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Abstract14

We present a micromechanical analysis of flow-induced peeling of a layered
2D material suspended in a liquid, for the first time accounting for realistic
hydrodynamic loads. In our model, fluid forces trigger a fracture of the inter-
layer interface by lifting a flexible “flap” of nanomaterial from the surface
of a suspended microparticle. We show that the so far ignored dependence
of the hydrodynamic load on the wedge angle produces a transition in the
curve relating the critical fluid shear rate for peeling to the non-dimensional
adhesion energy. For intermediate values of the non-dimensional adhesion
energy, the critical shear rate saturates, yielding critical shear rate values that
are drastically smaller than those predicted by a constant load assumption.
Our results highlight the importance of accounting for realistic hydrodynamic
loads in fracture mechanics models of liquid-phase exfoliation.
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1. INTRODUCTION16

Atomically thin, two-dimensional materials such as graphene, boron ni-17

tride, or MoS2 have attracted enormous interest recently [1]. As a conse-18

quence the nanomechanics of 2D nanomaterials has emerged as an impor-19
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tant direction in the solid mechanics literature. Much of the work on the20

mechanics of 2D nanomaterials has focused on solid mechanics and tribo-21

logical aspects, such as adhesion [2], tearing [3], scrolling [4, 5], buckling22

[6, 7], wrinkling [8, 9] and friction [10]. Of interest is typically the defor-23

mation of the solid structure. However, the effect of the medium in which24

the solid structure is immersed is often not considered, particularly when the25

medium is a fluid. Many wet processes involving 2D materials and mechan-26

ical tests of 2D materials are carried out in liquids or in contact with liquids27

[11, 12, 13, 14, 15]. When liquids are present, not only the interfacial ther-28

modynamics changes [16, 17]. One has also to consider the possible coupling29

to flow.30

Several techniques have been developed to produce 2D nanomaterials:31

bottom-up methods such as chemical vapour deposition [18] and epitaxial32

growth [19] are used to build layers of material from its molecular compo-33

nents, while in top-down methods the layers of a bulk multilayer particle34

are separated through electrochemical exfoliation [20], ball-milling [21] or35

liquid-assisted processes like sonication [22] and shear mixing [23]. In the36

current paper, we focus on mechanical aspects of liquid-phase exfoliation by37

shear mixing, a scalable process to produce 2D nanomaterials on industrial38

scales (for a comprehensive review, see [24]). In liquid-phase exfoliation,39

plate-like microparticles of layered materials are suspended in a liquid sol-40

vent. The liquid is then mixed energetically under turbulent conditions [25].41

Each microparticle is formed by stacks of hundreds or thousands of atomic42

layers, bound together by relatively weak inter-layer forces of the van der43

Waals type. If the solvent is chosen appropriately and the intensity of the44

turbulence sufficiently high, the large fluid dynamic forces applied to each45

suspended particle can overcome interlayer adhesion, ultimately producing46

single- or few-layer nanosheets. Choosing the optimal shear intensity level47

is paramount, as too small hydrodynamic forces will not induce exfoliation48

while too large forces will damage each sheet. An understanding of how the49

exfoliation process occurs at the microscopic level is currently lacking.50

A recent exfoliation model based on a sliding deformation has been pro-51

posed by Paton et al. [23], as an extension of a previous work by Chen et52

al. [13]. In this model, the force for sliding is calculated by considering the53

change in adhesion energy (accounting for changes in liquid-solid, solid-solid54

and liquid-liquid surface areas) as the overlap between two 2D nano-layers55

changes. Paton’s model predicts a critical shear rate proportional to the ad-56

hesion energy, and inversely proportional to the first power of the platelet57
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lateral dimension. Because in the model the sheets are considered infinitely58

rigid, the results are independent of the mechanical properties of the sheets.59

For instance, the bending rigidity of the sheets does not appear in the ex-60

pression for the critical shear rate. Since the seminal scotch-tape experiment61

of Geim and Novoselov [26], it has become clear that the interplay of solid62

deformation and adhesion can play a fundamental role in triggering layer63

detachment.64

A simple physical model that is sensitive to mechanics is to assume that65

the effect of the fluid is to peel off layers of nanomaterial, inducing a fracture66

of the van der Waals interface. In addition to being physically plausible,67

such model would explain why in liquid-phase exfoliation removal of layers68

occurs first at the outer surface of a mother particle [27]. Flow-induced69

fracture phenomena have been studied extensively for colloidal aggregates70

composed of roughly spherical beads [28, 29]. Models for exfoliation of plate-71

like, layered particles due to microscopic peeling have been proposed in the72

context of clay-filled polymer nanocomposites [30][31], but have not been73

rigorously justified from the point of view of the coupling between flow and74

deformation mechanics. For instance, these models rely on strong, often75

irrealistic assumptions regarding the hydrodynamic load distribution. For76

example, in the model of Ref. [30] the fluid is assumed to exert a constant,77

tangential force on the peeled layer at a specified angle. In reality, one78

should expect a dependence of the flow-induced forces on the configuration79

of the peeled layer and that normal forces will play an important role. The80

consequence of such dependence is so far unknown. The forces required to81

detach a layer in a peeling problem depend strongly on the peeling angle82

[32]. But, in a peeling problem in which the flow produces the load, the83

peeling angle cannot be controlled independently, as this quantity depends84

on the deformation of the solid structure. In addition, hydrodynamic forces85

are distributed over the whole surface of the peeled layer, including the edge.86

In fracture problems, different assumptions regarding the load distribution87

can result in different predictions even if the total force values at play are88

the same [33]. Considering realistic hydrodynamic loads is crucial to develop89

exfoliation models that will withstand future experimental tests.90

In our paper, we analyse a “hydrodynamic peeling” model of exfoliation,91

not making strong assumptions regarding the magnitude and distribution of92

the hydrodynamic load. Rather, we calculate the load from first principles,93

using high-resolution simulations of the Stokes equations for a simplified ge-94

ometry. The forces computed from these high-fidelity simulations are then95
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used to calculate the deformation of the solid. Griffith’s theory for crack ini-96

tiation is then used to quantify the critical (fluid) shear rate for exfoliation97

as a function of the relevant adhesion, mechanical and geometrical parame-98

ters of the suspended particle (Fig. 1b). When possible, we derive explicit99

formulas for the critical shear rate. This quantity is essential to predict the100

kinetics of exfoliation [34] and the operating parameters for “optimal” ex-101

foliation. In the model, the flap is approximated as a continuum sheet. A102

continuum representation is justified by the good separation of scale between103

the length of each nanosheet (typically in the micron range) and the charac-104

teristic length of the nanostructural elements (e.g. the period of the crystal105

lattice in graphene).106

2. PROBLEM DESCRIPTION107

Figure 1: (a) A layered 2D material microplate suspended in a turbulent flow. The ambient
flow in the neighbourhood of the particle can be approximated as a simple shear flow.

Consider a microplate of layered 2D material (e.g. a graphite microplate108

[35]) suspended in a turbulent flow. In correspondence to one of the layers the109

inter-layer interface presents an initial flaw of length a, where the molecular110

bonds are already broken. A “flap” of length a forms which is detached from111

the mother particle. We are interested in relating the critical fluid shear112

rate for interfacial crack initiation to the bending rigidity of the flap, the113

inter-layer adhesion energy, and the flap size.114

In our analysis we assume that a > 0. Our results are relevant to the case115

in which a debonding of the interface had already occurred in the proximity116

of the edge, for instance due to molecular intercalation by the surrounding117
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liquid. Borse and Kamal made a similar assumption in the context of clay118

exfoliation in polymers [30].119

If the lateral size of the microplate is smaller than the smallest turbulent120

flow scales, the instantaneous ambient flow “seen” by the particle can be121

approximated as a locally Stokes flow, characterised by different degrees of122

extension, shear and rotation depending on the position and orientation of123

the particle [36]. Purely rotational contributions to the ambient flow induce124

a rotation of the particle, but no significant net load on the flap. Purely125

extensional contributions are important if the shift between the layers is large126

(i.e. the layers are not “in registry”), a situation that we do not consider127

here. As a consequence, the local ambient flow can be approximated, to128

leading order, as a simple shear flow (Fig. 2).129

The question is: what is the load distribution corresponding to this shear130

flow? The hydrodynamic force distribution on a particle suspended in a shear131

flow and presenting a flap has not been studied so far (we only found work132

on hydrodynamic forces on rigid fences attached to solid walls [37, 38, 39]).133

To quantify the hydrodynamic load on the flap, in Section 3.1 we therefore134

propose a fluid dynamics analysis based on high-resolution flow simulations of135

a simplified flap geometry. In the flow simulations the particle is exposed to136

a simple shear flow of strength γ̇. Jeffery’s theory for the rotational dynamics137

of for plate-like particles predicts that a particle of aspect ratio Λ rotates in138

a shear flow, but spends a time of the order of Λγ̇−1 oriented with the flow139

[40]. Microparticles of 2D materials tend to have very large aspect ratios140

(Λ ∼ 1000 [35]). Hence, in our fluid dynamics simulations we will assume141

that the long axis of the particle is aligned with the undisturbed streamlines142

of the shear flow field.143

The load extracted from the simulation will be fitted to analytical func-144

tions. In Sec. 3.2 such functions are used in a solid mechanics model to145

predict the critical shear rate for exfoliation γ̇c, obtained from Griffith’s the-146

ory assuming brittle fracture [41].147

3. RESULTS148

3.1. Analysis of the hydrodynamic load149

The simplified geometry for the flow simulation is presented in Fig. 2.150

In this configuration, the flap is straight and the wedge is parametrised by151

the flap length a (also equal to the length of the initial flaw) and the wedge152
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Figure 2: Simplified geometry used in the flow simulation.

opening angle θ. We will see that the pressure in the wedge is approxi-153

mately constant. So, neglecting the flap curvature in the calculation of the154

hydrodynamic load does not induce a large error. The surface of the flap is155

composed of three surfaces: the lower surface Ω− in contact with the fluid156

in the wedge, the upper surface Ω+ exposed to the outer flow, and the edge157

surface Ωe between the corner points P and Q. A coordinate s running from158

the edge of the flap (point P) to the point of intersection of the flap with the159

horizontal plate will be used to discuss the hydrodynamic stress profiles. A160

coordinate se, running from the points P and Q, will be used to discuss the161

hydrodynamic stress profile along the edge . The bottom layer and the flap162

have the same thickness, h, and length, L. In the flow simulations we kept163

L and a fixed and changed h and θ. We sought results that are independent164

of h by examining simulations for decreasing values of this parameter.165

The simulations were carried out with the commercial software ANSYS166

FLUENT. We solved the incompressible Stokes equations (corresponding to167

a negligible particle Reynolds number) in a rectangular domain [−XD, XD]×168

[−YD, YD] surrounding the particle. Periodic boundary conditions were en-169

forced at the boundaries X = −XD and X = XD ( X = 0 corresponding to170

the particle centre). At the boundaries Y = −YD and Y = YD, we prescribe171

a tangential velocity u = ±γ̇YD and zero normal velocity. No-slip is assumed172

at the particle surface. The computational mesh used is non-uniform. A173

triangular mesh is used in the wedge region and a structured quadrilateral174

mesh is used in the rest of the domain. To ensure adequate resolution, the175

typical mesh size ∆X is much smaller than the thickness h of each layer (we176

typically use ∆X ≈ 0.1 h in the flap edge region, and much smaller values177
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of ∆X around the points P and Q).178

In principle, the solution of the fluid mechanics problem is coupled with179

the solution of the solid mechanics problem providing the deformation of180

the flap. Solving the two-way coupled problem numerically is possible, for181

example by using iterations [42]. However, the advantage of the one-way182

coupled approach we adopt is that explicit analytical expressions relating the183

critical fluid shear rate to the relevant geometric and mechanical variables184

can be obtained. The hydrodynamic load for a straight flap and for a curved185

flap are expected to be similar. We will see that the fluid pressure within186

the wedge is approximately constant. As a result the normal force on the187

flap expected to depend primarily on the aperture angle and flap length, and188

only marginally on the details of the flap shape.189

The general features of the flow around the model particle are illustrated190

in Fig. 3a and 3b. For small values of θ, the streamlines run almost par-191

allel to the exterior surfaces of the particle. The streamlines need to curve192

sharply near the entrance of the wedge. As a consequence, a sequence of193

counter-rotating eddies form in the wedge region (Fig. 3b). The character-194

istic velocity in these eddies decays very fast as the wedge tip is approached195

[43]. Hence, the fluid in the wedge can be consider practically quiescent in196

comparison to the fluid regions outside of the wedge (where velocities are of197

the order of γ̇aθ). An important consequence of this observation is that the198

pressure in the wedge region is approximately uniform. In the region near199

the edge, on the other hand, velocity gradients are large and the pressure200

variation is considerable.201

Figures 4 and 5 show the pressure and shear stress distributions along202

the flap for different values of θ. In addition to providing the pressure and203

shear stress distribution on the upper and lower surface of the flap, we also204

provide the total pressure force per unit area p = p−−p+ and the total shear205

stress force per unit area τ = τ+ + τ− acting on the flap (our convention is206

that for τ > 0 the tangential force is directed towards the crack tip). The207

superscripts “+” and “-” refer to the surfaces Ω+ and Ω−, respectively.208

The distribution of pressure and shear stress can be separated in a near-209

edge region where the hydrodynamic stresses have a large variation over a210

region of small O(h) spatial extent, and a region far from the edge where the211

pressure and shear stress vary weakly with s. The flow velocities are small212

in the wedge region so the pressure is practically constant and the shear rate213

is negligible.214

Because of the linearity of the Stokes flow, the pressure in the wedge215
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Figure 3: (a) Streamlines around the particle. (b) Detail of the recirculating eddies in the
wedge below the flap.

region is proportional to µγ̇, with a constant of proportionality that increases216

with θ. The signs of p− and p+ in the far-edge region are such that the217

pressure acts to open the wedge (p > 0). However, for sufficiently small218

angles, the pressure p near the edge becomes negative. The shear stress on219

the edge τe acts mostly downward for small angles (see velocity field in Fig.220

3a), pushing the flap toward the substrate. Therefore, contrary to intuition,221

for small angles (θ < θc ' 7.5◦) both the pressure and the shear stress at222

the edge act in the direction of closing the wedge. For angles larger than a223

critical angle θc ' 7.5◦, the hydrodynamic stresses lead to wedge opening.224

To investigate why the force on the edge acts downwards for small angles,225

we compare in Fig. 6 the velocity fields in the neighbourhood of the edge for226
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Figure 6: Velocity field near the edge for (a) θ = 0◦ and (b) θ = 12.5◦.

θ = 0◦ and θ = 12.5◦. The flow field for the case θ = 0◦ corresponds to a227

simulation with a horizontal flat plate of thickness 2h, and is representative of228

angles much smaller than θc. In the absence of the particle, the flow velocity229

would be directed from left to right in the region Y > 0, and from right230

to left in the region Y < 0. In the presence of the particle, for θ = 0◦ the231

flow coming from the left for Y > 0 must however change direction to satisfy232

the no-slip condition at the edge. This induces a flow velocity directed in233
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the negative Y direction that pushes down the flap. When θ > θc, the flow234

velocity instead points in the direction of increasing θ, opening the flap (Fig.235

7).236

The existence of a critical angle is consistent with analytical results for237

rigid disks aligned with a shear flow [44]. Such analysis predicts a large238

downward force on the edge for a thin disk immersed in a shear flow and239

aligned with the streamlines. It is possible that a fully two-way coupling240

treatment of the fluid-structure interaction problem may lead to a slightly241

different value of θc, but we believe that the existence of a critical angle is a242

robust result.243

The implication of our results for real particles is that, in a practical244

setting, peeling starting from a = 0 would be very difficult, as the distribution245

of forces actually acts to close the wedge in this case. For peeling to occur, a246

finite edge crack of sufficient extent must exist (a > 0), or the flap needs to247

present a spontaneous curvature near the edge. In realistic cases, some of the248

assumptions in the model may apply only as an approximation. For example,249

one can expect that in instants in which the particle is inclined with respect250

to the flow direction a component of the hydrodynamic force would act in251

the direction of opening the flap. Furthermore, the edges of a real multilayer252

particle may in practice not be perfectly aligned. These situations require253

further analysis.254

Figure 7: Schematic view of the hydrodynamic load distribution on the flap for angles
larger and smaller then the critical angle θc ' 7.5◦.
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The shear stress assumes large positive values in correspondence to the255

corner points P and Q of the flap edge. The divergence of the hydrodynamic256

stress is a generic characteristic of flow in the vicinity of geometrically sharp257

features [39, 45]. Even for smoother corners, large stresses are expected near258

the edges with a cut-off related to the radius of curvature of the corners. In259

2D nanomaterials, the curvature of the edges is cut off by a molecular scale.260

The results above suggest that the essential features of the hydrodynamic261

load distribution are: i) an angle-dependent distributed load Qhd on the flap,262

due to the effect of fluid pressure; ii) an angle-dependent edge load F hd, due263

to a combination of viscous shear stress and pressure. There is a further264

contribution due to viscous shear stress on the top surface of the flap (which265

also scales like µγ̇). This stress may in principle lead to buckling, but in266

our situation the deformation due to the transverse load is dominant with267

respect to collapse due to an axial load. We will show (Figs. 18 and 19)268

that the inclusion of a constant tangential force τ ' µγ̇ on the flap changes269

the average curvature of the flap only marginally. Hence, the inclusion of a270

tangential load does not change the main conclusions of our paper.271

To quantify contribution i), we show in Fig. 8a the dependence of p,272

evaluated at the midpoint of the flap s = a/2, on the wedge angle θ. For273

small angles, the linear fit p(a/2)/(µγ̇) = q0 + q1θ, with q0 = 0.1 and q1 =274

5.37, provides a good approximation of the simulation data. A leading order275

closure for the distributed hydrodynamic load is thus276

Qhd = µγ̇q ' µγ̇(q0 + q1θ). (1)

In contrast to the pressure load, the average shear stress (also plotted in277

Fig. 8) is almost constant when plotted against θ. In Fig. 8b the pressure278

and shear stress are plotted against the thickness. As h/a → 0, p(s = a/2)279

and τav become independent of the thickness. In the calculations presented in280

the current paper, we have chosen the stresses for a/h = 50 as representative281

of the thin flap limit.282

To quantify contribution ii), we show in the inset of Fig. 8a the depen-283

dence on θ of F hd =
∫

ΩF
(−p+ τ ·n)nd`, where τ is the viscous stress tensor284

and ΩF includes the surface Ωe and the portions of the surfaces Ω+ and Ω−285

within a distance h from the corner points P and Q. Because in Stokes flow286

both p and τ are proportional to µγ̇, we can also write F hd = µγ̇aF̃ , where287

F̃ is independent of the fluid viscosity and shear rate. The dependence of288

F̃ on θ shows more marked deviations from linearity than in the case of289
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contribution i). However for small θ a linear fit,290

F hd = µγ̇aF̃ ' µγ̇a(f0 + f1θ), (2)
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with f0 = −0.03 and f1 = 0.43 is a reasonable approximation. Equations (1)291

and (2) provide a linear model for the hydrodynamic load acting on the flap292

as a function of the configuration parameters θ and a, the fluid viscosity µ293

and the shear rate γ̇. Following Ref. [42], in our analysis we have neglected294

the effect of the hydrodynamic moment on the edge, as this contribution is295

negligible for very thin structures. On the flap edge the hydrodynamic stress296

at a sharp corner diverges, but the singularity is integrable [46]. As shown297

in the inset of Fig. 8b, in our finite-mesh calculations the edge force goes298

to zero as h/a → 0 with an effective power-law exponent close to 0.62 for299

small values of h/a. This exponent is consistent with the range of near-corner300

power-law stress singularity exponents reported in the literature [47]. In the301

current paper, we choose a reference value of a/h = 50 to illustrate the effect302

of a finite edge force on the shape of the sheet, as we are interest in plausible,303

non-zero values of h/a.304

In the fluid mechanics simulation the flap is straight. Therefore, for a305

given value of a, the configuration is parametrised by a unique value of θ. But306

how do we relate the opening angle in the solid mechanics calculation to the307

one in the fluid mechanics calculation? The angle θ has to be approximated308

as a function of the flap shape. Among the possible approximations, one309

could use the angle at the tip of the flap, θ ' dw1/dx|x=0, the local angle310

θ ' dw1/dx, or the secant angle made by the secant line (connecting the311

flap tip to the crack tip) with the horizontal, θ ' w1(0)/a. For θ � 1,312

w1(0)/a ' dw1/dx|x=0, and the difference between using the local angle313

or the secant angle is small. We choose the secant angle approximation314

θ = w1(0)/a in the small displacement model, since it is typically used when315

the opening angle varies slowly [48] and gives particularly simple analytical316

solutions. The effect of using different approximations for θ will be analysed317

in the context of the large displacement model.318

3.2. Solid mechanics model319

The solid mechanics model uses the closures for the loads F hd and Qhd ob-320

tained in the previous section to calculate the elastic deformation of the flap.321

In the model, we neglect tangential loads. We will show later that tangential322

loads make only a negligible contribution to the deformation of the flap. We323

consider both a small displacement model (which we solve analytically) and324

a large displacement model. As shown in Fig. 9, the deformable layer is325

divided in two regions: the region B1 on which the hydrodynamic load is326

applied, and the bonded region B2 in which the hydrodynamic load is zero.327
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Figure 9: Schematic of the solid mechanics model.

The out-of-plane displacements corresponding to B1 and B2 are indicated by328

w1(x) and w2(x), respectively.329

We initially consider both a small-displacement model, valid for |∇w1| � 1.330

Later, we compare against a large-displacement model. In the small displace-331

ment model, the inter-layer interface is modelled as an elastic foundation la332

Winkler [49], characterized by a foundation modulus ke. For |∇w1| � 1,333

w1 satisfies334

D
d4w1

dx4
= Qhd (3)

where x ranges from the coordinate corresponding to edge of the flap (x = 0)335

to the crack tip (x = a), and D is the bending stiffness. The equation for w2336

is337

D
d4w2

dx4
+ kew2 = 0. (4)

The boundary condition at x = 0 requires Dd3w1/dx
3|x=0 = F hd and338

Dd2w1/dx
2|x=0 = Mhd where F hd and Mhd are the hydrodynamic force339

and moment acting on the edge, respectively. Assuming that L � a, the340

boundary conditions at infinity satisfy w2(x→∞) = 0 and dw2/dx|x→∞ = 0.341

The solutions for B1 and B2 are matched by enforcing continuity of the out-342

of-plane displacement and its derivatives at x = a up to the third order (see343

Eqs. (A.1f)-(A.1i) in Appendix A).344

The consideration of a soft foundation in the small-displacement model345

adds to the generality of the results. Furthermore, the interlayer interface in346

2D nanomaterials does not necessarily correspond to an infinitely stiff foun-347

dation, because the range of the interlayer force and the size of the cohesive348

zone is nanometric but so can be relevant displacements. For instance, the349
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analysis of the case with the elastic foundation could be useful to interpret350

molecular dynamics results, where the range of maximum flap deflection and351

crack length (a few nanometres) is not necessarily orders of magnitude larger352

than the size of the cohesive zone ( (Dd2
0/Γ)

1/4 ∼ 1 nm, using typical pa-353

rameters for single-layer graphene). Molecular dynamics results of peeling in354

liquids are now appearing which could benefit from our analysis [50, 51, 52].355

We are carrying out similar molecular dynamic investigations in our group356

as well.357

In the large-displacement model, we solve a non-linear equation for the358

curvature of the region B1 of the deformable layer. The equations of equilib-359

rium of forces and moments for an inextensible elastica with a purely normal360

follower load Qhd are361

d2M

ds2
− κN −Qhd = 0 (5)

and362

κ
dM

ds
+

dN

ds
= 0, (6)

respectively [53]. Here, s is the curvilinear coordinate along the flap, φ is363

the tangent angle to the flap, κ = −dφ/ds is the curvature, M = Dκ is the364

bending moment and N is the axial (internal) force. Integration of Eq. (6)365

gives Dκ2/2 + N = c, where c is a constant. Evaluating this constant at366

s = 0 (the flap edge) gives N(s) = Nhd + (Mhd)2/(2D) −Dκ2/2, where we367

have used the boundary conditions Mhd = Dκ(0) and Nhd is an axial force368

applied to the free end. Substituting into Eq. (5) yields369

D
d2κ

ds2
−
(
Nhd +

(
Mhd

)2

2D

)
κ+

D

2
κ3 −Qhd = 0. (7)

In the analysis for large displacements we neglected the effect the axial load370

Nhd and the hydrodynamic moment on the edge Mhd. The equation govern-371

ing the flap shape reduces to372

D
d2κ

ds2
+
D

2
κ3 −Qhd = 0. (8)

To limit the number of cases, in the large-displacement analysis, we did373

not include the Winkler’s foundation and assumed that the flap is clamped374

at s = a, corresponding to the boundary condition φ(a) = 0. We also375
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neglected the normal load F hd applied on the edge, imposing instead free376

end boundary conditions κ(0) = 0 and dκ/ds|s=0 = 0. The shape of the flap377

was calculated from x = a+
∫ s
a

cosφ(s)ds = a−
∫ a

0
cosφ(s)ds+

∫ s
0

cosφ(s)ds378

and y =
∫ s
a

sinφ(s)ds = −
∫ a

0
sinφ(s)ds+

∫ s
0

sinφ(s)ds.379

3.2.1. Analysis of flap shape and critical shear rate380

In the small-displacement analysis, we derive analytical solutions to (3)381

and (4), and compare against numerical solutions. The numerical solutions382

were obtained with a finite difference scheme, approximating the derivatives383

at interior points using second-order, central differences and using skew op-384

erators at the boundaries [54]; the resulting discrete system was solved by385

matrix inversion. In the large displacement analysis, we only discuss finite-386

difference solutions of Eq. (8), seen as an equation for φ. The non-linear387

system was solved by a Newton-Raphson method.388

The critical fluid shear rate to initiate fracture of the inter-layer inter-389

face is calculated using Griffith’s energy balance, assuming brittle fracture.390

Denoting by Γ the total solid-solid adhesion energy per unit area (i.e. twice391

the solid-solid surface energy), the condition for crack initiation according to392

Griffith’s theory is393

G = Γ (9)

where G =
∂U

∂a
is the strain energy release rate ([41]) and U is the bending394

energy per unit length:395

U =
D

2

∫ L

0

κ2ds ' D

2

∫ a

0

(
d2w1

dx2

)2

ds+
D

2

∫ L

a

(
d2w2

dx2

)2

ds. (10)

Recasting the equilibrium equation for the flap and Griffith’s balance into396

non-dimensional variables, using a and D to scale the other variables (see397

Appendix A for the small displacement formulation), makes it evident that398

the initiation of the crack is controlled by three non-dimensional parameters:399

̂̇γ =
µ γ̇ a3

D
Γ̂ =

Γa2

D
χ4 =

ke a
4

4D
(11)

The first parameter, the non-dimensional shear rate, is the ratio of hydrody-400

namic forces and bending forces. The second parameter, the non-dimensional401

adhesion energy, is the ratio of adhesion and bending forces. The parameter402

χ represents the ratio between the crack length a and the cohesion length403
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λ = (4D/ke)
1/4. An infinitely stiff interlayer interface corresponds to χ→∞.404

For a brittle-like law ke = 2 Γ/d2
0, χ can be rewritten as χ4 = Γ̂/2(a/d0) 2,405

where d0 is a molecular scale characterising the range of the adhesion forces406

(d0 ' 1 nm).407

In our analysis we consider relatively small wedge angles. In the fluid408

mechanics simulations we consider at most a θ ≈ 15◦. In the solid mechanics409

simulations we extrapolate the results to larger angles, but still assuming that410

θ is significantly smaller than π/2. Based on our numerical experiments, this411

condition on the angle roughly corresponds to µ γ̇ a3/D < 1. For these values412

of the non-dimensional shear rate the flap does not buckle, and maintains a413

qualitative shape similar to that in Fig. 2.414

Typical values for the surface energy Γ/2 of graphene in vacuum or inert415

gases are around 0.1 N/m (0.115 N/m [11], 0.085 N/m [13], 0.070 N/m [22],416

0.047 N/m[55]). In a very controlled adhesion experiment using a modified417

force balance apparatus, Engers et al. ([11]) recently reported, in the case of418

single-layer graphene, 0.115±0.004 N/m for dry nitrogen, 0.083±0.007 N/m419

for water, and 0.029 ± 0.006 N/m for sodium cholate, a surfactant recom-420

mended for liquid-phase exfoliation processes. N-methylpyrrolidone (NMP)421

is considered an optimal solvent for graphene exfoliation. Molecular dynam-422

ics studies [56] suggest that NMP reduces the specific interaction energy423

between graphene nanosheets as compared to water by a factor of about 2424

(from ≈ 250 kJmol−1nm−2 for water to ≈ 110−120 kJmol−1nm−2 for NMP).425

Although more research is needed to clarify the effect of solvent on adhesion426

during crack initiation in 2D nanomaterials, it seems from the data above427

that good solvents can reduce the adhesion energy significantly, but this428

reduction is probably not by several orders of magnitude. Values between429

Γ = 0.1 N/m and Γ = 0.01 N/m are probably realistic.430

We discuss the small-displacement results for two cases :431

• Case 1: distributed load only (Qhd 6= 0;F hd = 0);432

• Case 2: distributed load plus edge load (Qhd 6= 0;F hd 6= 0).433

The analytical derivations are conceptually simple, but rather cumbersome.434

The quadratic dependence of the bending energy on the displacement gives435

rise to many coupling terms, and going through the derivation step by step436

may obscure their physical meaning. Here we report the main results, par-437

ticularly focusing on the structure of the solution. The complete derivations438

are reported in Appendix A and Appendix A.1.439
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Case 1, angle-independent load, infinitely stiff foundation. The solution440

is the classical solution for a cantilever beam subject to a constant load:441

w1(x) =
̂̇γq0

24a3
(x− a)2(x2 + 2ax+ 3a2). (12)

The corresponding non-dimensional bending energy is442

Û =
q2

0
̂̇γ 2

40
, (13)

and the critical shear rate (from Eq. (9)) is443

̂̇γc =
2
√

2

q0

Γ̂
1
2 . (14)

Because the load is constant, the bending energy is quadratic in ̂̇γ. As a444

consequence, the non-dimensional critical shear rate depends on the square445

root of the non-dimensional adhesion parameter.446

Case 2, angle-independent load, infinitely stiff foundation. The displace-447

ment is448

w1(x) =
̂̇γ

24a3
(x− a)2

(
q0(x2 + 2ax+ 3a2) + 4af0(x+ a)

)
, (15)

the dimensionless bending energy is449

Û =
̂̇γ 2

120
(20f 2

0 + 15f0q0 + 3q2
0), (16)

and the critical shear rate is450

̂̇γc =
2
√

2

q0

1√
1 + 5f0/q0 + 20/3(f0/q0)2

Γ̂
1
2 . (17)

Because we are here considering edge and distributed loads that are indepen-451

dent of the wedge angle, we again recover a power-law with an exponent 1/2.452

The critical shear rate decreases as the hydrodynamic coefficient q0 increases,453

by an amount that depends on the edge load coefficient f0. In particular,454

the critical shear rate decreases as f0 increases. In our case f0 is negative,455

so the required shear rate is slightly larger than if only the distributed load456

was included (see Fig. 12).457
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Case 1 & 2, angle-independent load, “soft foundation”. If χ has a finite458

value, the displacements in the free and adhered portions of the flap are459

coupled. This brings about a dependence of the solution on χ, which in turn460

depends on Γ̂ for a fixed d0/a. The critical shear rate in case 1 is461

̂̇γc =
2
√

2

q0

Γ̂
1
2

(
χ

1 + χ

)3/2

. (18)

A similar expression holds for case 2, with a numerical prefactor now de-462

pending on f0 (see Appendix A.1, Eq. (A.21)).463
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Figure 10: Non-dimensional shear rate ̂̇γc as a function of the non-dimensional adhesion

energy Γ̂ for different values of the parameter d0/a. An increase in the stiffness of the
foundation (smaller d0) corresponds to larger values of the critical shear rate

While the load is constant, owing to the coupling of the flap deformation464

to the mechanics in the adhered portion of the flap, the relation between shear465

rate and adhesion energy is not a power law. We typically expect χ � 1,466

so deviations from a power law behaviour are small. By plotting the critical467

shear rate in log-log scale, the data can be fitted to an effective power-law468

exponent, whose value depends on the specific value of d0/a. Fig. 10 shows469

̂̇γc as a function of Γ̂ for different values of a and d0 = 0.3 nm. Since the470
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exponent for soft foundations is larger than for rigid foundations, the critical471

shear rate decreases as the foundation becomes less stiff. From Eq. (18) we472

can see that ̂̇γc ∝ Γ̂7/8 for χ → 0 and ̂̇γc ∝ Γ̂1/2 and χ → ∞. The effective473

power-law exponent is therefore bounded between 1/2 and 7/8, with higher474

shear rates corresponding to stiffer foundations. The boundary condition at475

the crack tip can be assumed to be clamped provided that χ� 1. For χ = 1476

the cohesion length λ ∼ (Dd2
0/Γ)1/4 is of the same order of the crack length.477

For typical parameters, the cohesion length is of the order of 1 nm for single-478

layer graphene, and up to a few nanometres for few-layer graphene. The soft479

foundation case examined here can therefore be useful to interpret molecular480

dynamics results, where due to computational constraints the crack length481

is typically at most 10− 20 nm [52].482

Case 1 & 2, angle dependent load, infinitely stiff foundation. The consid-483

eration of a dependence on θ now introduces a non-linear dependence of w1484

on ̂̇γ. This dependence is particularly simple to analyse when θ is approxi-485

mated as the secant angle. In this case, the flap displacement and bending486

energy expressions, for case 1, are given by487

w1(x) =
̂̇γq0

3a3(8− ̂̇γq1)
(x− a)2(x2 + 2ax+ 3a2). (19)

and488

Û =
8q2

0
̂̇γ 2

5(8− q1
̂̇γ)2

, (20)

respectively. The requirement w1 ≥ 0 means that these equations are valid489

for ̂̇γ ≤ 8/q1 ' 1.49; the requirement of a positive solution is consistent with490

our initial assumption ̂̇γ < 1.491

There is an interesting difference with respect to the angle-independent492

case. Expression (19) displays the same dependence on the variable x as the493

corresponding solution for an angle independent load, Eq. (12). However494

the prefactor diverges as ̂̇γ approaches a finite value 8/q1. The correspond-495

ing bending energy expression, displays, expectedly, the same divergence. As496

we will see in the analysis of the large displacement case, this divergence is497

a robust feature (although different approximations to θ give somewhat dif-498

ferent values of ̂̇γ for which the flap curvature diverges). This divergence is499

important as it will completely change the dependence of the critical shear500

rate on the non-dimensional adhesion energy. Case 2 also displays a diver-501

gence at a slightly different value of the shear rate. The presence of an edge502
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load gives503

w1(x) =
̂̇γ(x− a)2(̂̇γ (f1q0 − f0q1) (2x2 + ax)− 6q0(x2 + 2ax+ 3a2)− 24af0(x+ 2a))

6a3(̂̇γ(8f1 + 3q1)− 24)
.

(21)
A term (f1q0 − f0q1) coupling the edge and distributed load coefficients504

appears at denominator, and the solution shows a divergent behaviour for505

̂̇γ = 24/(8f1 +3q1). The bending energy profiles for cases 1 and 2 are plotted506

as a function of ̂̇γ in Fig. 11. Because 24/(8f1 + 3q1) < 8/q1, the presence of507

the edge load reduces the critical value of ̂̇γ. The divergence appears slightly508

more sharp in case 2 than in case 1.
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b U

case 1, numerical
case 1, analytical
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Figure 11: Non-dimensional bending energy as a function of the non dimensional shear
rate. The markers represent the results from finite difference simulations. The red lines
represent the analytical solutions.

509

How is the critical shear rate related to the non-dimensional adhesion510

energy when the load depends on the wedge angle? In case 1, the relationship511

between ̂̇γ and Γ̂ is512

8

5
q2

0
̂̇γ 2 q1

̂̇γ + 40

(8− q1
̂̇γ)3

= Γ̂. (22)
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Figure 12: Non-dimensional shear rate as a function of the non-dimensional adhesion
energy for different loads. The blue lines show the power-law trends for small values of Γ̂
(continuous line) and large values of Γ̂ (dashed line).

One could develop approximate solutions of this implicit equation to calculate513

̂̇γ as a function of Γ̂, but it instead more convenient to plot Γ̂ as a function of514

̂̇γ and then switch the axis. The result is shown in Fig. 12, where the angle-515

dependent load cases are compared to the angle-independent ones (including516

both cases 1 and 2).517

In the angle-dependent cases, a horizontal plateau in the critical shear518

rate emerges as Γ̂ → 1. The plateau is particularly evident in case 2 in the519

range Γ̂ = 10−3 − 1. In this range, the critical shear rate does not follow520

a power-law. However, if we insist on fitting a power-law to the data near521

Γ̂ = 1, we obtain an exponent of 0.05, much smaller than the exponent 1/2522

obtained for Γ̂� 1. The solution thus changes behaviour, and a regime where523

the critical shear rate starts becoming only weakly dependent on Γ̂ emerges.524

This observation has important practical implications for the optimisation of525

liquid-exfoliation processes, as discussed in the conclusions section.526

Figure 13 illustrates the deformation of the flap for three different values527
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Figure 13: Out-of-plane displacement of the flap from simulations (markers) and analytical
solutions (red lines) for three values of a, angle dependent load in case 2 (edge load plus
distributed load) and µγ̇/D = 1. The results are in units of (D/(µγ̇))1/3 .

of a (i.e. three different values of ̂̇γ). Both the edge and the distributed528

loads are considered, as well as the dependence on θ. The red lines indicate529

analytical solutions, while the markers indicate numerical results. For small530

values of a (the smallest value of a considered is a = 0.8), the edge load531

is negative and bends the tip of the flap slightly downwards. When a in-532

creases (or, equivalently, ̂̇γ increases) this effect becomes less evident as the533

distributed load becomes dominant.534

The action of the edge load opposing the opening of the wedge determines535

a smaller deformation of the flap if compared with the deformation without536

edge load. For relatively small values of Γ̂, the larger curvature of the flap in537

case 1 causes ̂̇γ to be smaller than in case 2 (compare continuous black line538

and dashed black line in Fig. 12). This difference decreases as Γ̂ increases539

and ̂̇γ approaches the asymptotic value 8/q1 − 24/(8f1 + 3q1). We therefore540

conclude that the edge load is quantitatively relevant for small values of Γ̂ or,541
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equivalently, of a (i.e. at the initial stages of the peeling). The inclusion of542

the edge load in the model requires higher values of ̂̇γ to sustain the peeling543

mechanism and avoid the closure of the wedge. For larger values of the Γ̂ or544

a, i.e. larger deformations, the edge load can be neglected.545

Large displacement model. We now discuss numerical predictions based546

on the large-displacement model. Given that the divergence in the bending547

energy that gives rise to the plateau seen in Fig. 12 is due to large curvatures,548

it is natural to enquire whether the results hold if non-linear terms in the549

equation governing the flap shape are retained. We focus on the case that550

includes only the distributed load, as we have shown that the effect of the551

edge load is important only for small values of a.552
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Figure 14: Flap shape comparing the linear (small displacement) and the non-linear (large
displacement) formulation. The flap is plotted for different values of a and µγ̇/D = 0.1.
The quantities in the plot are in (D/(µγ̇))1/3 units).

Figure 14 compares numerical results for the flap shape obtained using553

Eq. (8) with those obtained with Eq. (3). Appreciable deviations due to554

non-linearity occur for a ' 2.30 (in units of (D/(µγ̇))1/3 ), corresponding to555
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̂̇γ ' 1.217. This value is quite close to the value ̂̇γ = 8/q1 ' 1.49 for which556

the bending energy diverges in the linear formulation. The largest deviations557

are more evident near the edge of the flap. However, the high curvature558

in the region near the crack tip is well captured by the small displacement559

theory even for a = 2.4, corresponding to ̂̇γ ' 1.382.560
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Figure 15: Non-dimensional shear rate as a function of the non-dimensional adhesion
energy in the large displacement theory for different approximations of the wedge angle:
tip angle (continuous blue line), local angle (dashed blue line) and secant angle (black
line). The red line is the analytical solution for small displacements and secant angle
approximation.

Because the flap is practically straight far from the crack tip, the value561

of the bending energy is dominated by the curvature near the crack tip, for562

which the linear formulation appears to give reasonably accurate results. As563

a consequence we expect the critical shear rate predicted by the linear and564

non-linear theories to display comparable trends.565

In Fig. 15 the critical shear rate is plotted in log-log scale against the566

non-dimensional adhesion energy. In addition to comparing linear and non-567

linear deformation theories, we also show results for different approximation568
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of the wedge angle. The non-linear theory using the secant angle follows569

closely the corresponding linear one, giving only slightly larger values. For570

example, for Γ̂ = 2 the value of ̂̇γc given by the non-linear theory (in the571

secant angle approximation) is only about 2% larger than the corresponding572

value in the linear theory.573
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Figure 16: Non-dimensional bending energy vs. non-dimensional shear rate in the large
displacement theory for different approximations of the wedge angle in the forcing term.
The red dashed line correspond to the small-displacement theory, while the other lines are
for the large-displacement theory. The inset shows the derivative of Û with respect to ̂̇γ.

As shown in Fig. 16, different approximations to the wedge angle es-574

sentially change the value for which the bending energy diverges. Corre-575

spondingly, the curves Γ̂− ̂̇γ are shifted upwards or downwards depending on576

the specific approximation for the wedge angle adopted (recall that a vertical577

asymptote in the Û− ̂̇γ curve corresponds to a horizontal plateau in the ̂̇γ− Γ̂578

curve). From Fig. 16, we can see that the effect of including non-linear terms579

is essentially to make the divergence less sharp. This result is confirmed by580

the inset in Fig. 16 showing the non-divergence of the derivative of Û .581
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We could not derive explicit analytical expressions for the full non-linear582

equation. A linear equation that captures large displacements more accu-583

rately than Eq. (3) is obtained from Eq. (8) by setting the term proportional584

to κ3 to zero. Using the definition of the curvature κ = −dφ/ds and the local585

angle approximation Qhd = µγ̇(q0 + q1φ), we obtain a linear equation in the586

rotation:587

D
d3φ

ds3
+ µγ̇(q0 + q1φ) = 0 (23)

The solution is588

φ(s) =
q0

q1


−1 +

e(a−s)/l + 2e(2a+s)/(2l) cos
(√

3s
2l

)

1 + 2e3a/(2l) cos
(√

3a
2l

)


 (24)

where l = D/(µγ̇q1)1/3 is the length scale of the exponential decay of the589

curvature from the crack tip. Equation (24) shows a divergence when the590

denominator approaches zero (i.e. for ̂̇γ ∼= 1.18 when a = 1). Comparing this591

analytical solution against the solution of the full non-linear equation shows592

that the divergence is only slightly mitigated by the term depending on the593

cube of the curvature.594

Effect of non-linear load and tangential stress. In our solutions, we have595

considered a load that depends linearly on the wedge angle. A closer ob-596

servation of Fig. 8a shows a slight downward curvature in the plot of the597

distributed load. In our range of parameters, considering non-linear varia-598

tions of the form q = q0 + q1θ + q2θ
2, where q2 < 0 (a best fit to the flow599

simulation data gives q0 = 0.1, q1 = 5.37 and q2 = −0.07), changes the be-600

haviour of the solution only very marginally. Because the quadratic term is601

negative, the load rises less than linearly with the angle. As a consequence,602

the critical shear rate is slightly higher than if the quadratic term is neglected603

(Fig. 17). Nevertheless, this downward curvature is an interesting feature,604

because we expect that for large angles at some point the hydrodynamic605

load will decrease. The small effects that we see in the current section will606

therefore be amplified, potentially changing the behaviour of the solution.607

In our analysis, we have also neglected the tangential distributed load,608

although this is of order ∼ µγ̇ as the normal load, under the assumption that609

bending of the flap originates mostly from normal loads for relatively stiff610

flaps. We have found that, if this assumption is removed by accounting for611

a uniform tangential load in the large displacement model (this was done by612
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Figure 17: Relation between non-dimensional shear rate and non-dimensional adhesion
energy, comparing the linear and non-linear loads.

modifying Eq. (6) to account for a constant τ ' µγ̇), the flap shape is altered613

but not to an extent as to change the main conclusions drawn so far. We614

show in Fig. 18 the shape of the flap for two simulations, with and without615

the tangential load, and for different values of ̂̇γ. As ̂̇γ increases, the effect of616

including the tangential load on the maximum displacement becomes more617

marked. However, the curvature near the tip seems to be largely independent618

of the presence of the tangential load. As a consequence, the critical shear619

rate when the tangential load is accounted for is only slightly smaller than620

when only normal loads are used (Fig. 19). In the small displacement model,621

the axial deformation does not influence the curvature, hence the tangential622

distributed load does not influence the energy balance and the critical shear623

rate. In the large displacement model, the normal and tangential components624

are coupled but the tangential load does not affect the curvature drastically,625

as we have just seen.626

Within the assumptions of our model a straight solution is not an equi-627

librium solution, because a finite pressure also acts for θ = 0 (extrapolated628
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Figure 18: Flap shape in the large displacement limit with tangential load (black line) and

without tangential load τ = 1.05µγ̇ (red dashed line) for different values of ̂̇γ.

result, see Fig. 8a). Even for nearly straight flaps, the deformation is due629

mostly to the transverse load. Axial and transverse loads in our problem630

are not independent: increasing the shear stress on the top surface of the631

flap also causes an increase in the pressure below the flap. Thus, the trans-632

verse deformation due to transverse load occurs before a classical buckling633

instability sets in.634

Regimes of exfoliation. Our analysis suggests that the dependence of the635

load on the flap configuration, a purely hydrodynamic effect, gives rise to636

a transition in the relation between the non-dimensional critical shear rate637

and the non-dimensional adhesion parameter. When Γ̂ is truly infinitesimal,638

Γ̂ � 10−5 − 10−4, the dependence of the load on the configuration is small639

(q1θ � q0) and ̂̇γc ∼ Γ̂1/2. However, for larger values of Γ̂ the opening640

angle increases (inset of Fig. 15), and the dependence of the load on θ641

becomes important (q1θ ∼ q0). In this regime, the flap displacement is not642

proportional to the shear rate, and a plateau emerges in which ̂̇γc is at most643
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large displacement limit with tangential load τ = 1.05µγ̇ (black line) and without tangen-
tial load (red dashed line) applied on the flap. The inset shows the same plot on a linear
scale.

a weak function of Γ̂. The transition occurs for quite small opening angles.644

Setting q1θ = q0, we get θ ' 0.0186, which corresponds to about 1◦.645

In dimensional terms, the order of magnitude of the critical shear rate in646

the two regimes is647

γ̇c ∼
(ΓD)1/2

µa2
(25)

and648

γ̇c ∼
D

µa3
f, (26)

respectively, where f = O(1) is at most a weak function of Γ̂. Mathemati-649

cally, the weak dependence on adhesion in the intermediate range of values650

of Γ̂ can be understood by looking at Eq. (22). We rewrite this equation as651

8q2
0
̂̇γ 2(q1

̂̇γ/5 + 8) = Γ̂[8− q1
̂̇γ]3. An increase in Γ̂ would give an increase in ̂̇γ652
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if the term in square parenthesis was neglected. But an increase in ̂̇γ corre-653

sponds also to a decrease in the factor (8− q1
̂̇γ) in the right hand side of the654

equation. The two terms on the right-hand side therefore compensate each655

other, leading to the asymptotic behaviour that is only weakly dependent on656

Γ̂.657

The critical shear rate is predicted to depend on the initial size of the658

crack, but not on the particle size L directly. This results follows from the659

assumption that the cohesion zone is smaller than the length of the solid-solid660

interface, an assumption that is expected to hold in practice. If the crack661

size correlates with the particle size (for example, if a = c1L in a statistical662

sense, with c1 � 1), then Eqs. (25) and (26) should be used with L replacing663

a and changing the prefactor accordingly.664

Our conclusions are valid up to Γ̂ ∼ 1. For larger values of Γ̂, the flap665

is almost vertical and our assumptions for the load fail. We expect that for666

Γ̂ significantly larger than one the critical shear rate should start growing667

again. Large values of Γ̂ correspond to relatively large values of a, so our668

conclusions hold for the initial development of the crack.669

4. DISCUSSION AND CONCLUSIONS670

We have proposed and analysed a model for the exfoliation of layered671

2D nanomaterials suspended in a turbulent flow. The model is based on672

the idea that exfoliation occurs through an erosion process, whereby layers673

of 2D nanomaterials are removed almost ‘layer-by-layer” through a micro-674

scopic flow-induced peeling process. The model provides insights into the675

dependence of the critical shear rate on the geometric, mechanical and ad-676

hesion parameters, for a realistic hydrodynamic load distribution. For this677

dependence, we provide explicit analytical formulas when possible.678

A key result of our analysis is that the dependence of the hydrodynamic679

load on the opening of the flap can dramatically change the magnitude of the680

critical shear rate (see Fig. 20). We have identified a transition that occurs681

for values of Γ̂ in the range 10−5− 10−4. For Γ̂ much smaller than this range682

of values, the constant load assumption holds and γ̇c follows a power-law with683

an exponent 1/2. For larger values of Γ̂, γ̇c follows Eq. (26), which displays a684

weak dependence on adhesion. In this regime the critical shear rate γ̇c is much685

smaller than what predicted by a constant load assumption. This prediction686

is the manifestation of a self-reinforcing hydrodynamic effect: as the crack687

propagates, the total pressure force on the flap increases both because the688
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Figure 20: Dimensional critical shear rate as a function of the size of the flap, for three
different values of adhesion energy and two values of thickness (dashed lines for 1 layer,
continuous lines for 10 layers). The value of the bending energy has been calculated as
D = D0N

3 where N is the number of layers and D0 = 20 eV [3]. The value of the fluid
viscosity is µ = 10−3 Pa s.

length of the crack increases and because θ increases; the combination of these689

two effects increases the total force on the flap to a larger extent than if the690

pressure was considered independent of the wedge opening angle, producing691

large changes in flap curvature. Interestingly, Fig. 20 shows that our theory692

can predict relatively low values of the critical shear rate of the order of693

∼ 105s−1, close to those observed experimentally [23], even without assuming694

reductions in the adhesion energy by several orders of magnitude when using695

specialised solvents (as instead assumed in the model of Ref. [23]).696

Unless the value of Γ̂ is truly infinitesimal, the error one would incur in by697

ignoring the transition we have discovered can be large. For example, from698

Fig. 15 we can see that ̂̇γc/(8/q1) is in the range 0.6 − 0.8 when Γ̂ = 0.1.699

The constant load solution would give a critical shear rate for exfoliation700

one order of magnitude larger (̂̇γc ∼= 8.94 from Eq. (14)). In a practical701
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liquid-exfoliation process, this difference would translate in drastically differ-702

ent processing conditions. In a rotating mixer for liquid-phase exfoliation,703

the average shear rate can be related to the mixer power P and the liquid704

volume V through γ̇ '
√
P/(V µ) [25]. Because of the scaling P ∝ γ̇2, as-705

suming Γ̂ = 0.1 the constant load prediction would thus overestimate the706

mixing power by a factor of approximately 100.707

Expressions (25) and (26) suggest that to reduce the critical shear rate708

for exfoliation ( thus mitigating the possibility of fragmenting or causing709

mechanical damage to the exfoliated sheets) one has to simultaneously reduce710

Γ and increase a. The adhesion energy can be reduced by changing the711

solvent. However, it has been reported that the dominant effect of adopting712

a good solvent is mostly to prevent reaggregation after exfoliation has taken713

place [24], so it is not clear that good solvents can be designed that can change714

the critical shear rate by orders of magnitude. Given the strong dependence715

on a suggested by expressions (25) and (26), increasing a artificially could716

be a good strategy to reduce the critical shear rate. This might be achieved717

by triggering a chemical reaction inside the layers to enlarge pre-existing718

cracks [57]), exploiting electrostatic charge [58] or electrochemical effects [59].719

Increasing µ also reduces the critical shear rate, but the overall stress level to720

which each particle is subject depends on the product µγ̇. Thus an increase721

in µ for a fixed γ̇ may not be a solution if one wants to achieve a “gentler”722

exfoliation (using large viscosity fluids may still be beneficial because the723

reaggregation kinetics is slowed down [60]).724

We have assumed that an initial flaw is present. The fluid dynamics anal-725

ysis reveal that, for a particle aligned with the streamline and for perfectly726

aligned edge layers (no shift between the layers), the direction of the load is727

such that, in the idealised situation, initiation of peeling starting from a = 0728

would be impossible. The direction of the load we find in our simulation is729

consistent with the result of Singh et al. for a disk aligned in a shear flow730

[44]. In a practical setting, a small finite opening force would be present even731

in the case a = 0, in instants in which the particle is inclined with respect to732

the flow direction or the edges of the particle are not perfectly aligned.733

In the current work, we have focused on the range of moderately stiff734

flaps for which the wedge angle is smaller than π/2. Future work will ex-735

plore larger values of the wedge angle. In this case, two aspects should be736

considered. First, for θ > π/2 the pressure on the flap will start decreasing737

with increasing angle. Second, as the flap starts aligning with the long axis738
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of the microparticle tangential forces due to viscous shear stress will become739

dominant over pressure. These hydrodynamic features will yield new regimes740

of exfoliation, possibly extending the curve of Fig. 15 to larger values of the741

non-dimensional adhesion energy. The analysis of these regimes will produce742

a more complete picture of the micromechanics of the exfoliation process.743
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Appendix A. Mathematical model for small displacements762

Denoting non-dimensional variables with a “hat” symbol (using a and
D as repeating variables) the coupled equations for the small-displacement
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model are

d5ŵ1

dx̂5
= 0 0 ≤ x̂ ≤ 1 (A.1a)

d4ŵ2

dx̂4
+ 4χ4 ŵ2 = 0 1 ≤ x̂ (A.1b)

d4ŵ1

dx̂4
(0)− q1 ŵ1(0) ̂̇γ = q0

̂̇γ (A.1c)

d3ŵ1

dx̂3
(0)− f1 ŵ1(0) ̂̇γ = f0

̂̇γ (A.1d)

d2ŵ1

dx̂2
(0) = 0 (A.1e)

ŵ1(1) = ŵ2(1) (A.1f)

dŵ1

dx̂
(1) =

dŵ2

dx̂
(1) (A.1g)

d2ŵ1

dx̂2
(1) =

d2ŵ2

dx̂2
(1) (A.1h)

d3ŵ1

dx̂3
(1) =

d3ŵ2

dx̂3
(1) (A.1i)

In non-dimensional units, Griffith’s energy balance is given by763

Ĝ = Γ̂ (A.2)

with764

Ĝ = 3
∂Û

∂̂̇γ
̂̇γ +

∂Û

∂χ
χ− Û (A.3)

and765

Û =
1

2

∫ 1

0

(ŵ′′1)
2

dx̂+
1

2

∫ ∞

1

(ŵ′′2)
2

dx̂ (A.4)
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The small-displacement solutions for ŵ1(x̂) and ŵ2(x̂) are

ŵ1 =
̂̇γ

6̂̇γχ
(
χ3(8f1 + 3q1) + 12χ2(2f1 + q1) + 6χ(4f1 + 3q1) + 12(f1 + q1)

)
− 144χ4

×

×
[
̂̇γx̂(f1q0 − f0q1)

(
χ4(2x̂3 − 3x̂2 + 1) + 6χ3(x̂3 − 2x̂2 + 1) + 3χ2(2x̂3 − 6x̂2 + 5)

+ 3χ(x̂3 − 4x̂2 + 8) + 18
)
− 6χ

(
χ3(q0x̂

4 + 4f0x̂
3 − 4(q0 + 3f0)x̂+ 3q0 + 8f0)

+ 12χ2(q0 + 2f0)(1− x̂) + 6χ(3q0 + 4f0 − 2(q0 + f0)x̂) + 12(q0 + f0)
)]

(A.5)

ŵ2 =
̂̇γeχ−χx̂

2̂̇γχ2
(
χ3(8f1 + 3q1) + 12χ2(2f1 + q1) + 6χ(4f1 + 3q1) + 12(f1 + q1)

)
− 48χ5

×

×
[
̂̇γ(f1q0 − f0q1)

(
sin(χ− χx̂)(χ3 − 6χ− 6) + cos(χ− χx̂)(χ3 + 5χ2 + 6χ)

)

− 12χ3(2f0 + q0)
(

sin(χ− χx̂) + cos(χ− χx̂)
)
− 24χ2 cos(χ− χx̂)(f0 + q0)

]

(A.6)

The strain energy release rate is a rational function of polynomial functions766

in χ and ̂̇γ767

Ĝ =
NĜ(χ, ̂̇γ)

DĜ(χ, ̂̇γ)
(A.7)

which becomes768

NĜ(χ, ̂̇γ) = DĜ(χ, ̂̇γ) Γ̂ (A.8)

This function is a quintic polynomial in ̂̇γ769

c5
̂̇γ5

+ c4
̂̇γ4

+ c3
̂̇γ3

+ c2
̂̇γ 2 + c1

̂̇γ + c0 = 0 (A.9)

with coefficients770

c0 = 552960 Γ̂χ10 (A.10)
771

c1 = −69120 Γ̂χ7
[
4f1(3 + 6χ+ 6χ2 + 2χ3) + 3q1(4 + 6χ+ 4χ2 +χ3)

]
(A.11)

c2 =2880χ4
[
Γ̂
(

4f1(3 + 6χ+ 6χ2 + 2χ3) + 3q1(4 + 6χ+ 4χ2 + χ3)
)2

− 24χ3
(
f 2

0 (1 + 6χ+ 12χ2) + f0q0(2 + 9χ+ 12χ2) + q2
0(1 + 3χ+ 3χ2)

)]

(A.12)
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c3 =40χ
[
− Γ̂

(
4f1(3 + 6χ+ 6χ2 + 2χ3) + 3q1(4 + 6χ+ 4χ2 + χ3)

)3

+ 72χ4(f1q0 − f0q1)
(
f0(−18− 96χ− 35χ2 + 72χ3 + 42χ4)

+ q0(−18− 48χ− 5χ2 + 42χ3 + 21χ4)
)

+ 36χ3
(

2f0q0(4f1(6 + 27χ+ 42χ2 + 10χ3 − 18χ4 − 12χ5)

+ 3q1(8 + 36χ+ 58χ2 + 20χ3 − 9χ4 − 6χ5))

+ q2
0(−8f1(−3− 9χ− 9χ2 + χ3 + 6χ4 + 3χ5)

+ 3q1(8 + 24χ+ 28χ2 + 6χ3 − 6χ4 − 3χ5))

− 4f02(f1(−6− 36χ− 84χ2 − 40χ3 + 24χ4 + 24χ5)

+ 3q1(−2− 12χ− 28χ2 − 13χ3 + 3χ4 + 3χ5))
)]

(A.13)

c4 =− 24χ2
[
2(f1q0 − f0q1)χ(1 + χ)(540 + 1320χ+ 1578χ2 + 1194χ3 + 592χ4 + 173χ5 + 22χ6)

+ 20q0f1(−54− 180χ− 123χ2 + 144χ3 + 273χ4 + 176χ5 + 54χ6 + 6χ7)

+ 15q0q1(−72− 228χ− 140χ2 + 168χ3 + 272χ4 + 147χ5 + 36χ6 + 3χ7)

+ 20f0f1(−54− 324χ− 357χ2 + 126χ3 + 468χ4 + 338χ5 + 108χ6 + 12χ7)

+ 15f0q1(−72− 420χ− 404χ2 + 180χ3 + 476χ4 + 283χ5 + 72χ6 + 6χ7)
]
(f1q0 − f0q1)

(A.14)

c5 =
[
40f1(1 + χ)(6 + 6χ+ 6χ2 + 4χ3 + χ4)(54 + 132χ+ 141χ2 + 84χ3 + 28χ4 + 4χ5)

+ 3q1(4320 + 18120χ+ 36576χ2 + 47796χ3 + 45032χ4 + 31698χ5

+ 16636χ6 + 6341χ7 + 1662χ8 + 268χ9 + 20χ10)
]
(f1q0 − f0q1)2 (A.15)

In the simpler case considered in Section 3.2.1 (distributed load only, inde-772

pendent on the angle), the displacements reduces to773

ŵ1(x̂) = q0
̂̇γχ

3(x̂4 − 4x̂+ 3)− 12χ2(x̂− 1)− 6χ(2x̂− 3) + 12

24χ3
(A.16)

774

ŵ2(x̂) = q0
̂̇γeχ(1−x̂) 2 cos(χ(x̂− 1)) + χ cos(χ(x̂− 1)) + χ sin(χ(x̂− 1))

4χ3

(A.17)
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from which the relation between ̂̇γ and Γ̂ has been calculated775

̂̇γ =
2
√

2

q0

Γ̂
1
2

(
χ

1 + χ

)3/2

(A.18)

If the angle independent edge load F̃ = f0 is applied together with the
distributed load q = q0 the displacements become

ŵ1(x̂) =
q0
̂̇γ

24χ3

(
χ3(x̂4 − 4x̂+ 3)− 12χ2(x̂− 1)− 6χ(2x̂− 3) + 12

)

+
f0
̂̇γ

4χ3

(
χ3(x̂3 − 3x̂+ 2)− 4χ2(x̂− 1)− 3χ(x̂− 2) + 3

)
(A.19)

ŵ2(x̂) =
q0
̂̇γeχ(1−x̂)

4χ3
(2 cos(χ(x̂− 1)) + χ cos(χ(x̂− 1)) + χ sin(χ(x̂− 1)))

f0
̂̇γeχ(1−x̂)

2χ3
(cos(χ(x̂− 1)) + χ cos(χ(x̂− 1)) + χ sin(χ(x̂− 1)))

(A.20)

The relation between ̂̇γ and Γ̂ shows the same dependence on Γ̂ as Eq. (A.18),776

with a prefactor that depends also on f0777

̂̇γ =
2
√

2

q0

χ3/2

[(1 + χ)3 + f0/q0(1 + χ2)(2 + 5χ) + f 2
0 /(3q

2
0)(3 + 18χ+ 36χ2 + 20χ3)]

1/2
Γ̂

1
2

(A.21)

Appendix A.1. Infinitely stiff foundation: cantilever beam (χ→∞)778

If the foundation is considered as infinitely stiff, the beam B1 can be seen779

as a clamped beam. The solution for the displacement if both the distributed780

load and the edge load are applied is781

ŵ1(x̂) =

̂̇γ(1− x̂)2
(
̂̇γ(f1q0 − f0q1)(2x̂2 + x̂)− 6q0(x̂2 + 2x̂+ 3)− 24f0(x̂+ 2)

)

6(̂̇γ(8f1 + 3q1)− 24)
(A.22)

The strain energy obtained from the displacement is782

Û =
̂̇γ 2[(144 + f1

̂̇γ(−6 + f1
̂̇γ))q2

0 + 2f0q0(360 + ̂̇γ(3− f1
̂̇γ)q1) + f 2

0 (960 + ̂̇γ 2q2
1)]

10(−24 + 8f1
̂̇γ + 3q1

̂̇γ)2

(A.23)
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Again, the Griffith’s energy balance can be written as783

c5
̂̇γ5

+ c4
̂̇γ4

+ c3
̂̇γ3

+ c2
̂̇γ 2 + c1

̂̇γ + c0 = 0 (A.24)

with coefficients784

c0 = 138240Γ̂ (A.25)
785

c1 = −17280Γ̂(8f1 + 3q1) (A.26)
786

c2 = 720
[
Γ̂(8f1 + 3q1)2 − 8(20f 2

0 + 15f0q0 + 3q2
0)
]

(A.27)
787

c3 = −10Γ̂(8f1 + 3q1)3− 48(160f 2
0 f1 + 120f0f1q0 + 60f 2

0 q1 + 69f0q0q1 + 9q2
0q1)

(A.28)788

c4 = −12(f1q0 − f0q1)(30f1q0 − 22f0q1 + 3q0q1) (A.29)
789

c5 = 5(8f1 + 3q1)(f1q0 − f0q1)2 (A.30)

If the applied load consists in a distributed and an edge load that do not790

depend on the angle, the solution simplifies to791

ŵ1(x̂) =
̂̇γ
24

(x̂− 1)2
(
q0(x̂2 + 2x̂+ 3) + 4f0(x̂+ 2)

)
. (A.31)

The corresponding solution to the Griffith’s energy balance is792

̂̇γ =
2
√

2

q0

1√
1 + 5f0/q0 + 20/3(f0/q0)2

Γ̂
1
2 . (A.32)

If an angle-dependent, distributed load is applied, the equilibrium shape793

is794

ŵ1(x̂) =
̂̇γq0

3(8− ̂̇γq1)
(x̂− 1)2(x̂2 + 2x̂+ 3) (A.33)

and the Griffith’s energy balance (A.24) simplifies to a cubic polynomial in795

̂̇γ796

512 Γ̂− 192 Γ̂q1
̂̇γ + 8̂̇γ 2(−8 q2

0 + 3 Γ̂q2
1) + ̂̇γ3

(−8

5
q2

0q1 − Γ̂q3
1) = 0. (A.34)

If the distributed load is independent on the angle, the classic solution797

for the cantilever beam under uniform load is recovered798

ŵ1(x̂) =
̂̇γq0

24
(x̂− 1)2(x̂2 + 2x̂+ 3) (A.35)

with the Griffith’s energy balance giving799

µγ̇a3

D
=

2
√

2

q0

(
Γa2

D

) 1
2

. (A.36)
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