the source of input, the feature encoder 

does the opposite in order to confuse the domain classifier. Resulting in the feature encoder and domain 

classifier to work in an adversarial manner, and hence the name adversarial. 

Mathematically, the cost function for a DANN is expressed as 

�(��, ��, �� ) =  �� (��, �� ) − ��� (��, ��) 4.1 

where �(��, ��) and �(��, ��) are the loss for the class and domain classifiers, respectively. The parameter 

� in equation 4.1 is a hyperparameter that controls the contribution of the domain discriminator to the total 

loss. The learning algorithm [22] updates �� to maximize the loss � (Equation 4.2) while keeping ��  and 

�� fixed. Similarly, ��  and �� are simultaneously updated to minimize � (Equation 4.3) while keeping 

�� fixed. 

��
� =  argmax

��

ℒ���
�, ��

� , θ�� 4.2 

��
�, ��

� =  argmin
��,��

ℒ�θ�, θ�, ��
�� 4.3 

The gradient update rule is as follows: 
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In order to apply the standard backpropagation algorithm for training, the authors in [22] proposed a 

Gradient reversal layer (GRL) that acts as an identity transformation during the forward propagation and 

changes the sign of a subsequent level gradient during backpropagation. That is a gradient is multiplied by 

-1 before passing it to the preceding layer. The GRL layer is inserted between the feature extractor and 

domain classifier blocks and does not have parameters to be learned. Mathematically, this layer �(�) is 

defined by two equations for the forward (Equations 4.7) and backward propagation (Equations 4.8) 

properties [22]: 

ℛ(�) =  x 4.7 

∂ℛ(�)

��
=  −� 4.8 

We apply the DANN model on two remote sensing DA problems: large-scale land cover classification and 

cross-sensor hyperspectral image classification. 

4.4.1 Large-scale land cover classification using DANN 

In this problem setting, we consider remote sensing images that cover wide geographical areas acquired at 

different times. In this setting, the distribution shift between the source and target domain is the result of 

spatial, temporal, or spatio-temporal difference. The only assumption we have is that both domains share 

the same set of classes. Thus, we adopt the DANN method in order to obtain a model that performs better 

regardless of the domain shift in the images. DANN takes data sampled from both source and target 

domains as input and learns a new representation. Besides, we also evaluate the suitability of the method 

in a multi-target domain adaptation scenario. That is, learning a generic representation for target domain 

samples drawn from multiple domains. 

With regard to the cost function, the binary cross-entropy loss function (Equation 4.10) is used for the 

classifier of the DANN as we are dealing with a binary classification (vegetation or non-vegetation) 

problem. Whereas, for the domain classifier, depending on the number of target domains and the source 

domain, we utilize either the binary cross-entropy (Equation 4.10) loss or the multi-class cross-entropy loss 

(Equation 4.9). For instance, when we are dealing with a single target domain (��) the objective of the 

domain classifier is to distinguish whether the input data is from the source domain (�) or ��. As a result, 

we employ the binary cross entropy as a loss function. On the other hand, when we are seeking for a domain 

invariant representation in the presence of a source domain (�) and multiple target domains 

(��, ��, … , ����), we are dealing with a �-class classification problem and hence, we employ the multi-class 

cross-entropy loss function.   

ℒ� = −
1

�
� � ��

�
������

�

�

���

�

���

 4.9 
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ℒ� =
1

�
� �������� + (1 − ��) ���(1 − ���) 

�

���

 4.10 

where � is the number of training samples, � is the number of domains (source plus target) considered for 

adaptation, and ��
�
 and  ���

�
 represent the true and predicted classes/domains of the input samples, 

respectively.  

Next, we detail the dataset used to evaluate the proposed approach, followed by the experimental setup and 

results obtained in both single-domain and multi-domain adaptation settings. 

A. Dataset description 

In order to validate the proposed method, we used Landsat 8 multi-spectral images characterized by a spatial 

resolution of 30 meters. The images are selected from three different geographical areas (Figure 4.3), 

Northern, Central, and Southern Europe, and over three seasons, winter, spring, and summer. The winter 

images are acquired in January 2016. Whereas, the spring and summer images are acquired on May and 

August 2016, respectively. Moreover, each image covers a geographic area of approximately 33,000 ��� 

and composed of more than 30 million pixels. Example of images from each region per each season is 

shown in Figure 4.4. For the purpose of training, we labeled parts of the images into two categories, 

vegetation and non-vegetation. We split the datasets into training (8000 labeled samples), validation (1000 

labeled samples) and test sets. The number of labeled samples for each region per season is given in Table 

4.1. 

Domain Vegetation Non-vegetation 

CE Spring (CESP) 7668 7405 

CE Summer (CESU) 7531 7161 

CE Winter (CEWI) 6995 6857 

NE Spring (NESP) 6315 6081 

NE Summer (NESU) 6529 6869 

NE Winter (NEWI) 7210 7061 

SE Spring (SESP) 7356 7380 

SE Summer (SESU) 7102 7343 

SE Winter (SEWI) 7346 7343 

Table 4.1 Labeled vegitation and non-vegitation pixel samples used for training and test from all domains. 
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Figure 4.3 The three geographical areas considered for the study. 

 

Figure 4.4 Sample image crops from the Central East (top), North East (middle), and South East (bottom) regions. 

B. Experimental setup 

With regard to the network architecture (Figure 4.5), all three blocks were made up of fully connected 

layers. The output of the feature encoder was directly connected to the class classifier and the domain 

discriminator. The input to the feature encoder was 8-dimensional pixel samples. The main hyper-
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parameters of the network were the number of hidden layers, the number of neurons in each layer, the 

learning rate, the mini-batch training size, and lambda. In order to select the best configuration, we 

conducted a grid-based hyper-parameter search by training a classifier for each domain and selecting a 

configuration with the smallest classification loss on the corresponding domain validation set. With regard 

to the number of neurons in a hidden layer and the mini-batch size, we experimented with values ranging 

from 2� to 2� and 2� to 2�, respectively. For the learning rate, the search was conducted on values ranging 

from 10�� to 10�� with a step of 0.1. Moreover, during the DANN training, the selected base learning was 

decreased by 0.1 every 100 training epochs. While conducting the configuration search, we observed that 

the accuracy on the validation sets exceeded 98% for all domains, hence we decided to limit the number 

of hidden layers to one. Finally, instead of using a fixed value, � was exponentially incremented at every 

epoch starting from 0 to 1. Accordingly, the best configuration for each domain is shown in Table 4.2. The 

network, implemented in Tensorflow, was kept the same for both single- and multi-target domain 

adaptation problems. Adam optimizer [111] was used for training with the number of training epochs fixed 

to 500. 

Source domain Learning rate # of neurons Mini-batch size 

CESP 10�� 64 256 

CESU 10�� 32 32 

CEWI 10�� 32 32 

NESP 10�� 4 128 

NESU 10�� 64 128 

NEWI 10�� 16 512 

SESP 10�� 32 32 

SESU 10�� 32 256 

SEWI 10�� 64 64 

Table 4.2 Mini-batch size, learning rate, and the number of neurons used for training based on the source domain 

considered. 
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Figure 4.5 Network architecture based on fully connected layers employed for training. The number of neurons in the 

hidden layer (�) of the feature extractor is shown in Table 4.2. The number of output neurons for the domain classifier 

(�) depend on the number of target domains considered for adaptation plus the source domain. The class predictor 

has two outputs: non-vegetation (��) and vegetation (��).   

C. Experimental results   

As we stated earlier, we conducted experiments in both single target  and multi-target domain settings. As 

a performance metric, we report the overall accuracy values (the number of correctly classified test samples 

divided by the total number of test samples), and provide a lower bound (overall accuracy of a classifier 

trained on source domain data and tested with target domain data) and upper bound (overall accuracy of a 

classifier trained and tested with labeled samples from the target domain) values for the purpose of 

comparison. Moreover, the reported performance values are averaged over ten experiments and the 

corresponding standard deviation values are also reported.  

i. Single-target domain adaptation 

In this setting, we conducted experiments where one of the domains, for example, NESU is considered as 

a source domain data and the others, such as SEWI, are individually considered as target domain samples. 

Accordingly, we can divide these experiments into three groups. The first and second groups of experiments 

perform spatial (the distribution shift between source and target domains is due to the geographical 

difference between the samples) and temporal (the distribution shift between source and target domains is 

due to the difference in acquisition time) domain adaptations, respectively. Whereas, the third group of 

experiments deals with spatiotemporal domain adaptation. That is, the distribution shift is a result  of both 

geographical and temporal differences, which is more challenging compared to the first two scenarios. 

In the case of spatial domain adaptation (Tables 4.3-4.5), the proposed method provides an improvement 

ranging from 1.1% to 14.1% on the overall accuracy of target domain samples compared to the lower bound 
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values in most of the source-target domain combinations. However, there are exceptions where the 

performance of the proposed method is much lower than the corresponding lower bound. For instance, 

when NEWI is used as a source domain the performance on target domains CEWI and SEWI dropped by 

9.7% and 11.9%, respectively. Similarly, for SESU-NESU and SESU-CESU experiments, the accuracy 

dropped by 19.1% and 11.6%, respectively. However, DANN performance improves when the source and 

target domains are interchanged. A possible reason for the decrease (increase in the reverse direction) in 

performance could be due to the difference in the network hyper-parameters employed for training. 

Target domain 
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NESP 

(99.9, 0.003) 
CESP 

(100.0, 0.0) 
SESP 

(99.5, 0.005) 

NESP  
99.3, 0.013 81.5, 0.033 
98.1, 0.022 71.7, 0.051 

CESP 
96.7, 0.011 

 
83.8, 0.062 

88.7, 0.078 69.9, 0.065 

SESP 
61.5, 0.011 98.1, 0.011 

 
64.3, 0.042 95.8, 0.068 

Table 4.3 Spatial domain adaptation average overall accuracy (in %) and standard deviation results realized over ten 

independent runs for the spring season. Rows in green and light blue are the results of the proposed method and lower 

bound values, respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values in 

bold black  and red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound.  

Target domain 

S
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NESU 
(98.8, 0.004) 

CESU 
(100.0, 0.0) 

SESU 
(99.0, 0.0) 

NESU  
98.0, 0.017 61.6, 0.026 
83.9, 0.010 53.4, 0.020 

CESU 
95.6, 0.005 

 
72.0, 0.023 

95.8, 0.004 66.9, 0.020 

SESU 
68.0, 0.173 83.8, 0.059 

 
87.1, 0.087 95.4, 0.016 

Table 4.4 Spatial domain adaptation average overall accuracy (in %) and standard deviation results realized over ten 

independent runs for the summer season. Rows in green and light blue are the results of the proposed method and 

lower bound values, respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values 

in bold black  and red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 

Target domain 
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NEWI 

(100.0, 0.0) 

CEWI 

(99.6, 0.009) 

SEWI 

(1.0, 0.0) 

NEWI  
71.7, 0.026 83.3, 0.093 

81.4, 0.062 95.2, 0.014 

CEWI 
73.2, 0.045 

 
87.6, 0.024 

63.2, 0.042 88.4, 0.038 

SEWI 
89.1, 0.085 74.2, 0.009 

 
91.1, 0.045 71.5, 0.022 

Table 4.5 Spatial domain adaptation average overall accuracy (in %) and standard deviation results realized over ten 

independent runs for the winter season. Rows in Green and Blue are the results of the proposed method and lower 

bound values, respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values in 

bold black  and red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 
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Similar to the spatial domain adaptation, the proposed method yielded an increment of the overall accuracy 

ranging from 0.6% to more than 32%, with respect to the corresponding lower boundary accuracy values 

for more than half the temporal source-target pair experiments (Tables 4.6-4.8). Similar to the spatial DA 

case, there were source-target pairs where the proposed method had lower performance compared to the 

lower boundary. The most significant decreases in performance were observed for the NEWI–NESP, 

NEWI–NESU, and CESU–CEWI experiments where the accuracies dropped by 21.5%, 40.7%, and 

27.9%, respectively. Considering the reverse direction (target-source), there was a decrease in 

performance, with the exception of CESU–CEWI, where the accuracy increased by 6.8%. However, the 

decreases were very small. Besides the network configuration difference in the sour-target and target-source 

pairs, a possible reason for the decline in performance is that the considered source domain can have a 

positive or negative impact on the DA process. 

Target domain 
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NESP 
(99.9, 0.003) 

NESU 
(98.8, 0.04) 

NEWI 
(100.0, 0.0) 

NESP  
94.4, 0.005 83.9, 0.120 
95.0, 0.004 86.0, 0.132 

NESU 
93.8, 0.027 

 
73.7, 0.175 

61.3, 0.028 82.2, 0.059 

NEWI 
73.1, 0.096 34.1, 0.228 

 
94.5, 0.036 74.8, 0.130 

Table 4.6 Temporal domain adaptation average overall accuracy (in %) and standard deviation results realized over 

ten independent runs for the North-East region. Rows in Green and Blue are the results of the proposed method and 

lower bound values, respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values 

in bold black  and red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 

Target domain 
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CESP 
(100.0, 0.0) 

CESU 
(100.0, 0.0) 

CEWI 
(99.6, 0.009) 

CESP  
99.0, 0.0 77.3, 0.125 

98.4, 0.008 51.0, 0.0 

CESU 
95.3, 0.009 

 
65.3, 0.078 

94.4, 0.022 93.2, 0.066 

CEWI 
95.9, 0.064 98.6, 0.007 

 
78.5, 0.102 91.8, 0.097 

Table 4.7 Temporal domain adaptation average overall accuracy (in %) and standard deviation results realized over 

ten independent runs for the Central-East region. Rows in Green and Blue are the results of the proposed method and 

lower bound values, respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values 

in bold black  and red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 
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Target domain 
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SESP 

(99.5, 0.005) 
SESU 

(99.0, 0.0) 
SEWI 

(100.0, 0.0) 

SESP  
98.0, 0.0 87.3, 0.080 

97.8, 0.007 70.3, 0.061 

SESU 
98.6, 0.005 

 
69.9, 0.077 

96.1, 0.005 76.8, 0.043 

SEWI 
89.8, 0.087 85.5, 0.088 

 
61.6, 0.037 69.2, 0.037 

Table 4.8 Temporal domain adaptation average overall accuracy (in %) and standard deviation results realized over 

ten independent runs for the South-East region. Rows in Green and Blue are the results of the proposed method and 

lower bound values, respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values 

in bold black  and red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 

In the third category of experiments, we evaluated the suitability of the proposed method for spatio-

temporal DA problems. In such cases, the distribution shift between source and target domains is a 

combined result of both temporal and spatial shifts, which makes it challenging compared to the first two 

categories. From the results in Tables 4.9–4.11, the proposed method outperformed the lower boundary 

accuracy values in most of the source-target domain combinations, with an increase in the overall accuracy 

ranging from 0.2% to 37.1%. The challenging nature of the spatiotemporal DA was also observed from 

the results provided in Tables 4.9–4.11. Among the thirty-six source-target pair experiments, the proposed 

method failed to improve the overall accuracy compared to the lower boundary in fifteen of the experiments. 

Among those pairs, the largest decrease in performance was observed in the SESU–NESP (27.7% decrease) 

and NEWI–central-east spring (CESP) (17.2% decrease) experiments. On the other hand, if we consider 

the reverse directions, specifically the NESP–SESU and CESP–NEWI experiments, DANN improved the 

overall accuracy by 2.8% and −6.1%, respectively. Similar to the spatial and temporal experiments, the 

decline in performance observed in the spatiotemporal experiments was possibly due to the architecture 

difference and the choice of the source domain considered for the process. 
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CESP 

(100.0, 0.0) 
CESU 

(100.0, 0.0) 
CEWI 

(99.6, 0.009) 
SESP 

(99.5, 0.005) 
SESU 

(99.0, 0.0) 
SEWI 

(100.0, 0.0) 

NESP  
99.0, 0.0 88.0, 0.074 

 
75.5, 0.011 95.7, 0.015 

98.1, 0.022 84.2, 0.106 72.7, 0.026 97.3, 0.013 

NESU 
93.1, 0.029 

 
86.9, 0.088 63.3, 0.041 

 
95.5, 0.034 

64.3, 0.067 62.1, 0.034 50.8, 0.026 82.9, 0.030 

NEWI 
82.1, 0.161 84.6, 0.087 

 
66.8, 0.156 65.9, 0.126 

 
99.2, 0.007 99.0, 0.0 76.7, 0.073 72.7, 0.032 

Table 4.9 Spatio-temporal domain adaptation average overall accuracy (in %) and standard deviation results realized 

over ten independent runs. Rows in Green and Blue are the results of the proposed method and lower bound values, 

respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values in bold black  and 

red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 
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Target domain 

S
o
u

rc
e 

d
om

a
in

  
NESP 

(99.9, 0.003) 
NESU 

(98.8, 0.004) 
NEWI 

(100.0, 0.0) 
SESP 

(99.5, 0.005) 
SESU 

(99.0, 0.0) 
SEWI 

(100.0, 0.0) 

CESP  
93.9, 0.003 90.3, 0.128 

 
81.8, 0.056 94.4, 0.061 

59.7, 0.077 96.4, 0.005 89.8, 0.028 72.2, 0.044 

CESU 
80.8, 0.046 

 
78.3, 0.160 71.7, 0.047 

 
84.7, 0.018 

77.2, 0.042 82.9, 0.133 75.7, 0.024 86.0, 0.038 

CEWI 
94.9, 0.051 95.1, 0.003 

 
68.8, 0.055 70.4, 0.030 

 
57.8, 0.054 93.9, 0.025 62.3, 0.062 61.7, 0.032 

Table 4.10 Spatio-temporal domain adaptation overall accuracy (in %) results. Rows in Green and Blue are the results 

of the proposed method and lower bound values, respectively. The upper bound accuracy is shown at the top of each 

row in the bracket. The values in bold black  and red font indicate an increase and decrease, respectively, in accuracy 

compared to the upper bound. 

Target domain 

S
o

u
rc

e 
d

om
a

in
  

CESP 
(100.0, 0.0) 

CESU 
(100.0, 0.0) 

CEWI 
(99.6, 0.009) 

NESP 
(99.3, 0.003) 

NESU 
(98.8, 0.004) 

NEWI 
(100.0, 0.0) 

SESP  
81.8, 0.008 59.6, 0.104 

 
57.7, 0.123 82.3, 0.117 

91.0, 0.073 51.1, 0.003 50.8, 0.007 86.1, 0.062 

SESU 
94.6, 0.067 

 
67.7, 0.127 68.3, 0.076 

 
84.5, 0.086 

99.0, 0.0 62.5, 0.091 96.0, 0.0 96.7, 0.019 

SEWI 
98.4, 0.015 97.9, 0.025 

 
97.1, 0.008 95.2, 0.004 

 
92.7, 0.013 98.7, 0.009 80.9, 0.024 95.0, 0.0 

Table 4.11 Spatio-temporal domain adaptation average overall accuracy (in %) and standard deviation results realized 

over ten independent runs. Rows in Green and Blue are the results of the proposed method and lower bound values, 

respectively. The upper bound accuracy is shown at the top of each row in the bracket. The values in bold black  and 

red font indicate an increase and decrease, respectively, in accuracy compared to the upper bound. 

ii. Multi-target domain adaptation 

The objective of multi-target domain adaptation is to have a single model that performs well in the presence 

of two or more target domain datasets that have temporal, spatial, and/or spatio-temporal distribution shifts. 

Accordingly, we modify the domain discriminator to a multi-class classifier that utilizes the multi-class 

cross-entropy loss (Equation 4.9) to estimate prediction error. In order to understand the performance of 

the proposed method for multi-domain adaptation, we chose two source domains (CE Spring (CESP) and 

NE Winter (NEWI)) based on their performance on the single domain adaptation problem. That is we 

selected the best and worst source domains based on the average increment on the target domain samples. 

In addition, since there are a lot of possible combinations, we limited the analysis by ranking the 

performance improvement in descending order and incremented the number of domains. We report the 

overall accuracy along with the upper and lower bound values obtained for target domains ranging from 2 

to 8. Similar to the single-domain case, the reported results are averaged over ten experiments. 

From the results in Tables 4.12-4.18, the proposed method provides an improvement on the overall accuracy 

ranging from 1% to 34.9%  with respect to the lower bound accuracy in almost all of the experiments in 

the case of CESP source domain. Comparing the multi-domain performances with respect to the single 

domain, as the number of target domain increases from 2 to 7 the maximum accuracy decrease is not more 

than 7%. In the case of 8 target domains, the accuracy for CESP-NEWI decreases by 15.8% compared to 
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the corresponding single domain result. On the other hand, the performance results in Tables 4.12-4.18 

show that using the NEWI as a source domain for multi-target domain adaptation does not provide 

improvement in almost all of the source-target combination experiments. The maximum increment obtained 

with this setup is not more than 4% regardless of the number of target domains. This is mainly due to the 

distribution of the NEWI dataset, which will be discussed later. 

Target domain 
S

o
u

rc
e 

d
o
m

a
in

 

 
NESU 

(98.8, 0.004) 
SEWI 

(100.0, 0.0) 
SESU 

(99.0, 0.0) 
CEWI 

(99.6, 0.009) 

CESP 
89.3, 0.112 92.4, 0.075 

  
59.7, 0.077 72.2, 0.44 

NEWI  
70.3, 0.163 54.0, 0.034 

72.7, 0.032 81.4, 0.062 

Table 4.12 Experimental result for � target domains. Average overall accuracy (in %) and standard deviation results 

realized over ten independent runs for the proposed method (green rows) and lower bound values (light blue rows). 

Upper bound values are shown in the second row in the bracket. The values in bold black  and red font indicate an 

increase and decrease, respectively, in accuracy compared to the upper bound. 

Target domain 

S
o
u

rc
e 

d
o
m

a
in

 

 
NESU 

(98.8, 0.004) 
SEWI 

(100.0, 0.0) 
CEWI 

(99.6, 0.009) 
SESU 

(99.0, 0.0) 
SESP 

(99.5, 0.005) 

CESP 
90.3, 0.111 93.7, 0.044 83.7, 0.105 

  
59.7, 0.077 72.2, 0.44 51.0, 0.0 

NEWI   
53.7, 0.036 71.4, 0.133 70.4, 0.142 
81.4, 0.062 72.7, 0.032 76.7, 0.073 

Table 4.13 Experimental result for � target domains. Average overall accuracy (in %) and standard deviation results 

realized over ten independent runs for the proposed method (green rows) and lower bound values (light blue rows). 

Upper bound values are shown in the second row in the bracket. The values in bold black  and red font indicate an 

increase and decrease, respectively, in accuracy compared to the upper bound. 

Target domain 

S
o
u

rc
e 

d
o
m

a
in

 

 
NESU 

(98.8, 0.004) 
SEWI 

(100.0, 0.0) 
CEWI 

(99.6, 0.009) 
SESU 

(99.0, 0.0) 
SESP 

(99.5, 0.005) 

CESP 
88.6, 0.099 97.0, 0.025 74.9, 0.101 

 
84.7, 0.028 

59.7, 0.077 72.2, 0.44 51.0, 0.0 69.9, 0.065 

NEWI  
94.1, 0.065 70.3, 0.052 76.5, 0.118 78.6, 0.142 
95.2, 0.014 81.4, 0.062 72.7, 0.032 76.7, 0.073 

Table 4.14 Experimental result for � target domains. Average overall accuracy (in %) and standard deviation results 

realized over ten independent runs for the proposed method (green rows) and lower bound values (light blue rows). 

Upper bound values are shown in the second row in the bracket. The values in bold black  and red font indicate an 

increase and decrease, respectively, in accuracy compared to the upper bound. 
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Target domain 

S
o
u

rc
e 

d
o
m

a
in

 

 NESU 
(98.8, 0.004) 

SEWI 
(100.0, 0.0) 

CEWI 
(99.6, 0.009) 

SESP 
(99.5, 0.005) 

NESP 
(99.9, 0.003) 

SESU 
(99.0, 0.0) 

CESU 
(100.0, 0.0) 

C
E

S
P

 

93.0, 0.034 94.0, 0.056 77.9, 0.073 83.5, 0.035 95.6, 0.025   

59.7, 0.077 72.2, 0.44 51.0, 0.0 69.9, 0.065 88.7, 0.078   

N
E

W
I 

 
94.9, 0.040 74.8, 0.028 72.3, 0.072 

 
70.4, 0.048 98.3, 0.021 

95.2, 0.014 81.4, 0.062 76.7, 0.073 72.7, 0.032 99.0, 0.0 

Table 4.15 Experimental result for � target domains. Average overall accuracy (in %) and standard deviation results 

realized over ten independent runs for the proposed method (green rows) and lower bound values (light blue rows). 

Upper bound values are shown in the second row in the bracket. The values in bold black  and red font indicate an 

increase and decrease, respectively, in accuracy compared to the upper bound. 

Source domain 

T
a
rg

et
 d

o
m

a
in

 

 CESP NEWI 

CESP 
(100.0, 0.0) 

 
95.4, 0.078 
99.2, 0.007 

NESU 
(98.8, 0.004) 

93.8, 0.020 
 

59.7, 0.077 
SEWI 

(100.0, 0.0) 
93.7, 0.045 92.3, 0.075 
72.2, 0.440 95.2, 0.014 

CEWI 
(99.6, 0.009) 

83.5, 0.079 77.1, 0.032 

51.0, 0.0 81.4, 0.062 
SESP 

(99.5, 0.005) 
83.0, 0.032 74.5, 0.102 
69.9, 0.065 76.7, 0.073 

NESP 
(99.9, 0.003) 

95.0, 0.029 
 

88.7, 0.078 
SESU 

(99.0, 0.0) 
 

71.8, 0.089 
72.7, 0.032 

CESU 
(100.0, 0.0) 

99.0, 0.0 96.9, 0.050 
98.4, 0.008 99.0, 0.0 

Table 4.16 Experimental result for � target domains. Average overall accuracy (in %) and standard deviation results 

realized over ten independent runs for the proposed method (green rows) and lower bound values (light blue rows). 

Upper bound values are shown in the second column in the bracket. The values in bold black  and red font indicate an 

increase and decrease, respectively, in accuracy compared to the upper bound. 
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Source domain 

T
a
rg

et
 d

o
m

a
in

 

 CESP NEWI 

CESP 
(100.0, 0.0) 

 
99.0, 0.012 
99.2, 0.007 

NESU 
(98.8, 0.004) 

94.6, 0.005 
 

59.7, 0.077 
SEWI 

(100.0, 0.0) 
93.6, 0.045 94.7, 0.039 
72.2, 0.44 95.2, 0.014 

CEWI 
(99.6, 0.009) 

86.4, 0.094 78.5, 0.043 

81.4, 0.062 81.4, 0.062 
SESP 

(99.5, 0.005) 
82.4, 0.019 78.3, 0.076 
69.9, 0.065 76.7, 0.073 

NESP 
(99.9, 0.003) 

95.7, 0.035 94.6, 0.045 
88.7, 0.078 94.5, 0.036 

SESU 
(99.0, 0.0) 

 
73.6, 0.043 
72.7, 0.032 

CESU 
(100.0, 0.0) 

99.0, 0.0 99.0, 0.0 
98.4, 0.008 99.0, 0.0 

NEWI 
(100.0, 0.0) 

72.8, 0.197 
 

96.4, 0.005 

Table 4.17 Experimental result for � target domains. Average overall accuracy (in %) and standard deviation results 

realized over ten independent runs for the proposed method (green rows) and lower bound values (light blue rows ) 

Upper bound values are shown in the second column in the bracket. The values in bold black  and red font indicate an 

increase and decrease, respectively, in accuracy compared to the upper bound. 

Source domain 

T
a
rg

et
 d

o
m

a
in

 

 CESP NEWI 

CESP 
(100.0, 0.0) 

 
97.0, 0.057 
99.2, 0.007 

NESU 
(98.8, 0.004) 

92.5, 0.014 94.6, 0.008 
59.7, 0.077 74.8, 0.130 

SEWI 
(100.0, 0.0) 

91.2, 0.077 92.4, 0.065 
72.2, 0.440 95.2, 0.014 

CEWI 
(99.6, 0.009) 

70.6, 0.084 79.5, 0.055 

51.0, 0.0 81.4, 0.062 
SESP 

(99.5, 0.005) 
85.5, 0.046 75.5, 0.085 
69.9, 0.065 76.7, 0.073 

NESP 
(99.9, 0.003) 

95.9, 0.013 90.8, 0.119 
88.7, 0.078 94.5, 0.036 

SESU 
(99.0, 0.0) 

79.6, 0.027 71.7, 0.058 
89.8, 0.028 72.7, 0.032 

CESU 
(100.0, 0.0) 

99.0, 0.0 98.3, 0.021 
98.4, 0.008 99.0, 0.0 

NEWI 
(100.0, 0.0) 

74.5, 0.229 
 

96.4, 0.005 

Table 4.18 Experimental result for � target domains. Green rows are overall accuracy (in %) values of the proposed 

method and light blue rows are lower bound values. Upper bound values are shown in the second column in the 

bracket. The values in bold black  and red font indicate an increase and decrease, respectively, in accuracy compared 

to the upper bound. 

D. Comparative study 

Besides the lower bound performance values, we compared the proposed method with the Denoising 

autoencoders (DAEs) [112]. DAEs are a type of auto-encoders that aim to learn a mapping function that 
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can reconstruct a “clean” input from its corrupted version by first encoding the input into a new latent space 

and the decoding back the input from the latent space. Following the same setup as in [81], we conduct 

feature encoding using DAE in two settings: the first setup uses only source domain samples, i.e., � ⊆ ��, 

to learn the encoding and the second setting uses both source and target domain training samples, i.e., � ⊆

�� ∪ ��, to learn the encoding. We termed these settings as 1-DOM and 2-DOM. After the encoding, we 

train a softmax classifier using the encoded source domain samples and classify target domain samples. 

DAE parameters such as the number of hidden layers, number of neurons in a hidden layer, the learning 

rate and the mini-batch training size follow the same configuration used for the DANN (Table 4.2). During 

the training of the DAE, a noise sampled from the normal distribution with a mean of 0.0 and a standard 

deviation of 0.01 is added to the input. 

For the purpose of comparison, we focus on single-target DA problems and report the results obtained on 

the best and worst source-target experiments from the spatial, temporal, and spatiotemporal DA problems. 

From the comparison results in Table 19, except for the NEWI-NESU experiment the proposed method 

significantly outperforms DAEs. 

 DAE (1-DOM) DAE (2-DOM) Ours 

NESU-CESU 
(98.8, 0.004) 

98.8, 0.157 98.7, 0.006 98.0, 0.017 

SESU-NESU 
(100.0, 0.0) 

52.1, 0.003 52.1, 0.003 68.0, 0.017 

NESU-NESP 
(99.9, 0.003) 

69.2, 0.063 77.0, 0.074 93.8, 0.027 

NEWI-NESU 
(98.8, 0.004) 

44.2, 0.148 40.8, 0.186 34.1, 0.228 

CESP-NESU 
(98.8, 0.004) 

69.9, 0.157 77.3, 0.149 93.9, 0.003 

SESU-NESP 
(99.9, 0.003) 

62.8, 0.015 63.4, 0.010 97.1, 0.008 

Table 4.19 Comparison of the proposed method with DAE. The pair of values is the overall accuracy (in %) and the 

standard deviation averaged from ten different realizations. 

E. Discussion 

From the experimental results reported, the proposed method provides a significant improvement in 

performance when compared to the accuracy values of the lower boundary and the two-stage DA 

approaches considered. However, there are scenarios where the method fails to improve performance. Our 

observations are as follows: The performance decline in the multi-target domain adaptation scenarios with 

the increase in the number of domains is an indication that learning a domain-invariant representation in 

the presence of multiple targets is more challenging compared to the single-domain adaptation. In addition, 

the new mapping can have a positive impact on the performance of some domains and a negative impact 

on other domains. For instance, the overall accuracy for the target domain SEWI increased by more than 

2% while the accuracy for the NESU target domain dropped by more than 3% in the three-target domain 

experiment compared to the corresponding single-domain result. Another observation related to both the 

single-domain and multi-domain adaptation results is that the source domain has an impact on the domain 

adaptation results. That is, there are combinations (such as SEWI–SESU and SEWI–NESP) where the 

source-target mapping performs very well and the reverse direction (when the target is used as a source and 

the source is used as a target) does not work. This shows that the DA process is impacted by the choice of 

the source domain. 

Our main observation is that the efficacy of the proposed method relies on how well the source and target 

domains are aligned. To explain this, we use two source-target pair experiments, the CESP–CEWI and the 
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NEWI–NESU. The principal component analysis (PCA) distributions of the corresponding pairs before and 

after the domain adaptation are shown in Figures 4.6 and 4.7. In Figure 4.6, both vegetation and non-

vegetation samples from the source and target domains are roughly aligned in the same direction. Therefore, 

during the DA process, the vegetation and non-vegetation samples from both domains are grouped together. 

On the other hand, in Figure 4.7, the target domain vegetation samples overlap with the non-vegetation 

samples of the source domain. This is a possible indicator that the source and target distributions have a 

significant difference. This is also justified from the experimental results obtained in both single- and multi-

target domain setups, where there is a significant drop in performance in almost all combinations when the 

NEWI domain is involved in the DA process. 

 

Figure 4.6 PCA distribution of source (CESP) and target domain (CEWI) test samples before (top) and after (bottom) 

domain adaptation. 

 

Figure 4.7 PCA distribution of source (NEWI) and target domain (NESU) test samples before (top) and after (bottom) 

domain adaptation. 
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4.4.2 Cross-sensor hyperspectral image classification using DANN 

For this problem, the goal is to perform domain adaptation on two hyperspectral datasets acquired by 

different sensors. Similar to the previous case, we assume both domains share the same set of classes. The 

domain shift between source and target data is due to the different acquisition sensors used in addition to 

the spatial and temporal difference. Thus, this setting is more challenging in comparison to the previous 

problem (subsection 4.4.1).    

In the original formulation of the DANN, the domain classifier uses the binary cross-entropy (Equation 

4.10) loss to compute domain prediction error. Moreover, The adversarial training between the domain 

classifier and the feature extraction block resembles that of the generative adversarial networks (GANs). 

Thus, the domain loss employed corresponds to estimating the divergence between the source and target 

domain distributions using the Janson-Shannon (JS) divergence. An alternative type of divergence measure 

proposed in the GAN literature is the Earth-movers distance (EMD), also called the Wasserstein-1 distance. 

In Chapter 2, we have discussed this divergence measure in detail. Similarly, here we employ the 

approximated version of the Wasserstein-1 distance (Equation 4.12) to estimate the distance between the 

source and target domains. Similar to the DANN case, the adversarial property between the feature extractor 

and the domain classifier (in this case it is better to call it a domain critic as the outputs are not class 

probabilities) is preserved. That is, the domain critic maximizes Equation 4.12 while the feature extractor 

tries to minimize the same equation. The class classifier, on the other hand, uses the binary cross-entropy 

in Equation 4.11.  

ℒ� = − � �� log ���

�

���

 4.11 

ℒ� = max
���

��~��
[��(��(��(�)))] − ��~��

[��(��(��(�)))] 4.12 

Where �� and �� correspond to the source and target probability distributions. Since the domain critic has 

to satisfy the Lipschitz constraint, we use the gradient penalty based method proposed in [44] to impose the 

constraint.   

In addition, we also modify the original DANN architecture by adding two auto-encoder blocks that 

perform dimensionality reduction on the source and target data. This is due to the fact that we are 

considering cross-sensor domain adaptation, which resulted in a different number of spectral channels 

between the source and target domain data. As shown in the modified network architecture (Figure 4.8), 

both the source and target sensor input auto-encoders reduce the dimensionality of the input data to size � 

for each sensor. The parameters of the auto-encoders are optimized by minimizing the mean squared 

reconstruction error (Equation 4.13) between the input and auto-encoder output. After the parameters are 

optimized, the encoder is used for dimensionality reduction and the decoder is discarded. 

1

�
�‖� − ��‖�

�

�

���

 4.13 

Where � is the number of samples, � is the input sample, and �� is the reconstructed version of the input 

sample. Next, we present the datasets employed to evaluate the efficacy of the proposed model and the 

specific network architecture employed for the problem. Finally, we present and discuss the results 

obtained. 
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Figure 4.8 A modified DANN architecture for cross-sensor domain adaptation. 

A. Dataset description 

In order to assess the validity of the proposed method, we considered two hyperspectral images. The first 

image is the Washington DC Mall hyperspectral image (Figure 4.9) which is characterized by 191 spectral 

channels, after noisy band removal. The sensor used to acquire measures the spectral response in the 0.4 to 

2.4 micrometers (µm) region of the spectrum. The image has a pixel resolution 1208 × 307. The second 

dataset is another hyperspectral image with 102 channels acquired over the city of Pavia (Figure 4.10), 

Italy [113]. The image covers an area of 1 ��� and has a spatial resolution of 1.3�. The image is using 

the ROSIS-03 sensor that covers the spectrum 0.43 to 0.86 µm.  

In this problem, we used the DC Mall dataset as a source domain and the Pavia dataset as a target domain. 

Moreover, we assumed both images represent the same land cover and considered four classes that are 

common to both domains: Asphalt, Grass, Trees, and Roof. The number of spectral pixels per dataset for 

each class is presented in Table 4.20. Furthermore, the datasets are split into training, validation, and test 

sets randomly. 

Dataset Asphalt Grass Trees Roof 

DC Mall 11190 14951 10870 17390 

Pavia 9248 3090 7598 42826 

Table 4.20 Number of source and target domain samples per class. 

 

Figure 4.9 A false color image of the DC-Mall Dataset. 
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Figure 4.10 Flase color image of the Pavia city center dataset. 

B. Experimental setup 

Since we assumed to have no labeled example from the target domain, network architecture and selection 

of hyperparameters is performed manually. To that effect, we report the configuration with the best 

performance on the target domain data. Each block in Figure 4.11 is implemented using fully connected 

layers in TensorFlow. The sensor auto-encoder networks have a hidden layer with 96 neurons. Whereas, 

the feature extraction block, the domain discriminator, and the class classifiers are made up of two hidden 

layers. Both hidden layers in the domain discriminator and feature extractor blocks have 64 neurons, and 

the classifier hidden layers are made up of 32 and 16 neurons, respectively. The number of neurons in the 

output layers of the class classifier and domain discriminator are 4 and 1, respectively. Training of the 

whole architecture is performed as follows: first, we trained the source and target auto-encoders. Then, the 

domain discriminator, feature extractor, and class classifier blocks are trained iteratively. Other training 

parameters are as follows: 

 Adam optimizer [111] is used to train all networks with the parameters shown in Table 4.21. 
 The Lipschitz constraint for the domain discriminator is implemented with the gradient penalty 

method proposed in [44]. 
 A mini-batch size of 128 is used to train the networks. 
 We trained the source and target auto-encoders for 2500 iterations and the other parts of the 

network for 30000 iterations. 
 Except for the class classifier network, we used Layer normalization [114] to stabilize the training. 
 ReLu activation is used for the feature extractor block. Whereas, LeakyReLu is used for the other 

blocks.  
 �  (the tradeoff parameter) is set to 0.1. 
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Network Learning rate Beta 1 and Beta 2 

Source auto-encoder 1 × 10�� 0.9, 0.99 

Target auto-encoder 1 × 10�� 0.9, 0.99 

Feature extractor 1 × 10�� 0.5, 0.9 

Class classifier 5 × 10�� 0.9, 0.99 

Domain discriminator 5 × 10�� 0.5, 0.9 

Table 4.21 Specific values of optimizer paramters used for training. 

 

Figure 4.11 Network architecture based on fully connected layers employed for training. 

C. Experimental results and discussion 

We report experimental results obtained with the aforementioned setup. For the purpose of comparison, we 

provide baseline performances. The baseline performances indicate the upper bound, performance of a 

classifier trained and tested with data sampled from the target domain, and the lower bound, performance 

of a classifier trained with source samples and tested directly on target samples. These performances are 

obtained by training a neural network classifier that has 3 hidden layers each with 64, 32, and 16 neurons 

and a softmax output layer. Moreover, the baseline networks are trained using Adam optimizer  with an 

initial learning rate of 10��  and decreased to 10��  after 15000 iterations. We used the default values for 

the other optimization parameters. During the test phase, we used zero padding, appending zeros to target 

domain samples to match the dimensionality of the source domain samples, in order to obtain the lower 

bound. Here, we report the overall accuracy (OA) and the average accuracy (AA) obtained. OA is the ratio 

of correctly classified test samples to the total test samples whereas the AA is the average of the accuracy 

of each class. The results reported in Table 4.22 are average values obtained by training the network 10 

times. 

 

Domain critic

Class 
discriminator

Source sensor 
auto-encoder

Target sensor 
auto-encoder

Feature 
extractor

Source 
sensor input 

Target sensor 
input 

… …

102 96
… …

191 96

… ……

96 64 64

……

32 16 4

…

64

… … …

64 64 164
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Network OA(%) AA(%) Asphalt Grass Trees Roof 

DC-Mall – DC Mall 96.83 96.71 88.9 99.4 97.0 96.3 

Pavia – Pavia 99.23 98.36 99.8 97.69 96.25 99.6 

DC-Mall – Pavia 80.12 45.64 0 0 82.96 99.6 

Proposed method (on Pavia)  92.09 87.38 84.4 68.76 80.16 96.67 

Proposed method (on DC-Mall) 97.34 97.30 95.9 99.4 97.6 96.5 

Table 4.22 The OA and AA obtained on test samples. Values written in bold indicate performance improvement 

compared to the lower bound.  

From the results in Table 4.22, it is evident that the proposed method significantly improves both the overall 

(by more than 10%) and average accuracies (by more than 40%) compared to the baseline methods. The 

improvement is also evident from the 2D PCA plots shown in Figures 4.12 (before domain adaptation) and 

Figure 4.13 (after domain adaptation). Before domain adaptation, the source classifier misclassified the 

Asphalt and Grass classes from the target domain. However, the proposed method is able to classify these 

classes properly. 

 

Figure 4.12 2D PCA plot before domain adaptation. 
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Figure 4.13 2D PCA plot after domain adaptation. 

4.5. Semisupervised domain adaptation with GANs 

As discussed in Section 4.3, the second category of DA strategies aim to learn a new representation space 

where the domain discrepancy between source and target domains is negligible. Thus, the output of such 

methods is a d-dimensional vector which is often hard to interpret. A possible solution is to perform the 

domain adaptation in the input space. The result of such DA is an output that is possibly interpretable.  

To the best of our knowledge, [115] is the only work, proposed to the remote sensing community, that aims 

to perform DA in the input space. This method is a semi-supervised approach that performs domain 

alignment by using the centroid and covariance matrix to describe the data distributions. The method aligns 

source distribution to match that of the target distribution, and trains a classifier using labeled source domain 

samples. The alignment process starts with a coarse alignment stage where source data is moved toward 

the target data by subtracting the difference in the centroid of the two domains. After, per class centroid 

and covariance alignment are performed to accommodate class-specific properties. 

Image-to-image translation using GANs also a possible way of performing domain adaptation in the input 

space. That is, the generator is conditioned with source domain images and a latent noise outputs a modified 

version of the source image in the target domain. After, the adapted source images are used to train a 

classifier that can predict target domain labels. To the best of our knowledge, this approach has not been 

explored by the remote sensing community. However, the methods proposed in [19], [34]–[37] by the 

computer vision community have the goal of using GANs to perform domain adaptation in the image space. 

Besides the interpretability of the output, GAN based DA has the advantage of being used for data 

augmentation. That is, it is possible to generate virtually unlimited amount of target domain samples, and 

this can be beneficial while training deep learning methods. 

As part of this thesis, we propose a GAN based semi-supervised domain adaptation strategy for aerial image 

classification.    

4.5.1 Proposed solution 

The proposed method is a two-stage approach. The first stage (Figure 4.14a) involves training a GAN 

network. The generator of the GAN is conditioned with a �-dimensional latent noise � � ℝ� and the source 

domain image �� � ℝ��×��×��, where ��, �� and �� are the height, width, and channels of the source image, 

respectively. The output of the generator will be a source domain image adapted to target 
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domain �� �ℝ��×��×��, where ��, ��, and �� are the height, width, and channels corresponding to the 

adapted image, respectively. The discriminator, on the other hand, takes a real or adapted image 

�� � ℝ��×��×��  as an input and outputs a value corresponding to distance measure between the adapted and 

real target domain data distributions. In this work, we use the cost function associated with the Wasserstein 

GAN for training. Accordingly, the cost generator and discriminator cost functions are as follows: 

���~��
[��(��)] − ��~��,��~��

[��(�(��, �))] 4.13 

−��~��,��~��
[��(�(��, �))] 4.14 

  

In the second stage (Figure 4.14b), we train a classifier using the adapted source domain samples and use 

it to predict target labels. To this end, we condition the trained generator with the source domain images 

and use the output adapted images to train a classifier. In our case, we chose to use a deep learning-based 

model for the classification, as they have shown to be powerful. Moreover, we limit our analysis to a binary 

classification problem, and use the binary cross-entropy loss (Equation 4.10) to train the network. 

  

 

a. GAN training stage.  �� and � are source domain image and the latent noise input to the 

generator, respectively. ��� and �� are the adapted and target domain images, respectively. 

 

b. Classifier training stage. ��� is the output of the generator (target adapted source domain 

images) 

Figure 4.14 A two-step approach for GAN-based domain adaptation problem. 

4.5.2 Dataset 

We applied the proposed approach to two aerial image datasets. The first dataset is acquired from an 

airplane using a Canon EOS 1Ds Mark III camera with a focal length of 50 millimeters over the city of 

Munich [116]. It consists of 20 images acquired at an altitude of 1000 meters above the ground. Each 

image has a pixel resolution of 5616 × 3744 and a spatial resolution of approximately 13 centimeters 
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(��). The second dataset used is the Potsdam semantic labeling challenge dataset [117]. This dataset 

contains 38 6000 × 6000 patches of true orthophotos, with a spatial resolution of 5��. For the purpose of 

this work, we used the 24 patches that have ground-truth publicly available. Examples of images from both 

datasets are shown in Figures 4.15 and 4.16. Moreover, we datasets are split into training (60%), 

validation(10%), and test sets (30%). 

  

Figure 4.15 Exapmles of images from Munich dataset. 

  

Figure 4.16 Example of Ortho-photos from the Potsdam dataset. 

4.5.3 Experimental setup 

For the GAN training stage, we used the Munich dataset as a source domain and the Potsdam dataset as a 

target domain data. Moreover, we also assume that target domain labels are unavailable and both domains 

share the same land cover characteristics. In this work, we only considered domain adaptation of the car 

class in both datasets. The input to the generator network is a grayscale patche of size 32 × 32 cropped from 

the source domain training set and a latent vector of size 100 sampled from a normal distribution with 0.0 

mean and standard deviation of 1.0. The output of the generator will be an adapted grayscale patch of size 

64 × 64. We chose this size in order to accommodate the difference in resolution between the source and 

target domains. The discriminator network takes real patches of size 64 ×  64 cropped from the training set 

of the second dataset, and also synthetic patches from the generator. The overall GAN network architecture 

is shown in Figure 4.17. The network is trained with the Wasserstein metric and the default parameters 

suggested in [30].  
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For the classifier training stage, we crop positive and negative (car and non-car) grayscale patches of size 

32 × 32 from the source domain (already labeled), and feed with them the generator network. Afterward, 

the corresponding adapted (to the test domain) images are exploited to train the classifier network shown 

in Figure 4.18. 

 

 

Figure 4.17 Architecture of the GAN network employed for training. 

 

Figure 4.18 Classifer network employed for training. 

4.5.4 Experimental results 

Here, we report both qualitative and quantitative experimental results obtained with the aforementioned 

setup. For the qualitative analysis, we conducted a visual assessment of the adapted source domain images 

for both positive (car) and negative (background) images. From Figures 4.19 and 4.20 most of the adapted 

images (right) inherit structural and semantic properties from the corresponding source image. This is an 

indication that with GANs it is possible to transfer target domain data properties (such as resolution in our 
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case) to source domain data. However, we acknowledge that the adapted images are not as perfect as that 

of the source images in terms of both structure and semantics.   

 

Figure 4.19 Example of positive source domain images (left) and corresponding adapted images (right). 

 

Figure 4.20 Example of negative source domain images (left) and corresponding adapted images (right).          

With regard to the quantitative results, we report performance values along with the upper and lower bound 

performances obtained using the same classifier network configuration. The upper bound measures the 

performance of a classifier trained and tested using the target domain data while the lower bound measures 

performance of a classifier trained using source domain data but tested on target domain data. Moreover, 

for the lower bound measure, we train two different classifiers. The first classifier (Munich-Potsdam*) is 

trained using 64 × 64 patches from the source domain. Whereas, the second classifier (Munich-Potsdam**) 

is trained by resizing 32 × 32 patches of the source domain samples to 64 × 64. The test prediction is 

performed by dividing the target test set images into tiles and classifying each tile as a car or non-car using 

the trained classifier. Performance values (the overall accuracy (��������), probability of true positives 

(���), and the probability of false positives (��� ) are measured pixel-wise. That is each pixel within a tile 

will have the predicted class of the tile and is compared with the ground truth. 
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Classifier Accuracy (%) ��� ��� 

Potsdam-Potsdam 80.59 0.5656 0.1903 

Munich-Potsdam* 97.49 0.1345 0.0103 

Munich-Potsdam** 91.62 0.3902 0.0748 

Munich-Potsdam (Proposed method) 87.48 0.4967 0.1190 

Table 4.23 Performance results obtained using the proposed method. 

From the results in Table 4.23, the proposed method significantly improves the detection of the objects of 

interest compared to the classifier trained on source domain images. Although the overall accuracy is 

reduced compared to the lower bound performance values, the probability of correct detection increased 

significantly. Overall, the results obtained are promising and suggest the usefulness of the method in 

scenarios where there is abundant labeled data (source domain) related to a problem with less or no labeled 

data (target domain). 
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Chapter 5 

5. Conclusions and Future work 

5.1. Conclusions 

The advance in Earth observation technologies has enabled the collection of a plethora of information about 

the earth’s surface, effectively entering the era of big remote sensing data. This brings opportunities and 

challenges. On one hand, having a massive amount of data improves our understanding of the surrounding 

environment, and it is an economic asset and important resource for many applications. On the other hand, 

it requires developing large and efficient storage systems, significantly enhancing our computational 

capabilities, and developing efficient and sophisticated machine learning models that can utilize this data 

to extract meaningful insight. 

Among the methods proposed to extract patterns and insights from data, deep learning models have the 

potential to capitalize on massive datasets and discover new patterns. This has been shown with the 

successful application of the models to address the problem of classification and generative modeling in 

the computer vision community. In this thesis, our goal is to capitalize on deep generative models, more 

specifically generative adversarial networks (GANs), for remote sensing image analysis. In short, GANs 

implicitly approximate the distribution of a dataset through an adversarial training between two deep neural 

networks. To that effect, we proposed to directly apply GANs for Retro-remote sensing (a new research 

track for the remote sensing community) and domain adaptation problems. In addition, we proposed to use 

the adversarial training concept from GANs for semi-supervised domain adaptation in the context of large-

scale land cover classification and cross-sensor hyperspectral image classification. 

With regard to the Retro-remote sensing problem, we proposed a method composed of a text-encoding and 

image synthesis module. With the text-encoding block, we aim to convert text descriptions written in 

natural language to a vector that can be utilized by the image synthesis block. To this end, we presented 

two methods: a multi-label encoding scheme that only considers the presence or absence of objects and a 

doc2vec encoder that converts an input paragraph (composed of a single or multiple sentences) into a fixed-

length feature vector. The output of the text-encoder is then used as conditioning information to a GAN, 

which is tasked with converting it to an equivalent pixel data.  

Qualitative and quantitative analysis of the results obtained with the multi-label encoding scheme combined 

with the GAN shows that generated images have realistic textures observed in the training data. However, 

since the method does not consider additional information such as attributes of objects and the spatial 

relationship between them in the encoding process, the semantic agreement between the generated images 

and the text description is low. The images generated for a single description are very diverse with small 

or no semantic similarity. The doc2vec encoding scheme, on the other hand, solves this problem by 

encoding all the information available in an input description. This is observed in the visual qualitative 

assessment of the generated images where texture information that resembles the objects cited in the 

corresponding descriptions is seen. Moreover, the proposed method is also able to synthesize diverse 

semantically similar multiple images for a single description, which is also confirmed by the standard 

deviation values of the precision and recall results. This asserts the fact that text-to-image synthesis is multi-

modal in nature. Besides the improved semantic agreement, we have observed that the contrast of the 

generated images is better in comparison to the multi-label encoding scheme. These improvements are 

attributed to the improved conditioning scheme in the discriminator and the additional layer.  
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Domain adaptation (DA) is the other topic we attempted to address using different approaches. The main 

advantage is to train a classifier that performs well in the presence of a distribution shift between multiple 

domains. This helps to avoid/reduce the cost of labeling for a related problem. Accordingly, the first 

approach considered is to use a conditional version GANs for domain adaptation. In this setting, our goal 

is to transfer target domain data properties such as a spatial resolution to source domain images and use the 

adapted source domain images to train a classifier. After training, the classifier is applied to predict target 

labels. Besides reducing the cost of labeling, the result of DA with GANs is interpretable, and GANs enable 

sampling virtually unlimited target domain samples. Although we have not explored this avenue due to 

computational challenges, the results obtained show that the approach is promising. 

The second DA strategy we proposed is borrowing the adversarial idea of GANs to learn a new 

representation onto which the domain discrepancy between source and target domains is negligible. 

Contrary to most semi-supervised DA approaches where the domain invariant representation learning and 

classifier learning are separated, we combined the two stages in order to learn discriminative as well as 

domain invariant representation. First, we evaluated this approach in the context of large-scale land cover 

classification for both single and multi-target domain adaptation problems.  In both scenarios, the proposed 

method provides a significant improvement, with the exception of some experiments, in the overall 

accuracy compared to the lower bound. The exceptions indicate that the adaptation process is asymmetric. 

That is, if a specific source-target pair provides an improvement, the reverse (target-source) pair may not 

improve the accuracy. This indicates that the source domain has an impact on the adaptation process. In 

addition, multi-target domain adaptation experiments also show that with the increase in the number of 

target domains the suitability of the new mapping to all target domains decreases. 

Second, we replaced the domain classifier cost with a Wasserstein divergence measure and evaluated the 

efficacy of the model on two hyperspectral images acquired by different sensors. Besides the acquisition 

system, the data distribution is also affected by spatial and temporal differences between the source and 

target domains. Though this problem is very challenging, analysis of the results obtained on the two datasets 

show that the proposed method provided significant improvement in performance compared to the lower 

bound values.                          

5.2. Future work 

In this section, we point out open issues and future research directions for the problems addressed in this 

work. We split the section into future developments related to the Retro-remote sensing and domain 

adaptation problems. 

5.2.1 Retro-remote sensing 

To the best of our knowledge, the topic text-to-image synthesis has never been explored by the remote 

sensing community. Moreover, the topic of Retro-remote sensing is a new research field that bridges the 

natural language processing (NLP) and generative modeling research areas. As pioneers of this research 

field, we highlight several issues encountered in this work and future research directions to advance the 

field. 

A. Dataset 

The first issue we would like to highlight is the size of the dataset. In our work, the number of (image, text) 

pairs we used for training is very small. On the one hand, collecting a large dataset for this purpose is 

challenging because we are required to ensure the semantic agreement between a  description and the 

possible ground truth image. On the other hand, the number of parameters that need to be estimated in a 

GAN architecture is large and this requires having a large dataset. Thus, dataset collection has to be done 
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carefully, and creating a large dataset and making it publicly available will significantly improve the results 

and advance this research area. 

B. Improving the quality of generated images 

The other issue is improving the quality of the generated images. Although this is a general problem 

associated with GANs, current state-of-the art GAN methods have significantly improved the quality of 

generated images by incorporating auxiliary cost functions in the training process. That said, developing 

algorithms for an improved image quality synthesis is still an open area of research that is not only left to 

the computer vision community. Among the methods proposed, the training methodology in [118] can be 

useful in the context of this work. 

C. Generating high-resolution images 

In this work, we used images from MODIS satellite, which have relatively low resolutions as compared to 

the recent satellites such as GeoEye and WorldView. Although working with low spatial resolution images 

is advantageous to synthesize images that cover large spatial areas, details will be missing and especially 

synthesizing smaller objects will be difficult. On the other hand, when working with high-resolution 

images, synthesizing images that cover large areas will be difficult due to the current capacity of GANs. In 

the current state of the art, GANs are able to synthesize images up to a size of 1024 × 1024. For instance, 

if we have a text description that covers an area of roughly 5�� × 5��, it would be impossible to generate 

an equivalent image with a spatial resolution of 0.5� with a single GAN. One possible solution could be 

to generate small pieces and mosaic them. Another approach is first to generate a low-resolution equivalent 

image and then enhance the resolution.  In this scenario, we can use a single GAN approach, similar to the 

work in [31], or we can utilize a stack of GANs one for low-resolution image generation and another to 

enhance resolution. In general, this is also a possible area of research within the retro-remote sensing 

context. 

D. Color/multispectral image generation 

Synthesizing color/multispectral images is also another topic of research. In addition to synthesizing high-

resolution images, having color images provide more information and increase our ability to discriminate 

between different objects. However, this will require having a deeper and more complex network 

architecture which in turn requires more training examples. 

E. Text encoder 

In this thesis, we explored encoding schemes where one disregards high-level information such as the size 

of objects, number of objects, and the relative spatial position with each other and the other one encodes all 

such information properly. From the results, we saw that the second encoder combined with the GAN gives 

better results in terms of synthesizing semantically similar images. However, we believe that there is still 

room for improvement in this regard. For instance, we used a pre-trained encoder since we do not have a 

sufficient dataset. Training specific text-encoding models can benefit the system given that a sufficient 

dataset is available. In addition, exploring deep learning based NLP models and scene graphs for end-to-

end training is also an avenue worth exploring.  

F. Improving GAN outputs with user-interaction 

In their current form, GAN architectures do not have a mechanism to incorporate user feedback in the 

training process. This kind of information could be particularly useful for the problem this thesis attempted 

to address. For instance, user feedback can be used as an auxiliary loss for the generator to enhance the 

quality of images being generated or to adjust the spatial position of objects. 
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G. Image quality and semantic similarity measures 

Developing methods to quantify the quality of generated images and the semantic similarity with respect 

to the input description is also an open area of research. In the computer vision community, the Inception 

score [119] is a widely used quantitative metric to assess the quality of images generated by GANs. The 

main idea behind this measure is that to pass the generated images through the pre-trained Inception v3 

network [120], trained on the ImageNet, and calculate statistics of the output. However, the dataset onto 

which the network is trained has different properties than our dataset and it will be inappropriate to use this 

as a metric to our problem. Given that we collect sufficient training samples for the problem, we can 

implement a similar metric to asses the quality of the generated images. 

With regard to the semantic similarity measure, we would like to highlight that the mechanism we used 

does not explicitly quantify the semantic agreement between a synthesized image and the input description. 

Thus, this can also be considered as future work. One possible approach is to use an image captioning 

system to generate descriptions for the synthesized images and quantify its similarity with the ground truth. 

In addition, both image quality and semantic similarity measures can be incorporated in the training process 

to improve the result.   

5.2.2 Domain adaptation 

It is a known fact that training GANs is very challenging due to the computational resources and a large 

number of training samples required. Thus, we limited the GAN-based domain adaptation method to gray-

scale images of a single object. However, several works in the computer vision community have shown the 

potential of using GANs for domain adaptation. These methods mainly rely on large datasets and complex 

network architectures. In recent years, the remote sensing community has released several large datasets 

(for example BigEarthNet [121] and SEN12MS [122]) to the public. One can capitalize on these datasets 

to train a more complex GAN architecture with the goal of domain adaptation. 

With regards to the adversarial domain adaptation methods proposed, a possible extension is on 

incorporating target domain pseudo labels to improve the classification performance. Exploring other 

divergence measures for the domain classifier is also a research direction worth exploring.   
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