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Abstract—In this paper, we propose Li-Tect, an algorithm to
detect the shape of an object located in an indoor environment
using low cost optical elements through sensing the environment's
light. The algorithm analyzes, relying on the predictability of op-
tical propagation paths, how much light is expected to propagate
in the absence of obstructions caused by the presence of an object.
Then, based on the received light when the object is in the room,
the algorithm infers the shape of the object. In addition, the
algorithm considers the reflected paths from surfaces in order to
determine the object's estimated shape. We study five different
scenarios characterized by different levels of complexity, room
sizes and a range of reflection nodes. The algorithm is also tested
in a real prototype where several experiments are carried out in
two scenarios to demonstrate the capabilities of Li-Tect in two
and three dimensional monitoring and shape detection cases.
Finally, the results show that the shape and the detection of
objects in the scenarios can be easily acquired with high accuracy,
even if the number of transceivers is reduced.

Index Terms—Ray Tracing, Monitoring, Visible Light Sensors,
Shape Detection, Visible Light Communications

I. INTRODUCTION

V ISIBLE Light Communications (VLC), which uses the
visible spectrum between 375 and 780 nm, refers to the

intensity modulating of the solid state based lighting fixtures
i.e., light emitting diodes (LEDs) used for illuminations [1].
Considering the sufficiently high rate of modulation, flickering
is undetectable by the human eyes [2]. The potential of VLC
is being explored for a number of applications including high-
speed (i.e., beyond the trade-mark level of Gbps) data com-
munications in indoor environments, vehicular networks [3],
airplane cabins [4], trains [5] and intelligent traffic lights man-
agement [6], [7], indoor positioning [8], motion detection [9],
occupancy detection [10], ranging and detection [11] among
others. However, to fully and effectively be able to adopt and
implement the VLC technology in real environments there are
still a number of challenges, which need to be addressed,
including the physical layer (higher data rates versus the
transmission span), interference management [12], medium
access control (MAC) [13], integration with existing optical
fiber and radio frequency wireless systems, mobility [14],
shadowing [15] or peak-to-average-power ratio [16].
In addition to data transmission, VLC can be used for highly
accurate indoor localization, mobility prediction, sensing and
shape detection. Since lighting fixtures are pervasive, they can
be used for accurate monitoring of people, and objects in
indoor environments as part of smart homes [17]. Thus, no
the need for installation of other specialized equipment such
as motion detection sensors and cameras with high accuracy

and quality. In fact, the cameras could be effectively utilized
for vision, data communications and shape detection [18], but
at high cost and with loss in privacy because cameras record
many unnecessary details such as gender, age or clothing
which might be not pleasant to end users. Besides, VLC is in-
herently more secure than other wireless communications. This
is due to the light being confined within a room and therefore,
access is only possible by being within the illumination range.
Thus, the visible light sensors (VLS) are more cost and energy
efficient than other sensors (i.e., motion sensor, cameras, etc.)
As it is foreseen, the smart VLC-enabled lighting will become
pervasive in the future and they can be utilized as VLSs. In this
paper, we propose to rely on the smart lighting infrastructure
for high-resolution sensing tasks. More specifically, we design,
implement and evaluate both by simulations and experimental
measurements the proposed monitoring and shape detection
algorithm, which is denoted as Li-Tect. Li-Tect leverages
on the information obtained from both active and in-active
links of the spatially distributed VLS. The proposed algorithm
uses only VLSs with no requirement for additional equipment
such as a camera or motion sensors. VLS can be used for
monitoring elderly people and patients at homes or hospitals,
where it can be mounted on the door frames, beds, bathroom
and etc.
The remainder of this paper is organized as follows: Section II
briefly overviews related approaches for shape detection using
light and RF techniques. Section III presents the proposed
monitoring and shape detection algorithm. Section IV presents
the simulation results and Section V demonstrates the imple-
mentation of the algorithm in real-world case studies. Finally,
Section VI concludes the paper.

II. RELATED WORK

Different approaches have been proposed to detect the
presence of an object within an indoor environment. They are
mainly based on the RF technology (e.g., WiFi or ZigBee), but
more recently the focus has been moved to VLC for object
detection. We first give an overview of a VLC system, and
conclude by surveying other non-light based shape detection
schemes.

A. LiSense

The LiSense system [19] enables data communications and
fine-grained human skeleton reconstruction in real time using
the VLC technology. LiSense works based on the shadows that
a human body projects on the floor in an indoor environment



by blocking the light emitted by a set of LED-based beacons.
The system separates light rays from each LED source and
detects shadowed sections on the floor of an indoor area thanks
to deploy of photodiodes. The shadow-based information is
used to reconstruct the user's 3D skeleton in order to determine
the user's posture and gestures. The main issues with in
LiSense are: (i) the need for a large number of PDs positioned
on the floor for capturing detailed shadow based information;
(ii) the assumption made that the blocking is mainly due the
people not objects within a room; and (iii) not scalable since
it works only for a single user with a known location and
orientation with each LED flashing at a unique frequency.

B. StarLight

StarLight [20] continuously tracks the human skeleton pos-
ture by using LED panels installed on the ceiling in order
to generate homogeneous light, and uses PDs to detect light
blockage. Additionally, LEDs located on the floor could be
used to define together a virtual shadow map, which can be
projected on to the ceiling. With PDs positioned at different
locations, virtual shadow maps from different viewing angles
are used together to reconstruct the skeleton of a mobile
user starting from the coarse body features. The output of
the algorithm includes the user's current location based on
the estimated features and trajectories of the environment. To
avoid different LED beacons interfering, StarLight organizes
transmission into a time-frequency frame, where simultaneous
transmission is achieved using different frequencies. It requires
a close control of the light deployment topology, and is
sensitive to vertical movements, which can have a critical
impact on the accuracy of the shape detection algorithm.

C. Other shape detection techniques

There are other schemes for detection of the human figure
and posture. In [21] the concept of RF-Capture was introduced
to detect the presence of human through a wall using the
RF signals. This system can distinguish various users with
different body shapes. Short and long-term averaged variance
ratio (SVR and LVR, respectively) concepts are two passive
WiFi-based schemes that are used to detect human motion
in real-time [22]. Note that, in these schemes the phases of
WiFi signals are particularly sensitive to slow human motion.
In [23] processing of changes in the received signal strength
indicator (RSSI) for 2.4-GHz wireless power outlets were used
for sensor-less detection of human presence.
Li-Tect offers an improved shape and posture detection method
where there is no requirement for precise shadow estimation,
thereby avoiding complexity due to shadow overlapping and
blurry shadow edges. Moreover, the proposed Li-Tect can
achieve a reasonable accuracy with fewer sensors, thus saving
additional lighting infrastructure for cases where a high shape
detection accuracy is sought. The next section describes the
algorithm in detail.

III. LI-TECT CONCEPT
The Li-Tect algorithm works by assuming that a number

of smart VLSs is deployed in an indoor environment, which

Fig. 1: Geometry of a multipath VLC channel.

are aware of their locations and have information on the
other sensor to establish communications. In the most basic
version of Li-Tect communications between VLSs are via the
line-of-sight (LoS). Thus, a VLS is a LED or PD which
positions are known. Since light does not propagate through
walls, the security level of algorithm is high at the physical
layer. The general idea behind Li-Tect is to detect which light
propagation paths are blocked by an object. Next, the shape of
the object is inferred by comparing the missing links against
the remaining active paths. To achieve this, the ray tracing
algorithm is used for modeling the propagation paths between
two VLSs. This allows to infer the path of the surviving rays
with the presence of a blocking object, and therefore be able to
estimate the shape of the object. These two steps are described
separately in the two following subsections.

A. Ray tracing

The first step in Li-Tect algorithm is to trace rays emitted by
LEDs and predict their destination via LoS and reflected paths.
It should be noted that diffuse configuration is not considered
here, but could be part of the future work. Regarding the
propagation of VLC signal, the model in [24] is used, that
is summarized below. Fig. 1 shows a single transmitter (Tx)
with an effective transmission area Aeff and a single receiver
(Rx) with an effective reception area APD , and both LoS and
non-LoS paths. The channel impulse response is given as

Nr∑
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Fig. 2: Geometry of a multipath VLC channel with an object.

where θi is the arrival angle of the ith reflection, and
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where m = −1/(log2 cosφ1/2), is the mode number of the
LED's radiation pattern, FoV = 2φ1/2 is the field of view of
the LED, di is the distance traveled by a ray before the ith
reflection, and 1[x] = 1 if |x| ≤ 1, and 0 otherwise, implying
that an Rx can detect a ray only if its angle of arrival is within
the Rx's FoV . The Γkr denotes the power of the ray after kr
bounces, and is approximated to Γkr = Prρ̄1 · · · ρ̄kr as in [24],
where ρ̄i is the average reflectance of the surface, and Pr is
the transmit power from the r-th LED.
Fig. 2 presents the geometry of a multipath VLC channel with

an object located in the room. It should be noted that lights
may arrive from multiple paths (i.e., LoS, reflected), which
are defined as:
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The channel impulse responses are then give by:
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TABLE I: Simulation parameters

Parameter Value
Reflection coefficient 0.48
Area of the reflecting element 0.01 m2

Transmit power 1 w
The semi-angle of half power of the LED 60 degree
Field of view (FoV) 90 degree
Rx's effective area 1 cm2

Once the ray tracing model has been described, we can
proceed to present the algorithm. For every pair Tx-Rx the
system is calibrated measuring the ray tracing of the light
without the object. Then, an object is placed and for every
pair Tx-Rx, we measure again the ray tracing. With all these
information, the system can determine the shape of the object
by analyzing which rays are obstructed. For each traced ray,
we determine the ray's arrival time and its trajectory in order
to check if the object could be detected at the Rx. Table I
shows the key simulation parameters adopted in this work
for ray tracing in an indoor environment. In simulation, we
consider only LoS paths and/or NLoS paths with a single
reflection, since contributions from higher order reflections are
considered negligible. However, in experimental investigation
only rays received via LoS paths are considered.

B. Shape detection

The shape detection is performed out by comparing a set
of rays that reach the Rx with and without an object within
the room. The Li-Tect was calibrated with a room with
furniture without considering the blocked paths. Note that,
higher accuracy can be achieved if the object is detected in a
space where there are a large number of unblocked paths.
Monitoring the indoor environment and shape detection is
carried out by finding the intersection points between rays
in presence of an object located in the room. In computing
the number of intersections, there is a trade-off between
the complexity and measurement accuracy. In the worst-case
scenario, Li-Tect will compute all intersections between the
existing rays whose angles of arrival diverge the least from
rays blocked by the object. To improve accuracy of the object
contour's detection we carried out the followings: (i) compute
all possible intersections between rays, which are collected at
the Rx, and filter the corresponding output to determine the
voids left behind by the intersection points in an area where
the object is present1; (ii) take a set of intersection points and
use them as the triangle vertices to derive a 3D Delaunay
triangulation; (iii) consider all triangles with circumscribed
circle radius exceeding the user-defined threshold of 50 cm;
and (iv) estimate the shape of the object from the alpha-shape
of the set of all vertices of these triangles.
Fig. 3 shows a block diagram for shape detection proce-
dure which includes calculation of circumcircles, triangles,
determining the free boundary facets of the triangulation and
detecting the alpha shape from the determined intersection

1We remark that the departure angles tested by the ray tracer belong to a
discrete set, hence it is not granted that two rays will intersect perfectly in a
3D environment. Therefore, we consider the minimum distance among rays
and declare that an intersection exists if such distance is below a threshold.
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Fig. 3: The shape detection procedure.

Fig. 4: Shape of a cubic object detected using LoS rays. The
dots on the walls represent VLSs.

points. The baseline version of Li-Tect works based only on
the LoS paths. However, rays reflected by the object and room
surfaces within the network area can also be used, because
the power contribution is relatively high and thus, they can be
detected. In the following section, we present the generated
results for both cases.

IV. SIMULATION RESULTS

Simulations have been carried out for different indoor
scenarios - represented by a rectangular shape room of dif-
ferent sizes - with a number of VLSs distributed in different
topologies and using Matlab. Without loss of generality, we
assumed that, VLSs can be considered as Txs and Rxs.

A. Detecting a cubic object

As proof of concept for Li-Tect, we consider detection of a
cubic object located at the center of a room of size 5×5×5 m3,
as shown in Fig. 4. We consider 96 VLSs uniformly distributed
at the six sides of the room (i.e., 16 per side) with 1 m
spacing between nodes. Taking the collected trajectories into
account, we detect the blocked rays among all LoS and the first
reflection paths. Subsequently, Li-Tect finds the intersection
points among the remaining rays in the presence of the object.
Finally, the points are collected and subsequently the shape of
the object is detected using the inverse convex hull function,
that works by finding the inner hull of a set of collected points.

(a) Scenario with VLSs on. (b) Mesh obtained from LOS path
from the opposite walls in a room.

(c) Close-up view of (b) clearly
showing the detected shape.

Fig. 5: Detection of a cubic object via VLSs placed on floor
and ceiling.

B. Detecting a cube with smart lights placed on the opposite
sides of a room

Here, we now consider the same scenario as before except
for VLSs being located on the two opposite sides of the room.
In this configurations, it is more challenging to detect the
sides of the object by using only LoS rays. Thus, we need to
increase the number of LEDs in order to improve the accuracy
of the measurement. Therefore, keeping the same arrangement
for the object as in Fig. 4, we have used two 9×9 grids (a
total of 162 nodes) on the floor and the ceiling, see Fig. 5a).
Fig. 5b shows the mesh pattern generated by the Delaunay
triangulation method based on the intersections between the
not blocked rays by the cubic object. The close-up view of the
mesh with the object is depicted in Fig. 5c. In both figures, the
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(a) LoS rays around a sphere. (b) Shape detection, LoS rays.

Fig. 6: Sphere section estimate.

Fig. 7: Scenario for the detection of a human figure.

inner mesh (colored in a darker shade of red) corresponds to
the estimated shape of the object, which adheres quite closely
to the actual shape of the cube. The slightly more rounded
sides of the estimated shape are due to the deployment of
nodes only on the floor and the ceiling, which makes difficult
to determine the boundaries of the sides of the cube.

C. Detecting a spherical object

Next, we consider the detection of a spherical object located
within a room. For the detection of the circular shape of the
object using Li-Tect, we have deployed 96 VLSs with a square
topology in order to cover a room section as it is shown in
Fig. 6a. Considering the LoS rays that are not blocked by
the sphere, we obtain the intersection points as illustrated in
Fig. 6b, where the Delaunay triangulation is not shown for
clarity purposes. Note that, resulting shape of the object reveals
a good approximation of a circular section, as expected.

D. Detecting a human figure

Fig. 7 show 24 VLSs in a rectangular shape i.e., 4- and
8-nodes on top and bottom and two sides, respectively, which
resembles a door frame. A human body modeled in 3D as
in [25] is placed in the center of the frame. Similar to the
scenarios outlined above, Li-Tect is calibrated with rays in
a room with no shadowing or blocking, which is used as
a reference to compare with un-blocked rays by the human
body in order to estimate its shape. Unlike in the previous
simpler scenarios, here we consider also rays as a result of
single reflections, either on the room boundaries or on the
human figure. Using LiTect's estimation, the human figure
shape detections are depicted in Fig. 8 for both LoS and LoS
with reflections paths. For LoS, see Fig. 8a, considering the
low number of VLSs employed, the estimated shape - showing
the height (1.7 m) and main outline - closely resembles the
human figure as in Fig. 7, which is sufficient for identifying a

(a) Only LoS rays. (b) LoS and reflected rays.

Fig. 8: Detection of the shape of the section of a human figure
passing through a door.

(a) LoS rays. (b) LoS and re-
flected rays.

(c) Only reflected
rays.

Fig. 9: 3D shape detection using different type of rays.

person in certain applications. Considering the first reflection
the estimated shape is shown in Fig. 8b, which outlines
additional details including the legs and possibly the arms.
Finally, we consider the detection of the human shape using

a 3D configuration where the VLSs are arranged into 3
rectangular topologies as in Fig. 7, with a spacing of 20
cm between the nodes. The results are shown in Fig. 9 for
LoS, LoS with reflections, and reflections only. It should
be highlight here that, figures are shown from the side for
enhanced visualization. Fig. 9a shows sufficiently details of
the human shape including the chest, which is slightly larger
than the waist. Factoring of the reflected rays help to further
increase the resolution of the human figure's contour, this way
it is possible to distinguish additional details including e.g., the
shape of the neck. It should be noted that, the reflected rays
are the only way to detect the most concave parts of an object,
hence they typically allow the estimated shape to follow the
contour of the actual shape more closely, as it can be seen in
Fig. 9b and Fig. 9c.

V. PRACTICAL EXPERIMENT RESULTS

The proposed Li-Tect system is experimentally implemented
into a prototype in order to validate its performance. We have
chosen a scenario where we can evaluate shape detection of
an object in two and three dimensions where Tx/Rx nodes are
located within door frame in one and two rows as it is shown
in Fig. 7. The flow chart for experimental setup is shown in
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Fig. 10: Experimental setup flow chart.

Fig. 10, whereas the experimental system block diagram is
shown in Fig. 11. We implement the same topology designed
for human detection both in 2D and 3D as it was outlined in
the previous sections. The structure for placing the VLSs are
almost the same, but the type of the object used, the room
size, and number of the nodes are changed. We consider a
relatively small size of a room, fewer number of Txs with
low transmit power, and a typical optical Rx.
We have assumed that each VLS has information on the
location and identification of other nodes, and therefore each
Rx is able to distinguish multiple received rays arriving from
different LoS paths based on their identity number (IN) and
the assigned frequency. We have used a cubic shape object,
which is covered with white papers, and is located at the
center of the room on the floor.

TABLE II: Positions of VLSs in a 2D experimental setup

VLSs positions in the first scenario
Tx1 (34cm, 57cm, 41cm) Rx1 (34cm, 1cm, 41cm)
Tx2 (34cm, 57cm, 31cm) Rx2 (34cm, 1cm, 31cm)
Tx3 (34cm, 57cm, 21cm) Rx3 (34cm, 1cm, 21cm)
Tx4 (34cm, 57cm, 12cm) Rx4 (34cm, 1cm, 12cm)
Tx5 (34cm, 57cm, 2cm) Rx5 (34cm, 1cm, 2cm)
Tx6 (34cm, 2cm, 56cm) Rx6 (34cm, 2cm, 1cm)
Tx7 (34cm, 19cm, 56cm) Rx7 (34cm, 19cm, 1cm)
Tx8 (34cm, 38cm, 56cm) Rx8 (34cm, 38cm, 1cm)
Tx9 (34cm, 57cm, 56cm) Rx9 (34cm, 57cm, 1cm)

1) 2D based Shape detection: VLSs are placed on sides
of the room as outlined in the simulation section. Table II
shows the position of each LED and PD within the room.
We assign the same transmit power as 100 mw to each LED
and different frequencies. However, we only consider rays
propagated via LoS and received by the angle of FoV of
the Rxs in order to detect the shape of an object within the
indoor environment.

We repeat the experiment under the same conditions twice;
with and without an object. After collecting the information
of propagation paths, we calculate voltage peak-to-peak (Vpp)
on each Rx side. Based on the calculation results and due to
frequency-division application, we determine the blocked rays
and obtain the information for the existing rays for further
processing using Li-Tect. After finding the intersection points
among the existing rays and applying the inverse concave hull
method on achieved vertices, we detect the shape boundaries
of the object located within the room in 2D.

TABLE III: Positions of VLSs in a 3D experimental setup

VLSs positions in the second scenario
Tx1 (28cm, 57cm, 41cm) Rx1 (28cm, 1cm, 41cm)
Tx2 (42cm, 57cm, 41cm) Rx2 (42cm, 1cm, 41cm)
Tx3 (28cm, 57cm, 31cm) Rx3 (28cm, 1cm, 31cm)
Tx4 (42cm, 57cm, 31cm) Rx4 (42cm, 1cm, 31cm)
Tx5 (28cm, 57cm, 21cm) Rx5 (28cm, 1cm, 21cm)
Tx6 (42cm, 57cm, 21cm) Rx6 (42cm, 1cm, 21cm)
Tx7 (28cm, 57cm, 12cm) Rx7 (28cm, 1cm, 12cm)
Tx8 (42cm, 57cm, 12cm) Rx8 (42cm, 1cm, 12cm)
Tx9 (28cm, 57cm, 2cm) Rx9 (28cm, 1cm, 2cm)
Tx10 (42cm, 57cm, 2cm) Rx10 (42cm, 1cm, 2cm)
Tx11 (28cm, 2cm, 56cm) Rx11 (28cm, 2cm, 1cm)
Tx12 (42cm, 2cm, 56cm) Rx12 (42cm, 2cm, 1cm)
Tx13 (28cm, 19cm, 56cm) Rx13 (28cm, 19cm, 1cm)
Tx14 (42cm, 19cm, 56cm) Rx14 (42cm, 19cm, 1cm)
Tx15 (28cm, 38cm, 56cm) Rx15 (28cm, 38cm, 1cm)
Tx16 (42cm, 38cm, 56cm) Rx16 (42cm, 38cm, 1cm)
Tx17 (28cm, 57cm, 56cm) Rx17 (28cm, 57cm, 1cm)
Tx18 (42cm, 57cm, 56cm) Rx18 (42cm, 57cm, 1cm)

2) Shape detection in 3D: Here, we aim to present the
functionality of Li-Tect algorithm in 3D detection of the shape
of an object within the indoor. In this scenario, we place LEDs
on two rectangular sections lined up at a distance of 14 cm
from each other. We multiply the number of VLSs by two in
order to detect the shape of an object in 3D. Table III shows
the positions of LEDs and PDs distributed on room surfaces.
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TABLE IV: Experiments parameters

Room size 68 cm x 58 cm x 57 cm
Object size 15 cm x 10 cm x 30 cm
LED:

Semi-angle of half power 60 degree
Transmit power 150 mw
Bandwidth < 5 MHz

PD:
Field of view 90 degree
Wavelength range 350 - 1000 nm
Bandwidth 100 MHz
Responsivity < 0.44 A/W
Effective area 13 mm2

(a) (b)

Fig. 11: Experimental system diagram: (a) transmitter, and (b)
receiver.

As in the first scenario, we apply frequency-division method
in order to emit the light and consider the LEDs transmission
power equal to each other. After gathering the achieved
information regarding each propagation path received by each
Rxs in two phases; with and without the presence of an object.
Then, we calculate the intersection points among the existing
paths after the object is in the room and detect the shape of
an object applying 3D Delaunay triangulation and the alpha-
shape method on the set of points. Table IV presents the key
parameters used in experiments.

A. Experiment results

As it was explained before, the signal amplitude is used
in our prototype to detect which LoS path is blocked by
an object in the room. Here, we present a work sample
revealing the blocked paths once an object appears within
the room. Note, we observed no differences between the
received signals in both phases, thus indicating that there is
no obstacle in that area to block LoS paths. However, Fig. 12
presents five signals with different frequencies (distinguished
by different colors) transmitted by the first five Txs mentioned
in Table II and received by the Rx located at 34, 1 and 12
cm. As shown, Vpp is reduced from 0.02 V to 0.004 V due
to blocking by the object.

B. Shape detection using Li-Tect

As it is revealed in Fig. 13a, there are several points in
red color, which present the intersection points among the

Fig. 12: Measured signal amplitude at the receiver, before and
after an object being located.

(a) 2D shape detection. (b) 3D shape detection.

Fig. 13: Experimentally generated shape detection using Li-
Tect.

remaining paths in the presence of an object in the room.
After applying Li-Tect algorithm on the acquired data in
practical experiment, and using the inverse concave hull, an
accurate shape of a rectangle is obtained for the inner side
of the larger area. The actual length of the object used in
the experiment is 15 cm, however our result shows that the
estimated length of the object is 19 cm and its height is
almost the real object. The reason behind the small error in
the length is due to the arrangement of Txs and Rxs positions
within the room. Therefore, there is a trade-off between the
number of VLSs and accuracy of the object size estimation
using Li-Tect. However, it worth mentioning that, the most
significant function of this algorithm is in detecting the
shape and posture of an object in two and three dimensions
using comparatively less number of VLSs. Moreover, in our
simulation investigations, we have shown how the accuracy
of the shape detection of an object improves using not only
the LoS paths but also the first reflections.
Finally the Fig. 13b reveals the 3D shape detection results
using Li-Tect algorithm in practical experiment. Note that, in
this figure we have not showed the intersection points in order
to avoid complexity. As the figure shows, there is a 3D mesh
in the shape of triangles connecting the intersection points
among the remaining LoS paths achieved by the practical
experiment, to each other with inclusion of an object. The
inner vertices of the polygon mesh reveals the boundary of
the object, if it exists at all. The figure estimates the size
of an object with a length of 17 cm, a width 10 cm and
a height 30 cm, which are more accurate in comparison
with the 2D shape detection scenario. This is because of
employing a relatively higher number of VLSs and on the
3D arrangement of the devices within the indoor environment.
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Fig. 14: 2D comparison of the real shape and estimated shape
of the object using Li-Tect in the simulation.

Fig. 15: 2D comparison of the real shape and estimated shape
of the object using the experimental Li-Tect test-bed.

C. Mean Squared Error calculation in 2D detection experi-
ments

TABLE V: Mean Squared Error

Experiment type LEDs quantity Shape of object MSE
Practical 9 cube 5.50
Simulation 96 sphere 0.0567

Next we compared both simulated and measured shape
estimated results achieved by Li-Tect and the real shape
of the object to evaluate the functionality of the proposed
algorithm in order to detect object's shape. Moreover, we
have used only the 2D detection scheme, which are easier to
demonstrate in figures. Fig. 14 demonstrates the comparison
between the Li-Tect estimated shape using simulations (Fig. 6)
and the real shape of the object. As the figure shows, the
estimation results are quite close to the real shape of the object.

Finally, Fig. 15 shows 2D comparison of real and estimated
shapes of the object using Li-Tect experiment as in Fig. 13a.

We have calculated the mean squared error (MSE) for
both practical and simulation results. For this case, the MSE
depends on the number of the Txs, the transmit power, the
position of the Rxs and the level of shape complexity of the
object. As shown in Table V, for higher number of Txs the
MSE is lower. The reason behind is because we collect more
information regarding the propagation path. Therefore, we
achieve more intersection points among the remaining paths
in the presence of an object, which leads to more accurate
detection of the shape of an object within the environment as
expected.

VI. CONCLUSIONS

This paper presented Li-Tect algorithm to passively estimate
the 3D shape of objects using VLSs within an indoor environ-
ment. To perform the estimation, Li-Tect detected light paths
that were blocked by an object and compared them with a
set of paths with no object. Li-Tect achieved a significant im-
proved shape estimation accuracy only using the information
provided by line-of-sight paths. The typically convex contours
obtained in this case can be enriched by including the reflected
paths, which provided additional details on the object's shape
including the concave sections whose detection is typically
precluded by the processing of LoS paths.
We presented both simulation and experiments results demon-
strating the functionality of Li-Tect in 2D and 3D shape
estimation in an indoor environment. By means of simula-
tion, we considered different environment topologies, varying
number of VLSs and various levels of shape complexity of the
object to asses the flexibility and power of Li-Tect algorithm.
Besides, we implemented the algorithm in prototype using
only VLSs with no additional equipment such as sensors and
cameras. We showed that, the accuracy of the object's shape
detection depended on the number of VLSs and their position
distribution within the experimental environment. We have
showed that considering reflected propagation paths led to
a more accurate detection of the shape, although complexity
increases.
Future work will include implementation of Li-Tect in a
room with reflective surfaces and an object made of reflective
material using more sensitive photodiods such as avalanche
photodiodes and LEDs with higher transmit power levels.
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