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Recently, two independent experiments reported the observation of long-lived polarons in a Bose-Einstein
condensate, providing an excellent setting to study the generic scenario of a mobile impurity interacting
with a quantum reservoir. Here we expand the experimental analysis by disentangling the effects of trap
inhomogeneities and the many-body continuum in one of these experiments. This makes it possible to extract
the energy of the polaron at a well-defined density as a function of the interaction strength. Comparisons with
quantum Monte Carlo as well as diagrammatic calculations show good agreement, and provide a more detailed
picture of the polaron properties at stronger interactions than previously possible. Moreover, we develop a
semiclassical theory for the motional dynamics and three-body loss of the polarons, which partly explains a
previously unresolved discrepancy between theory and experimental observations for repulsive interactions.
Finally, we utilize quantum Monte Carlo calculations to demonstrate that the findings reported in the two
experiments are consistent with each other.
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I. INTRODUCTION

Mobile impurities immersed in a quantum many-body
environment can lead to the formation of quasiparticles. A
paradigmatic example is an electron coupled to the lattice
vibrations in a surrounding dielectric, which leads to the
formation of a polaron [1]. Polarons are central for under-
standing colossal magnetoresistance materials [2], semicon-
ductors [3], and have been hypothesized to be important in
high-Tc superconductors [4]. The concept of impurity particles
interacting with a surrounding medium also extends into other
branches of physics, ranging from the standard model [5] to
atmospheric physics [6].

Progress in the field of ultracold quantum gases has al-
lowed the study of polaron physics with unprecedented con-
trol and in novel regimes. This includes the recent series of
experiments with impurities in ultracold Fermi gases, which
allowed detailed studies of a quasiparticle coined the Fermi
polaron [7–11]. As a result, we now have a good understand-
ing of the Fermi polaron even for strong interactions [12].
These pioneering experiments have in turn triggered studies of
Rydberg impurities [13,14], and renewed interest in impurity
physics in solid-state systems [15].

Recently, the Bose polaron, i.e., a quasiparticle formed by a
mobile impurity interacting with a surrounding Bose-Einstein
condensate (BEC), was observed in two parallel experiments,
at Aarhus University [16] and JILA [17], using different
physical systems and techniques. Such Bose polarons bear
stronger analogies to the generic solid-state impurity problem,
since the surrounding media of both systems are bosonic, and
their low-energy dispersion relations are linear. In contrast to
the Fermi polaron, the BEC does not suppress interactions
beyond the two-body regime, which gives rise to a broad spec-
trum of interesting phenomena but also renders the theoretical
description challenging.

The Bose polaron has been studied theoretically using a
wide range of methods, ranging from the so-called Fröhlich-
Bogoliubov Hamiltonian, which is valid for weak interactions
[18–21], mean-field and variational calculations [22–30], field
theory [31–33], the virial expansion [34], and Monte Carlo
calculations [35–37]. Furthermore, Bose polarons with long-
range interactions have been considered in dipolar BECs
[38,39]. This intense activity has improved our understanding
of the Bose polaron significantly, but questions regarding its
properties for strong interactions remain open.

In this work we refine the analysis of the recent ex-
perimental results at Aarhus University [16] to obtain the
polaron energy Ep at a well-defined density across resonant
interactions which is shown in Fig. 1 as a function of the
inverse interaction strength. The energy is extracted from the
experimental data by using a physically motivated line shape
function including the many-body continuum and trap effects.
This advanced analysis is the main result of our paper and
provides a more detailed characterization of the Bose polaron
compared to previously reported results [16,17]. The energies
are compared to exact quantum Monte Carlo (QMC) and
diagrammatic calculations.

We furthermore develop a semiclassical theory for the
dynamics and decay of the polaron. This is used to shed
light on a previously unresolved discrepancy between theory
and experimental data for the polaron energy at repulsive
interactions. Finally, our QMC calculations are shown to also
reproduce the results of the JILA experiment [17], which
demonstrates the consistency of the two experiments that
have been performed under quite distinct conditions, i.e., at
different gas parameters of the BEC, for different atomic
species, and using different detection methods.

The paper is organized as follows. We first present the
analysis of the attractive polaron data in Sec. II. Then we move

2469-9926/2019/99(6)/063607(8) 063607-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.063607&domain=pdf&date_stamp=2019-06-13
https://doi.org/10.1103/PhysRevA.99.063607


L. A. PEÑA ARDILA et al. PHYSICAL REVIEW A 99, 063607 (2019)

FIG. 1. Bose polaron energy Ep as a function of inverse in-
teraction strength (blue circles), obtained from a refined analysis
of experimental data from Ref. [16], compared to quantum Monte
Carlo calculations (orange diamonds) and diagrammatic calculations
(green dashed line). Additionally, the molecular energy (magenta
dotted) is shown and the location of resonant interactions is indicated
(vertical gray line).

on to discuss the repulsive branch in Sec. III, and introduce
several effects which account for the observed discrepancy
between experiment and theory. In Sec. IV we perform a
comparison with the observations presented in Ref. [17].
Finally, in Sec. V we briefly review the theoretical methods
used, and draw conclusions in Sec. VI.

II. ATTRACTIVE POLARON BRANCH ANALYSIS

The energy of the attractive Bose polaron is not directly
accessible from spectroscopic data due to the inhomogeneity
of the trapped atomic cloud and the presence of a many-
body continuum of states. Thus detailed knowledge of the
line shape function is necessary to gain access to the po-
laron energy. In the following, such a line shape function
is developed based on the relevant physical effects. We use
the momentum scale kn = (6π2npeak)1/3, energy scale En =
h̄2k2

n/2mB, and interaction scale kna, where npeak is the density
of the condensate at the center of the trap, mB is the mass of
BEC bosons, and a is the impurity-boson scattering length.

Briefly, the spectroscopic investigation of the Bose polaron
was performed as follows in the Aarhus experiment. Radio-
frequency (rf) spectroscopy was performed on 39K impurity
atoms in a 39K BEC of npeak = 4.0 × 1014 cm−3 with a boson-
boson scattering length between the atoms in the BEC on
the order of aB ≈ 9a0, where a0 is the Bohr radius. If the
polaron state is well defined, impurities are generated by
transfer of BEC atoms into the impurity state when the rf
pulse of frequency ωrf fulfills Ep = h̄(ω0 − ωrf ), where ω0 is
the bare transition frequency. After the rf pulse, the atoms
were released and observed after time-of-flight expansion.
Due to three-body recombination between an impurity atom
and two medium atoms, the impurity itself is lost and the
relative fraction of lost atoms was therefore employed as a
spectroscopic signal.

For strong interactions, the spectral response contains a
broad continuum originating from excited many-body states.
Moreover, the experiment was performed in a harmonic trap

such that the BEC had an inhomogeneous density distribution.
The observed signal therefore contained contributions from
polarons created across a distribution of densities, which
resulted in a broad impurity spectrum, even when the many-
body continuum was negligible. This was accounted for by
comparing with theoretical calculations, which took the inho-
mogeneous BEC and the many-body continuum into account.
Good agreement for the average energy of the impurity was
obtained between experiment and theories, which assumed an
infinite polaron lifetime [16]. Thus, long lived polarons were
observed.

To extract the polaron energy at a fixed density directly
we construct a model for the line shape of the impurity
spectrum, which contains the polaron energy Ep at the peak
density of the condensate as a fitting parameter. Three relevant
effects are included in the model. First, the spectral signal
contains contributions from impurities created at densities
ranging from zero at the edge of the condensate to npeak at
the condensate center. Second, the spectral weight is extended
towards higher energies due to the many-body continuum.
Third, the finite duration of the rf pulse provides a Fourier
limited energy resolution.

The model is based on the distribution of the BEC density
n in the Thomas-Fermi limit

fn(n) = 4πRxRyRz
n

npeak

√
1 − n

npeak
, (1)

where Ri are the Thomas-Fermi radii of the condensate in
direction i = x, y, z. This expression is shown in Fig. 2(a)
and provides the number of atoms fn(n)dn located within a
density range from n to n + dn. Since the mean-field energy
of the polaron, EMF = 2π h̄2na/mr with mr = mBm/(mB + m)
and m the impurity mass, is proportional to the BEC density,
it also gives the energy distribution of polarons in the weak
coupling limit.

For stronger interactions, the polaron energy deviates from
the mean-field value EMF. Inspired by the weak coupling
result Eq. (1), we use the empirical expression

s(Erf ) = A
Erf

Ep

√
1 − Erf

Ep
(2)

to describe the spectral line shape due to the inhomogeneous
density distribution, where Erf = h̄(ω0 − ωrf ) is the detuning
from the atomic transition frequency, and EP is a fitting
parameter providing the polaron energy in the center of the
trap. The fitting parameter A accounts for the overall signal
amplitude. Note that a similar expression was used to describe
a spectrum associated with the Rydberg polaron [14,40].

We furthermore account for the spectral weight at higher
energies due to excited many-body states, referred to as the
many-body continuum. As shown schematically in Fig. 2(b),
an impurity has a certain fraction Z of its spectral weight
located at the polaron energy, and the remaining weight
1 − Z located in the many-body continuum, where Z is
the quasiparticle residue. Since Z depends on the density
of the BEC, it changes throughout the trap: Near the
edge of the condensate where interactions are weak Z is
approximately 1, and it decreases with increasing interaction
strength towards the center where it reaches 0 < Zpeak < 1.
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FIG. 2. Fitting procedure to obtain the attractive polaron energy
at the peak density from the spectroscopic signal of an impurity in
a harmonically trapped BEC. (a) Density distribution of the BEC in
the Thomas-Fermi limit. (b) Spectroscopic response of the impurity
at a given density. The signal consists of a delta function and a
tail towards higher-lying energies. (c) The inhomogeneous BEC
distribution and the signal from the impurity at a well-defined density
is combined to create a line shape function. The green dash-dotted
curve is the signal without the influence of the many-body contin-
uum, and the purple curves correspond to the contributions from
impurities at selected densities. Note that the many-body continuum
is included, but hardly visible. The sum of contributions at all
densities provides the orange dashed curve. The solid blue curve
is obtained by convolution with a Gaussian corresponding to the
influence of a finite rf pulse. (d) and (e) The fit is applied to the
experimental data of Ref. [16] to obtain the polaron energy (arrows)
at the given interaction strengths. Note that both the attractive and
the repulsive branch can be observed in (e). The repulsive branch is
neglected in the fit.

In the perturbative regime, this dependence is given by
Z−1 = 1 + Ba2/aBξ where B is a constant depending on the
mass ratio m/mB and ξ = 1/

√
8πnaB is the healing length

of the BEC [32]. Since ξ−1 ∝ √
EMF for weak coupling,

we empirically include the effects of a density dependent
quasiparticle residue using

Z (Erf )
−1 = 1 + (

Z−1
peak − 1

)√
Erf/EP. (3)

To model the spectral shape of the many-body continuum,
we use a relation between the high frequency behavior of the
impurity spectral function and the contact in the BEC [41].
For large energies, the spectral function is proportional to
[(h̄/mBa2 + ω)ω3/2]−1, where h̄ω is the energy relative to the
local polaron energy [41,42]. Since this power law only holds
for high energies, it is necessary to introduce a function mod-
eling the low energy behavior of the many-body continuum.

Below a certain energy η relative to the local polaron energy,
we model the spectral response of the many-body continuum
by an exponential k2 exp(−Erf/k1). The parameters k1 and
k2 are determined by matching the height and slope of the
exponential at η to the power-law continuum. In Fig. 2(b) our
assumption for the spectral response of an impurity at a given
density is shown, including the many-body continuum. The
amplitude of the full continuum is adjusted compared to the
polaron peak such that its relative spectral weight is 1 − Z .
The choice of η then influences how the spectral weight is
distributed within the many-body continuum, but as we shall
see below, this has little effect on the obtained value for the
polaron energy.

In Fig. 2(c) we show how the density distribution and the
many-body continuum are combined to construct a line shape
for the harmonically trapped system. The starting point is
Eq. (2) given by the dash-dotted green curve, which corre-
sponds to the signal, if the quasiparticle residue Z is unity
for all densities. It yields a signal that extends from zero to
the polaron energy in the center. Now, every infinitesimal part
of this signal corresponds to a different medium density and
thereby a different Z . This is indicated in Fig. 2(c) by the sharp
peaks, each corresponding to a contribution from a local den-
sity. The height of the peaks match the green line near Erf = 0,
whereas they are smaller for lower energies. This reflects that
the residue decreases with increasing density. The spectral
signal from each density including the many-body continuum
is summed to provide the full line shape function indicated
by the orange dashed line in Fig. 2(c). This shows that the
inclusion of the many-body continuum and a Z < 1 results in
a signal tail at high energies as well as a modified line shape
compared to the one provided by Eq. (2). Finally, the blue line
gives the spectral shape after it is convoluted with a Gaussian
of fixed width to account for the finite length of the rf pulse.

The final line shape function thus contains fitting parame-
ters Ep, Zpeak, and A. To determine η, we fit our spectral shape
to the theoretical spectrum of the attractive branch provided
in Ref. [16], where the spectral response of the impurity in
the harmonically trapped BEC is modeled using a variational
method, using various trial values of η. It turns out that the
choice of η has little influence on the obtained Ep, whereas
Zpeak varies with η. The final value of η is determined so that
the fitted Zpeak at weak interactions matches the perturbative
result [32]. The fit successfully replicates the theoretical line
shape and provides values of Ep and Zpeak at weak and
intermediate interactions. At strong interactions, the fitting
procedure fails to capture the theoretical line shape perfectly,
but still provides an accurate measure of Ep. Note that the
lower edge of the attractive branch polaron spectrum should
always correspond to the polaron ground state at the peak
density of the condensate, which implies that to obtain Ep the
primary task is to locate this edge, which the fit does well.

We apply the fitting model to the experimental data for the
attractive branch of Ref. [16]. The spectral shape is shown
for two different interaction strengths in Figs. 2(d) and 2(e).
In the fit, the repulsive branch is neglected by excluding data
with positive energy at repulsive interactions 1/kna > 0. As
shown, the fit captures the experimentally observed line shape
for negative energies, and the energy of a polaron located in
the trap center is thereby successfully obtained.
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In Fig. 1 we show the polaron energy obtained by applying
our fitting procedure to the experimental data for the attractive
branch of Ref. [16]. We also plot the attractive polaron energy
obtained from QMC calculations and from the commonly
used ladder approximation. The theoretical results are consis-
tent with the polaron energy extracted from the experimental
data, even across unitarity 1/kna = 0.

Our results provide a characterization of the attractive
Bose polaron in the unitary regime and into the region of
repulsive interactions. In particular, our technique extracts
the polaron energy at a well-defined density in the center of
the BEC from the broad experimental spectra, by carefully
taking into account the broadening effects coming from the
trap inhomogeneity, the many-body continuum, and the finite
pulse length. Figure 1 also demonstrates the accuracy of the
QMC as well as that of the ladder approximation. At 1/kna ≈
0.5, the QMC and the experimental data start to systematically
deviate, which we attribute to a loss of accuracy of the fitting
model under these conditions.

At unitarity 1/kna = 0, the observed polaron energy is also
compatible with a variational theory including up to four-body
correlations, provided we use the relation a− ≈ −2 × 104aB

(giving n1/3
peak|a−| ≈ 70) between the three-body parameter a−

and aB [30]. This linear relation between a− and aB is conjec-
tured to hold based on QMC calculations and it is not obvious
that it holds for the actual experiment, making the agreement
between experiment and the theory presented in Ref. [30],
which depends on the specific value of a−, intriguing.

We also note that the observed spectral signal agrees with
the results of Ref. [27]. Interestingly this work predicts that
below the observed spectrum, there is a low energy state
which however is essentially unobservable since it is highly
dressed by Bogoliubov modes and thus has a very small
spectral weight.

It is worth noting that the large peak density of the atomic
cloud implies that the local condensate fraction in the center
is close to unity. Consequently, an advantage of the fitting
procedure is that it provides a characterization of the polaron
in an approximately pure condensate environment with a local
condensate density fraction close to unity, corresponding to
essentially zero temperature.

The fitting procedure is in principle capable of also provid-
ing Zpeak from the shape of experimental spectrum. However,
the line shape depends only weakly on Zpeak, and the obtained
value is therefore highly susceptible to experimental noise in
the spectrum. The data quality does therefore not permit us to
extract an accurate value for Zpeak.

We now briefly explain why it is not straightforward to
apply our fitting procedure to the repulsive branch. The energy
of the repulsive polaron is maximal in the center of the trap,
and it would therefore be tempting to determine it by locat-
ing the upper edge of the observed spectrum. However, the
presence of the continuum of many-body states of arbitrarily
high energy makes the upper edge of the spectrum ill defined.
Thus, an accurate determination of the repulsive polaron
energy using a fitting procedure similar to the one described
above would therefore require a quantitatively accurate theory
for the many-body continuum, which is not available except
for weak coupling. Moreover, as discussed in the following

FIG. 3. Model for impurity dynamics, which predicts a signal
shift for the repulsive polaron branch. (a) Sketch of the model. An
impurity created near the center of the repulsive BEC has a large
probability of undergoing three-body recombination, whereas an
impurity near the perimeter has an increased probability of escaping
the condensate without recombination. (b) Predicted relative loss
from the model at different interaction strengths 1/kna (a/a0), where
kn is calculated using the average density. From bottom to top, the red
curve is 4.6 (170), the purple is 2.6 (300), the blue is 1.6 (500), the
green is 1.0 (800), and the orange is 0.44 (1800). The black dashed
curve is the expected loss when all impurities undergo recombina-
tion. (c) Curves of (b) converted into signal by convolution with
a Gaussian function and normalization. (d) The predicted relative
signal position at different values of 1/kna. The shifts obtained from
curves shown in (b) and (c) are shown as diamonds.

section, the spectrum of the repulsive branch is distorted due
to impurities leaving the BEC.

III. REPULSIVE POLARON BRANCH ANALYSIS

In this section we analyze the repulsive polaron spectrum
observed in Ref. [16]. The main purpose is to discuss the
discrepancy between the experimental data and theory. To do
this, we develop a semiclassical model for the dynamics and
three-body decay of the repulsive polaron, which is important
for the Aarhus experiment, since it uses the three-body decay
of the impurities as the main observable. Moreover, the influ-
ence of the many-body continuum is estimated, which allows
an approximate comparison between QMC calculations and
experimental data. We find that the discrepancy can be partly
explained by including these effects.

Consider a single impurity experiencing a repulsive mean-
field potential from the BEC. Due to the interaction and the
inhomogeneous density distribution of the BEC, the impurity
is accelerated outwards upon creation. Thus, the impurity has
a nonzero probability of escaping the condensate without un-
dergoing three-body recombination, as illustrated in Fig. 3(a).
This probability is large for an impurity created in the outer

063607-4



ANALYZING A BOSE POLARON ACROSS RESONANT … PHYSICAL REVIEW A 99, 063607 (2019)

low-density region of the BEC, where the recombination rate
∝ n2 is low and the distance to the noncondensate region
small. In contrast, for an impurity created near the dense
center the acceleration is lower and the recombination rate
is greater, which results in a low probability for escaping
the condensate. As explained above, the Aarhus experiment
uses the number of atoms lost from the BEC via three-body
decay as a spectroscopic signal for polaron formation. Here
it was assumed that all impurities have the same probability
of undergoing three-body recombination. However, since im-
purities in center of the BEC have a higher probability for
undergoing three-body loss compared to those created near
the edge, the loss signal for the repulsive polaron branch is
skewed towards higher energy. This offers an explanation for
the higher lying experimentally observed energy of the repul-
sive polaron branch with respect to theoretical predictions.

In the following, this effect is analyzed quantitatively.
Consider a BEC in a spherically symmetric trap of frequency
ω = (ωxωyωz )1/3, with peak density 4.0 × 1014 cm−3, and
ωx, ωy, and ωz corresponding to those of Ref. [16]. A clas-
sical impurity particle of mass m = mB is accelerated by the
mean-field potential EMF(r) = 2π h̄2an(r)/mr , where n(r) =
npeak(1 − r2/R2) with r being the radial coordinate and R the
Thomas-Fermi radius. The force acting on the particle is given
by the gradient of EMF(r), which provides a classical equation
of motion r̈(t ) = Cr(t )/m, with C = 8π h̄2anpeak/mR2. This
is the equation of an inverted harmonic oscillator potential,
which for starting conditions ṙ = 0 and r(0) = r0 has the
solution r(t ) = r0 cosh(

√
C/mt ).

The probability for an impurity to undergo three-body
recombination can be obtained from the corresponding re-
combination rate and the time it takes the impurity to leave
the condensate. The three-body recombination rate is given
by �3 = L3n2(r), where L3 is the three-body recombination
coefficient, with L3 ∝ a4 in the weak coupling regime, ig-
noring possible effects of Efimov resonances. An expression
for L3 for a single-component gas is provided by Eq. (9b) of
Ref. [43] (see also Ref. [44]). To calculate the probability of an
impurity created at r0 to undergo three-body recombination,
the recombination rate is integrated over the time the impurity
takes to leave the condensate, i.e.,

ζ (r0) ≡
∫ tout

0
L3n2[r(t )]dt, (4)

where tout = √
m/C acosh(R/r0), and r(t ) =

r0 cosh(
√

C/mt ). This expression describes the average
number of decay events the impurity will undergo traveling
from r0 to the edge of the BEC. It can be converted into a
probability for undergoing three-body decay using

P3BR = 1 − e−ζ . (5)

For an impurity created at a specific position r0 and an inter-
action strength a, it is thus possible to calculate the probability
of recombination before leaving the condensate.

Towards strong coupling we no longer have L3 ∝ a4. To
include this effect in the model, we replace the scattering
length a by an effective length a−1

eff = a−1 + n1/3 so that L3 ∝
a4

eff, which qualitatively captures the transition to the unitary

regime 1/a = 0, where the inteparticle spacing n−1/3 is the
relevant interaction length scale [45,46].

If an impurity undergoes three-body recombination, three
atoms are lost, but if the impurity instead leaves the conden-
sate, only the one impurity atom is lost. Thus, the net atom
loss due to an impurity created at position r0 is

sloss(r0) = 1 + 2P3BR(r0). (6)

Based on these arguments it is possible to examine the im-
pact on the observed spectral shape. All equations presented
above are solved numerically with an effective scattering
length aeff. Figure 3(b) shows fnsloss obtained from Eqs. (1)
and (6) as a function of the corresponding mean-field shift
EMF = 2π h̄2na/mr for various coupling strengths. Since a
given position r0 corresponds to a specific density and mean-
field energy, the loss sloss can be regarded as a function of EMF.
This plot gives the mean-field spectral line shape including
a spatially dependent three-body loss. For comparison, the
line shape 3 fn assuming all impurities undergo three-body
recombination is also shown. The curves have been scaled
such that the peak value of fnsloss is 1. A spatially dependent
loss rate significantly affects the spectral shape. The signal
at high energy is affected the least, since it originates from
impurities created near the center, which have a high chance
of undergoing three-body loss. On the other hand, the signal
at low energies due to atoms created nearer the edge is
strongly reduced by the significant probability of escaping
the BEC without undergoing three-body loss. Note that for
strong coupling all impurities undergo three-body loss and
the spectral shape is simply 3 fn, whereas for weak coupling
almost no atoms undergo three-body loss and the spectral
shape is approximately given by fn. It follows that the spectral
shape deviates most from the functional form fn for inter-
mediate coupling strengths. As we shall see, this nontrivial
conclusion turns out to be confirmed when comparing with
the experimental results.

To allow for comparison with the experimentally obtained
signal, the line shape obtained using the model above is
convoluted with a Gaussian of width σ = E (npeak)/15, and
normalized as shown in Fig. 3(c). For simplicity, we have
chosen Gaussians with widths, which are constant relative to
EMF.

In the previous evaluation of the experimental results, an
average energy of the polaron spectrum was obtained by
fitting a Gaussian to the observed signal [16]. To check if our
present model can explain the observed discrepancy between
theory and experiment, we fit a Gaussian to the line shapes
described above. The obtained average energies are shown in
Fig. 3(d) normalized to the energy obtained from a fit to the
curve assuming all impurities undergo recombination. Impu-
rities leaving the condensate without undergoing three-body
loss clearly give a significant relative shift in the obtained
energy. Remarkably, the shape of the relative shift is very
similar to the observed discrepancy between experiment and
theory, see Ref. [16] and Fig. 4. In particular, there is a
significant upward shift in the average energy for interme-
diate coupling strengths, which is of similar magnitude as
the observed discrepancy. This suggests that we have indeed
identified at least part of the reason for the observed upward
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FIG. 4. Repulsive polaron branch analysis. The purple line is
obtained from a variational truncated basis method approach using
the average density. The magenta dashed line is also obtained using
the truncated basis method, but shows instead the average energy of
the theoretical spectrum including an inhomogeneous medium and
the many-body continuum. The orange diamonds are obtained from
QMC calculations using the average density. The blue data points are
experimentally obtained energies. The light blue data points show the
average energy of the experimental spectrum. The filled blue data
points have been scaled to compensate for impurity dynamics and
decay, and the many-body continuum.

shift in the average energy as compared to theories for the
repulsive polaron: It is due to the fact that impurities created
near the center of the BEC have a larger probability for
undergoing three-body decay compared to impurities created
near the edge.

To examine this further, Fig. 4 shows experimental as well
as theoretical data for the repulsive polaron branch. The light
blue points show the experimental data of Ref. [16] for the
average energy of the observed spectrum. The filled blue
points are obtained by scaling this data using the model above
to account for the three-body loss dynamics. In addition, the
many-body continuum above the repulsive polaron energy has
been taken into account. This is done to compare with QMC
calculations, which do not include the many-body continuum.
A scaling factor accounting for the many-body continuum
is estimated by taking the ratio between the average energy
obtained from a variational calculation [16] with (magenta
dashed line) and without (purple line) the many-body con-
tinuum. When these effects are taken into account, the ex-
perimental data (full blue points) are lowered compared to
the average observed energy (light blue points). As a result,
there is now indeed a better agreement with the theoretical
calculations also shown in Fig. 4 [47].

However, Fig. 4 shows that there is still a significant
disagreement between experimental data and theory, even
after these effects are included. This could be due to sev-
eral reasons. First, our semiclassical model for the impurity
dynamics and recombination still involves approximations.
A more sophisticated calculation requires a comprehensive
model for effective polaron energy, impurity recombination,
and dynamics. Nevertheless, we believe our model provides
a qualitatively correct estimate of the impact of impurity
dynamics on the observed spectral signal obtained via loss
measurements.

Unlike the case for the attractive polaron branch, the
analysis of the repulsive branch is not restricted to the center
of the Bose-Einstein condensate, where the local condensate
fraction is close to unity. Therefore, the data shown for the
repulsive polaron branch is more susceptible to effects from
finite temperature which have been predicted to influence the
spectrum [48,49].

Another mechanism, which is not included in our model,
is the two-body decay of repulsive polarons into the attractive
branch. This decay has been shown to have a rate similar
to the three-body decay for the Fermi polaron [50], and it
also has a larger probability of occurring at greater medium
densities near the trap center. It will release energy into the
system, which excites some atoms out of the condensate and
is therefore expected to influence the spectroscopy signal.

Finally, the theories for the repulsive polaron are approx-
imate. This holds even for the QMC calculations, since one
has to include a node in the wave function to approximately
ensure orthogonality with lower lying states, when calculating
the energy of the repulsive polaron. As a result, the QMC
calculations are of the fixed-node type and therefore not exact.
Also, our estimate for the effects of the many-body continuum
is based on approximate variational calculations.

The motional effects discussed in this section have no
relevance for the spectroscopy of the attractive branch. Since
impurities are attracted to the center of the BEC for attractive
interactions, it is safe to assume that they all eventually
undergo three-body decay.

IV. COMPARISON WITH OBSERVATIONS
IN A K-Rb MIXTURE

We now analyze the recent observation of Bose polarons
in a K-Rb mixture at JILA [17]. In this study, fermionic
40K atoms were employed as impurities in a 87Rb BEC
with a boson-boson scattering length aB = 100a0, and mass
ratio in mB/m ≈ 2.2. Spatially resolved imaging allowed the
impurities in the approximate center of the BEC to be probed
selectively resulting in an average probed density of 1.53 ×
1014 cm−3.

The main results of the experiment is shown in Fig. 5. The
spectrum displays two branches corresponding to the attrac-
tive and repulsive polaron at negative and positive energies,
respectively. For the attractive branch, a polaron signal is
detected slightly beyond unitarity, whereas for the repulsive
branch, the signal is lost at 1/kna ∼ 1, where the repulsive
polaron becomes ill defined.

For theoretical comparison, we show new QMC simu-
lations for both branches, as well as results obtained from
diagrammatic calculations. Both theoretical methods display
agreement with the experimentally obtained results which
demonstrates the consistency between the experimental re-
sults obtained in Aarhus and at JILA.

V. THEORETICAL METHODS

In this section we briefly introduce the theoretical methods
we use to analyze the Bose polaron, i.e., the QMC and
diagrammatic methods.
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FIG. 5. Comparison of experimental data from Ref. [17] (blue
circles) with quantum Monte Carlo calculations (orange diamonds)
and diagrammatic calculations (green dashed line). Additionally, the
molecular energy (magenta dotted line) is shown and the location of
resonant interactions is indicated (vertical gray line). The error bars
of the experimental data corresponds to the rms spectral width.

In the QMC calculations, we consider a single impurity of
mass m immersed in a gas of N bosons with mass mB. The
Hamiltonian of the system is

H = −
N∑

i=1

h̄2∇2
i

2mB
+

∑
i< j

VB(ri j ) − h̄2∇2
α

2m
+

N∑
i=1

V (riα ). (7)

The Bose gas is taken to be weakly interacting with npeaka3
B �

1. In the calculations, the boson-boson interaction potential
VB(ri j ) is modeled as a hard (impenetrable) sphere with a
range, given by aB, much smaller than the average interpar-
ticle distance. The boson-impurity interaction V (r) is instead
modeled by a square well or equivalently, by a zero-range
pseudopotential [36]. We solve the two-body problem to find
the relation between the model potential parameters and the
impurity-boson scattering length a, which can take any value
as is the case in the two experiments [16,17].

The initial trial wave function serving as a starting point
for the QMC simulations is optimized using the variational
Monte Carlo (VMC) technique for the different experimental
conditions. We obtain the polaron energy Ep by computing
the ground-state energy of N bosons and one impurity, and
subtracting the energy of the system without impurity, i.e.,
Ep = E0(N + 1) − E0(N ). Within this work, the calculations
have been performed with N = 64 bosons, and size effects
have been checked. The QMC method is exact for the ground-

state energy within statistical errors, and it includes all cor-
relations for any coupling strength. The details of the QMC
approach are given in Refs. [35,36]. Note that previously
QMC calculations were compared with experiments using the
average density of the BEC in the simulations. Here we use
the peak density of the BEC in the QMC calculations since
this is what is extracted in the data analysis. In addition, we
perform QMC calculations for a range of interaction strengths
from weak coupling all the way across the resonance along
the attractive branch, as well as along the repulsive branch on
the positive-a side of the resonance.

We also use a diagrammatic scheme to calculate the po-
laron energy. While this method is approximate, it comple-
ments the exact QMC calculations because it can describe
the full spectral function. The details of the diagrammatic
approach are described in Refs. [31,33,49].

VI. CONCLUSIONS

In summary, we have presented an extended and refined
analysis of the Aarhus experiment probing impurities in a
BEC. For the attractive polaron, we developed a physically
motivated model for the spectral line shape to account for
the effects of the trap inhomogeneity and the many-body
continuum. This allowed us to extract the energy of the
attractive polaron at a well-defined density from the experi-
mental data. We compared this energy with QMC as well as
diagrammatic calculations and obtained good agreement, even
in the strongly interacting regime. For repulsive interactions,
we developed a semiclassical theory for the dynamics and
three-body loss of the polaron, which permits to partly explain
the observed disagreement between theory and experiment.

Our new analysis paves the way for several intriguing
new research directions, including experimental studies of the
interactions between polarons [29,33] and the formation of
bipolarons [51], explorations of temperature effects and asso-
ciated new quasiparticle states [49], as well as investigations
of nonequilibrium effects and the formation dynamics of the
polaron [27,52–54].
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