
On Distributed Sensor Fusion
in Batteryless Intermittent Networks

Kasım Sinan Yıldırım∗† and Przemysław Pawełczak†
∗Department of Computer Engineering, Ege University, Izmir, Turkey

†Embedded and Networked Systems, Delft University of Technology, Delft, The Netherlands
Email: ∗sinan.yildirim@ege.edu.tr, †p.pawelczak@tudelft.nl

Abstract—In this paper we provide our vision on distributed
network composed of backscatter (battery-less) tag-to-tag links.
We emphasize that current state-of-the-art literature is focused
on centralized computation considering only single-hop tag-to-
tag/reader-to-tag links. We observe that collaborative compu-
tation is has never been considered before in the battery-less
networking. This will bring many advantages for applications
(e.g. longer transmission ranges, lower network costs), however
introducing new research challenges to the battery-less compu-
tation field. To this end, we focus on the well-known distributed
sensor fusion problem but in an intermittently-powered sensor
network. We show that, even though the batteryless nodes ran-
domly die with a high probability and they neither communicate
with their neighboring nodes nor perform computation most of
the time, still the simplest implementation of the fully-distributed
sensor fusion based on average consensus improves the individual
estimations of the batteryless sensor nodes considerably. In the
light of this, we anticipate that if the power failure frequencies
of batteryless decreases—i.e. the energy is used more efficiently
so that they have more opportunity to receive and send packets;
sophisticated solutions to handle intermittent communication will
not be needed and existing fully-distributed protocols can also
be implemented with tiny modifications in intermittently-powered
batteryless networks.

Index Terms—Batteryless sensors, Intermittent communica-
tion, Distributed sensor fusion

I. INTRODUCTION

Recent advancements in micro-electronics enabled harvest-
ing circuits that can efficiently convert and store ambient
energy [1]. This led the emergence of batteryless sensor
nodes that can operate by relying on ambient energy sources
only [2], [3] and hold promise for replacing existing battery-
powered wireless sensor networks. A typical batteryless sensor
is composed of several ultra low-power electronic components:
an harvesting circuitry that targets ambient sources such as
solar or radio frequency waves, an energy reservoir—typically
a tiny capacitor, an ultra low-power microcontroller with an
integrated non-volatile memory; e.g. TI MSP430FRxx series
with FRAM [4], a communication circuitry such as a passive
backscatter radio [5] or and ultra low-power active radio [6],
and several low-power sensors. When the energy accumulated
in the capacitor is above a threshold, the microcontroller and
the peripherals start operating to sense the environment, com-
pute the perceived the and communicate with other batteryless
sensors. When the energy level drops below the minimum
operating voltage, this leads to a power failure and the
batteryless sensor dies. Therefore, batteryless sensors operate

intermittently due to the unpredictable ambient energy and
start operating again when there is enough energy accumulated
in their capacitors.

A power failure that resets the volatile state of the battery-
less sensor; e.g. the contents of its stack, program counter,
registers are lost. This prevents the progress of computa-
tion and makes existing programs and libraries designed for
continuously-powered useless under intermittent power. There
are several efforts that aim to mitigate the effects of power
failures to preserve the progress of computation [7]–[16].
Roughly speaking, these solutions present runtime libraries
that backup the volatile state of the processor into the non-
volatile memory so that the computation can be recovered
from where it left upon a power failure reboot. Moreover,
they also ensure that the backed-up state in the nonvolatile
memory is always consistent with the volatile state; i.e. they
are always equal. It has been shown that several prototype
sensing applications can be developed using these runtimes;
such as intermittent actuation and activity recognition [15],
and greenhouse monitoring [13].
Problem statement. The communication aspects during inter-
mittent operation on battery-less sensors are overlooked by the
researchers. In particular, collaborative and distributed com-
putation can be enabled via networks of battery-less sensors,
which require communication capabilities among them. Ex-
isting work enabled point-to-point zero-power communication
using backscatter, e.g. [5], [17]–[19]. However, these works
assumed that each batteryless node operates continuously.
Therefore, the effect of power failures and in turn intermittent
operation on distributed network protocols is overlooked by
the community.
Contributions. In this paper, we focus on the well-known
distributed sensor fusion problem in networks [34], [35], where
the goal is to estimate a parameter collaboratively by consider-
ing individual sensor measurements.. However, our focus is a
network of intermittently-powered batteryless sensors instead
of sensor networks that operate with batteries continuously in
the long as well as short term. Our contribution is to show the
performance of distributed sensor fusion on an intermittently-
powered sensor network via simulations that consider different
power failure probabilities. We observed that, even though
the nodes randomly die with a high probability and they
neither communicate with their neighboring nodes nor perform
computation most of the time, still the simplest and naive



implementation of the fully-distributed sensor fusion based
on average consensus improves the individual estimations
of the batteryless sensor nodes considerably. In the light of
this observation, we anticipate that by exploiting zero-power
communication capabilities; e.g. backscatter communication
techniques proposed in [5], [17]–[19], sophisticated solutions
to handle intermittent communication can be eliminated by us-
ing precious harvested energy effectively to decrease the power
failure frequencies of batteryless sensors; so that they have
more opportunity to receive and send packets. In other words,
we can still exploit the existing fully-distributed protocols
that target continuously-operating wireless sensor nodes and
apply them with tiny modifications to intermittently-powered
batteryless networks.

II. BATTERYLESS SENSING SYSTEMS: STATE OF THE ART

We classify the state of the art in battery-less sensing sys-
tems into two main categories: programming models that en-
able useful computation on battery-less devices and techniques
that enable zero-power communication to transfer information
with marginal energy consumption.

A. Batteryless Computation

Since the ambient energy is available intermittently, the en-
ergy storage of the battery-less device is depleted frequently—
leading to frequent power failures. Therefore, battery-less
platforms are by no means useful components of practical
sensing and actuation systems unless they satisfy two crucial
properties: (i) forward progress of computation and (ii) mem-
ory consistency of the applications despite frequent power fail-
ures. Prior works on battery-less computation target ensuring
these properties via architectural, compiler and programmer
support. There are two main techniques to ensure forward
progress and memory consistency: (i) checkpointing and (ii)
employing task-based programming models. These techniques
create idempotent code sections; i.e. sequence of instructions
that can be restarted arbitrarily under random power cycles.

Checkpointing-based systems [7], [8], [10] journal the pro-
cessor’s volatile state; i.e. registers, stack and heap, in non-
volatile memory at specific points in the program code anno-
tated at compile time by the programmer or/and the compiler.
Upon a system reset after a power failure, the computation
is progressed from the latest journaled volatile state for the
sake of memory consistency. Other systems [14], [26]–[28]
monitor the supply voltage at runtime to detect if the voltage
is under a pre-defined threshold in order to journal the volatile
state. Another system [11] uses an external hardware to
ensure memory consistency at run-time and uses a watchdog
timer to checkpoint periodically. In task-based systems [9],
[12], [13], the programmer decomposes a program into a
collection of tasks, provides inter-task input/output relations
and control flow at compile time. The runtime ensures atomic
execution of the tasks; i.e. all-or-nothing semantics so that
volatile and non-volatile memory is always consistent, and
switches to the next task in the control flow. The runtime
introduces less overhead as compared to checkpointing-based

systems since it journals only the current task pointer and the
inputs/outputs of the current task. Unfortunately, all of the
aforementioned studies overlook the communication aspects
during intermittent operation on battery-less devices.

B. Batteryless Communication

Distributed and collaborative computation requires com-
munication capabilities among the participants so that in-
formation can be exchanged. Backscatter enables ultra low-
power communication by eliminating energy-hungry hardware
component of the active radio and having notably several
orders of magnitude less energy requirements than their coun-
terparts [29]. Most of the backscatter networks, e.g. [30],
allow communication only between battery-less devices and
a dedicated master device. Recent studies addressed this issue
and enabled communication among battery-less devices [5],
[17]–[19]. In particular, [18], [19] demonstrated a multi-
hop backscatter network that can relay information from
one physical pount to another. Therefore, we are closer to
the fundamental infrastructure for the distributed/collaborative
computing: a network of battery-less devices communicating
with each other.

However, the effect of the intermittent operation during
communication is overlooked by the community. To some
extent, data reception and sending operations despite power
failures can be handled by using the aforementioned battery-
less computation techniques. However, in particular, how to
deal with the received data upon recovery from a power
failure is an unanswered question. Since almost all sensing
applications have temporal requirements, the data exchange
during is useful when these requirements are met. On con-
tinuous systems, managing the relationship between data and
time can be seen as straightforward. On the contrary, time
management in battery-less systems is not trivial [13], [31]
and explicit checks to consider packet/data expirations is not
feasible unless this management is provided.

C. Unified Batteryless Computation and Networking

Considering these fundamental drawbacks, we need to
change focus from the centralized computing with a single
battery-less entity to the autonomous distributed computa-
tion [24], where multiple battery-less tags collaborate in
order to reach a common goal, e.g. collaborative sensing,
computation and actuation. This fundamental paradigm shift
in the intermittently-powered computation domain will bring
the following advantages:
Fault tolerance. Tasks, e.g. identical computation blocks, can
be handled by multiple entities. Therefore power loss of a
single node may not block the computation, since remaining
nodes can substitute the failed node and producing the result
faster.
Increased service life-time. Since there are multiple entities
with different energy levels, the overhead of the computation
can be distributed among the tags with more energy, for the
sake of the network life-time increase.



Improved time-to-completion. Computationally heavy tasks,
such as Fast Fourier Transport, can be distributed among the
tags by splitting it into independent blocks. Therefore, parallel
execution of the fine grained independent tasks and collecting
back the results will improve the overall computation time.
Improved computation accuracy. The concepts of the ap-
proximate computing [25] are very relevant in the battery-less
computation domain. For instance, software-based techniques,
such as loop perforation, some iterations of the loop is skipped
to reduce computational overhead but decreasing its accuracy.
Distributing the computation among the tags will allow more
iterations, and in turn improved accuracy.
Improved sensing accuracy. individual samples from sensors
might include errors and the average of the individual sensed
values is more robust and trustable. Distributed averaging
algorithms and actuation based on the calculated average value
become more relevant.

III. PROTOCOL DESIGN CHALLENGES IN
INTERMITTENTLY-POWERED NETWORKING

In this section we provide an example master/slave dis-
tributed protocol for the computation of a workload to pro-
vide the challenges of implementing distributed protocols in
intermittently-powered networks. The objective the presented
protocol is to let many battery-less tags compute the same
task so that if one tag dies, others can be able to provide the
result—making computation resilient against power failures.

A. Device and Network Assumptions

We envision that a typical battery-less sensor network
comprises several tiny sensors equipped with basic hardware
components at a minimum for ultra-low power operation. A
backscatter transceiver is required for performing communica-
tion without using any power-hungry electronic components.
An energy harvesting module transforms ambient energy of
radio frequency waves or solar into DC and accumulates it
into an energy storage such as a capacitor. A micro-controller
(MCU) with persistent memory, e.g. FRAM, performs com-
putation and control operations relying on only the harvested
energy. The backscatter transceiver is connected to one of the
ports of the MCU, toggling the port to deliver received bits.
The MCU is assumed to have several low-power operation
modes including a sleep mode that consumes marginal current.
The MCU can enable/disable the backscatter transceiver by
using its another port that powers the backscatter receiver.
An external timekeeper with its own dedicated energy store,
e.g. [31] is kept alive unless the power-failure is too long—
providing a continuous time notion to some extent. An unified
battery-less sensor architecture for rapid prototyping battery-
less applications is given in [3].

B. An Example Distribute-Collect Protocol

We consider a network composed of a master battery-less
node that sends the same piece of information to the selected
nodes in the network. The receiver nodes collect information,

Algorithm 1 The pseudo-code for the master tag
1: while hasTask do
2: w ← GETNEXTTASK
3: Send < REQUEST, w > to all tags
4: Receive < ACK, energy > from free tags
5: Rank tags according to energy levels
6: Send COMPUTE the first N tags
7: Collect < RESULT, r > and CHECKPOINT
8: end while

Algorithm 2 The pseudo-code for the receiver tags
1: � Receive < REQUEST, w >
2: Store w
3: Send < ACK, energy >
4:
5: � Receive COMPUTE
6: Process w and compute r
7: Send < RESULT, r >

perform the computation and send back the results to the
master node.

The pseudo-code of the distributed-collect protocol for the
master node is presented in Algorithm 1. Assume that a
master tag has workload denoted by the set of tasks W =
{t1, . . . , tK}. At the beginning of each iteration, the master
node picks the next task from this set (Line 2). Then, a
computation request is send together with the picked task
to the all tags (Line 3) and acknowledgments from the tags
are collected (Line 4). The acknowledgments also carry the
energy levels of the receiver nodes. The master node ranks
the tags according to their energy levels (Line 5) and sends
the computation request to N tags that have the highest energy
level (Line 6). After the completion of each task, the results
are collected is check-pointed so that a after power interrupt
the progress will be from the point of failure (Line 7).

The pseudo-code of the distributed-collect protocol for the
receiver nodes is presented in Algorithm 2. Upon a request
is received from the master tag (Line 1), the received task
is stored in non-volatile memory (Line 2) and and the ac-
knowledgment is sent together with the measured energy level
(Line 3). Upon a computation request is received (Line 5),
the previously-received task w is processed and the result is
computed (Line 6). Finally, the result is sent to the master tag
(Line 7).

C. Challenges During Intermittent Communication

Algorithm 1 and Algorithm 2 can be interrupted by a
power loss at any time—in particular during Send and Receive
operations. We will stress how the power interrupts make the
design of the distributed protocols more complex. If the master
node is interrupted, the iteration is restarted since each at
the end of each iteration a checkpoint is performed (Algo-
rithm 1,Line 7). However, the algorithm might be interrupted
just before the checkpoint. Consider the case that the master
node has already sent requests, received acknowledgments and



started to collect the results. It might be the case that some
nodes has already sent their results and there is no need to
execute the same iteration. Another case is that, the master
node can be interrupted just after it sent compute requests (at
Algorithm 1,Line 6). It might be the case that after recovery
from the power loss, different set of receiver nodes might be
selected for the computation. However, the results from the
previous set of nodes can be received by the master node.
To sum up, power failures during communication introduces
several cases that should be considered during the design of the
protocols—complicating the design and the implementation.

IV. FULLY-DISTRIBUTED SENSOR FUSION IN
BATTERYLESS SENSOR NETWORKS

In this section, we consider the sensor fusion problem in
a network of intermittently-powered and distributed sensor
nodes. On the contrary to the previous section, we will con-
sider a fully-distributed protocol implementation; rather than
a master/slave approach. We will show that fully-distributed
protocol requires a tiny modification to its original imple-
mentation in wireless sensor networks and it is robust against
power failures.

A. Network Model

The network of batteryless sensor nodes is represented
by an undirected graph G(E ,V) where the vertex set V =
{1, . . . , N} includes the batteryless sensor nodes and the edge
set E includes {i, j} pairs such that batteryless sensor i can
communicate with the batteryless sensor j; and the other way
around. Since each batteryless sensor i ∈ V = {1, . . . , N} is
intermittently-powered and dies/reboots due to power failures,
the communication graph G is not static and time-varying.
Therefore, we denote the communication graph at time t by
G(t) = (E(t), V ) such that E(t) includes the edges among
the batteryless sensor nodes that can communicate with each
other.

B. Sensor Fusion Background

We first give the fundamental background to perform sensor
fusion in a distributed way by summarizing the studies [34],
[35]. We assume that a network of batteryless sensor nodes
is deployed to estimate an unknown parameter θ ∈ Rm; e.g.
the location of a moving object [34]. Each batteryless sensor
i ∈ V accumulates the sensed values b̂i ∈ Rk; i.e. the RSSI
values, to estimate the parameters θ; e.g. the 3 dimensional
axis coordinates of the object. Each sensed value in b̂i is
subject to a measurement error with zero mean. The errors
are denoted by the vector vi and are assumed to be Gaussian:

b̂i = bi + vi, E[vi] = 0, E[vivTi ] = Vi (1)

where Vi ∈ Rk×k represents the covariance matrix.
Each batteryless sensor has a matrix denoted by Ai ∈ Rk×m

that relates the unknown parameter vector θ to the measured
values bi. Therefore, for a single batteryless node i the relation

between the sensed values and the estimated parameters can
be written as:

Aiθ = bi. (2)

However, since the batteryless sensor cannot access bi and it
can only obtain a noisy measurement b̂i, it can only establish
the following relationship:

Aiθ = b̂i. (3)

In order to estimate θ, the batteryless sensor i can use
the weighted least-squares which represents the maximum
likelihood estimate for θ, given by [35], [36]:

θ̂iML = (AT
i V
−1
i Ai)

−1AT
i V
−1
i b̂i. (4)

By using matrix notation, the aggregate measurements of
all sensors can be denoted by

Aθ = b̂ (5)

where

b̂ =

 b̂1...
b̂N

 , A =

A1

...
AN

 , V =

V1 . . .
VN

 (6)

Considering the aggregated measurements, the maximum-
likelihood estimate of θ is given by:

θ̂ML = (ATV−1A)−1ATV−1b̂. (7)

Using the matrices, the network-wide maximum-likelihood
equation can be written as:

θ̂ML =

(∑
i

AT
i V
−1
i Ai

)−1∑
i

AT
i V
−1
i b̂i. (8)

C. Distributed Average Consensus

In general, if we denote the initial state of the batteryless
sensor i by xi(0) = yi and denote the set of its neighbors
at time t by Ni(t), the average consensus algorithm can be
defined as:

xi(t+ 1) =Wii(t)xi(t) +
∑

j∈Ni(t)

Wij(t)xj(t) (9)

where

Wij(t) =


1
N if {i, j} ∈ Ni(t)

1− di(t)
N if i = j

0 otherwise
. (10)

Here, di(t) denotes the degree of node i at time t. As
can be observed, the communication graph is time-varying—
represents the intermittently-powered batteryless sensors since
they are dying and waking-up due to the depleted energy in
their capacitors. It is proven in [34] that if the time-varying
communication graphs are jointly connected in a long run,
the average consensus will be reached; i.e.:

lim
t→∞

x(t) =

(
1

N
1Tx(0)

)
1 (11)



where x(0) =
[
x1(0), . . . , xN (0)

]T
. By jointly connected, it

is meant that the union of the set of graphs G(0), . . . ,G(∞)
is a connected graph.

D. Distributed Sensor Fusion

In order to calculate Eq. (8) in the distributed setting, an
average consensus algorithm is proposed in [34]. As can be
observed, the Eq. (8) is composed of two sums. Let us denote
these sums by using the following vectors:

Yi(0) = AT
i V
−1
i Ai (12)

zi(0) = AT
i V
−1
i b̂i (13)

If each batteryless sensor implements the distributed average
consensus algorithm Eq. (9) in parallel:

Yi(t+ 1) =Wii(t)Yi(t) +
∑

j∈Ni(t)

Wij(t)Yj(t),

zi(t+ 1) =Wii(t)zi(t) +
∑

j∈Ni(t)

Wij(t)zj(t) (14)

then the asymptotic convergence will hold if the commu-
nication graphs that occur infinitely often are jointly con-
nected [34]:

lim
t→∞

Yi(t) = 1/n
∑
i

AT
i V
−1
i Ai, (15)

lim
t→∞

zi(t) = 1/n
∑
i

AT
i V
−1
i b̂i. (16)

As a consequence, each node can obtain the maximum-
likelihood estimate of θ̂ML via:

θ̂iML = lim
t→∞

Yi(t)
−1zi(t) = θ̂ML. (17)

Algorithm 3 The pseudo-code for the batteryless node i
Variables:
< Yi, zi > is kept in non-volatile memory

1: � Reboot
2: Set a periodic timer
3:
4: � Reception of < Yj , zj > from j ∈ Ni

5: Store < Yj , zj > in non-volatile memory
6:
7: � Timer Fired
8: Update Yi and zi via Eq. (14) using stored values
9: Broadcast < Yi, zi >

E. The Distributed Sensor Fusion Algorithm for a Single Node

The algorithm that should be executed by a single battery-
less node is depicted in Algorithm 3. In order to implement
the algorithm depicted in Eq. (14), there are several crucial
points to consider. First, the matrices Yi(t) and zi(t) should
be saved in non-volatile memory so that the batteryless sensor
does not loose its state upon power failures. Second, after a

TABLE I
PARAMETERS USED IN MATLAB SIMULATIONS

N α m k iterations

256 [0 0.5 0.7 0.9] 5 10 8 300

power failure and the node starts operating again, a periodic
timer should be set to trigger transmission of these matrices
to the neighboring nodes (Lines 1–2). Upon receiving Yj(t)
and zj(t) from Ni(t), these values should also be accumulated
in a buffer so that the batteryless node considers them when
updating its matrices Yi(t) and zi(t). It should be noted that
these values should also be kept in non-volatile memory so
that they are not lost upon a power failure and they will be
considered in Eq. (14). Last, when the timer fires, matrices
Yi(t) and zi(t) is updated and these updated values; the
state of node i, is sent to the neighboring nodes. It is worth
mentioning that task-based programming models; e.g. [15] or
existing checkpoint-based systems; e.g. [16], can be exploited
to ensure memory consistency during Lines 4–5 and Line 8
of Algorithm 3.

V. NUMERICAL SIMULATIONS

In MATLAB, we generated a line topology and a grid
topology networks of N nodes. In order to simulate the
intermittent execution of the batteryless sensors, we randomly
selected the nodes that are operating at each round of the
consensus algorithm—we generated random numbers from a
uniform distribution and deleted the node if the generated
random number is smaller than a predefined failure probability
α. Therefore, at each round of the consensus, we assumed that
each node is alive with a probability 1− α during the whole
consensus round. This randomization is quite reasonable since
batteryless sensors are deployed on the same geographical area
and it is assumed that they have more or less the same energy
harvesting patterns.

The parameter values we used during our simulations are
depicted in Table I. In our simulations, we did not consider
packet losss during communication. We assumed that nodes
implement a Carrier Sense Multiple Access (CSMA) protocol
to prevent interference and packet collisions. Therefore, the
nodes that are alive during one consensus round successfully
communicate with their neighboring nodes; i.e. each node
sends its state and receives the states of its alive neighbors.
From Fig. 1, it is obvious that the convergence on the grid
topology is faster and the steady-state error at any time instant
is smaller [34], [35]—this is due to the fact that each node has
4 neighbors in the grid whereas it is only 2 on the line.

When the failure probabilities are considered; even with
greater α values the convergence is established but slowly:
even a failure probability of 70% (when α = 0.7) leads
to the convergence so that batteryless sensors estimate the
parameter θ collaboratively. This is an interesting result that
indicates even though the nodes are operating intermittently,
if almost 30% of the nodes are available during a time
span that allows them to send and receive data, the sensor



0 50 100 150 200 250 300

Iteration

1

2

3

4

5

6

7

8

9
E

s
ti
m

a
ti
o

n
 E

rr
o

r
:0

:0.5

:0.7

:0.9

0 50 100 150 200 250 300

Iteration

1

2

3

4

5

6

7

8

9

E
s
ti
m

a
ti
o

n
 E

rr
o

r

:0

:0.5

:0.7

:0.9

Fig. 1. The maximum error on line (left) and grid (right) topologies with different α values. The estimation error at each iteration is defined as max{‖θ̂iML−
θ‖ − ‖θ̂ML − θ‖}.

fusion can be implemented successfully. In other words, the
batteryless network can collaboratively improve the estimation
of each single batteryless node by implementing the existing
distributed sensor fusion algorithm with tiny modifications.
This means that, if the availability of the batteryless sensors
is increased; i.e. their energy is consumed efficiently to allow
them communicate and send data more frequently and in a
robust way, the existing fully-distributed protocols designed
for continuously-powered wireless sensor networks can still
be used in intermittently-powered networks. Our conclusion
is that, fully-distributed protocols are robust against power
failures and they are more suitable for intermittently-powered
sensing systems.

VI. CONCLUSIONS

This short paper shed a light on a new, never before
considered concept of collaborative computation with the
battery-less networks. We focused on the fully-distributed
sensor fusion problem and we showed that the simplest and
naive implementation of the fully-distributed sensor fusion
still improves the individual estimations of the batteryless
sensor nodes considerably. In the light of this, we anticipate
that if the energy is used more efficiently so that batteryless
sensors have more opportunity to receive and send packets,
sophisticated implementations of the distributed networking
protocols will not be needed and existing fully-distributed
protocols can also be implemented with tiny modifications in
intermittently-powered batteryless networks. Future work in
this domain should address: (i) more efficient battery-less tag-
to-tag network hardware implementation and demonstration,
(ii) the design and implementation of other fully-distributed
protocols for the network of battery-less tags, and (iii) new
applications exploiting distributed, battery-less computation.

REFERENCES

[1] U. Muncuk, K. Alemdar, J. D. Sarode, and K. R. Chowdhury, “Multi-
band ambient rf energy harvesting circuit design for enabling batteryless
sensors and iot,” IEEE Internet of Things Journal, vol. 5, no. 4, pp.
2700–2714, 2018.

[2] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and
J. R. Smith, “Design of an rfid-based battery-free programmable sensing
platform,” IEEE transactions on instrumentation and measurement,
vol. 57, no. 11, pp. 2608–2615, 2008.

[3] J. Hester and J. Sorber, “Flicker: Rapid prototyping for the batteryless
internet-of-things,” in Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems. ACM, 2017, p. 19.

[4] Texas Instruments, “MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx Family User’s Guide,”
SLAU367O, 2014.

[5] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,
“Ambient backscatter: wireless communication out of thin air,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 39–50.

[6] Texas Instruments, “CC1101 low-power sub-1 GHz RF transceiver,”
SWRS061, 2017.

[7] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for
long-running computation on rfid-scale devices,” Acm Sigplan Notices,
vol. 47, no. 4, pp. 159–170, 2012.

[8] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” ACM SIGPLAN Notices, vol. 50, no. 6,
pp. 575–585, 2015.

[9] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable inter-
mittent programs,” in Proc. OOPSLA. Amsterdam, Netherlands: ACM,
Oct. 30 – Nov. 4, 2016, pp. 514–530.

[10] J. Van Der Woude and M. Hicks, “Intermittent computation without
hardware support or programmer intervention,” in Proc. OSDI. Savan-
nah, GA, USA: ACM, Nov. 2–4, 2016, pp. 17–32.

[11] M. Hicks, “Clank: Architectural support for intermittent computation,”
in 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2017, pp. 228–240.

[12] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent execution with-
out checkpoints,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, p. 96, 2017.

[13] J. Hester, K. Storer, and J. Sorber, “Timely execution on intermittently
powered batteryless sensors,” in Proceedings of the 15th ACM Confer-
ence on Embedded Network Sensor Systems. ACM, 2017, p. 17.

[14] N. Bhatti and L. Mottola, “HarvOS: Efficient code instrumentation for
transiently-powered embedded devices,” in Proc. IPSN. Pittsburgh, PA,
USA: ACM/IEEE, Apr. 18–21, 2017.

[15] K. S. Yıldırım, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak,
and J. Hester, “Ink: Reactive kernel for tiny batteryless sensors,” in
Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2018, pp. 41–53.

[16] K. Maeng and B. Lucia, “Adaptive dynamic checkpointing for safe
efficient intermittent computing,” in 13th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 18), 2018, pp.
129–144.

[17] J. Ryoo, J. Jian, A. Athalye, S. R. Das, and M. Stanaćević, “Design and
evaluation of bttn: A backscattering tag-to-tag network,” IEEE Internet
of Things Journal, 2018.



[18] J. Ryoo, Y. Karimi, A. Athalye, M. Stanaćević, S. R. Das, and P. Djurić,
“Barnet: Towards activity recognition using passive backscattering tag-
to-tag network,” in Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services. ACM, 2018,
pp. 414–427.

[19] A. Y. Majid, M. Jansen, G. O. Delgado, K. S. Yıldırım, and
P. Pawełczak, “Multi-hop backscatter tag-to-tag networks,” arXiv
preprint arXiv:1901.10274, 2019.

[20] H. Gao, M. K. Matters-Kammerer, P. Harpe, D. Milosevic, A. van
Roermund, J.-P. Linnartz, and P. G. Baltus, “A 60-GHz energy harvesting
module with on-chip antenna and switch for co-integration with ULP
radios in 65-nm CMOS with fully wireless mm-wave power transfer
measurement,” in Proc. ISCAS. Melbourne, Australia: IEEE, Jun. 1–5,
2014, pp. 1640–1643.

[21] R. V. Prasad, S. Devasenapathy, V. S. Rao, and J. Vazifehdan, “Reincar-
nation in the ambiance: Devices and networks with energy harvesting,”
vol. 11, no. 1, pp. 195–213, First Quarter 2014.

[22] J. R. Smith, Wirelessly Powered Sensor Networks and Computational
RFID. New York, NY, USA: Springer Verlag, 2013.

[23] S. Gollakota, M. Reynolds, J. Smith, and D. Wetherall, “The emergence
of RF-powered computing,” Computer, vol. 47, no. 1, pp. 32–39, Jan.
2014.

[24] D. Peleg, Distributed computing: a locality-sensitive approach. SIAM,
2000.

[25] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[26] H. Jayakumar, A. Raha, W. S. Lee, and V. Raghunathan, “Quickrecall:
A HW/SW approach for computing across power cycles in transiently
powered computers,” ACM J. Emerg. Technol. Comput. Syst., vol. 12,
no. 1, pp. 8:1–8:19, Jul. 2015.

[27] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining computation during
intermittent supply for energy-harvesting systems,” vol. 7, no. 1, pp.
15–18, Mar. 2015.

[28] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: a self-calibrating
and adaptive system for transiently-powered embedded devices,” vol. 35,
no. 12, pp. 1968–1980, 2016.

[29] P. Zhang, M. Rostami, P. Hu, and D. Ganesan, “Enabling practical
backscatter communication for on-body sensors,” in Proceedings of the
2016 ACM SIGCOMM Conference. ACM, 2016, pp. 370–383.

[30] P. N. Alevizos, K. Tountas, and A. Bletsas, “Multistatic scatter radio
sensor networks for extended coverage,” IEEE Transactions on Wireless
Communications, 2018.

[31] J. Hester, N. Tobias, A. Rahmati, L. Sitanayah, D. Holcomb, K. Fu,
W. P. Burleson, and J. Sorber, “Persistent clocks for batteryless sensing
devices,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 15, no. 4, p. 77, 2016.

[32] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,
“Ambient backscatter: Wireless communication out of thin air,” in Proc.
SIGCOMM. Hong Kong, China: ACM, Aug. 12–16, 2013.

[33] K. S. Yıldırım, H. Aantjes, A. Y. Majid, and P. Pawełczak, “On the
synchronization of intermittently powered wireless embedded systems,”
arXiv preprint arXiv:1606.01719, 2016.

[34] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005. IEEE,
2005, pp. 63–70.

[35] F. Bullo, Lectures on Network Systems, 1st ed. CreateSpace, 2018,
with contributions by J. Cortes, F. Dorfler, and S. Martinez. [Online].
Available: http://motion.me.ucsb.edu/book-lns

[36] G. Strang, Introduction to Linear Algebra.
Wellesley-Cambridge Press, 2016. [Online]. Available:
https://books.google.com.tr/books?id=efbxjwEACAAJ


